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ABSTRACT

Purpose of the paper is to develop mathematical model describing nature of argillous and salt samples under com-
pression and to make available microdefects using finite-element method.

Methods. To simulate behaviour of cylindrical rock samples under axial strain, finite-element model of rocks, being
broken, is applied. In terms of the assumed model, components of medium with the disturbed continuity are calculated
as those being continuous with anisotropic deformational and strength properties. Failure is considered as strength
loss in terms of displacement and tensile on the anisotropy planes of the element. Within each point of the medium
(if finite-element method is applied, then each element is meant) the limited number of planes of possible failure with
45° pitch is considered; they are used within each stage to evaluate potential failure resulting from displacement stresses
or tensile ones. Coulomb-Mohr criteria as well as tensile strength are applied to determine potential failure on sites.

Findings. It has been determined that mathematical modeling enables observing the process of disturbances within
the sample. Stress-deformation diagrams, being a result of the modeling, demonstrate features of the sample beha-
viour during different loading stages (i.e. nonlinear nature up to the peak load; decrease while breaking; residual
strength; and hysteresis loops in terms of cyclic loading). It has been proved that if the model parameters are selected
adequately, acceptable coincidence of both calculated and laboratory curves describing connections of axial strains
and side strains with pressure on the samples of clay, sylvinite, and rock salt can be achieved.

Originality. Finite-element has been developed. The model makes it possible to describe processes of strain and
failure of rock samples in the context of laboratory tests; moreover, the model differs in the fact that it is added by
the description of deformation processes taking place in microfissures and pores.

Practical implications. Modeling with the use of finite-element method for rocks under breaking helps reach suffi-
cient coincidence of the calculated diagrams of sample tests with graphs of stresses-deformations connection resul-
ting from the laboratory studies. The obtained positive results confirm applicability of finite-element model of rock
deformation and failure in terms of rock pressure problems.
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1. INTRODUCTION

The samples, analyzed under laboratory conditions,
are the share of rock mass undisturbed by such disconti-
nuities as foliation and large fissures. Common laws of
motion act both in samples and in rock masses. Laborato-
ry studies for rock samples are aimed at the determina-
tion of parameters of deformation and strength properties
used for engineering analysis.

Most of all, cylindrical samples are used to analyze de-
formation and strength properties of rock under laboratory
conditions (Kartashov, Matveev, Mikheev, & Fadeev,

1979; Stavrogin & Tarasov, 1992). Pressure is put on
samples by means of axial and side loads at different
velocities. Figure 1 demonstrates results of tests carried
out with the use of rock salt sample (Kartashov, Matveev,
Mikheev, & Fadeev, 1979). Cylindrical sample with
36 mm diameter and 70 mm height was tested when
axial deformation velocity was 0.2 mm/min. Resear-
chers paid attention to following effect: elasticity
modulus, determined on axial strains in the process of
the sample unloading, varied insignificantly within
rather wide load range.
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Figure 1. The development of axial (a) and side strains (b)
in rock salt samples in terms of cyclical uniaxial
compression (Kartashov, Matveev, Mikheev, &
Fadeev, 1979)

From the starting loading point to destruction point
(25-10° MPa) and after the sample destruction (up to
the load being almost 60% of compression strength),
elasticity moduli can be practically considered as con-
stant ones. In the process of further deformation, elas-
ticity moduli experience their 2 —3 times decrease
(Fig. 1a). A form of lateral deformation curve (Fig. 1b)
is asymmetrical: side strains increase sharply after peak
loading since microfissures within the sample material
becomes opened and its volume increased. Initial non-
linear section of longitudinal deformation graph reflects
effect of microfissures and pores.

Elastic and elastic-plastic models are applied to solve
the problems of mine working stability. To estimate
destruction zones, numerical calculations (finite-element
method or net method) use criteria determining failure
(plasticity) conditions in terms of stress state invariants;
review of the criteria can be found in the paper (Pan &
Hudson, 1989). Experimental studies of failure mecha-
nism under sample compression are discussed extensive-
ly in following papers (Wawersik & Fairhurst, 1970;
Wawersik & Brace, 1971; Lockner, Byerlee, Kuksenko,
Ponomarev, & Sidorin, 1991; Cox & Meredith, 1993;
Pells, 1993). Formulation of conditions of incipient dis-
placement and fracture planes as well as their planes is
required to substantiate the techniques to simulate geo-
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mechanical processes within rock masses. Various con-
stitutive models have been proposed to simulate potent
behaviour of geomaterials (Walsh & Brace, 1964;
Pariseau, 1968; Hoek & Brown, 1980; Nova, 1980; Pie-
truszczak & Mroz, 2001; Chiarelli, Shao, & Hoteit, 2003;
Lydzba, Pietruszczak, & Shao, 2003; Shao, Jia, Kondo,
& Chiarelli, 2006; Hoxha, Giraud, Homand, & Auvray,
2007; Lee & Pietruszczak, 2008; Shen & Shao, 2017).

Basically, strength criteria are approximation of
boundary surface of failure conditions within stress
space for initially uniform material. So-called zones of
plastic deformations and failures in the neighbourhood
of mine workings and engineering structures are calcu-
lated with the help of such criteria. Hoek-Brown criteri-
on (Hoek & Brown, 1980) and its modifications are the
most popular ones.

Finite-element method is widely used in the process
of rock pressure problems calculation (Fadeev, 1987).
During the last two decades, discrete elements method
and such mixed methods as hybrid finite-element model
(Lisjak, Figi, & Grasselli, 2014) became rather popular.
In terms of such models, calculation area is considered as
that consisting of either rigid or elastic elements separat-
ed by contact surfaces within which plastic deformations
and failure are possible.

Nonlinear character of initial section of the axial
strain diagram (Fig. 1) confirms availability of such
microdefects as pores and fissures. Rock microdefects
effect on the deformation processes lowering the
strength. In the context of crystalline rocks, microfissures
are divided into two groups: natural microfissures being
formed as a result of natural processes including changes
in pressure or temperature during geological time; and
stress induced (i.e. mechanically induced) microfissures
depending upon changes in stresses and their concentra-
tions in the process of drilling and other operations (Nur
& Simmons, 1970). Paper (Hamdi, Stead, & Elmo, 2015)
proposes to use combined method of discrete and finite
elements inclusive of micro-discrete model of fissure
system (uDFN). Many authors (Tang, Liu, Lee, Tsui, &
Tham, 2000; Tang, Tham, Lee, Tsui, & Liu, 2000; Fang
& Harrison, 2002) consider microdefects as nonuniform
impurities with deviations from strength and elastic
properties. Such methods cannot involve moments of
microfissure and pore closure.

The paper exemplifies simulation of rock samples in
terms of uniaxial compression with the use of a model of
rocks under failure (Olovyannyy, 2003; Olovyannyy,
2012). The model uses finite-element method. Within each
element, the material is being considered as continuous
and uniform where plastic deformations and failure initi-
ate differently oriented anisotropy. Limited number of
oriented anisotropy planes with 45° step is separated; the
planes are those where shear fracture or disruptive frac-
ture is possible. As distinct from models with contact
surfaces, where fracture happens on the contacts of uni-
form elements, in the context of the model, fracture is
simulated as that distributed on the strength weakening
and plane discontinuity like in a laminal formation.
Since, such structures are disturbed on their planes then
Coulomb-Mohr share strength criterion and tensile
strength criterion are used to estimate potential increase
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in plastic deformations and disturbances. The model
takes into consideration the possibility of simultaneous
rise of several anisotropy planes and changes in their
parameters within varying stress fields and time.

Effect of microdefects (i.e. pores and microfissures)
is considered at a phenomenological level. Equations,
describing deformation processes of the microstructure,
are based upon the agreement between experimental and
theoretical graphs, namely axial strains — stresses and
axial strains — side strains.

Mathematical modeling of rock samples behaviour
under the conditions, simulating laboratory tests, makes
it possible to verify the model approximations and to
specify them while comparing theoretical and experi-
mental results. Results of the modeling help determine
parameters of equations of state which correctness is
confirmed while comparing theoretical and laboratory
graphs of a sample deformation.

Scientific sources exemplify simulation with the use
of various models when a zone with rectangular section
is being deformed in terms of a plane deformation (Un-
teregger, Fuchs, & Hofstetter, 2015). There are also
examples of cylindrical samples modeling under axial
compression with the use of analytical solutions in a
theory of plastic potential under the ideal loading condi-
tions (Unteregger, Fuchs, & Hofstetter, 2015).

Results of the laboratory tests, when uniaxial com-
pression was used, are dependence graphs of a sample
pressure on axial and side strains. In the context of ma-
thematical modeling of a sample testing, dependence
between a sample pressure and deformations is also
graphed. A type of the graphs depends upon the taken
parameters of the equations of a state of rock behaviour.
If the model of a sample behaviour reflects correctly the
regularities of elastic, plastic, and viscous deformation as
well as destruction within the rock, then such a selection
of a state equation parameters is possible when the de-
sign graphs will match experimental curves.

2. AMODEL OF ROCK FAILURE ACCORDING
TO THE ORIENTED DIRECTIONS

Lithospheric defects are of various dimensions and
orientation. Such large defects as faults, dividing rock
masses into parts, may be considered as separate objects.
Fissures, existing in rocks, and those, arising in the neigh-
bourhood of mine workings, form differently oriented
systems. It is impossible to describe each existing or new-
ly formed fissure as well as to consider it while modeling.
Similar situation arises when rock samples are being
faulted. It is also impossible to take into consideration the
origination of each sample defect in the modeling process.

To model behaviour of the loaded samples, use a
method of failure consideration within the medium ele-
ments on the fixed directions by analogy with continuum
material with the oriented anisotropy planes (Olovyannyy,
2003; Olovyannyy, 2012). In the process of modeling,
destructive medium is considered to be continuum during
each deformation stage; it is described with the help of
continuum mechanics equations. In terms of such a medi-
um, the surfaces subjecting to failure cannot be considered
as separate objects. The failure is interpreted as the de-
crease in the elements strength on the oriented directions.
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According to the proposed scheme of the infinite
number of possible planes of fissure formation, direc-
tions with 45° step are considered. In general case, (i.e.
in 3D space), there are 13 directions of such a type.

Solution method with axial symmetry conditions is
applied while sample simulating. Nine line of weakness
(i.e. anisotropy planes) are separated in the context of
axial symmetry (Fig.2). In the Figure, every of the
systems (i.e. planes) is shown with the help of three or
four identical numbers: 1 - 1-1,2-2-2,3-3-3-3,
4-4-4,5-5-56-6-6-6,6-6"-6,7-7-7-17,
and 7" — 7" — 7’ respectively. On systems 1, 2, 3, 4, and 5,
deformation may take place irrespectively of each other.
Systems 6 and 6" within radial inclined directions, and
vertical paired systems 7 and 7’ deviate from » —z plane
(in this context, r is radial coordinate, and z is coordinate
along the symmetry axis) at identical angles to and fro. If
deformation takes place along 6 —6" directions, then
weakening rise to a lateral surface of a sample are
demonstrated by means of inclined Luders lines; distur-
bances towards 7 and 7 directions form spirals within
z = const planes.

z

Figure 2. Scheme of the fixed directions of potential fracture
networks (laminal formations) in the context of
axisymmetrical deformation

Numerical modeling involves finite-element method
basing upon mechanics of linear and deforming medium.
Such nonlinear effects as plastic and viscous defor-
mations are solved with the help of a procedure of fic-
tious nodal forces (Fadeev, 1987). Each step calculations
within each element determine stresses acting at sites of
each of the separated planes. Within each site, possibility
of shear failure or fissure failure is estimated; to do that,
corresponding criteria (i.e. Coulomb-Mohr criterion and
tensile strength criterion) are applied:

|z,|=C+0, 184, 0, >0; O

o, =0, 0,<0,

where:
o, and 7, —normal and tangential stresses within the site;
C — adhesion;
o: — tensile strength.
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Strength condition (1) will be broken during certain
deformation stage; then, the strength degradation will
take place within the corresponding plane. Thus, adhe-
sion and tensile strength will be equal to p,C and p,o;
respectively; in this context, p, <1 determines degrada-
tion index. Hence, strength conditions are:

= puC 0180, 3, >0 o

0, = Pp0y, 0, <0,

where:

pn—degradation index determines strength share
within undisturbed rock;

pn =1 for solid (undisturbed) formation;

0<p,<1 for the formation with the weakened
strength;

pn=01n terms of total strength loss.

Calculation procedure is as follows: tangential and
normal stresses as well as elastic and nonelastic defor-
mations are calculated within each element on each of the
separated directions after stress field was determined. To
estimate conditions within the sites with # normal, rela-
tive intensity of shear (c;) and tension (¢;) are calculated in
accordance with condition (2). Their values may be 0 to 1:

17, |

cp=——TL——; 3
' Cp,+o,ig0 ®

On if 0, <0;
¢ = (pno't)

0if o, >0.

“4)

If ¢, > ¢;, then deformation of plastic displacement in-
creases and adhesion in addition to tensile strength p,
decreases within the element corresponding to the direc-
tion. In this context, ¢; is long-time strength coefficient
being determined by means of elastic limit stress-strength
limit ratio. If within ¢;<¢, <1 site stresses are not peak
ones, then plastic deformations are limited. In terms of a
sample, such a situation corresponds to nonlinear section
of load diagram up to its maximum. Within the consid-
ered site the limitation is formulated by [y*| < K, |y¢| con-
dition. In this context, K, is plasticity coefficient deter-
mining the ratio between plastic deformation and elastic
one in terms of maximum pressure; and ¥ is elastic shear
deformation. Following dependence of plastic defor-
mation on a load degree has been taken for the stage:

Cr ¢

2
7p=Kpl7/e{ } ,ifCT >cy, 7p<Kpl‘}/e‘. %)

l—Cl

If |y?| > Ky |y°| and ¢, > ¢; (within decreasing site) plas-
tic deformations are limited by environmental effect only.

In terms of ¢; > ¢;, shear increment is determined to-
wards tangential stresses and loosening deformation
normally to the anisotropy plane:

AyP =5 AeP =-K 5, (6)

where:
J — small value;
K, — fragmentation coefficient.
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If ¢ <c, then plastic displacements and failures do
not increase. If c¢;>c¢; is within a site, then tensile
strength is set normally to the anisotropy plane:

(7

In terms of formulas (6) and (7), a value of defor-
mation increase is determined in the process of step-by-
step calculations. During step one it is defined as small
value to compare with elastic deformation; then it is
specified by means of its successive increment in terms
of repetitive stress calculations until strength condition is
met. Along with the increase in breaking deformations of
shear and failure, strength decreases in terms of corre-
sponding sites. The strength increase is calculated de-
pending upon increments if breaking deformations of
shear failure deformations take place.

Strength increment in terms of shear is:

My

dp =) 14Ky [arz il < Kl ] ®)
—My‘A%f if 7’7‘>sz‘7€‘.
Strength increment in terms of failure is:
Ap, =M Ag,, (€))
where:

M, and M, — local decay modules in terms of shear
and tension respectively.

As distinct from decay module, used in rock mechanics
(Petukhov & Lin’kov, 1983) to determine a slope angle of
stress-deformation line within a site beyond maximum, local
decay modules describe connection between increments of
breaking deformations and decreasing relative strength.

The oriented strength weakening within rocks is mani-
fested in the anisotropy of deformation properties includ-
ing elastic ones. Changes in elastic rock properties depend
upon a degree of strength weakening in different direc-
tions — from fragmentation. The fragmentation degree may
be estimated inclusive of the achieved degree of strength
decrease; in this context, shear rigidity varies towards
directions coinciding with directions of failure planes.

Stresses and strains are interconnected by means of
Hook’s law ratios; in the context of Cartesian coordi-
nates, matrix form of the ratios is:

{o}=[D ]{e}.

where:

{0-} = {O-xs 6}’9 Gza Txys T}Zn Tz‘(}oy {8} = {gxa gya 52: nya y}Zn YZX}O -
columns of stress and strain components;

(10)

E(l—V)2 Ev . Ev 000
1-v=-2v" 1-v-2v" 1-v-2v

Ev E(1-v) Ev 000
1-v-22 1-v-2v? 1-v-2/?

[Dy ]= Ev Ev E(1-v) 000l )

l-v-2v* 1-v=2v2 1-v-2/2

0 0 0 GO0O

0 0 0 0G0

0 0 0  00G |
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where:

E — Young’s modulus;

v — Poison’s ratio;

G — shear module.

Relying upon the fact that shear flexibility (including
elastic flexibility) is the most important manifestation of
rock fissuring and laminarity, rock layers can be consi-
dered as isotropic for axial strains with the pronounced
shear anisotropy along formation lines or laminal for-
mations resulting from fracture networks.

In the context of medium with shear anisotropy, stiff-
ness matrix can be represented as that consisting of two
parts: leading matrix (11) and additional matrix, deter-
mining the effect of the oriented rigidity weakening:

[D]=[Dy]-G[ K, |.

In terms of axial symmetry for a medium with wea-
kening along the directions with z/4 step, [D] matrix is:

(12)

I-vv v 0

v 1-vv 0

E
Dl=—— - -
[] (I—ZV)(I—V) v vl le2
—2v
0 0 0 ’ (13)
d% 0 0 0
|0 % a0
0 —d&34 G5 0
0 0 0 o
where:
Oy =1- iky ;
1=(1=k; )(1-k)
kak.
Sus =1— 3%4 :
- (1-k) (k)
kgk
O =1— 676 ;
O 1= (1—ke) (1=K
krk
57 =1~ 17 .
" 1=(1=k7 )(1-k7)
ki, ..., k7 — parameters determining changes in shear

stiffness along corresponding directions (Fig. 2).
Parameters, characterizing changes in elastic shear
stiffness in terms of different directions depend upon the
degree of strength weakening. Following dependence of
the shear stiffness weakening parameter on the weakening
parameter along corresponding directions has been taken:

ki =1=(1-p; )" . (14)

It is taken in calculations that m =4 (the value has
been taken on the basis of comparison of the measured
and calculated basin curves of the Earth’s surface dis-
placement within the stratified deposit).

Loading velocity is very important for the results of
the sample tests. Despite the fact that standard sample
tests in terms of uniaxial loading take several minutes,
viscous properties effect loading diagrams. A model of
elastic-viscous-elastic body, containing two elements of
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Kelvin-Voigt, is applied to simulate viscous properties. A
velocity of elastic-viscous deformation components is
described with the help of the ratio:

(G)—glve)+6’2_1 (.sg)

where addends one and two describe stage one (i.e. quick)
and stage two (i.e. slow) of viscous-elastic deformation;

&1 and & — viscous-elastic deformations of stages
one and two;

6, and 6, — delay time;

() and &,?(o) — ultimate viscous-elastic defor-
mations during infinite time being determined as shares
of elastic deformation.

Taking into consideration the relations between
stresses and elastic deformations, elastic-viscous defor-
mations for infinite time are determined as shares of
elastic deformation:

At =91_1(€S) (0')—856). (15)

eX =k,,€°, (16)
where:

kv — elastic viscosity coefficient determining ratio
limit between elastic-viscous and elastic shear defor-
mation in terms of steady loading (Olovyannyy, 2012;
Olovyannyy, 2016).

Viscous deformations are considered to be incom-
pressible in terms of Cartesian coordinates:
gl+e’+&°=0. (17)

Viscous-elastic deformations are the sum of viscous-
elastic and breaking deformations requiring no specific
description. Volume changes with time are determined
with the help of effects of plastic deformation and failure.

According to the values of stresses and strains,
obtained within the step for each element, increment of
plastic (breaking) shear deformations and rupturing
deformations as well as strength increment in terms of
each of the separated directions are calculated. Following
step involves calculations inclusive of increment of addi-
tional forces within nodes of the network of elements
determined relying upon increments of nonelastic defor-
mations; potential failures are controlled with the consi-
deration of the strength experienced its variations
depending upon the directions.

Degradation index p, is estimated within each com-
ponent of the medium in terms of all possible failure
planes. Its idea is similar to a weakening coefficient
applied by rock mechanics (Fisenko, 1976). The differ-
rence is that the weakening coefficient determines
strength decrease in the mean as isotropic parameter; as
for p, parameter, it is determined on the oriented direc-
tions within each point of the object rock mass.

3. MATHEMATICAL MODELING
OF THE SAMPLE TESTS IN TERMS
OF UNIAXIAL LOADING

Cylindrical samples were tested in terms of uniaxial
loading to determine such deformation and strength pa-
rameters as compression strength, elasticity modulus,
Poison’s ratio, dip modulus, and residual strength. In
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terms of volumetric stress, and strain, viscous parameters
are determined on the results of sample tests under ade-
quate loading conditions.

When pressure is put on a sample within the sample
contact surfaces and the press plates, friction forces arise
resulting in the disturbance of a stress state uniformity.
“High” samples are used to reach maximum uniformity
of stress distribution; as a rule, it is done when height-
diameter ratio is equal to two or more. However, under
real conditions, uniform state cannot be reached; while
compressing, a sample becomes of a barrel shape and
breaking process takes place with the formation of uni-
formity loss zones. Most of all, the zones are conical.

Proper boundary conditions are established when
sample deformation modeling at the surfaces of the sam-
ple contact the press plates. Complete sample-press plate
adhesion in the context of mathematical modeling corre-
sponds to real conditions within contacts.

A stage of sample failure involves deviation of the
process from axial symmetry. Complete sample failure
happens on the flat surfaces. Axial symmetry is pre-
served at any modeling stage; thus, it is impossible to
simulate formation of such surfaces.

Argillous sample deformation has been modeled as an
example. Height-diameter ratio of cylindrical samples is
equal to two (Fig. 3). Conditions of complete adhesions
with rigid press plates are set within a contact of the sam-
ple end faces (radial displacements are inhibited in each
point of the contact). A process of the sample deformation
and failure under axial loading with periodical unloading
in terms of constant deformation velocity is calculated.

L > <=
1

@\l

= o,

Ell =h

| ¥ <=
9 <=
H H S
Diameter/2

Figure 3. Calculation model of a cylindrical sample

Radial displacements are inhibited along the sample
axis; and vertical displacements are inhibited along the
surface of a midsection. Radial displacements of nodes
are inhibited within sample-press plate contact; a dis-
placement is set when velocity of the sample axial
deformation is 0.015 hour.

Modeling results for three argillous samples
(V.V. Sokurov, T.Yu. Vekshina, and Yu.V. Zaitsev) have
been quoted; they were sampled from different depths
(Fig. 4). Parameters of deformation and strength proper-
ties are determined by means of selection subject to the
best coincidence of calculation graph and laboratory
graph of axial strain-pressure on the sample connection;
basic parameters are in Table 1.

Table 1. Basic parameters of deformation and strength rock properties within the samples

g —5 S g D; g) ) Q“ N > 8 -8 g g N
£ s % £2 25 @ s 82 £ETy ETS £
= g = = 2 ¢ (=Y s ‘S & S8 o = S > d =
S| E I L ° 452 =S = .9 S .0 T v 0 'Owgl) 52
2 £y & =€ 2% £<¢ 22 28 32§ 322 g8
& 5 2 E®D 7€ 5 s =g 25 224 28% 9%
3 E £ SE 5 i 3 s -=g —g&5 £3
25 17}
7 18 0.20 0.15 0.012 15.0 6.50 0.65 6.5 45 0.240
17 48 0.24 1.60 0.090 12.0 0.10 0.45 22.0 14.0 0.008
18 49 0.16 0.25 0.030 11.4 0.24 0.61 7.2 11.5 0.050

*The table does not contain the parameters characterizing viscosity

The obtained stress-axial strains graphs being a result of
numerical modeling are close to the graphs obtained as a
result of laboratory tests. Experimental graph of side strains
has not been recorded within the series. Graphs in Figure 4
represent all substantial behavioural features of rocks
demonstrating themselves in the process of such tests. The
modeling results not only correspond to the common con-
cepts of failure processes; they also give additional infor-
mation concerning the phenomena character and order.

Another important fact should be noted. The parame-
ters of deformation and strength properties which made it
possible to develop a diagram (coinciding accurately
with experimental dependence) while modeling, were
obtained on the results of one sample testing. In this
context, if, for example, other strength values under ten-
sion are taken instead of the above-mentioned, then de-
sign graphs will differ from experimental ones. The same
is true for any deformation and strength parameters to be
explained by the fact that certain sample parts experience
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different conditions of compression, tension, and dis-
placement; thus, the model parameters, involved in the
process of deformation and failure description under such
conditions, effect the modeling results. It means that
elastic characteristics, compression and tensile strength,
adhesion, friction angle, endurance, fraction coefficient,
and other parameters demonstrate themselves under
uniaxial compression; hence, it is possible to determine
them according to the results of one sample testing.

The modeling demonstrates clearly that a value of peak
pressure on the sample is not equal to o. depending upon shear
strength parameters C and ¢ in the context of the taken model:

cos @

1sing )

=2C

O

when the peak pressure on the sample also depends on
other parameters especially those characterizing frag-
mentation while shearing, brittleness, and plasticity.
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Figure 4. Diagrams of cylindrical samples loading: (a), (b),
and (c) are samples 7, 17, and 18 respectively

On Figure 4 lateral strain reflects change in the sam-

ple radius midsection; the experiment took a cycle. Cal-
culations were performed with periodical unloading.
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Figure 5 demonstrates sample 17 section of the initial
shape and the shape deformed after the modeling termi-
nated when weakness zones, where strength loose was
more than 90% of the initial one, made a junction divid-
ing the sample into parts. Strokes in Figure 5 mean orien-
tation of circular surfaces over which strength loss takes
places. D line, drawn along failure zones identified by the
modeling within the sample midsection (Fig. 5b), corre-
sponds to a fracture pattern at the sample surface (Fig. 5a).

Figure 5. Argillous sample at the end of loading process (a)
and a patterns of the calculated disturbances within
diametric section (b); D — a line of potential sample
breaking within a midsection (the line is drawn on
the calculated disturbance zones)
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Mathematical modeling if rock samples tests makes it
possible to see the failure process development when
axial strain increases.

Laboratory tests involve construction of graphs of
axial strains and side strains of a sample. If mathematical
model is adequate reflecting basic regularities of the
material deformation and failure, then it is possible to
select such parameters helping obtain reasonable coinci-
dence of design graphs and laboratory graphs.

Coincidence of design graphs and laboratory graphs
means that for the most part the model, being used,
reflects correctly regularities of the sample deformation
and failure.

Nonlinear section is observed within the initial part of
axial strain graph of rock salt sample (Fig. 1). The sec-
tion demonstrates effect on deformations of microde-
fects, i.e. pores and microfissures. It is obvious that the
microdefects effect on the sample behaviour during fol-
lowing deformation and failure stages. We believe that
the loading velocity effect on the sample tests depends
primarily on viscous properties of the microdefects.

Hence, the deformation and failure model, involving
such components as elastic, plastic, viscous, and break-
ing parts, should also involve microdefect component of
rock sample disturbance.

4. MICRODEFECT MODEL

Stresses-deformations dependence graph (Fig. 1) in-
cludes nonlinear section at the very initial loading stage
indicating that microdefects (i.e. microfissures and pores)
are available within rocks; the microdefects have impact
of the disturbed rocks in the loading process. Form of the
initial section is indicative of low inelasticity of the mi-
crodefects to compare with original material.

Behaviour of the medium under deformation may be
represented in the form of a graph where deformation
modulus is lower within tension area to compare with
compression area where it increases nonlinearly (Fig. 6).

o

Compression

Tension

Figure 6. Schematic deformation graph of microdefect
component of rock model in terms of tension and
compression

There are two approaches to consider the effect of
microdefects on rock deformation and failure: effect of
the microdefects as nonhomogeneity of strength and
other elastic properties distributed within solid material
randomly (Tang, Liu, Lee, Tsui, & Tham, 2000; Tang,
Tham, Lee, Tsui, & Liu, 2000; Ma, Wang, & Ren, 2011;
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Hamdi, Stead, & Elmo, 2015). The random nonhomoge-
neity is introduced to open potential breakdown sites. In
the context of such an approach, initial nonlinear section
of loading diagram is not demonstrated.

Approach two takes into consideration effect of pores
and fissures as cavities distributed within the solid mate-
rial (Shen & Shao, 2017). The approach makes it possible
to achieve coincidence of diagrams, basing upon consti-
tutive models, and experimental data for rock samples.

The paper proposes phenomenological model conside-
ring effect of microdefects as the additional factor effect-
ting rock disturbance. The model relies upon comparison
of design graphs and experimental graphs in the process of
mathematical modeling to test specific rock samples.

Properties of the medium are: microdefect medium is
viscous; its manifestations depend heavily on loading
velocity; deformations are reversible; and the defor-
mations are local.

Microdefect medium can be described with the help
of following expressions:

—velocity of viscous-elastic deformations towards
basic deformations is:

(9,- —.and )[1 - exp(—?]mddtﬂ ,

de" (19)

1
where:

9; — ultimate compression deformation in terms of the
current stress level;

&'ma — the achieved deformation level;

nma — a coefficient of the microdefect viscosity;

— within the space of the basic deformation we have:

)

- = mnd [o-,- ~v(o;+0y )} i €ma > 0:(20)

ﬁ |:O'l- —V(O'j +0'k)} i€, <O0.
where:

ema — peak compression deformation;

E — elasticity modulus;

E,q— elasticity modulus of the microdefect medium
under tension.

The modeling process has shown that certain share of
lateral deformations within the sample midsection can be
explained by failure dilatancy as well as opening (clo-
sure) of fissures. The model does not describe plastic
deformation of failure in the neighbourhood of microde-
fects as it is proposed by (Shen & Shao, 2017). The mi-
crodefects including pores and microfissures contribute
significantly to deformation process during all loading
stages together with the stage when the sample is being
broken not explicitly.

5. MODELING OF SALT ROCK SAMPLES

One and the same models with different parameters
describe elastic, plastic, brittle, and viscous differences
of rocks. Parameters of rock state equations are deter-
mined relying upon laboratory tests of several samples
belonging to one homogeneous rock block. It is supposed
that the average parameters, obtained with the help of
different samples, may be attributed to the whole block.
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Laboratory experiments are carried out under different
conditions of sample loading: under uniaxial and iso-
tropic compression; under tension; and under the condi-
tions of steady loading. Each loading type is meant for
the determination of different parameters.

Resulting from the laboratory tests of the sample,
graphs are constructed to contact acting power experi-
mental parameters, time parameters, and deformation
parameters. Graphs are also constructed as a conse-
quence of the sample mathematical modeling for the
conditions of the experiment with the specified input
parameters. Qualitative coincidence or difference in
experimental graphs and design graphs as well as a pos-
sibility to reach their reasonable coincidence in terms of
the varied state equations confirms the accepted model
adequacy (i.e. state equations).

Test of cylindrical sample under uniaxial compres-
sion with the specified constant velocity of axial defor-
mation down to the sample complete breakage is the
most popular technique to study rock properties. Gene-
rally, slipping is not available within the contacts be-
tween end surfaces of the samples and press plates. In the
context of mathematical modeling, boundary conditions
of horizontal displacements inhibition within the sample
ends are adequate to such conditions. In terms of the
loading conditions, nonhomogeneous stress field arises
within the sample. In proportion to the increase in axis
compression deformations, oriented weakening starts
within the sample. While accumulating, it results in its
breakage. Since stress fields and breakage fields are not
uniform within the sample, different stress zones of uni-
axial and volumetric compression, tension, and shear
originate in its different parts. The zones demonstrate
regularities of elastic anisotropy, plastic deformation, and
breakage. It means that in the process of the mathemati-
cal deformation modeling all parameters of models of
breakage as well as elastic, plastic, and viscous defor-
mation become apparent.

Consider the problem solution in terms of the results
concerning tests of sylvinite and rock salt samples (Fig. 7)
(M.D. Iliinov, V.A. Korshunov, D.N. Petrov). The sam-
ples with 100 mm height and 50 mm diameter were tested
at 0.05 mm/min constant velocity of axial deformation.

Design parameters of the model are given in the Table 2.
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Figure 7. Deformation graphs resulted from sylvinite sample
test (a) and rock salt test (b) and (c)

Table 2. Design parameters of the model

. Rocks
Model parameters Measurement unit Sylvinite Rock salt (2) Rock salt (b)

Elasticity modulus MPa 5940 6415 7940
Poison’s ratio c.u. 0.268 0.029 0.108
Compression strength MPa 24.0 19.6 19.6
Tension strength MPa 1.44 2.11 1.94
Frictional angle deg 24.0 26.7 33.0
Durability coefficient c.u 0.60 0.63 0.50
Elasticity coefficient c.u. 2.05 1.48 1.23
Local decay modulus under shear c.u. 36.0 106.5 131.8
Local decay module under breakage c.u 66.0 78.3 109.1
Expansion coefficient c.u. 1.32 0.09 0.78
kve c.u. 35 3.2 2.2
o' hour™! 0.098 0.088 0.088
027! hour™! 0.0020 0.0018 0.0018
Peak potential deformation of microdefect compression % 0.105 0.050 0.121
Deformation modulus of microdefects MPa 873 492 767
Microdefect viscosity coefficient hour! 14000 11000 12000
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The graphs, represented in Figure 8, confirm close-
ness of experimental and design curves both for axial and
side deformations.

(@)
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4 3
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Side deformations, % Axial deformations, %
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Side deformations, %
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Pressure, MPa
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Figure 8. Deformation graphs of cylindrical samples resul-
ting from test and mathematical modeling: sylvi-
nite (a) and rock salt (b) and (c); === axis (test);
e Side (1eSt); e axis (Model); e side
(model)

The example of sylvinite sample loading with con-
stant side pressure (Fig. 9) has shown qualitative coinci-
dence of the graphs with the experimental results.
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Figure 9. Design graphs of sylvinite cylindrical samples under
uniaxial compression with constant side pressure

It should be noted that deformation value within the
initial points diverges from zero resulting from volumet-
ric compression of microdefects.

6. CONCLUSIONS

Finite-element model of breakable rocks is applied to
simulate behaviour of rock samples under axial compres-
sion. In the context of the model, elements of disturbed
medium are calculated as solid ones with anisotropic
deformation and strength properties. Failure is consi-
dered as shear and failure strength decrease along the
planes of the element anisotropy. Within each point of
the medium (if finite-element method is applied, then
within each element) the limited number of planes of
possible failure with 45° step is considered since they are
required to estimate potential failure resulting from shear
or tension stresses. It should be done at each loading
stage. Strength decrease is followed by corresponding
breaking deformations. In terms of sites, potential failure
is determined with the help of Coulomb-Mohr criteria
and tension strength.

Nonlinear part is observed at the initial section of
axial deformation graphs resulting from the tests of rock
salt and sylvinite samples. The part demonstrates the
effect of deformation of microdefects. To get coinci-
dence of design and experimental graphs, the model
concerning behaviour of medium with microdefects,
including pores and microfissures, has been adopted.
Phenomenological model describing deformation of the
microdefects of a medium with nonlinearly elastic and
viscous properties and with the limited compressive
deformations has been proposed. The modeling has
shown that certain share of lateral deformations can be
explained by both dilatancy in the breaking process and
deformation of opening (closure) of microfissures. The
microfissures, including pores and microfissures, are
important for the process of rock deformation and failure.
In the process of a sample deformation, microdefects
arise not only within the initial nonlinear deformation
part but also within each stage of the sample loading
including that after peak pressure.

General model consists of fifteen parameters determining
elastic, plastic, viscous, and brittle rock properties as well
as deformation properties of a medium with microdefects.
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Stress-deformation diagrams, resulting from the
mo-deling, describe observable (in terms of the experi-
ments) features of sample behaviour during different
deformation stages (i.e. nonlinear character before peak
loading, decay while breaking, residual strength, hystere-
sis loops in terms of cyclical loading).

In the context of the examples, the calculated dia-
grams of sample tests coincide adequately with stress-
deformation relation graphs obtained after laboratory
compression tests. The modeling has shown that strength
weakening on the oriented directions within the numeri-
cal experiments corresponds to the sample fragmentation
between plates of laboratory press.

Stress field, being formed within the sample, is not
uniform due to the effect of contacts between the sample
ends and the press plates. During the deformation pro-
cess, zones of different-component compression and
tension with various disturbance degrees arise in differ-
ent areas. Modeling of the processes is adequate if only
they are described in such a manner reflecting basic regu-
larities including deformation of microdefects. Coinci-
dence of laboratory and design graphs of sample tests in
terms of uniaxial compression is possible when all model
parameters are selected properly including tensile
strength and characteristics of volumetric adhesion fail-
ure, friction angle, and dilatancy. A method to select
parameters is based upon minimization of deviation of
experimental and design graphs connecting axial defor-
mation and pressure on a sample and side deformations.
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MOJEJIOBAHHS BUITPOBYBAHHS 3PA3KIB ITPU CTUCKY 3A JOIIOMOI' OO0
CKIHYEHHO-EJIJEMEHTHOI MOJEJI T'TPCbKAX MOPIJ, 11O PYHHYIOTHCSA

A. OnoB’sauuii, B. Yanies

Merta. Po3poOka MaTeMaTHYHOI MOJIENI, sSIKa ONUCYE XapaKTep Npolecy pyHHYBaHHS MIMHUCTHX 1 CONSIHUX 3pa3KiB
npu ix BUNpoOyBaHHI Ha CTUCK, & TAKOXK HASBHOCTI MiKpoJe()eKTiB Ha OCHOBI METO/ly CKIHUEHHUX €JIEMEHTIB.

Metoauka. [lyis MoefOBaHHS MOBEHIHKN HHJIHAPUYIHUX 3Pa3KiB TiPCHKHUX IMOPiX B YMOBAaX OCHOBOTO CTHUCKY
3aCTOCOBYETHCSI CKIHUEHHO-EJIEMEHTHA MOJIEJIb TiPCHKHUX IOPif, 0 PYHHYIOTbCS. Y NPUIHATIH MOJENi eleMEeHTH
CepeIOBHINA 3 MOPYIICHHAM IUJIICHOCTI PO3PaXOBYIOTHCS K CYIIbHI 3 aHI30TPOITHUMU JehOpMaIliiHUMHU Ta MIllHi-
CHHUMH BJIACTHBOCTSAMU. PyliHYBaHHS pO3IIIANA€ThCS SIK 3HIKEHHS MILHOCTI Ha 3CYB 1 pO3PHB 3a IUIOLIMHAMY aHi30T-
porii exeMeHTa. Y KOXHil TOULli cepeoBHIIa (IPU PO3paxyHKY METOJIOM KiHIIEBHUX €JIEMEHTIB — Y KO)KHOMY elleMe-
HT1) PO3MIIANAETHCS OOMEKEeHa KUIBKICTh IUIOIIMH MOXKIIMBOIO PYHHYBaHHS 13 KpOKOM 45°, 3a SIKUMH Ha KO)XHOMY
eTalli HaBaHTAXKEHHs OLIHIOETHCSA MOXKIIMBICTh pyHHYBaHHS BiJ Aii 3CyBHHX a00 PO3TArajJbHUX HANPYXKEHb, 10 PO3-
TATYIOTh. MOXIIMBICTE pYHHYBaHHA IO MaiiTaHIMKaX BU3HAYAETHCS 3a AOMOMOror Kpurepiis Kymona-Mopa #t min-
HOCTI TIPY PO3TATYBaHHI.

Pe3yabTaTu. BeranoBneno, 1o 3a 10MOMOrol0 MaTeMaTHYHOTO MOJEIIOBAHHS IPECTaBIAETCS MOXKIMBUM IPO-
BOJWTH CHOCTEPEKEHHS 3a MPOIECOM PO3BUTKY MOPYIICHB y 3pa3Ky. JliarpamMu HampyXeHb — nedopmarii, OTpruMaHi
TIPYU MOJICIJIIOBaHHI, TOKAa3yIOTh OCOOJIMBOCTI ITOBEIHKH 3pa3KiB Ha Pi3HMX €Tarax HaBaHTaXEHHs (HeNiHIMHWI Xxapak-
TEp 10 MaKCUMaJbHOTO HABAHTAXKEHHS, CIIaJ PU PyHHYBaHHI, 3aJIMIIKOBA MII[HICTh, TICTEPE3UCHI METIl MPU LUKIIY-
HOMY HaBaHTa)keHHi). JloBeZleHO, 110 MpH BiAMOBITHOMY IiIOOPi MapaMeTpiB MOAEI BAAETHCS TOMOTTHCS TPUHHITHO-
ro 30iry po3paxoBaHHUX 1 JaOOpaTOPHUX KPHUBUX, L0 OIHCYIOTH 3B 530K OCHOBUX Ta OiuHMX nedopmalliii 3 THCKOM Ha
3pa3Ky CYIIIMHKY, CHIIBBIHITY i KaM’sIHOT COJIi.

HaykoBa HoBHM3HA. P03p00iIeHO CKiIHYEHHO-EIeMEHTHA MOJIENb, 10 JO3BOJIAE OIMCYBATH NPOLEcH AeOpMyBaHH
Wi py#HyBaHHS 3pa3KiB TipCbKUX MOPiJ ITPH BUNIPOOYBaHHI y J1a0OpPaTOPHUX YMOBAX 1 BiAPI3HAETHCS THM, 11O JJOMOBHE-
Ha ONMCaHHIM IpOLECiB AeOpMyBaHHS MIKPOTPIILHUH 1 TT0p.

IIpakTHYHA 3HAYMMIiCTb. B pe3ynbraTi BUKOHAHHS MOJETIOBAHHS METOJOM CKIHYEHHUX €JIEMEHTIB TipChKHX IO-
pizg, mo pyHHYIOTBCS, TOCATAETHCS 30IT 3 MPUIHATHOI TOYHICTIO PO3PaxOBaHUX JiarpaM BUIPOOYBaHb 3pa3KiB i3 Tpa-
¢ikamu 3B’A3Ky MDK HanpyKeHHSIMH 1 aedopMalisiMi, OTPUMaHUMHM IIPH BUIIPOOYBaHHSX B J1a0OpPaTOPHUX yMOBaXx.
OTprMaHi MO3UTUBHI PE3yJIbTATH CBiIYaTh MPO MOXIJIMBICTh 3aCTOCYBAHHSI CKIHYCHHO-EJIEMEHTHOI MoJeni nedopmy-
BaHHS 1 pyHHYBaHHS TiPCHKHX ITOPiJ] ¥ 33/1a4ax TipCEKOTO TUCKY.

Knrouosi cnosa: cipcoka nopooa, 3pasku, depopmyeants, pyuHy8anHs, oeqhopmayis nop, Mamemamuyre mMooero-
6AHHA, MEMOO CKIHYEHHUX elleMeHINIg
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MOJAEJIUPOBAHUE UCIIBITAHUSA OBPA3IOB ITPU C)KATHHU C IOMOIIBIO
KOHEYHO-3JIEMEHTHOM MOJIEJIA PA3PYIIAIOIINXCS TOPHBIX ITIOPO/T

A. Onossuueli, B. Yanues

Heanb. PazpaboTka MaTeMaTHUECKO MOJIEIH, OMCHIBAIONIEH XapaKTep MpoLecca pa3pymIeHNs TIIMHICTBIX U COJISTHBIX
o6pa3u03 IpH UX UCHBITAHUU Ha CXKATHUC, d TAKIKC HAJTUIHNA MHKpO[le(l)eKTOB Ha OCHOBE MCTOa KOHCYHbIX 3JICMCHTOB.

MeToanka. J[7s MOJICTUPOBAHUS TOBEACHHS [IMIHHIPUICCKUX 00Pa3I0B TOPHBIX MOPO/] B YCIOBHIX OCEBOrO CiKa-
TUS MPUMEHSETCS KOHEUHO-3JIEMEHTHAs MOJENb pa3pyllalolIMXcs TOPHBIX MOpoA. B mpuHATON Moaenu 371eMeHTHI
Cpelbl ¢ HapYIICHUEM CIUIOIIHOCTH PACCUMTHIBAIOTCS KaK CILIONIHBIC ¢ aHU30TPOITHBIMU JTe()OPMAIIMOHHBIMA ¥ TIPOY-
HOCTHBIMHU CBOWCTBaMHU. Pa3pyliieHne paccMaTrpuBaeTcsi Kak CHHKCHUE MIPOYHOCTH HA CABHT U Pa3phIB IO IDIOCKOCTSIM
AHM30TPONIHH dJIeMeHTa. B Kakmoi Touke cpes! (IIpr pacyeTe METOJOM KOHEUHBIX DJIEMEHTOB — B KaXKJIOM SJIEMEHTE)
paccMaTpuBaeTCsl OTPAHWICHHOE KOJIMYECTBO IUIOCKOCTEH BO3MOMKHOTO paspyIIeHus ¢ marom 45°, mo KOTOpeIM Ha
KaKIOM dTalle Harpy>KeHHs OIEHHUBACTCS BO3MOXKHOCTH Pa3pyIICHUS OT ACHCTBUS CIABHTOBBIX WM PACTATHBAFOIINX
HanpspKeHUH. BO3MOXKHOCTR pa3pylIeHHsl MO IUIOMIAJKaM OIpenenseTcs ¢ moMmombio KpurepueB Kymona-Mopa u
MIPOYHOCTH P PACTSDKCHHH.

Pe3ysabTaThl. YCTAaHOBIIEHO, YTO IPH MOMOIIM MATEMaTHYECKOTO MOJEIHMPOBAHUS TPEACTABISETCS BO3MOYKHBIM
MPOU3BOIUTH HAOJIOACHHUS 3a MPOIECCOM PAa3BUTHs HAapyIICHUH B oOpasie. JuarpamMmMbl HampspkeHUs — aedopMariuu,
IMOJIYYCHHBIC ITPU MOACIMPOBAHUHN, MOKA3bIBAIOT 0CO6CHHOCTI/I IIOBCACHU S o6pa3u03 Ha pas3HbIX 3Talax Harpy>KCHUs
(HenMMHENHBIN XapakTep 10 MaKCUMAaJIbHON Harpy3kH, cliaj Ipu pa3pylleHHH, OCTaTOYHAsl IPOYHOCTh, THCTEPE3UCHEBIE
MIETIIM TIPY OUKIMYECKOM HArpy»KeHuu). JJoka3zaHo, 4TO MPH COOTBETCTBYIOMIEM MOI00PE MapaMeTPOB MOJICIH yIAeTCs
JOOUTHCST TIPUEMIICMOT'O COBITAJICHHS PACCUNTAHHBIX W JIAOOPATOPHBIX KPHUBEIX, OMHICHIBAIOIIUX CBSI3U OCEBBIX M OOKO-
BBIX JehopMaruii ¢ TaBJICHUEM Ha 00pa3libl CYTIIMHKA, CHIBBIHHNATA U KAMEHHOM COITH.

Hayunas HoBu3HA. Pa3paboTaHa KOHEYHO-3JIEMEHTHASI MOJIEINb, TTO3BOJISAIOIIAS OMMCHIBATH MPOIIECCHI e(OPMHPO-
BaHUS U pa3pylIeHUsT 00pa3IoB TOPHEIX MOPOJ IIPU UCTIBITAHUH B JTA0OPATOPHBIX YCIOBUSAX W OTIUYAIOIIASACSA TEM, YTO
JIOTIONTHEHA OTIMCaHUEM TIPOIIECCOB Ae(OpMUPOBAHISI MUKPOTPEIIHH H TIOP.

IIpakTHyeckasi 3HAYUMOCTb. B pe3yiprare BHIIOIHEHUS MOJIEIUPOBAHIS METOAOM KOHEUHBIX AJIEMEHTOB pa3py-
MIAFOIIUXCS TOPHBIX MTOPOJ JOCTUTACTCS COBIAJICHHUE C MMPUEMIIEMOM TOYHOCTBIO PACCUYMTAHHBIX THArpaMM HCIBITAaHUN
00pa3ioB ¢ rpadukaMy CBSI3M MEXIy HANPSHKSHUSIMU U IeOopMalusMH, HOJTYyYEeHHbIMU IPH UCTBITAHUAX B Jlabopa-
TOPHBIX YCJIOBHUAX. HOJ’Iy'—IeHHbIe IMOJIOKUTCIIBbHBIC PE3YyJIbTaTbhl CBUACTCILCTBYIOT O MNPHUMCHHUMOCTH KOHCYHO-
3JIEMEHTHOHN Moienu AeGOpMUPOBAHS U Pa3PYIIICHUS TOPHBIX MTOPO/] B 3a/1a4aX TOPHOT'O TABJICHUS.

Knroueswie cnosa: zopras nopooa, obpaszysvl, depopmuposanue, paspyuierue, oedpopmayus nop, Mamemamuieckoe
MoOenuposanue, Memoo KOHEUHbIX INEMEHMO8
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