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Introduction. This paper is devoted to the hydrodynamics of a one-component 

gas with small potential interaction. The basis of investigation is the kinetic equation in 

case of small potential interaction which contains general nonlocal collision integral [1] 

and describes arbitrary non-uniform states. In the local approximation this equation 

coincides with the well-known Landau–Vlasov kinetic equation. In hydrodynamics the 

system is supposed to be weakly non-uniform. 

Usually the system hydrodynamics is built on the basis of the local collision 

integral, but the use of the nonlocal collision integral is of significant importance. 

Firstly, some terms of the second order in small interaction may be lost if we deal with 

the local collision integral. Secondly, the Burnett approximation meets difficulties in 

the hydrodynamics with the local collision integral. Maybe, in some cases these 

difficulties can be overcome on the basis of the nonlocal collision integral. The 

conservation laws for the considered problem were investigated in [2]. The system 

hydrodynamics can be based on the investigated conservation laws.  

The aim of this paper is to investigate the system hydrodynamics based on the 

nonlocal collision integral in the leading order in small gradients. 

Basic equations of the theory. The investigation is based on the kinetic equation 

of the second order in small potential interaction with the general nonlocal collision 

integral [1]: 
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where (| |)V x  is the pair system potential, ( , )f t  is the one-particle distribution 

function, and 1( , )I f  is the general nonlocal second-order collision integral. This 

kinetic equation can be obtained [1] by the Bogolyubov reduced description method 
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and in the local approximation for the collision integral it gives the known Landau–

Vlasov kinetic equation.  

It should be noticed that the densities of the conserved quantities such as particle 

number, momentum and kinetic energy are usually used as the parameters which 

describe the hydrodynamic states of the system (the hydrodynamic reduced description 

parameters). These densities are introduced by standard definitions: 

 

(,) (,)nt df t x p ,     (,) (,)n nt dpf t  x p ,     
2

kin(,) (2)(,)t d mf t  x pp . (2) 

 

In [2] it is shown that although the system kinetic energy is conserved on the 

basis of the local Landau collision integral, it is not conserved on the basis of the 

nonlocal collision integral (1). The potential energy and total energy densities are 

introduced by definitions 
  

pot1 12212 12(,) (,,())t ddf ftV x p ,         kin pot(,) (,) (,)t t t  x x x (3) 

 

where the expression for the two-particle distribution function 2f  in terms of the one-

particle distribution function f  up to the first order in small potential interaction is [1] 
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On the basis of (1) – (4) it is shown [2] that the total energy of the system is 

conserved up to the second order both in small potential interaction and in small 

gradients. So, the following set of the hydrodynamic RPDs should be used: particle 

density (2), momentum density (2) and total energy density (4). The use of the kinetic 

energy density as a reduced description parameter is unreasonable even for a model 

problem without the Vlasov term. 

Investigation of the system hydrodynamics in the leading order in gradients. 

In the previous section the refined set of hydrodynamic reduced description parameters 

is proposed and in what follows the system hydrodynamics is built on the basis of the 

Chapman–Enskog method [1]. The parameters velocity n  and temperature T  are often 

used instead of n ,  . The definitions of n , T  in terms of f  should be the same as in 

equilibrium case. As is known [1,3], in equilibrium we have 
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where the temperature is given in energy units. The basic equation of the theory (1) is 

obtained up to the second order in small potential interaction, so the expression for 
eq

pot  should be truncated up to the second order in ( )V r T  and on the basis of (2), (3) 

and (5) we obtain the definitions of the reduced description parameters n , n  and T  in 

terms of the one-particle distribution function: 
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Equations (6) with account for (4) are the additional conditions to the kinetic equation 

(1). It is shown that in the leading order in small gradients of hydrodynamic variables 

the Maxwellian distribution function  
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satisfies both the kinetic equation (1) and the additional conditions (6). The parameter 
g  describes the smallness of the gradients and is given by (7) where fpl  is the free path 

length and L  is the characteristic length at which the hydrodynamic parameters are 

significantly changed. So, the system distribution function of the leading order in 

gradients is the Maxwellian one (7). 

Conclusions. The definitions of system velocity and temperature are obtained 

in terms of the one-particle distribution function. The corresponding additional 

conditions to the kinetic equation are also obtained. The leading-order-in-gradients 

hydrodynamics of the considered system is built on the basis of the general nonlocal 

collision integral. It is shown that the system distribution function in the leading order 

in gradients is the Maxwellian one.  

Our future plan is to build the system dissipative hydrodynamics and to calculate 

the corresponding kinetic coefficients. The results obtained here are the basis of such 

an investigation.  

The results of the present work can be used in plasma investigations, because, as 

known, the Landau–Vlasov kinetic equation is widely used in plasma physics. So, the 

obtained results and the proposed approach have many applications. Among other 

things, they can be applied to the description of physical processes in 

telecommunication and information systems. 
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