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IBISC, Univ Evry, University Paris Saclay, Evry, France
thang@ibisc.fr

https://orcid.org/0000-0002-6085-9453

Abstract
The efficiency of a game is typically quantified by the price of anarchy (PoA), defined as the worst
ratio of the value of an equilibrium – solution of the game – and that of an optimal outcome. Given
the tremendous impact of tools from mathematical programming in the design of algorithms
and the similarity of the price of anarchy and different measures such as the approximation and
competitive ratios, it is intriguing to develop a duality-based method to characterize the efficiency
of games.

In the paper, we present an approach based on linear programming duality to study the effi-
ciency of games. We show that the approach provides a general recipe to analyze the efficiency
of games and also to derive concepts leading to improvements. The approach is particularly
appropriate to bound the PoA. Specifically, in our approach the dual programs naturally lead to
competitive PoA bounds that are (almost) optimal for several classes of games. The approach
indeed captures the smoothness framework and also some current non-smooth techniques/con-
cepts. We show the applicability to the wide variety of games and environments, from congestion
games to Bayesian welfare, from full-information settings to incomplete-information ones.
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1 Introduction

Algorithmic Game Theory – a domain at the intersection of Game Theory and Algorithms –
has been extensively studied in the last two decades. The development of the domain,
as well as those of many other research fields, have witnessed a common phenomenon:
interesting notions, results have been flourished at the early stage, then deep methods,
techniques have been established at a more mature stage leading to further achievements.
In Algorithmic Game Theory, a representative illustration is the notion and results on the
price of anarchy and the smoothness argument method [24]. In a game, the price of anarchy
(PoA) [15] is defined as the worst ratio between the cost of a Nash equilibrium and that
of an optimal solution. The PoA is now considered as standard and is the most popular
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measure to characterize the inefficiency of Nash equilibria – solutions of a game – in the
same sense of approximation ratio in Approximation Algorithms and competitive ratio in
Online Algorithms.

Mathematical programming in general and linear programming in particular are powerful
tools in many research fields. Among others, linear programming has a tremendous impact on
the design of algorithms. Linear programming and duality play crucial and fundamental roles
in several elegant methods such as primal-dual and dual-fitting in Approximation Algorithms
[34] and online primal-dual framework [6] in Online Algorithms. Given the similarity of the
notions of PoA, approximation and competitive ratios, it is intriguing and also desirable
to develop a method based on duality to characterize the PoA of games. In this paper, we
present and aim at developing a framework based on linear programming duality to study
the efficiency of games.

1.1 A primal-dual approach
In high-level, the approach follows the standard primal-dual or dual-fitting techniques
in approximation/online algorithms. The approach consists of associating a game to an
underlying optimization problem and formulate an integer program corresponding to the
optimization problem. Next consider the linear program by relaxing the integer constraints
and its dual LP. Note that until this step, no notion of game has been intervened. Then
given a Nash equilibrium, construct dual variables in such a way that one can relate the
dual objective to the cost of the Nash equilibrium. The PoA is then bounded by the ratio
between the primal objective (essentially, the cost of the Nash equilibrium) and the dual
objective (a lower bound of the optimum cost by weak duality). This approach has been
considered by Kulkarni and Mirrokni [17] for full-information games with convex objectives.

There are two crucial steps in the approach. First, by this method, the bound of PoA is at
least as large as the integrality gap of the formulation. Hence, to prove optimal PoA one has
to derive a formulation (of the corresponding optimization problem) whose the integrality gap
matches to the optimal PoA. This is very similar to the issue of linear-programming-based
approaches in Approximation/Online Algorithms. Note that this issue is a main obstacle in
[17] in order to study non-convex objectives (see discussion in Section 1.3). The second crucial
step is the construction of dual variables. The dual variables need to reflect the notion of Nash
equilibria as well as their properties in order to relate to the costs of equilibria. Intuitively, to
prove optimal bound on the PoA, the constructed dual variables must constitute an optimal
dual solution.

To overcome these obstacles, in the paper we systematically consider configuration
linear programs and a primal-dual approach. Given a problem (game), we first consider a
natural formulation of the problem. Then, the approach consists of introducing exponential
variables and constraints to the natural formulation to get a configuration LP. The additional
constraints have intuitive and simple interpretations: one constraint guarantees that the game
admits exactly one outcome and the other constraint ensures that if a player uses a strategy
then this strategy must be a component of the outcome. As the result, the configuration
LPs significantly improve the integrality gap over that of the natural formulations.

The configuration LPs have been considered in approximation algorithms and to the
best of our knowledge, the main approach is rounding. Here, to study the efficiency of
games, we consider a primal-dual approach. The primal-dual approach is very appropriate
to study the PoA through the mean of configuration LPs. In the dual of the configuration
programs, the dual constraints naturally lead to the construction of dual variables and the
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PoA bounds. Intuitively, one dual constraint corresponds exactly to the definition of Nash
equilibrium and the other dual constraint settles the PoA bounds. Note that our approach
gives stronger formulations and leads to more general results than that in [17] (see Section
1.3 for a discussion in more details).

1.2 Overview of Results
We illustrate the potential and the wide applicability of the approach throughout various
results in the contexts of complete and incomplete-information environments, from the
settings of congestion games to welfare maximization. The approach allows us to unify
several previous results and establish new ones beyond the current techniques. It is worthy
to note that the analyses are simple and are guided by dual LP very much in the sense of
primal-dual methods in designing algorithms. Moreover, under the lens of LP duality, the
notion of smooth games in both full-information settings [24] and incomplete-information
settings [25, 31], the recent notion of no-envy learning [10] and the new notion of dual smooth
(in this paper) can be naturally derived, which lead to the optimal bounds of the PoA of
several games.

1.2.1 Smooth Games in Full-Information Settings
We first revisit smooth games by the primal-dual approach and show that the primal-dual
approach captures the smoothness framework [24]. Roughgarden [24] has introduced the
smoothness framework, which became quickly a standard technique, and showed that every
(λ, µ)-smooth game has a PoA of at most λ/(1 − µ). Through the duality approach, we
show that in terms of techniques to study the PoA for complete information settings, the LP
duality and the smoothness framework are exactly the same thing. Specifically, one of the
dual constraint corresponds exactly to the definition of smooth games given in [24].

I Informal Theorem 1. The primal-dual approach captures the smoothness framework in
full-information settings.

1.2.2 Congestion Games
We consider fundamental classes of congestion games in which we revisit and unify results
in the atomic, non-atomic congestion games and prove the optimal PoA bound of coarse
correlated equilibria in splittable congestion games.

Atomic congestion games. In this class, although the PoA bound follows the results for
smooth games (Informal Theorem 1), we provide another configuration formulation and a
similar primal-dual approach. The purpose of this formulation is twofold. First it shows the
flexibility of the primal-dual approach. Second, it sets up the ground for an unified approach
to other classes of congestion games.

Non-atomic congestion games. In this class, we re-prove the optimal PoA bound [29].
Along the line toward the optimal PoA bound for non-atomic congestion games, the equi-
librium characterization by a variational inequality is at the core of the analyses [29, 9, 8].
In our proof, we establish the optimal PoA directly by the means of LP duality. By the
LP duality as the unified approach, one can clearly observe that the non-atomic setting is
a version of the atomic setting in large games (in the sense of [12]) in which each player
weight becomes negligible (hence, the PoA of the atomic congestion games tend to that of
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non-atomic ones). Besides, an advantage with LP approaches is that one can benefit from
powerful techniques that have been developing for linear programming. Concretely, using
the general framework on resource augmentation and primal-dual recently presented [19], we
manage to recover and extend a resource augmentation result related to non-atomic setting
[28].

I Informal Theorem 2. In every non-atomic congestion game, for any constant r > 0, the
cost of an equilibrium is at most 1/r the optimum of the underlying optimization problem in
which each demand is multiplied by a factor (1 + r).

Splittable congestion games. Roughgarden and Schoppmann [26] has presented a local
smoothness property, a refinement of the smoothness framework, and proved that every
(λ, µ)-local-smooth splittable game has a PoA of λ/(1− µ). This bound is tight for a large
class of scalable cost functions in splittable games and holds for PoA of pure, mixed, correlated
equilibria. However, this bound does not hold for coarse correlated equilibria and it remains
an intriguing open question raised in [26]. Building upon the resilient ideas of non-atomic
and atomic settings, we define a notion, called dual smoothness, which is inspired by the
dual constraints. This new notion indeed leads to the tight PoA bound for coarse correlated
equilibria in splittable games for a large class of cost functions; that answers the question
in [26]. Note that the matching lower bound is given in [26] and that holds even for pure
equilibria.

I Definition 3. A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn),

v`(u) +
n∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u =
∑n
i=1 ui and v =

∑n
i=1 vi. A splittable congestion game is (λ, µ)-dual-smooth if

for every resource e in the game, function `e is (λ, µ)-dual-smooth.

I Informal Theorem 4. The price of anarchy of coarse correlated equilibria of a splittable
congestion game G is at most inf(λ,µ) λ/(1− µ) where the infimum is taken over (λ, µ) such
that G is (λ, µ)-dual-smooth. This bound is tight for the class of scalable cost functions.

1.2.3 Welfare Maximization
We next consider the inefficiency of Bayes-Nash equilibria in the context of welfare maximiz-
ation in incomplete-information environments.

Smooth Auctions. The notion of smooth auctions in incomplete-information settings,
inspired by the original smoothness framework [24], has been introduced by Roughgarden
[25], Syrgkanis and Tardos [31]. This powerful notion has been widely used to study the
PoA of Bayes-Nash equilibria (see the recent survey [27]). We show that the primal-dual
approach captures the smoothness framework in incomplete-information settings. In other
words, the notion of smooth auctions can be naturally derived from dual constraints in the
primal-dual approach.

I Informal Theorem 5. The primal-dual approach captures the smoothness framework in
incomplete-information settings.
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Simultaneous Item-Bidding Auctions: Beyond Smoothness. Many PoA bounds in auc-
tions are settled by smoothness-based proofs. However, there are PoA bounds for auctions
proved via non-smooth techniques and these techniques seem more powerful than the smooth-
ness framework in such auctions. Representative examples are the simultaneous first- and
second-price auctions where players’ valuations are sub-additive. Feldman et al. [11] have
proved that the PoA is constant while the smooth argument gives only logarithmic guarantees.
We show that in this context, our approach is beyond the smoothness framework and also
captures the non-smooth arguments in [11] by re-establishing their results. Specifically, a
main step in our analysis – proving the feasibility of a dual constraint – corresponds exactly
to a crucial claim in [11]. From this point of view, the primal-dual approach helps to identify
the key steps in settling the PoA bounds.

I Informal Theorem 6 ([11]). Assume that players have independent distributions over
sub-additive valuations. Then, every Bayes-Nash equilibrium of a first-price auction and
of a second price auction has expected welfare at least 1/2 and 1/4 of the maximal welfare,
respectively.

Subsequently, we illuminate the potential of the primal-dual approach in formulating new
concepts. Concretely, Daskalakis and Syrgkanis [10] have very recently introduced no-envy
learning dynamic – a novel concept of learning in auctions. Note that when players have
fractionally sub-additive (XOS) valuations1, no-envy outcomes are a relaxation of no-regret
outcomes. No-envy dynamics have advantages over no-regret dynamics. In particular, no-
envy outcomes maintain the approximate welfare optimality of no-regret outcomes while
ensuring the computational tractability. Perhaps surprisingly, there is a connection between
the primal-dual approach and no-envy dynamics. Indeed, the latter can be naturally derived
from the dual constraints very much in the same way as the smoothness argument is. We
show this connection by revisiting the following theorem by the means of the primal-dual
approach.

I Informal Theorem 7 ([10]). Assume that players have XOS valuations. Then, every
no-envy dynamic has the average welfare at least half the expected optimal welfare.

Sequential Auctions. To illustrate the applicability of the primal-dual approach, we consider
thereafter another format of auctions – sequential auctions. In a simple model of sequential
auctions, items are sold one-by-one via single-item auctions. Sequential auctions has a long
and rich literature [16] and sequentially selling items leads to complex issues in analyzing PoA.
Leme et al. [18], Syrgkanis and Tardos [30] have studied sequential auctions for matching
markets and matroid auctions in complete and incomplete-information settings in which
at each step, an item is sold via the first-price auctions. In this paper, we consider the
sequential auctions for sponsored search via the second-price auctions. Informally, auctioneer
sells advertizing slots one-by-one in the non-increasing order of click-though-rates (from the
most attractive to the least one). At each step, players submit bid for the currently-selling
slot and the highest-bid player receives the slot and pays the second highest bid. In the
auction, we study the PoA of perfect Bayesian equilibria and show the following PoA bound
for the sponsored search problem.

1 A valuation v(·) is XOS if there exists a family of vectors W = (w`)` where w` ∈ Rm
+ such that

v(S) = maxw`∈W
∑

j∈S
w`

j ∀S ⊂ [m]. The class XOS is a subset of sub-additive functions and is a
superset of sub-modular functions.
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I Informal Theorem 8. The PoA of sequential second-price auctions for the sponsored search
problem is at most 2.

Note that among all auction formats for the sponsored search problem, the best known PoA
guarantee [7] is 2.927 which has been achieved in generalized second price (GSP) auctions.
An observation is that although the behaviour of players in sequential auctions might be
complex, the performance guarantee is better than the currently best-known one in GSP
auctions for the sponsored search problem. Consequently, this result shows that the efficiency
of sequential auctions is not necessarily worse than the GSP ones and using primal-dual
approach, analyzing sequential auctions is not necessarily harder than analyzing GSP ones
neither.

Building upon the resilient ideas for the sponsored search problem, we provide an improved
PoA bound of 2 for the matching market problem where the best known PoA bound is
2e/(e− 1) ≈ 3.16 due to Syrgkanis and Tardos [30] . That also answers an question raised in
[30] whether the PoA in the incomplete-information settings must be strictly larger than the
best-known PoA bound (which is 2) in the full-information settings.

I Informal Theorem 9. The PoA of sequential first-price auctions for the matching market
problem is at most 2.

Due to the space limit, the results in sequential auctions can be found in the full paper
available online [32].

1.3 Related works
As the main point of the paper is to emphasize the primal-dual approach to study game
efficiency, in this section we mostly concentrate on currently existing methods. Results
related to specific problems will be summarized in the corresponding sections.

The most closely related to our work is a recent result [17]. In their approach, Kulkarni
and Mirrokni [17] considered a convex formulation of a given game and its dual program
based on Fenchel duality. Then, given a Nash equilibrium, the dual variables are constructed
by relating the cost of the Nash equilibrium to that of the dual objective. In high-level, our
approach has the same idea as [17] and both approaches indeed have inspired by the standard
primal-dual and dual-fitting in the design of algorithms. Our approach is distinguished
to that in [17] in the two following aspects. First, we consider arbitrary (non-decreasing)
objective functions and make use of configuration LPs in order to reduce substantially the
integrality gap while the approach in [17] needs convex objective functions. In term of
approaches based on mathematical programs in approximation algorithms, we have come up
with stronger formulations than those in [17] – a crucial point toward optimal bounds. Second,
we have shown a wide applicability of our approach from full-information environments
to incomplete-information ones while the approach in [17] dealt only with full-information
settings. A question has been raised in a the recent survey [27] is whether the framework in
[17] could be extended to incomplete-information settings. Our primal-dual approach tends
to answer that question.

The connection between LP duality and the PoA have been previously considered by
Nadav and Roughgarden [22] and Bilo [5]. Both papers follow an approach which is different
to ours. Roughly speaking, given a game they consider corresponding natural formulations
and incorporate the equilibrium constraint directly to the primal (whereas in our approach
the equilibrium constraint appears naturally in the dual). However, this approach encounters
also the integrality-gap obtacle when one considers pure Nash equilibria and the objectives
are non-linear or non-convex.
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For the problems studied in the paper, we systematically strengthen natural LPs by the
construction of configuration LPs presented in [20]. Makarychev and Sviridenko [20] propose
a scheme that consists in solving the new LPs (with exponential number of variables) and
rounding the fractional solutions to integer ones using decoupling inequalities for optimization
problems. Instead of rounding techniques, we consider a primal-dual approach which is more
adequate to studying game efficiency.

The smoothness framework has been introduced by Roughgarden [24]. This simple,
elegant framework gives tight bounds for many classes of games in full-information settings
including the celebrated atomic congestion games (and others in [24, 2]). Subsequently,
Roughgarden and Schoppmann [26] presented a similar notion, called local-smoothness, to
study the PoA of splittable games in which players can split their flow to arbitrarily small
amounts and route the amounts in different manners. The local-smoothness is also powerful.
It has been used to settle the PoA for a large class of cost functions in splittable games [26]
and in opinion formation games [3].

The smoothness framework has been extended to incomplete-information environments
by Roughgarden [25], Syrgkanis and Tardos [31]. It has successfully yielded tight PoA
bounds for several widely-used auction formats. We recommend the reader to a very recent
survey [27] for applications of the smoothness framework in incomplete-information settings.
However, the smoothness argument has its limit. As mentioned earlier, the most illustrative
examples are the simultaneous first and second price auctions where players’ valuations are
sub-additive. Feldman et al. [11] have proved that the PoA is constant while the smooth
argument gives only logarithmic guarantees. An interesting open direction, as raised in [27],
is to develop new approaches beyond the smoothness framework.

Linear programming (and mathematical programming in general) has been a powerful
tool in the development of game theory. There is a vast literature on this subject. One of
the most interesting recent treatments on the role of linear programming in game theory is
the book [33]. Vohra [33] revisited fundamental results in mechanism design in an elegant
manner by the means of linear programming and duality. It is surprising to see that many
results have been shaped nicely by LPs.

2 Smooth Games under the Lens of Duality

In this section, we consider smooth games [24] in the point of view of configuration LPs
and duality. In a game, each player i selects a strategy si from a set Si for 1 ≤ i ≤ n and
that forms a strategy profile s = (s1, . . . , sn). The cost Ci(s) of player i is a function of the
strategy profile s – the chosen strategies of all players. A pure Nash equilibrium is a strategy
profile s such that no player can decrease its cost via a unilateral deviation; that is, for every
player i and every strategy s′i ∈ Si, Ci(s) ≤ Ci(s′i, s−i) where s−i denotes the strategies
chosen by all players other than i in s. The notion of Nash equilibrium is extended to the
following more general equilibrium concepts.

A mixed Nash equilibrium [23] of a game is a product distribution σ = σ1× . . .×σn where
σi is a probability distribution over the strategy set of player i such that no player can decrease
its expected cost under σ via a unilateral deviation: Es∼σ[Ci(s)] ≤ Es−i∼σ−i

[Ci(s′i, s−i)]
for every i and s′i ∈ Si, where σ−i is the product distribution of all σi′ ’s other than σi. A
correlated equilibrium [1] of a game is a joint probability distribution σ over the strategy
profile of the game such that Es∼σ[Ci(s)|si] ≤ Es∼σ[Ci(s′i, s−i)|si] for every i and si, s′i ∈ Si.
Finally, a coarse correlated equilibrium [21] of a game is a joint probability distribution σ
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over the strategy profile of the game such that Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′i, s−i)] for every i
and s′i ∈ Si. These notions of equilibria are presented in the order from the least to the most
general ones and a notion captures the previous one as a strict subset.

The notion of smooth games and robust price of anarchy are given in [24]. A game with
a joint cost objective function C(s) =

∑n
i=1 Ci(s) is (λ, µ)-smooth if for every two outcomes

s and s∗,

n∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s)

The robust price of anarchy of a game G is

ρ(G) := inf
{

λ

1− µ : the game is (λ, µ)-smooth where µ < 1
}

I Theorem 10 ([24]). For every game G with robust PoA ρ(G), every coarse correlated
equilibrium σ of G and every strategy profile s∗,

Es∼σ[C(s)] ≤ ρ(G) · C(s∗)

Until the end of the section, we revisit this theorem by our primal-dual approach.

Formulation. Given a game, we formulate the corresponding optimization problem by a
configuration LP. Let xij be variable indicating whether player i chooses strategy sij ∈ Si.
Informally, a configuration A in the formulation is a strategy profile of the game. Formally,
a configuration A consists of pairs (i, j) such that (i, j) ∈ A means that in configuration A,
xij = 1. (In other words, in this configuration, player i selects strategy sij ∈ Si.) For every
configuration A, let zA be a variable such that zA = 1 if and only if xij = 1 for all (i, j) ∈ A.
Intuitively, zA = 1 if configuration A is the outcome of the game. For each configuration
A, let c(A) be the cost of the outcome (strategy profile) corresponding to configuration A.
Consider the following formulation and the dual of its relaxation.

min
∑
A

c(A)zA∑
j:sij∈Si

xij ≥ 1 ∀i

∑
A

zA = 1∑
A:(i,j)∈A

zA = xij ∀i, j

xij , zA ∈ {0, 1} ∀i, j, A

max
∑
i

αi + β

αi ≤ γij ∀i, j

β +
∑

(i,j)∈A

γij ≤ c(A) ∀A

αi ≥ 0 ∀i

In the formulation, the first constraint ensures that a player i chooses a strategy sij ∈ Si.
The second constraint means that there must be an outcome of the game. The third constraint
guarantees that if a player i selects some strategy sij then the outcome configuration A must
contain (i, j).
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Construction of dual variables. Assuming that the game is (λ, µ)-smooth. Fix the para-
meters λ and µ. Given a (arbitrary) coarse correlated equilibrium σ, define dual variables as
follows:

αi := 1
λ
Es∼σ[Ci(s)], β := −µ

λ
Es∼σ[C(s)], γij := 1

λ
Es∼σ[Ci(sij , s−i)].

Informally, up to some constant factors depending on λ and µ, αi is the cost of player i in
equilibrium σ, −β stands for the cost of the game in equilibrium σ and γij represents the
cost of player i if player i uses strategy sij while other players i′ 6= i follows strategies in σ.
We notice that β has negative value.

Feasibility. We show that the constructed dual variables form a feasible solution. The
first constraint follows exactly the definition of (coarse correlated) equilibrium. The second
constraint is exactly the smoothness definition. Specifically, let s∗ be the strategy profile
corresponding to configuration A. Note that Es∼σ[Ci(s∗)] = Ci(s∗). The dual constraint
reads

−µ
λ
Es∼σ[C(s)] +

∑
i

1
λ
Es∼σ[Ci(s∗i , s−i)] ≤ Es∼σ[Ci(s∗)]

which is the definition of (λ, µ)-smoothness by arranging the terms and removing the
expectation.

Price of Anarchy. By weak duality, the optimal cost among all outcomes of the problem
(strategy profiles of the game) is at least the dual objective of the constructed dual variables.
Hence, in order to bound the PoA, we will bound the ratio between the cost of an (arbitrary)
equilibrium σ and the dual objective of the corresponding dual variables. The cost of
equilibrium σ is Es∼σ[C(s)] while the dual objective of the constructed dual variables is

n∑
i=1

1
λ
Es∼σ[Ci(s)]−

µ

λ
Es∼σ[C(s)] = 1− µ

λ
Es∼σ[C(s)]

Therefore, for a (λ, µ)-smooth game, the PoA is at most λ/(1− µ).

Remark. Having shown in [24], Theorem 10 applies also to outcome sequences generated
by repeated play such as vanishing average regret. By the same duality approach, we can
also recover this result (by setting dual variables related to the average cost during the play).

3 Splittable Congestion Games

Model. In this section we consider the splittable congestion games in discrete setting.
Fix a constant ε > 0 (arbitrarily small). In a splittable congestion game, there is a set
E of resources, each resource is associated to a non-decreasing differentiable cost function
`e : R+ → R+ such that x`e(x) is convex. There are n players, a player i has a set of
strategies Si and has weight wi, a multiple of ε. A strategy of player i is a distribution ui
of its weight wi among strategies sij in Si such that

∑
sij∈Si

uisij
= wi and uisij

≥ 0 is a
multiple of ε. A strategy profile is a vector u = (u1, . . . , un) of all players’ strategies. We
abuse notation and define uie =

∑
e∈sij

uisij
as the load player i distributes on resource e and
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ue =
∑n
i=1 u

i
e the total load on e. Given a strategy profile u, the cost of player i is defined

as Ci(u) :=
∑
e u

i
e · `e(ue). A strategy profile u is a pure Nash equilibrium if and only if for

every player i and all sij , sij′ ∈ Si with uisij
> 0:∑

e∈sij

(
`e(ue) + uie · `′e(ue)

)
≤
∑
e∈sij′

(
`e(ue) + uie · `′e(ue)

)
The proof of this equilibrium characterization can be found in [13]. Again, the more general
concepts of mixed, correlated and coarse correlated equilibria are defined similarly as in
Section 2. In the game, the social cost is defined as C(u) :=

∑n
i=1 Ci(u) =

∑
e ue`e(ue).

The PoA bounds has been recently established for a large class of cost functions by
Roughgarden and Schoppmann [26]. The authors proposed a local smoothness framework
and showed that the local smoothness arguments give optimal PoA bounds for a large class
of cost functions in splittable congestion games. Prior to Roughgarden and Schoppmann [26],
the works of Cominetti et al. [8] and Harks [13] have also the flavour of local smoothness
though their bounds are not tight. The local smooth arguments extends to the correlated
equilibria of a game but not to the coarse correlated equilibria. Motivating by the duality
approach, we define a new notion of smoothness and prove a bound on the PoA of coarse
correlated equilibria. It turns out that this PoA bound for coarse correlated equilibria is
indeed tight for all classes of scale-invariant cost functions by the lower bound given by
Roughgarden and Schoppmann [26, Section 5]. A class of cost function L is scale-invariant
if ` ∈ L implies that a · `(b · x) ∈ L for every a, b > 0.

Formulation. Given a splittable congestion game, we formulate the problem by the same
configuration program for non-atomic congestion game. Denote a finite set of multiples of ε
as {a0, a1, . . . , am} where ak = k · ε and m = maxni=1 wi/ε. We say that Te is a configuration
of a resource e if Te = {(i, k) : 1 ≤ i ≤ n, 0 ≤ k ≤ m} in which a couple (i, k) specifies the
player (i) and the amount ak of the weight wi that player i distributes to some strategy
sij ∈ Si where e ∈ sij . Intuitively, a configuration of a resource is a strategy profile of a
game restricted on the resource. Let xijk be variable indicating whether player i distributes
an amount ak of its weight to strategy sij ∈ Si. For every resource e and a configuration Te
on resource e, let ze,Te

be a variable such that ze,Te
= 1 if and only if for (i, k) ∈ Te, xijk = 1

for some sij ∈ Si such that e ∈ sij . For a configuration Te of resource e, denote w(Te) the
total amount distributed by players in Te to e.

min
∑
e,Te

w(Te)`e(w(Te))ze,Te∑
j,k

akxijk = wi ∀i

∑
Te

ze,Te
= 1 ∀e

∑
Te:(i,k)∈Te

ze,Te =
∑

j:e∈sij

xijk ∀(i, k), e

xij , ze,Te ∈ {0, 1} ∀i, j, e, Te

max
∑
i

wiαi +
∑
e

βe

akαi ≤
∑

e:e∈sij

γi,k,e

∀i, k, j

βe +
∑

(i,k)∈Te

γi,k,e ≤ w(Te)`e(w(Te))

∀e, Te

Again, in the primal, the first constraint says that a player i distributes the total weight wi
among its strategies. The second constraint means that a resource e is always associated to a
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configuration (possibly empty). The third constraint guarantees that if a player i distributes
an amount ak to some strategy sij containing resource e then there must be a configuration
Te such that (i, k) ∈ Te and ze,Te

= 1.
All previous duality proofs have the same structure: in the dual LP, the first constraint

gives the characterization of an equilibrium and the second one settles the PoA bounds.
Following this line, we give the following definition.

I Definition 11. A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn),

v`(u) +
n∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u =
∑
i ui and v =

∑
i vi. A splittable congestion game is (λ, µ)-dual-smooth if every

resource e in the game, function `e is (λ, µ)-dual-smooth.

I Theorem 12. For every (λ, µ)-dual-smooth splittable congestion game G, the price of
anarchy of coarse correlated equilibria of G is at most λ/(1− µ). This bound is tight for the
class of scalable cost functions.

Proof. The proof follows the duality scheme.

Dual Variables. Fix parameter λ and µ. Given a coarse correlated equilibrium σ, define
corresponding dual variables as follows.

αi = 1
λ
Eu∼σ

[∑
e∈sij

`e(ue) + uie`
′
e(ue)

]
for some sij ∈ Si : uisij

> 0,

βe = − 1
λ
Eu∼σ

[
µ · ue`e(ue) +

∑
i

(uie)2 · `′e(ue)
]
,

γi,k,e = 1
λ
Eu∼σ

[
ak
(
`e(ue) + uie`

′
e(ue)

)]
.

The dual variables have similar interpretations as previous analysis. Up to some constant
factors, variable αi is the marginal cost of a strategy used by player i in the equilibrium; and
γi,k,e represents an estimation of the cost of player i on resource e if player i distributes an
amount ak of its weight to some strategy containing e while players i′ other than i follows
their strategies in the equilibrium.

Feasibility. By this definition of dual variables, the first dual constraint holds since it is the
definition of coarse correlated equilibrium. Rearranging the terms, the second dual constraint
for a resource e and a configuration Te reads

1
λ

∑
(i,k)∈Te

Eu∼σ
[
ak · `e(ue) + uie(ak − uie)`′e(ue)

)]
≤ w(Te)`e(w(Te)) + µ

λ
Eu∼σ

[
ue`e(ue)

]
This inequality follows directly from the definition of (λ, µ)-dual-smoothness and linear-
ity of expectation (and note that w(Te)`e(w(Te)) = Eu∼σ

[
w(Te)`e(w(Te))

]
and w(Te) =∑

(i,k)∈Te
ak).
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Bounding primal and dual. By the definition of dual variables, the dual objective is∑
i

wiαi +
∑
e

βe =
∑
e

(∑
i

uieαi + βe

)
= 1
λ
Eu∼σ

[∑
e

ue`e(ue) +
∑
i

(uie)2 · `′e(ue)
]
− 1
λ
Eu∼σ

[
µ · ue`e(ue) +

∑
i

(uie)2 · `′e(ue)
]

= 1− µ
λ

Eu∼σ
[∑

e

ue`e(ue)
]

while the cost of the equilibrium σ is Eu∼σ
[∑

e ue`e(ue)
]
. The theorem follows. J

4 Efficiency in Welfare Maximization

In a general mechanism design setting, each player i has a set of actions Ai for 1 ≤ i ≤ n.
Given an action ai ∈ Ai chosen by each player i for 1 ≤ i ≤ n, which lead to the action
profile a = (a1, . . . , an) ∈ A = A1 × . . . × An, the auctioneer decides an outcome o(a)
among the set of feasible outcomes O. Each player i has a private valuation (or type) vi
taking values in a parameter space Vi. For each outcome o ∈ O, player i has utility ui(o, vi)
depending on the outcome of the game and its valuation vi. Since the outcome o(a) of the
game is determined by the action profile a, the utility of a player i is denoted as ui(a; vi).
We are interested in auctions that in general consist of an allocation rule and a payment
rule. Given an action profile a = (a1, . . . , an), the auctioneer decides an allocation and a
payment pi(a) for each player i. Then, the utility of player i with valuation vi, following
the quasi-linear utility model, is defined as ui(a; vi) = vi − pi(a). The social welfare of an
auction is defined as the total utility of all participants (the players and the auctioneer):
Sw(a;v) =

∑n
i=1 ui(a; vi) +

∑n
i=1 pi(a).

In the paper, we consider incomplete-information settings. In contrast to the full-
information settings where private valuations are deterministically determined, in incomplete-
informations settings the valuation vectors v (in which each component is the valuation of a
player) is drawn from a publicly known distribution F with density function f . Let ∆(Ai) be
the set of probability distributions over the actions in Ai. A strategy of a player is a mapping
σi : Vi → ∆(Ai) from a valuation vi ∈ Vi to a distribution over actions σi(vi) ∈ ∆(Ai).

I Definition 13 (Bayes-Nash equilibrium). A strategy profile σ = (σ1, . . . , σn) is a Bayes-Nash
equilibrium (BNE) if for every player i, for every valuation vi ∈ Vi, and for every action
a′i ∈ Ai:

Ev−i∼F−i(vi)
[
Ea∼σ(v) [ui(a; vi)]

]
≥ Ev−i∼F−i(vi)

[
Ea−i∼σ−i(v−i) [ui(a′i,a−i; vi)]

]
For a vector w, we use w−i to denote the vector w with the i-th component removed. Besides,
F−i(vi) stands for the probability distribution over all players other than i conditioned on
the valuation vi of player i.

The price of anarchy of Bayes-Nash equilibria of an auction is defined as

inf
F ,σ

Ev∼F
[
Ea∼σ(v)[Sw(a;v)]

]
Ev∼F

[
Opt(v)

]
where the infimum is taken over Bayes-Nash equilibria σ and Opt(v) is the optimal welfare
with valuation profile v.
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In the paper, we consider discrete settings of valuations and payments, i.e., there are only
a finite (large) number of possible valuations and payments. The main purpose of restricting
to discrete settings is that we can use tools from linear programming. The continuous settings
can be done by considering successively finer discrete spaces.

4.1 Smooth Auctions
In this section, we show that the primal-dual approach also captures the smoothness framework
in studying the inefficiency of Bayes-Nash equilibria in incomplete-information settings.
Smooth auctions have been defined by Roughgarden [25] and Syrgkanis and Tardos [31]. The
definitions are slightly different but both are inspired by the original smoothness argument
[24] and all known smoothness-based proofs can be equivalently analyzed by one of these
definitions. In this section, we consider the definition of smooth auctions in [25] and revisit
the price of anarchy bound of smooth auctions. In the end of the section, we show that a
similar proof carries through the smooth auctions defined by Syrgkanis and Tardos [31].

I Definition 14 ([25]). For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exists action distribution D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,∑

i

Ea∗
i
∼D∗

i
(v)
[
ui(a∗i ,a−i; vi)

]
≥ λ · Sw(a∗;v)− µ · Sw(a;v) (1)

I Theorem 15 ([25]). If an auction is (λ, µ)-smooth and the distributions of player valuations
are independent then every Bayes-Nash equilibrium has expected welfare at least λ

1+µ times
the optimal expected welfare.

Proof. Given an auction, we formulate the corresponding optimization problem by a con-
figuration LP. A configuration A consists of pairs (i, ai) such that (i, ai) ∈ A means that in
configuration A, player i chooses action ai. Intuitively, a configuration is an action profile
of players. For every player i, every valuation vi ∈ Vi and every action ai ∈ Ai, let xi,ai

(vi)
be the variable representing the probability that player i chooses action ai. Besides, for
every valuation profile v, let zA(v) be the variable indicating the probability that the chosen
configuration (action profile) is A. For each configuration A and valuation profile v, the
auctioneer outcomes an allocation and a payment and that results in a social welfare denoted
as cA(v). In the other words, if a is the action profile corresponding to the configuration A
then cA(v) is in fact Sw(a;v). Consider the following formulation and its dual.

max
∑
v

cA(v)zA(v)∑
ai∈Ai

xi,ai(vi) ≤ fi(vi) ∀i, vi∑
A

zA(v) ≤ f(v) ∀v∑
A:(i,ai)∈A

zA(vi,v−i) ≤ f−i(v−i) · xi,ai
(vi)

∀i, ai, vi,v−i
xi,ai

(vi), zA(v) ≥ 0 ∀i, ai, A, vi,v

min
∑
i,vi

fi(vi) · αi(vi)+
∑
v

f(v) · β(v)

αi(vi) ≥
∑
v−i

f−i(v−i) · γi,ai
(vi,v−i)

∀i, ai, vi
β(v) +

∑
(i,ai)∈A

γi,ai
(v) ≥ cA(v) ∀A,v

αi(vi), β(v), γi,ai(v) ≥ 0 ∀i, vi,v
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In the primal, the first and second constraints guarantee that variables x and z represent
indeed the probability distribution of each player and the joint distribution, respectively.
The third constraint makes the connection between variables x and z. It ensures that if a
player i with valuation vi selects some action ai then in the valuation profile (vi,v−i), the
probability that the configuration A contains (i, ai) must be f−i(v−i) · xi,ai

(vi). The primal
objective is the expected welfare of the auction.

Construction of dual variables. Assuming that the auction is (λ, µ)-smooth. Fix the
parameters λ and µ. Given an arbitrary Bayes-Nash equilibrium σ, define dual variables as
follows.

αi(vi) := 1
λ
Ev−i

[
Eb∼σ(vi,v−i)[ui(b; vi)]

]
,

β(v) := µ

λ
Eb∼σ(v)

[
Sw(b;v)

]
,

γi,ai(v) := 1
λ
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)].

Informally, up to some constant factors depending on λ and µ, αi(vi) is the expected utility
of player i in equilibrium σ; β(v) stands for the social welfare of the auction where the
valuation profile is v and players follow the equilibrium actions σ(v); and γi,ai

(v) represents
the utility of player i in valuation profile v if player i chooses action ai while other players
i′ 6= i follows their equilibrium strategies σ−i(v−i).

Feasibility. We show that the constructed dual variables form a feasible solution. By the
definition of dual variables, the first dual constraint reads

1
λ
Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
≥ 1
λ

∑
v−i

f−i(v−i) · Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

= 1
λ
Ev−i

[
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

]
This is exactly the definition that σ is a Bayes-Nash equilibrium.

For every valuation profile v = (v1, . . . , vn) and for any configuration A (corresponding
action profile a = (a1, . . . , an)), the second constraint reads:

µ

λ
Eb∼σ(v)

[
Sw(b;v)

]
+

∑
(i,ai)∈A

1
λ
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)] ≥ Sw(a;v). (2)

Note that we can write Sw(a;v) = Eb∼σ(v)
[
Sw(a;v)

]
. For any fixed realization b of σ(v), by

(λ, µ)-smoothness µ
λSw(b;v) +

∑
i

1
λui(ai, b−i; vi) ≥ Sw(a;v). Hence, by taking expectation

over σ(v), Inequality (2) follows.

Price of Anarchy. The welfare of equilibrium σ is EvEb∼σ(v)
[
Sw(b;v)

]
while the dual

objective of the constructed dual variables is∑
i,vi

fi(vi) ·
1
λ
Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
+
∑
v

f(v) · µ
λ
Eb∼σ(v)

[
Sw(b;v)

]
which is bounded by 1+µ

λ ·EvEb∼σ(v)
[
Sw(b;v)

]
. Therefore, the PoA is at most λ/(1+µ). J
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4.2 Simultaneous Item-Bidding Auctions

Model. In this section, we consider the following Bayesian combinatorial auctions. In the
setting, there are m items to be sold to n players. Each player i has a private monotone
valuation vi : 2[m] → R+ over different subsets of items S ⊂ 2[m]. For simplicity, we denote
vi(S) as viS . The valuation profile v = (v1, . . . , vn) is drawn from a product distribution F .
In other words, the probability distributions Fi of valuations vi are independent. Designing
efficient combinatorial auctions are in general complex and a major direction in literature is to
seek simple and efficient auctions in term of PoA. Among others, simultaneous item-bidding
auctions are of particular interest. We consider two forms of simultaneous item-bidding
auctions: simultaneous first-price auctions (S1A) and simultaneous second-price auctions
(S2A). In the auctions, each player submits simultaneously a vector of bids, one for each item.
A typical assumption is non-overbidding property in which each player submits a vector bi of
bids such that for any set of items S,

∑
j∈S bij ≤ viS . Given the bid profile, each item is

allocated to the player with highest bid. In a simultaneous first-price auction, the payment of
the winner of each item is its bid on the item; while in a simultaneous second-price auction,
the winner of each item pays the second highest bid on the item.

4.2.1 Connection between Primal-Dual and Non-Smooth Techniques

In this section, we consider the setting in which all player valuations are sub-additive. That
is, vi(S ∪ T ) ≤ vi(S) + vi(T ) for every player i and every subsets S, T ⊂ 2[m]. The PoA of
simultaneous item-bidding auctions has been widely studied in this setting. Using smoothness
framework in auctions, logarithmic bounds on PoA for S1A and S2A are given by Hassidim
et al. [14] and Bhawalkar and Roughgarden [4], respectively. Recently, Feldman et al. [11]
presented a significant improvement by establishing the PoA bounds 2 and 4 for S1A and
S2A, respectively. Their proof arguments go beyond the smoothness framework. In the
following, we revisit the results of Feldman et al. [11] and show that the duality approach
captures the non-smooth technique in [11].

Formulation. Given a valuation profile v, let xij(v) be the variable indicating whether
player i receives item j in valuation profile v. Let ziS(v) be the variable indicating whether
player i receives a set of items S. Then for any profile v and for any item j,

∑
i xij(v) ≤ 1,

meaning that an item j is allocated to at most one player. Moreover,
∑
S:j∈S ziS(v) = xij(v),

meaning that if player i receives item j then some subset of items S allocated to i must
contain j. Besides,

∑
S ziS(v) = 1 since some subset of items (possibly empty) is allocated

to i.

Let xij(vi) and ziS(vi) be interim variables corresponding to xij(v) and ziS(v) and are
defined as follows: xij(vi) := Ev−i∼F−i

[
xij(vi,v−i)

]
and ziS(vi) := Ev−i∼F−i

[
ziS(vi,v−i)

]
where F−i is the product distribution of all players other than i. Consider the following
relaxation with interim variables and its dual. The constraints in the primal follow the
relationship between the interim variables xij(vi), ziS(vi) and variables xij(v), ziS(v).
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max
∑
i,S

∑
vi

fi(vi)
[
viS · ziS(vi)

]
∑
i

∑
vi∈Vi

fi(vi)xij(vi) ≤ 1 ∀j

∑
S

ziS(vi) = 1 ∀i, vi∑
S:j∈S

ziS(vi) = xij(vi) ∀i, j, vi

xij(vi), ziS(vi) ≥ 0 ∀i, j, S, vi

min
∑
i,vi

αi(vi) +
∑
j

βj

fi(vi) · βj ≥ γi,j(vi) ∀i, j, vi
αi(vi) +

∑
j∈S

γi,j(vi) ≥ fi(vi) · viS

∀i, S, vi
αi(vi) ≥ 0 ∀i, vi

Dual Variables. Fix a Bayes-Nash equilibrium σ. Given a valuation v, denote b =
(b1, . . . , bn) = σ(v) as the bid equilibrium. LetB be the distribution of b over the randomness
of v and σ. Let B(vi) be the distribution of b over the randomness of v and σ while the
valuation vi of player i is fixed. Since vi and v−i are independent and each σi is a mapping
Vi → ∆(Ai), strategy bi is independent of b−i. Let B−i be the distribution of b−i. We
define dual variables as follows.

Let αi(vi) be proportional to the expected utility of player i with valuation vi, over the
randomness of valuations v−i of other players. Specifically,

αi(vi) := 2fi(vi) · Ev−i∼F−i

[
Eσ
[
ui
(
σ(vi,v−i), vi

)]]
= 2fi(vi) · Eb∼B(vi)

[
ui
(
b, vi

)]
Besides, let γi,j(vi) be proportional to the expected value of the bid on item j if player i with
valuation vi wants to win item j while other players follow the equilibrium strategies. Formally,
γi,j(vi) := 2fi(vi) ·Eb−i∼B−i

[maxk 6=i bkj ] . Finally, define βj := 2 maxi Eb−i∼B−i
[maxk 6=i bkj ].

The following lemma shows the feasibility of the variables. The main core of the proof
relies on an argument in [11].

I Lemma 16. The dual vector (α, β, γ) defined above constitutes a dual feasible solution.

I Theorem 17 ([11]). If player valuations are sub-additive then every Bayes-Nash equilibrium
of a S1A (or S2A) has expected welfare at least 1/2 (or 1/4, resp) of the optimal one.

Proof. For an item j, let i∗(j) ∈ arg maxi Ev−i∼F−i [maxk 6=i bkj ]. Hence,

βj = 2Ev−i∗(j)∼F−i∗(j)Eσ
[

max
k 6=i∗(j)

bkj

]
= 2Evi∗(j)∼Fi

Ev−i∗(j)∼F−i∗(j)Eσ
[

max
k 6=i∗(j)

bkj

]
= 2Ev∼FEσ

[
max
k 6=i∗(j)

bkj

]
where the second equality is due to the fact that the term Ev−i∗(j)∼F−i∗(j)Eσ

[
maxk 6=i∗(j) bkj

]
is independent of vi∗(j). Therefore, the dual objective is

∑
i,vi

αi(vi) +
∑
j

βj = 2Ev∼FEσ
[∑

i

ui(b, vi) +
∑
j

max
k 6=i∗(j)

bkj

]

Fix a random choice of profile v and σ (so the bid profile b is fixed). We bound the dual
objective, i.e., the right-hand side of the above equality, in S1A and S2A. Note that the
utility of a player winning no item is 0.
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First Price Auction. Partition the set of items into the winning items of each player.
Consider a player i with the set of winning items S. The utility of this player i is viS −∑
j∈S maxk bkj . Hence, viS −

∑
j∈S bij +

∑
j∈S maxk 6=i∗(j) bkj ≤ viS since by the allocation

rule, bij = maxk bkj for every j ∈ S. Hence, summing over all players, the dual objective is
bounded by twice the total expected valuation of winning players, which is the primal. So
the price of anarchy is at most 2.

Second Price Auction. Similarly, consider a player i with the set of winning items S. The
utility of player i as well as its payment (by no-overbidding) are at most viS . Therefore,
summing over all players, the dual objective is bounded by four times the total expected
valuation of winning players. Hence, the price of anarchy is at most 4. J

4.2.2 Connection between Primal-Dual and No-Envy Learning
Very recently, Daskalakis and Syrgkanis [10] have introduced no-envy learning – a novel
concept of learning in auctions. The notion is inspired by the concept of Walrasian equilibrium
and it is motivated by the fact that no-regret learning algorithms (which converge to
coarse correlated equilibria) for the simultaneous item-bidding auctions are computationally
inefficient as the number of player actions are exponential. When the players have fractionally
sub-additive (XOS) valuation, Daskalakis and Syrgkanis [10] showed that no-envy outcomes
are a relaxation of no-regret outcomes. Moreover, no-envy outcomes maintain the approximate
welfare optimality of no-regret outcomes while ensuring the computational tractability. In
this section, we explore the connection between the no-envy learning and the primal-dual
approach. Indeed, the notion of no-envy learning would be naturally derived from the dual
constraints very much in the same way as the smoothness argument is.

We recall the notion of no-envy learning algorithms [10]. We first define the online
learning problem. In the online learning problem, at each step t, the player chooses a bid
vector bt = (bt1, . . . , btm) where btj is the bid on item j for 1 ≤ j ≤ m; and the adversary picks
adaptively (depending on the history of the play but not on the current bid bt) a threshold
vector θt = (θt1, . . . , θtm). The player wins the set S∗(bt, θt) = {j : btj ≥ θtj} and gets reward:

u(bt, θt) := v
(
S∗(bt, θt)

)
−

∑
j∈S∗(bt,θt)

θtj

where v : 2[m] → R is the valuation of the player.

I Definition 18 ([10]). An algorithm for the online learning problem is r-approximate
no-envy if, for any adaptively chosen sequence of (random) threshold vector θ1:T by the
adversary, the (random) bid vector b1:T chosen by the algorithm satisfies:

1
T

T∑
t=1

E
[
u(bt, θt)

]
≥ max
S⊂[m]

(
1
r
· v(S)−

∑
j∈S

1
T

T∑
t=1

E
[
θtj
])
− ε(T ) (3)

where the no-envy rate ε(T )→ 0 while T →∞. An algorithm is no-envy if it is 1-approximate
no-envy.

Now we show the connection between primal-dual and no-envy learning by revisiting the
following theorem. As we will see, the notion of no-envy learning corresponds exactly to a
constraint of the dual program.
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I Theorem 19 ([10]). If n players in a S2A use a r-approximate no-envy learning algorithm
with envy rate ε(T ) then in T steps, the average welfare is at least 1

2rOpt− n · ε(T ) where
Opt is the expected optimal welfare.

Proof. Let bti be the bid vector of player i where btij is the bid of player i on item j in step
t. In a S2A the threshold θtij = maxk 6=i btkj . Consider the same primal and dual LPs in
Section 4.2.1.

Dual variables. Recall that r is the approximation factor and ε(T ) the no-envy rate of the
learning algorithm. Define dual variables (similar to the ones in Section 4.2.1) as follows.

αi(vi) := r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
ui

(
b

t
i, θ

t
i

)]]
+ r · ε(T )

γi,j(vi) := r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
θ

t
ij

]]
= r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)

[
θ

t
ij

]]
βj := r ·max

i
max

vi

Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
θ

t
ij

]]
= r ·max

i
Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)

[
θ

t
ij

]]
where the second equalities in the definitions of γ and β follow the fact that player valuations
are independent and θtij does not depend on btij for every i, j.

Feasibility. The first dual constraint follows immediately by the definitions of dual variables
β and γ. For a fixed set S and a player i with valuation vi, the second dual constraint reads

r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)
[
ui
(
bti, θ

t
i

)]]
+ r · ε(T )

+ r ·
∑
j∈S

fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)
[
θtij
]]
≥ fi(vi) · viS

This inequality follows immediately from the definition of r-approximate no-envy learning
algorithms (specifically, Inequality (3)) by simplifying and rearranging terms. (Note that
Ev−i∼F−i

[fi(vi) · viS ] = fi(vi) · viS).

Bounding the cost. In T steps, the average welfare is

Ev
[ 1
T

T∑
t=1

Ebt(v)
[
vi
(
bti, θ

t
i

)]]
= Ev

[ 1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
.

Besides, in the dual objective,

∑
i,vi

αi(vi) ≤ r · Ev
[

1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
+ n · r · ε(T ),

∑
j

βj ≤ r · Ev
[

1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
where the last inequality is due to the non-overbidding property. Hence, the theorem follows
by weak duality. J
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5 Conclusion

In the paper, we have presented a primal-dual approach to study the efficiency of games.
We have shown the applicability of the approach on a wide variety of settings and have
given simple and improved analyses for several problems in settings of different natures.
Beyond concrete results, the main point of the paper is to illuminate the potential of the
primal-dual approach. In this approach, the PoA-bound analyses now can be done similarly
as the analyses of LP-based algorithms in Approximation/Online Algorithms. We hope that
linear programming and duality would bring new ideas and techniques, from well-developed
domains such as approximation, online algorithms, etc to algorithmic game theory, not only
for the analyses and the understanding of current games but also for the design of new games
(auctions) and new concepts leading to improved efficiency.
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