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Abstract
In this paper, we develop machinery which makes it much easier to prove sum of squares lower
bounds when the problem is symmetric under permutations of [1, n] and the unsatisfiability of
our problem comes from integrality arguments, i.e. arguments that an expression must be an
integer. Roughly speaking, to prove SOS lower bounds with our machinery it is sufficient to
verify that the answer to the following three questions is yes:

1. Are there natural pseudo-expectation values for the problem?

2. Are these pseudo-expectation values rational functions of the problem parameters?

3. Are there sufficiently many values of the parameters for which these pseudo-expectation values
correspond to the actual expected values over a distribution of solutions which is the uniform
distribution over permutations of a single solution?

We demonstrate our machinery on three problems, the knapsack problem analyzed by Grigor-
iev, the MOD 2 principle (which says that the complete graph Kn has no perfect matching when
n is odd), and the following Turan type problem: Minimize the number of triangles in a graph
G with a given edge density. For knapsack, we recover Grigoriev’s lower bound exactly. For
the MOD 2 principle, we tighten Grigoriev’s linear degree sum of squares lower bound, making
it exact. Finally, for the triangle problem, we prove a sum of squares lower bound for finding
the minimum triangle density. This lower bound is completely new and gives a simple example
where constant degree sum of squares methods have a constant factor error in estimating graph
densities.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Sum of squares hierarchy, proof complexity, graph theory, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.61

Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
11469.

Acknowledgements The author would like to thank Sasha Razborov for suggesting the triangle
problem and for helpful conversations. The author would also like to thank Johan Håstad,
Fernando Geronimo, Annie Raymond, and anonymous reviewers for helpful comments on the
paper. Finally, the author would like to thank Fernando Geronimo for helpful discussions on
representation theory. This work was supported by the Simons Collaboration for Algorithms
and Geometry, the NSF under agreement No. CCF-1412958, the Knut and Alice Wallenberg
Foundation, the European Research Council, and the Swedish Research Council.

© Aaron Potechin;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 61; pp. 61:1–61:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/168410798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:potechin@uchicago.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.61
https://arxiv.org/abs/1711.11469
https://arxiv.org/abs/1711.11469
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


61:2 Sum of Squares Lower Bounds from Symmetry and a Good Story

1 Introduction

The sum of squares hierarchy (which we call SOS for brevity), a hierarchy of semidefinite
programs first indepedently investigated by Shor [33], Nesterov [27], Parrilo [28], Lasserre
[22], and Grigoriev [15, 16], is an exciting frontier of algorithm design, complexity theory,
and proof complexity. SOS is exciting because it provides a single unified framework
which can be applied to give approximation algorithms for a wide variety of combinatorial
optimization problems. Moreover, SOS is conjectured to be optimal for many of these
problems. In particular, SOS captures the Goemans-Williamson algorithm for MAX-CUT
[13], the Goemans-Linial relaxation for sparsest cut (analyzed by Arora, Rao, and Vazirani
[2]), and the subexponential time algorithm for unique games found by Arora, Barak, and
Steurer [1]. More recently, SOS has been applied directly to give algorithms for several
problems including planted sparse vector [5], dictionary learning [6], tensor decomposition
[12, 19, 25], tensor completion [8, 29], and quantum separability [7].

That said, there are limits to the power of SOS. As shown by SOS lower bounds for
constraint satisfactions problems (CSPs) [16, 32, 3, 20] and gadget reductions [34], SOS
requires degree Ω(n) (and thus exponential time) to solve most NP-hard problems. As shown
by SOS lower bounds on planted clique and other planted problems [26, 10, 17, 4, 18], SOS
can have difficulty distinguishing between a random input and an input which is random
except for a solution which has been planted inside it. Finally, as shown by Grigoriev’s
SOS lower bound for the knapsack problem [15], SOS has difficulty capturing integrality
arguments, i.e. arguments which say that an expression must be an integer.

In this paper, we further explore this last weakness of SOS. In particular, we develop
machinery which makes it much easier to prove SOS lower bounds when the problem is
symmetric and the unsatisfiability of our problem comes from integrality arguments. The
usual process for proving SOS lower bounds involves finding pseudo-expectation values (see
subsection 2.3) and then proving that a matrix called the moment matrix is PSD (postive
semidefinite), which can be quite difficult. Roughly speaking, to prove SOS lower bounds
with our machinery it is sufficient to verify that the answer to the following three questions
is yes:
1. Are there natural pseudo-expectation values for the problem?
2. Are these pseudo-expectation values rational functions of the problem parameters?
3. Are there sufficiently many values of the parameters for which these pseudo-expectation

values correspond to the actual expected values over a distribution of solutions which is
the uniform distribution over permutations of a single solution?

We demonstrate our machinery on three problems, the knapsack problem itself, the MOD
2 principle (which says that the complete graph Kn on n vertices does not have a perfect
matching when n is odd), and the following Turan-type problem: Minimize the number of
triangles in a graph G with a given edge density.

1.1 Equations and SOS lower bounds for knapsack, the MOD 2
principle, and a triangle problem

To state our SOS lower bounds on knapsack, the MOD 2 principle, and the triangle problem,
we must first express these problems as infeasible systems of polynomial equations. We do
this because as we will discuss in subsection 2.3, SOS gives a proof system for proving that
systems of polynomial equations over R are infeasible. Our lower bounds show that SOS
requires high degree to prove that the systems of equations corresponding to knapsack, the
MOD 2 principle, and the triangle problem are infeasible.
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For the knapsack problem, we consider the simple case when all of the weights are 1, the
knapsack capacity is k, and we are asked whether it is possible to fill the knapsack to its
capacty. We can express this problem with equations as follows:
1. ∀i, x2

i − xi = 0
2.
∑n
i=1 xi − k = 0.

These equations are clearly infeasible whenever k /∈ Z. However, as Grigoriev [15] showed,
since SOS has difficulty capturing integrality arguments, SOS requires high degree to refute
these equations.

I Theorem 1 (Grigoriev’s SOS lower bound for knapsack).
Degree min {2bmin {k, n− k}c+ 3, n} SOS fails to prove that the knapsack equations are
infeasile.

In this paper, we observe that Grigoriev’s lower bound (which is tight) follows immediately
from our machinery.

For the MOD 2 principle, we are asked whether the complete graph Kn has a perfect
matching. To express this problem with equations, we take a variable xij for each possible
edge (i, j) and we want that xij = 1 if the edge (i, j) is in our matching and xij = 0 otherwise.
We encode this and the claim that we have a perfect matching as follows:
1. For all i, j ∈ [1, n] such that i < j, x2

ij − xij = 0
2. For all i ∈ [1, n],

∑
j∈[1,n]:j 6=i xij − 1 = 0 (where we take xij = xji whenever i > j)

These equations are infeasible whenever n is odd. However, Grigoriev [16] showed that SOS
requires high degree to refute these equations. While Grigoriev’s lower bound is shown via a
reduction from the Tseitin equations and is tight up to a constant factor, in this paper we
use our machinery to obtain the following tight SOS lower bound directly.

I Theorem 2 (SOS lower bound for the MOD 2 principle).
Degree n−1

2 SOS fails to prove that the equations for the MOD 2 principle are infeasible.

For the triangle problem, we want to minimize the number of triangles in a graph with edge
density ρ. For this problem, Goodman [14] showed the following lower bound.

I Theorem 3 (Goodman’s bound). The minimal number of triangles in a graph G with n
vertices and edge density ρ is at least

t(n, ρ) :=
(
n

3

)
− n(n− 1)(1− ρ)

6 ((1 + 2ρ)n− 2− 2ρ)

As we will discuss in the full version of this paper, this bound is tight if there is an integer k
such that
1. n

k − 1 = (1− ρ)(n− 1)
2. n is divisible by k.
If so, then we can take G to have k independent sets of size n

k and have all of the edges
between different independent sets, which minimizes the number of triangles in G and matches
Goodman’s bound. Otherwise, Goodman’s bound cannot be achieved.

To express this problem using equations, we again create a variable xij for each possible
edge (i, j) and we want xij = 1 if the edge (i, j) is in the graph and xij = 0 if the edge (i, j)
is not in the graph. We encode this, the requirement the edge density is ρ, and the claim
that Goodman’s bound can be achieved with the following equations
1. For all i, j ∈ [1, n] such that i < j, x2

ij − xij = 0
2.
∑
i,j∈[1,n]:i<j xij − ρ

(
n
2
)

= 0
3.
∑
i,j,k∈[1,n]:i<j<k xijxikxjk − t(n, ρ) = 0 where t(n, ρ) =

(
n
3
)
− n(n−1)(1−ρ)

6 ((1 + 2ρ)n −
2− 2ρ)

ITCS 2019
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Using our machinery, we show the following SOS lower bound which is completely new and
was the motivation for developing our machinery.

I Theorem 4 (SOS lower bound for the triangle problem).
Letting k be the number such that n

k − 1 = (1− ρ)(n− 1), degree bmin {k, nk }c+ 1 SOS fails
to refute the triangle problem equations.

1.2 Relation to previous work on symmetry and SOS
There is a considerable body of prior research on symmetry and SOS. Several works built
on the difficulty on knapsack and/or further investigated symmetric polynomials on the
variables {x1, . . . , xn}. Laurent [23] used the difficulty of knapsack to show that degree dn2 e
SOS is required to capture the CUT polytope of the complete graph. Bleckherman, Gouveia,
and Pfeiffer [9] used the difficulty of knapsack to construct degree 4 polynomials which are
non-negative but cannot be written as a sum of squares of low degree rational functions. Lee,
Prakash, Wolf, and Yuen [24] showed that there are symmetric non-negative polynomials on
the variables {x1, . . . , xn} which cannot be approximated with low degree sums of squares.
Kurpisz, Leppänen, and Mastrolilli [21] gave a general criterion for determining if a symmetric
polynomial on {x1, . . . , xn} is a sum of squares or not.

While these prior works give more precise results for symmetric problems on the vari-
ables {x1, . . . , xn}, they do not show how to handle problems which are symmetric under
permutations of [1, n] but have variables such as {xij : i < j} which depend on 2 or more
indices. Thus, these prior works are incomparable with this work.

Another line of research on symmetry and SOS which is more closely connected to this
work uses symmetry to reduce the algorithmic complexity of implementing SOS. Gatermann
and Parrilo [11] showed how representation theory can be used to greatly reduce the search
space for pseudo-expectation values, allowing SOS to be run more efficiently on symmetric
problems. Recently, Raymond et. al. [30] combined the analysis of Gatermann and Parrilo
with Razborov’s flag algebras [31] to show that in the case of k-subset hypercubes, the
resulting semidefinite program has size which is independent of n. These results are quite
general and apply to all of the problems we are considering. That said, these results do not
tell us how to find or verify pseudo-expectation values by hand, which is generally what is
needed for SOS lower bounds.

In this paper, we show how the representation theory which allows Gatermann and Parrilo
[11] and Raymond et. al. [30] to dramatically reduce the size of the semidefinite programs
for SOS on symmetric problems can also be used to help prove theoretical SOS lower bounds
on symmetric problems. In particular, Theorem 21, which is a crucial part of our machinery,
essentially follows from Corollary 2.6 of Raymond et. al. [30]. We obtain our lower bounds
by combining this theorem with the additional assumption that the unsatisfiability of the
problem we are analyzing comes from integrality arguments.

1.3 Paper outline
The remainder of the paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3 we describe how we can find candidate pseudo-expectation values from stories.
In Section 4 we highlight how symmetry is useful for proving SOS lower bounds even without
additional assumptions. In Section 5, we rigorously define what stories and good stories
are and show that good stories imply SOS lower bounds. Finally, in Section 6, we show a
method for verifying that stories are good stories.
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2 Preliminaries

Before we can describe our machinery, we must first give some preliminaries. We begin by
describing the class of symmetric problems which our machinery can be applied to. We then
define the sum of squares hierarchy and discuss some notation for the paper.

2.1 Symmetric problems
I Definition 5. We make the following assumptions about the problem P we are analyzing:
1. We assume that P is a problem about hypergraphs G with vertices V (G) = [1, n] and a

set of possible hyperedges EP . We view the hyperedges e ∈ EP as subsets of [1, n] which
may be unordered or ordered depending on P . If all of these subsets have the same size
t ≥ 1 then we say that the problem P has arity t.

2. We assume that P has variables {xe : e ∈ EP } and P is a YES/NO question which is
described by a set of problem equations {si({xe : e ∈ EP }) = 0}. The answer to P is
YES if all of these equations can be satisfied simultaneously and NO otherwise.

3. We assume that the set EP of possible hyperedges and the set {si({xe : e ∈ EP }) = 0}
of problem equations are both symmetric under permutations of [1, n].

If a problem P satisfies all of these assumptions then we say that P is a symmetric hypergraph
problem. Since we only consider problems of this type, for brevity we will just say symmetric
problem rather than symmetric hypergraph problem.

I Example 6. Symmetric problems P of arity 1 are YES/NO questions on the variables
{x1, . . . , xn} which are symmetric under permutations of [1, n].

I Example 7. For symmetric problems P of arity 2, EP is the set of subsets of [1, n] of size
2. If the subsets in EP are unordered then G is an undirected graph and we have variables
{xij : i, j ∈ [1, n], i 6= j} where we take xji = xij . If the subsets in EP are ordered then G is
a directed graph and we have distinct variables {xij : i, j ∈ [1, n], i 6= j}.

I Remark. While our machinery can handle symmetric problems of any arity, the examples
we focus on all have arity 1 or 2. Knapsack with unit weights has arity 1 while the MOD 2
principle and the triangle problem have arity 2 and are about undirected graphs.
I Remark. Since our machinery is based on polynomial interpolation, it is important that the
symmetric problem P does not have inequalities as well as equalities. If P has inequalities
then our machinery does not immediately give an SOS lower bound and more analysis is
needed.

2.2 Index degree
For our results, rather than considering the degree of a polynomial f , it is more natural to
consider the largest number of indices mentioned in any one monomial of f . We call this the
index degree of f .

I Definition 8 (Index degree).
1. Given a monomial p =

∏
e∈Ep xe, we define I(p) = {i : ∃e ∈ Ep : i ∈ e} and we define the

index degree of p to be

indexdeg(p) = indexdeg[1,n](p) = |I(p)|

In other words, indexdeg(p) is the number of indices which p depends on.
2. Given a polynomial f , if f =

∑
j cjpj is the decomposition of f into monomials then we

define the index degree of f to be indexdeg(f) = maxj {indexdeg(pj)}

ITCS 2019
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I Example 9. If p is the monomial p = x12x34 then p has degree 2 and index degree 4.

I Example 10. If f = x12x13 + x4
24 then f has degree 4 and index degree 3.

We will also need an analagous definition where we only consider the indices outside of a
subset I ⊆ [1, n].

I Definition 11 (Index degree outside of I). Let I ⊆ [1, n] be a subset of indices.
1. Given a monomial p =

∏
e∈Ep xe, we define the index degree of p on [1, n] \ I to be

indexdeg[1,n]\I(p) = |I(p) \ I|

In other words, indexdeg[1,n]\I(p) is the number of indices in [1, n] \ I which p depends
on.

2. Given a polynomial f , if f =
∑
j cjpj is the decomposition of f into monomials then we

define the index degree of f on [1, n] \ I to be indexdeg[1,n]\I(f) =
maxj {indexdeg[1,n]\I(pj)}

2.3 SOS and pseudo-expectation values
We now define SOS and pseudo-expectation values, which are used to prove SOS lower
bounds. One way to describe SOS is through SOS/Positivstellensatz proofs, which are
defined as follows:

I Definition 12. Given a system of polynomial equations {si = 0} over R, an index degree
d SOS/Positivstellensatz proof of infeasibility is an equality of the form

−1 =
∑
i

fisi +
∑
j

g2
j

where
1. ∀i, indexdeg(fi) + indexdeg(si) ≤ d
2. ∀j, indexdeg(gj) ≤ d

2

I Remark. This is a proof of infeasibility because the terms fisi should all be 0 by the
problem equations and the terms g2

j must all be non-negative, so they can’t possibly sum to
−1 if all of the problem equations are satisfied.

I Definition 13. Index degree d SOS gives the following feasibility test for whether a
system of polynomial equations over R is feasible or not. If there is an index degree d
Positivstellensatz proof of infeasibiblity then index degree d SOS says NO. Otherwise, index
degree d SOS says YES.
I Remark. Index degree d SOS may give false positives by failing to say NO on systems of
equations which are infeasible but will never give a false negative.
In this paper, we show SOS lower bounds for the infeasible systems of equations described
in subsection 2.1 by showing that for small d there is no index degree d Positivstellensatz
proof of infeasibility for our system of equations. This can be done with index degree d
pseudo-expectation values, which are defined as follows:

I Definition 14. Given a system of polynomial equations {si = 0} over R, index degree d
pseudo-expectation values are a linear mapping Ẽ from polynomials of index degree ≤ d to
R which satisfies the following conditions:
1. Ẽ[1] = 1
2. ∀i, f, Ẽ[fsi] = 0 whenever indexdeg(f) + indexdeg(si) ≤ d
3. ∀g, Ẽ[g2] ≥ 0 whenever indexdeg(g) ≤ d

2
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I Proposition 15. If there are index degree d pseudo-expectation values Ẽ for a system
of polynomial equations s1 = 0, s2 = 0, etc. over R, then there is no index degree d

Positivstellensatz proof of infeasibility for these equations.

Proof. Assume that we have both index degree d pseudo-expectation values and an index
degree d Positivstellensatz proof of infeasibility. Applying the pseudo-expectation values to
the Positivstellensatz proof, we get the following contradiction:

−1 = Ẽ[−1] =
∑
i

Ẽ[fisi] +
∑
j

Ẽ[g2
j ] ≥ 0 J

I Remark. Condition 3 of definition 14 is equivalent to the statement that the moment
matrix M is PSD (positive semidefinite) where M is indexed by monomials p, q of index
degree ≤ d

2 and has entries Mpq = Ẽ[pq]. Proving SOS lower bounds usually involves proving
that M � 0, which can be quite difficult. In this paper we can instead analyze Ẽ[g2] more
directly.
I Remark. The idea behind pseudo-expectation values is that they should mimic actual
expected values over a distribution of solutions. In particular, as shown by the following
proposition, if Ẽ comes from a distribution over actual solutions then it automatically gives
pseudo-expectation values. This fact is crucial for our results.

I Proposition 16. If the equations {si = 0} are feasible over R and Ω is a probability
distribution over actual solutions then the linear mapping Ẽ[p] = EΩ[p] gives index degree d
pseudo-expectation values for these equations for all d.

Proof. Observe that:
1. For any x ∼ Ω, 1 = 1. Thus, Ẽ[1] = EΩ[1] = 1.
2. For any x ∼ Ω, for all i, f , f(x)si(x) = 0. Thus, for all i, f , Ẽ[fsi] = EΩ[fsi] = 0.
3. For any x ∼ Ω, for all g, g(x)2 ≥ 0. Thus, for all g, Ẽ[g2] = EΩ[g2] ≥ 0. J

2.4 Sequences of distinct indices
We will need the following definitions about sequences of distinct indices in [1, n].

I Definition 17 (Operations on sequences).
1. Given a sequence of distinct indices A = (i1, . . . , im), we define the set IA to be IA =
{i1, . . . , im}. In other words, IA is just A without the ordering.

2. Given two sequences of distinct indices A = (i1, . . . , im1) and B = (i′1, . . . , i′m2
), we say

that A ⊆ B if m1 ≤ m2 and ∀j ∈ [1,m1], i′j = ij .
3. Given two sequences of distinct indices A = (i1, . . . , im1) and B = (i′1, . . . , i′m2

) such that
IA ∩ IB = ∅, we define A ∪B to be the sequence A ∪B = (i1, . . . , im1 , i

′
1, . . . , i

′
m2

)
In this paper, we will never consider sequences of indices which are not distinct, so we assume
without stating it explicitly that all of our sequences contain distinct indices.

3 Finding pseudo-expectation values: Stories and a verifier/adversary
game for SOS

In this section, we describe a verifier/adversary game which we use to find pseudo-expectation
values and deduce SOS lower bounds. We then describe how the adversary can play this
game using stories and describe the resulting pseudo-expectation values for knapsack, the
MOD 2 principle, and the triangle problem.

ITCS 2019
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The verifier/adversary game is as follows. The verifier queries sequences of indices {Ai}.
For each sequence of indices A = (i1, . . . , im) the verifier queries, for each j ∈ [1,m] and
every possibility for what happens with the previous indices (i1, . . . , ij−1), the adversary
must provide a probability distribution for what happens with the index ij . Taken together,
these answers give a probability distribution for all of the possibilities for what happens with
the indices in A. From these probability distributions, we can obtain pseudo-expectation
values.

The verifier wins if he/she detects one of the following flaws in the adversary’s answers
1. The adversary gives a probability for some event which is either negative or undefined.
2. The adversary’s answers do not result in well-defined pseudo-expectation values because

they are inconsistent. More precisely, there exist two sequences of indices A = (i1, . . . , im)
and A′ = (i′1, . . . , i′m) such that A′ and A are equal as sets (i.e. {i′1, . . . , i′m} is a
permutation of {i1, . . . , im}) and the resulting probability distributions for what happens
with the indices {i1, . . . , im} do not match.

3. The adversary’s answers result in pseudo-expectation values such that some problem
equation si = 0 is violated i.e. Ẽ[fsi] 6= 0 for some polynomial f .

If the verifier is unable to find such a flaw then the adversary wins.
I Remark. Roughly speaking, when we say that the adversary specifies what happens with a
set of indices I we mean that the adversary assigns values to all variables xe such that the
indices of e are contained in I. We make this more precise in Section 5.
The adversary often has a strategy for this game based on a story for what happens with the
indices. For the problems we are analyzing, the adversary’s stories are as follows:
1. Knapsack: We set k out of the n xi to be 1 and set the rest to 0.
2. The MOD 2 principle: For each vertex i, the perfect matching contains precisely one of

the edges which are incident to i.
3. The triangle problem: We have k independent sets of size n

k .
I Remark. The adversary’s stories are not convicing to us, as we can understand integrality
arguments. However, the adversary just has to fool SOS, which is poor at capturing integrality
arguments.

We now demonstrate how these stories naturally give probability distributions for what
happens with the indices and thus give pseudo-expectation values.

I Example 18 (Knapsack). For knapsack, if the verifier first queries vertex i, the adversary
says that xi = 1 with probability k

n and xi = 0 with probability n−k
n . Thus, according to the

adversary the expected value of xi is k
n so we take Ẽ[xi] = k

n

If the verifier then queries xj , if we have xi = 1 then the adversary says that xj = 1 with
probability k−1

n−1 and xj = 0 with probability n−k
n−1 as the adversary wants to set k − 1 of the

remaining n− 1 variables to 1. If we have xi = 0 then the adversary instead says that xj = 1
with probability k

n−1 and xj = 0 with probability n−k−1
n−1 as the adversary wants to set k of

the remaining n− 1 variables to 1. Thus, according to the adversary the expected value of
xixj is k(k−1)

n(n−1) so we take Ẽ[xixj ] = k(k−1)
n(n−1) .

Following similar logic, for all I ⊆ [1, n] such that |I| ≤ d, Ẽ[
∏
i∈I xi] = ( k|I|)

( n|I|)

I Example 19 (MOD 2 principle). For the MOD 2 principle, if the verifier first queries i, the
adversary gives no information because there is nothing distinguishing i from other vertices.
If the verifier then queries j, the adversary says that xij = 1 with probability 1

n−1 and
xij = 0 with probability n−2

n−1 because the adversary wants to match 1 out of the remaining
n− 1 vertices with i. Thus, we take Ẽ[xij ] = 1

n−1
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We now consider Ẽ[xijxkl] where i, j, k, l are all distinct. xijxkl = 0 unless xij = 1 so
we can focus on the case when xij = 1, which according to the adversasry happens with
probability 1

n−1 . In this case, if the verifier queries k, the adversary gives no additional
information because there is nothing distinguishing k from other vertices in [1, n] \ (i, j). If
the verifier then queries l, the adversary says that xkl = 1 with probabililty 1

n−3 and xkl = 0
with probabililty n−4

n−3 because the adversary wants to match 1 of the n− 3 remaining vertices
with k. Thus, we take Ẽ[xijxkl] = 1

(n−1)(n−3)
Following similar logic, we obtain that for all E ⊆ {(i, j) : i, j ∈ [1, n], i < j} such that

|E| ≤ d, Ẽ[
∏

(i,j)∈E xij ] = 1∏|E|
j=1

(n−2j+1)
if E is a partial matching and Ẽ[

∏
(i,j)∈E xij ] = 0

otherwise.

I Example 20 (Triangle Problem). For the triangle problem, if the verifier first queries i, the
adversary gives no information because there is nothing distinguishing i from other vertices.
If the verifier then queries j, the adversary says that j is in the same independent set as i
with probability

n
k−1
n−1 and is in a different independent set with probability n−nk

n−1 .
If the verifier then queries k, if i, j are in the same independent set then the adversary

says that k is in the same independent set as i, j with probability
n
k−2
n−2 and is in a different

independent set with probability n−nk
n−2 . If i, j are in different independent sets then the

adversary says that k is in the same independent set as i with probability
n
k−1
n−2 , k is in the

same independent set as j with probability
n
k−1
n−2 , and k is in a different independent set with

probability n−2nk
n−2 . Thus, the adversary gives the following probabilities for what happens

with i, j, k:
1. The probability that i, j, k are all in the same independent set is (nk−1)(nk−2)

(n−1)(n−2)
2. The probability that i, j are in the same independent set and k is in a different independent

set is (nk−1)(n−nk )
(n−1)(n−2) . This is also the probability that i, k are in the same independent

set and j is in a different independent set and the probability that j, k are in the same
independent set and i is in a different independent set.

3. The probability that i, j, k are all in different independent sets is (n−nk )(n−2nk )
(n−1)(n−2)

This gives the following pseudo-expectation values:
1. Ẽ[xij ] = n−nk

n−1

2. Ẽ[xijxik] = Ẽ[xijxjk] = Ẽ[xikxjk] = (nk−1)(n−nk )
(n−1)(n−2) + (n−nk )(n−2nk )

(n−1)(n−2) = (n−nk )(n−nk−1)
(n−1)(n−2)

3. Ẽ[xijxikxjk] = (n−nk )(n−2nk )
(n−1)(n−2)

I Remark. For the triangle problem, it is difficult to write down the general expression for Ẽ
explicitly. Fortunately, as we will show, we can verify the conditions of Definition 14 based
on the story for Ẽ

4 Symmetry and SOS lower bounds

In this section, we highlight how symmetry can help prove SOS lower bounds even without
additional assumptions. In particular, we have the following theorem which essentially follows
from Corollary 2.6 of [30].

I Theorem 21. If Ẽ is a linear map from polynomials to R which is symmetric with respect
to permutations of [1, n] then for any polynomial g, we can write

Ẽ[g2] =
∑

I⊆[1,n],j:|I|≤indexdeg(g)

Ẽ[g2
Ij ]

where for all I, j,
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1. gIj is symmetric with respect to permutations of [1, n] \ I.
2. indexdeg(gIj) ≤ indexdeg(g)
3. ∀i ∈ I,

∑
σ∈S[1,n]\(I\{i})

σ(gIj) = 0
Theorem 21 is very useful for proving SOS lower bounds on symmetric problems because
it implies that instead of checking that Ẽ[g2] ≥ 0 for all polynomials of index degree ≤ d

2 ,
it is sufficient to check polynomials which are symmetric under permutations of all but d

2
indices. However, despite its simplicity, Theorem 21 is quite deep. To prove Theorem 21, we
must carefully decompose g and then use symmetry to analyze all of the non-square terms of
g2 and either eliminate them or reduce them to square terms. Fortunately, this has already
been done by Corollary 2.6 of [30] using representation theory. We now sketch how Theorem
21 follows from Corollary 2.6 of [30].

Proof sketch of Theorem 21 using Corollary 2.6 of [30].

I Definition 22 (Definition 2.1 of [30]). If ⊕λVλ is the isotypic decomposition of the vector
space of polynomials of degree ≤ d and τλ is a tableau of shape λ, define

Wτλ := V
Rτλ
λ

to be the subspace of the isotypic Vλ fixed by the action of the row group Rτλ (which keeps
each row of τλ fixed but may permute the elements within each row of τλ)

Corollary 2.6 of [30] (rephrased slightly) says the following:

I Corollary 23 (Corollary 2.6 of [30]). Suppose p is a polynomial on the variables {xij : i, j ∈
[1, n], i < j} such that p is symmetric under permutations of [1, n] and p can be written as
a sum of squares of polynomials of degree ≤ d. For each partition λ ` n, fix a tableau τλ
of shape λ and choose a vector space basis {bτλ1 , . . . , bτλmλ} for Wτλ . Then for each partition
λ ∈ Λ, there exists an mλ ×mλ PSD matrix Qλ such that

p =
∑
λ∈Λ

tr(QλY τλ)

where Λ := {λ ` n : λ ≥lex (n− 2d, 12d)} and Y τλij := sym(bτλi b
τλ
j )

Using Corollary 2.6 of [30], we can prove Theorem 21 as follows. Since Ẽ is symmetric,
Ẽ[g2] = Ẽ[sym(g2)] where sym(g2) = 1

n!
∑
σ∈Sn (σ(g))2. Since sym(g2) is symmetric and a

sum of squares, by Corollary 2.6 of [30], there exist PSD matrices Qλ such that

Ẽ[g2] =
∑
λ∈Λ

Ẽ[tr(QλY τλ)]

Since Ẽ is symmetric, this implies that

Ẽ[g2] =
∑
λ∈Λ

Ẽ[tr(QλY ′
τλ)]

where Y ′τλij := bτλi b
τλ
j . Now consider each λ ∈ Λ separately and observe that since Qλ � 0,

we can write Qλ =
∑
j q

jqj
T for some vectors {q1, . . . , qmλ}. Thus,

tr(QλY τλ) = tr(
∑
j

qjqj
T
bτλbτλT ) =

∑
j

qj
T
bτλbτλT qj =

∑
j

(∑
i∈mλ

qji b
τλ
i

)2

which means we can reexpress sym(g2) as a sum of squares, each of which has the form
(
∑mλ
i=1 cib

τλ
i )2 for some partition λ ` n, tableau τλ of shape λ, and coefficients {ci}
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For each square (
∑mλ
i=1 cib

τλ
i )2, let I be the set of indices which are not in the top row

of τλ. To show the first statement of Theorem 21, observe that permuting the indices of
[1, n] \ I is just permuting the top row of τλ. By definition, the elements of Wτλ are all
invariant under such permutations, so

∑mλ
i=1 cib

τλ
i is invariant under permutations of [1, n] \ I,

as needed.

I Remark. In the setting of Corollary 2.6 of [30] the variables are {xij : i, j ∈ [1, n], i < j}
so if g has degree d, g can have index degree 2d which matches the fact that Λ := {λ ` n :
λ ≥lex (n− 2d, 12d)}. To prove Thorem 21 as stated using Corollary 2.6 of [30], Corollary
2.6 of [30] must be restated in terms of index degree and the proof adjusted accordingly.

The second statement of Theorem 21 is trivial as all of the bτλi are in the vector space of
polynomials of degree ≤ d and thus index degree ≤ 2d.

To show the third statement of Theorem 21, we need to prove the following lemma

I Lemma 24. For any τλ, letting I be the set of indices which are not in the top row of τλ,
for any i ∈ I and any p ∈Wτλ ,∑

σ∈S([1,n]\I)∪{i}

σ(p) = 0

Proof sketch. This lemma follows from the following claim:

I Definition 25. Define Ur = span{p : ∃I ⊆ [1, n] : |I| = r, ∀σ ∈ S[1,n]\I , σ(p) = p} and
define

Vr = Ur/Ur−1 =span{p : ∃I ⊆ [1, n] : |I| = r, ∀σ ∈ S[1,n]\I , σ(p) = p,

∀J ⊆ [1, n] : |J | ≤ r − 1,
∑

σ∈S[1,n]\J

σ(p) = 0}

I Claim 26. Vr = ⊕λ:The top row of λ has length n−rVλ

Assuming this claim, for any τλ, letting I be the set of indices which are not in the top row
of τλ, for any p ∈ Wτλ ⊆ Vλ and any J such that |J | < |I|,

∑
σ∈S[1,n]\J

σ(p) = 0}. Taking
J = I \ {i}, the result follows.

We defer the proof of this claim to the full version. J

J

However, Corollary 2.6 of [30] does not give us an explicit expression for Ẽ[g2], so we can
ask whether we can obtain an explicit expression for Ẽ[g2]. It turns out that there is such
an expression but it is quite complicated. For an alternative proof of Theorem 21 which is
explicit and combinatorial but technical, see the full version of this paper.

5 Sum of squares lower bounds from symmetry and a good story

In this section, we show how strategies for the verifier/adversary game described in section 3
with certain properties, which we call good stories, imply SOS lower bounds.
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5.1 Stories
In this subsection, we rigorously define what we mean by stories. Once the definition is
understood, stories are generally recognizable on sight.

I Definition 27. Given a subset I of [1, n], we define PI to be the set of all polynomials
which only depend on the variables {xe : e ⊆ I}

I Definition 28 (Stories). Let P be the problem we are anaylzing and let A = (i1, . . . , im)
be a sequence of indices. We say that a strategy S for adversary is a level n′ story for (P,A),
describing what will happen with the remaining indices after we have already queried A, if
the following is true:
1. n′ ≤ n− |IA|
2. S specifies what happened with the indices in A. More precisely, there is a linear map

ẼS,A : PIA → R corresponding to S
3. For all i ∈ [1, n] \ IA, S gives values {pij} for the probabilities of level n′ − 1 stories Sij

for (P,A ∪ (i)).
4. We have that for all i ∈ [1, n] \ IA,

∑
j pij = 1 and ∀f ∈ PIA ,∀j, ẼS,A[f ] = ẼSij ,(A∪(i))[f ]

Given a level n′ story S for (P,A), for all sequences B such that A ⊆ B, letting i be the next
element in B after A, we define ẼS,B =

∑
j pijẼSij ,B

I Remark. Note that we do not require the values pij to be non-negative in this definition.
I Remark. For all of our examples we will have that n′ = n− |IA| but we do not force this
to be the case in the definition.

5.2 Useful story properties part 1
We now define several properties our stories may have which are useful for proving SOS lower
bounds. In Section 6 we will describe a method for verifying these properties.

The first property we want is that our story S gives the same linear map ẼS regardless
of the order we query the indices.

I Definition 29. We say that a level n′ story S for (P,A) is self-consistent if whenever B,B′
are sequences such that A ⊆ B,A ⊆ B′, |IB \ IA| ≤ n′, |IB \ IA| ≤ n′,

∀p ∈ PIB∩IB′ , ẼS,B [p] = ẼS,B′ [p]

If S is self-consistent then we define ẼS : {f : indexdeg[1,n]\IA(f) ≤ n′} → R to be the linear
map such that for all monomials p such that indexdeg[1,n]\IA(p) ≤ n′, for any sequence B of
length at most n′ such that IB ∩ IA = ∅ and B contains all indices in variables of p which
are not in IA, ẼS [p] = ẼS,(A∪B)[p]

A second property we want is that our story sounds like we are taking the expected values
over the uniform distribution of permutations of a single input graph G0. To make this
precise, we note a useful property such expected values have. We then define single-graph
mimics to be stories/pseudo-expectation values which also have this property.

I Proposition 30. If Ω is the trivial distribution consisting of a single graph G0 then for
any polynomials f and g, EΩ[fg] = EΩ[f ]EΩ[g]

Proof. EΩ[fg] = f(G0)g(G0) = EΩ[f ]EΩ[g] J

I Proposition 31. If Ω is the uniform distribution over all permutations of a single graph
G0 then for all symmetric polynomials f and g, EΩ[fg] = EΩ[f ]EΩ[g].
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Proof. For any symmetric polynomial h and any permutation σ, h(σ(G0)) = h(G0) which
implies that EΩ[h] = h(G0). Thus, we again have that EΩ[fg] = f(G0)g(G0) = EΩ[f ]EΩ[g],
as needed. J

I Remark. The property that E[fg] = E[f ]E[g] for all symmetric polynomials f, g is useful
because it immediately implies that for all symmetric polynomials g, E[g2] = (E[g])2 ≥ 0.

We now define single graph mimics.

I Definition 32. Let P be a symmetric problem with equations {si = 0} and let I be a
subset of [1, n]. We say that Ẽ is a level n′ single graph mimic for P on [1, n] \ I if the
following conditions hold:
1. Ẽ : {p : indexdeg[1,n]\I(p) ≤ n′} → R is a linear map which is symmetric under

permutations of [1, n] \ I
2. For all i and all polynomials f such that indexdeg[1,n]\I(f) + indexdeg[1,n]\I(si) ≤ n′,

Ẽ[fsi] = 0
3. For all polynomials f, g which are symmetric under permutations of [1, n] \ I such that

indexdeg[1,n]\I(f) + indexdeg[1,n]\I(g) ≤ n′, Ẽ[fg] = Ẽ[f ]Ẽ[g].
We say that S is a level n′ single-graph mimic for (P,A) if S is a self-consistent level n′ story
for (P,A) and ẼS is a level n′ single-graph mimic for P on [1, n] \ IA.

A third property we want is that is that our story assigns non-negative probabilities to its
substories as long as we don’t query too many indices. If our story and all of its substories
satisfy these three properties then we call it a good story.

I Definition 33. We say that S is a level (r, n′) good story for (P,A) if the following
conditions hold:
1. S is a level n′ single graph mimic for (P,A).
2. If r > 0 then for any i ∈ [1, n] \ IA, the values pij are non-negative and the stories {Sij}

are all level (r − 1, n′ − 1) good stories for (P,A ∪ (i)).

5.3 SOS lower bounds from good stories
We now prove that good stories imply SOS lower bounds.

I Theorem 34. Let P be a symmetric problem with equations {si = 0}. If we have a level
(r, n′) good story for P then index degree d = min {2r, n′} SOS fails to refute the equations
for P .

Proof. We need two components to prove this theorem. The first component is the following
theorem which shows that if we have a good story then we satisfy all of the linear constraints
on Ẽ and we have that Ẽ[g2] ≥ 0 whenever g is symmetric under permutations of all but a
few indices.

I Theorem 35. Let P be a symmetric graph problem with constraints {si = 0} (where the
{si} are polynomials in the input variables). If we have a level (r, n′) good story S for P
then the corresponding linear map ẼS : {f : indexdeg(f) ≤ n′} → R satisfies the following
properties
1. ẼS is symmetric under permutations of [1, n]
2. If I ⊆ [1, n] is a subset of indices of size at most r and g is a polynomial which is

symmetric under permutations of [1, n] \ I such that indexdeg[1,n]\I(g) ≤ n′−|I|
2 then

ẼS [g2] ≥ 0
3. For all i and all f such that indexdeg(f) + indexdeg(si) ≤ n′, ẼS [fsi] = 0.
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Proof. Since S is a single graph mimic and single graph mimics are symmetric with respect
to permutations of [1, n], the first statement follows. Similarly, the third statement follows
directly from condition 2 of Definition 32

For the second statement, by conditions 1 and 2 of Definition 33, we can express ẼS as a
probability distribution Ω over level n− |I| single graph mimics Ẽj for P on [1, n] \ I. Since
g is symmetric under permutations of [1, n] \ I, for all of the Ẽj , Ẽj [g2] = Ẽj [g]Ẽj [g] ≥ 0.
We now have that ẼS [g2] = EEj∼Ω

[
Ẽj [g2]

]
≥ 0, as needed. J

The second component we need is Theorem 21, which shows that it is sufficient to verify that
ẼS [g2] ≥ 0 whenever g is symmetric with respect to permutations of all but a few indices.
which is exactly what is shown by Theorem 35.

With these components in hand, we now prove Theorem 34. We need to check the
following:
1. Whenever indexdeg(f) + indexdeg(si) ≤ d = min {2r, n′}, ẼS [fsi] = 0.
2. Whenever indexdeg(g) ≤ d

2 = min {r, n
′

2 }, ẼS [g2] ≥ 0
For the first statement, note that indexdeg(f) + indexdeg(si) ≤ n′, so by Theorem 35,
ẼS [fsi] = 0. For the second statement, given a polynomial g of index degree at most d

2 , by
Theorem 21 we can write

ẼS [g2] =
∑

I⊆[1,n],j:|I|≤indexdeg(g)

ẼS [g2
Ij ]

where for all I, j,

∀i ∈ I,
∑

σ∈S[1,n]\(I\{i})

σ(gIj) = 0

We now use the following lemma to upper bound indexdeg[1,n]\I(gIj):

I Lemma 36. If gIj is symmetric with respect to permutations of [1, n] \ I and

∀i ∈ I,
∑

σ∈S[1,n]\(I\{i})

σ(gIj) = 0

then all monomials in gIj depend on all of the indices in I

Proof. Assume that there is an i ∈ I and some monomial p which does not depend on i
which has a nonzero coefficient in gIj . By symmetry, for all permutations σ of [1, n] \ I, the
coefficient of σ(p) is the same as the coefficient of p. However, these are also the coefficients
of σ2(p) for permutations σ2 of [1, n] \ (I \ {i}). Since ∀i ∈ I,

∑
σ∈S[1,n]\(I\{i})

σ(gIj) = 0, all
of these coefficients must be 0, which is a contradiction. J

This lemma implies that for all of the gIj , indexdeg[1,n]\I(gIj) ≤ n′

2 − |I| ≤
n′−|I|

2 . Thus, by
Theorem 35, ẼS [g2

Ij ] ≥ 0. Since this holds for all I, j, ẼS [g2] ≥ 0, as needed. J

6 Verifying good stories

In this section, we describe a method to verify that a story S is a good story. For this
method, we make the following assumption.

I Definition 37. We assume that the problem equations and S depend on a set of parameters
and we take α1, . . . , αm to be these parameters.

I Remark. For knapsack and the triangle problem, we have two parameters n and k. For
the MOD 2 principle we only have the parameter n.
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6.1 Useful story properties part 2
We now describe two additional properties our stories may have which are useful for verifying
that they are good stories. Once the definitions are understood, these properties are generally
recognizable on sight.

One property S usually has is that the linear maps ẼS,B assign values to monomials
which are rational functions of the parameters α1, . . . , αm.

I Definition 38. We say that a level n′ story S for (P,A) is rational if the following conditions
hold
1. For all B such that A ⊆ B and |IB \ IA| ≤ n′, for all monomials p such that I(p) ⊆ IB,

ẼS,B [p] is a rational function of the parameters α1, . . . , αm.
2. The rational functions {ẼS,B[p] : A ⊆ B, |IB \ IA| ≤ n′, I(p) ⊆ IB} have a common

denominator qS(α1, . . . , αm) and the degree of the numerator is bounded by a function
of n′ and indexdeg(p).

A second property our stories may have is that there are many settings of the parameters
α1, . . . , αm for which S and ẼS actually correspond to probabilities and expected values of
the uniform distribution over permutations of a single input G0.

I Definition 39. Let S be a story for (P,A)
1. We say that S is honest for (α1, . . . , αm) if S corresponds to what happens if we take

the uniform distribution for all permutations of an actual input graph G0 over [1, n] \ IA
and G0 satisfies the equations for P . Note that if this is the case then S is automatically
a single graph mimic for (P,A) for the parameter values (α1, . . . , αm) and ẼS [p] =
Eσ∈S[1,n]\IA

[p(σ(G0))]
2. We say that S is z-honest for (α1, . . . , αm−1) if there are at least z values of αm such

that S is honest for (α1, . . . , αm).
3. For all j ∈ [1,m − 2], we say that S is z-honest for (α1, . . . , αj) if there are at least z

values of αj+1 such that S is z-honest for (α1, . . . , αj+1).
4. We say that S is z-honest if there are at least z values of α1 such that S is z-honest for

(α1).
The intution is that it is difficult for SOS to determine whether the parameters take one of
these values for which we actually have a solution or we are in between these values.

The following lemma is very useful

I Lemma 40. Let S be a story which is z-honest. If p(α1, . . . , αm) is a polynomial
such that deg(p) < z and p(α1, . . . , αm) = 0 whenever S is honest for (α1, . . . , αm) then
p(α1, . . . , αm) = 0

Proof. We prove this lemma by induction. Assume that p(α1, . . . , αm) = 0 whenever S is
z-honest for α1, . . . , αj .

Consider p as a polynomial in the variables αj+1, . . . , αm. Each monomial has a coefficient
which is a polynomial c(α1, . . . , αj) and we must have that c(α1, . . . , αj) = 0 whenever S
is z-honest for α1, . . . , αj . We now show that all of these coefficients c(α1, . . . , αj) must
be 0 whenever S is z-honest for α1, . . . , αj−1. To see this, consider such a polynomial
c(α1, . . . , αj) and assume that we have α1, . . . , αj−1 such that S is z-honest for α1, . . . , αj−1.
Considering c as a polynomial in αj , c(αj) = 0 whenever S is z-honest for α1, . . . , αj , which
by definition happens for at least z values of αj . Since deg(c) < z, we must have that
c(α1, . . . , αj) = c(αj) = 0. Thus, p(α1, . . . , αm) = 0 whenever S is z-honest for α1, . . . , αj−1,
as needed. J
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6.2 Sufficient conditions for single graph mimics
With these definitions, we can now give sufficient conditions for showing that a story S is a
single graph mimic.

I Lemma 41. Let S be a level n′ story for (P,A). If S and the parameter values α1, . . . , αm
satisfy the following conditions
1. S is rational and symmetric with respect to permutations of [1, n] \ IA.
2. For all z > 0, S is z-honest.
3. Letting qS(α1, . . . , αm) be the common denominator for {ẼS,B[p] : A ⊆ B, |IB \ IA| ≤

n′, I(p) ⊆ IB}, qS(α1, . . . , αm) 6= 0
then for the parameter values α1, . . . , αm, S is a level n′ single graph mimic for (P,A).

Proof. We need to verify the following for the given values of α1, . . . , αm:
1. S is self-consistent.
2. For all i and all polynomials f such that indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) ≤ n′,

ẼS [fsi] = 0
3. For any polynomials f, g such that f, g are symmetric under permutations of [1, n] \ IA

and indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(g) ≤ n′, ẼS [fg] = ẼS [f ]ẼS [g].
We first verify that S is self-consistent for the given values of α1, . . . , αm. Let p be a monomial
and let B,B′ be sequences of indices such that A ⊆ B, A ⊆ B′, and I(p) ⊆ IB ∩ IB′ . Since
S is rational, ẼS,B [p] = p1(α1,...,αm)

q(α1,...,αm) and ẼS,B′ [p] = p2(α1,...,αm)
q(α1,...,αm) are rational functions of the

parameters α1, . . . , αm. Now note that whenever S is honest for (α1, . . . , αm), ẼS,B′ [p] =
ẼS,B [p] which implies that

p1(α1, . . . , αm)qS(α1, . . . , αm) = p2(α1, . . . , αm)qS(α1, . . . , αm)

Since S is z-honest for all z > 0, by Lemma 40 we have that p1qS = p2qS as polyno-
mials in α1, . . . , αm. Plugging in our actual values of α1, . . . , αm, qS(α1, . . . , αm) 6= 0 so
p1(α1, . . . , αm) = p2(α1, . . . , αm) and thus ẼS,B′ [p] = ẼS,B [p], as needed.

We can use similar ideas to prove the second and third statements but there is a
subtle point we must be careful of. A problem equations si may be a polynomial which
is symmetric in n \ IA rather than being a fixed polynomial. In this case, ẼS [si] and
ẼS [fsi] will still be rational functions in the parameters α1, . . . , αm. However, the equality
ẼS [fsi] = pfsi (α1,...,αm)

qS(α1,...,αm) may break down if

indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) > n′

I Example 42. If f = x1x2 and si =
∑n
i=1 xi − k then

fsi = x2
1x2 + x1x

2
2 + x1x2

∑
i∈[1,n]\{1,2}

xi − kx1x2

and by symmetry

ẼS [fsi] = ẼS [x2
1x2] + ẼS [x1x

2
2] + (n− 2)ẼS [x1x2x3]− kẼS [x1x2]

Thus, fsi generally has index degree 3 and ẼS [fsi] = pfsi (α1,...,αm)
qS(α1,...,αm) is a rational function

of the parameters α1, . . . , αm. However, if n′ = n = 2 then we are missing the term
x1x2

∑
i∈[1,n]\{1,2} xi from fsi which may break the equality ẼS [fsi] = pfsi (α1,...,αm)

qS(α1,...,αm) . Note
that this problem will not occur as long as

indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) ≤ n′
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With this point in mind, for the second statement, note that since S is rational and
indexdeg(f) + indexdeg(si) ≤ n′, we can write ẼS [fsi] = pfsi (α1,...,αm)

q(α1,...,αm) . Now observe
that Ẽ[fsi] = 0 whenever Ẽ is honest for (α1, . . . , αm) and thus pfsi(α1, . . . , αm) = 0
whenever S is honest for (α1, . . . , αm). Since S is z-honest for all z > 0, by Lemma
40, pfsi(α1, . . . , αm) = 0 as a polynomial. Plugging in the given values of α1, . . . , αm,
q(α1, . . . , αm) 6= 0 so ẼS [fsi] = pfsi (α1,...,αm)

q(α1,...,αm) = 0, as needed.
Similarly, for the third statement we want to view f , g, and fg as polynomials which

depend on n rather than being fixed polynomials. Still, since S is rational and indexdeg(f) +
indexdeg(g) ≤ n′, we can write ẼS [f ] = pf (α1,...,αm)

q(α1,...,αm) , ẼS [g] = pg(α1,...,αm)
q(α1,...,αm) , and ẼS [fg] =

pfg(α1,...,αm)
q(α1,...,αm) . Now observe that ẼS [fg] = ẼS [f ]ẼS [g] whenever S is honest for (α1, . . . , αm)

and thus

pf (α1, . . . , αm)pg(α1, . . . , αm)− q(α1, . . . , αm)pfg(α1, . . . , αm) = 0

whenever S is honest for (α1, . . . , αm). Since S is z-honest for all z, by Lemma 40, pfpg −
qpfg = 0 as a polynomial. Plugging in the given parameters α1, . . . , αm, q(α1, . . . , αm) 6= 0
so

ẼS [fg] = pfg(α1, . . . , αm)
q(α1, . . . , αm) = pf (α1, . . . , αm)pg(α1, . . . , αm)

(q(α1, . . . , αm))2 = ẼS [f ]ẼS [g] J

6.3 Verifying good stories

We are now ready to give sufficient conditions for a story to be a good story.

I Theorem 43. If S is a story for (P,A) such that
1. S is symmetric with respect to permutations of [1, n] \ IA
2. S is rational
3. For all z > 0, S is z-honest.
then for a given choice of parameters α1, . . . , αm, if n′ and r are numbers such that n′ ≤
n− |IA| and
1. If we consider up to r further indices, the probabilities pij are always non-negative.
2. If we consider up to n′ further indices, we may get negative values for some pij but these

values are always well-defined (i.e. the denominator is nonzero).
then S is a level (n′, r) good story for (P,A).

Proof. Since we can consider up to n′ further indices and get well-defined values for the pij ,
S is a level n′ story for (P,A). Now by Lemma 41, S is a level n′ single graph mimic for
(P,A).

We now prove the theorem by induction on r. The base case r = 0 is trivial. If r > 0 then
for all i ∈ [1, n] \ IA, S gives non-negative values {pij} for the probabilities of level n′ − 1
stories Sij for (P,A ∪ (i)). Now note that for each of these Sij , the values of subsequent
pij will always be non-negative if we consider up to r − 1 further indices and will be well-
defined if we consider up to n′ − 1 further indices. Moreover, Sij is symmetric with respect
to permutations of [1, n] \ (IA ∪ {i}), rational, and is z-honest because Sij is honest for
(α1, . . . , αm) whenever S is honest for (α1, . . . , αm). Thus, by the inductive hypothesis, each
Sij is a level (r − 1, n′ − 1) good story for (P,A ∪ (i)) so S is a level (r, n′) good story for
(P,A), as needed. J
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6.4 Good stories for knapsack, the MOD 2 principle, and the triangle
problem

In this subsection, we apply Theorem 43 to verify that our stories for knapsack, the MOD 2
principle, and the triangle problem are good stories.

I Theorem 44.
1. Saying that we take k out n elements is a level (bmin {k, n− k}c+ 1, n) good story for

the knapsack problem.
2. Saying that we every vertex is incident with precisely one edge is a level (bn2 c+ 1, n) good

story for the MOD 2 principle.
3. Saying that we have k independent sets of size n

k is a level (bmin {k, nk }c + 1, n) good
story for the triangle problem.

Proof. For knapsack and the triangle problem, we take α1 = n and α2 = k. For the MOD 2
principle, we just take α1 = n.

Our stories are clearly rational and symmetric with respect to permutations of [1, n]. We
now check that they are z-honest for all z.

For knapsack, note that our story is honest for (n, k) whenever k is an integer between 0
and n. Thus, whenever n ≥ z there are at least z values of k such that our story is honest
for (n, k), which implies that our story is z-honest for (n) whenever n ≥ z. For all z there
are infinitely many valules of n such that n ≥ z so our story is z-honest for all z, as needed.

For the MOD 2 principle, note that our story is honest for (n) whenever n is an even
integer. There are infinitely many even integers so our story is z-honest for all z, as needed.

For the triangle problem, note that ourstory is honest for (n, k) whenever k is an integer
and n is divisible by k. Thus, whenever n = a! and a ≥ z then there are at least z values of
k such that our description is honest for (n, k), which implies that our story is z-honest for
(n) whenever n = a! and a ≥ z. For all z there are infinitely many valules of n such that
n = a! where a ≥ z so our story is z-honest for all z, as needed.

All that we have to do now is to determine n′ and r.
For knapsack, when we consider polynomials of index degree at most n′, the common

denominator will be n(n − 1) . . . (n − n′ + 1) as we are choosing n′ elements one by one
from [1, n]. This is well-defined as long as n′ ≤ n so we may take n′ = n. The probabilities
will be non-negative up to the (bmin {k, n− k}c+ 1)-th index we consider, so we may take
r = bmin {k, n− k}c+ 1.

For the MOD 2 principle, when we consider polynomials of index degree at most n′,
the common denominator will be n(n − 1) . . . (n − n′ + 1) as we are choosing n′ elements
one by one from [1, n]. This is well-defined as long as n′ ≤ n so we may take n′ = n. The
probabilities will be non-negative up to the (bn2 c+ 1)-th index we consider, so we may take
r = bn2 c+ 1.

For the triangle problem, when we consider polynomials of index degree at most n′, the
common denominator will be kn′

n(n− 1) . . . (n− n′ + 1). The additional kn′ factor appears
because there are n

k choices for the first element in an independent set of size n
k ,

n−k
k choices

for the second element, etc. Again, this is well-defined as long as n′ ≤ n so we may take
n′ = n. The probabilities will be non-negative up to the (bmin {k, nk }c + 1)-th index we
consider, so we may take r = bmin {k, nk }c+ 1 J

I Corollary 45.
1. For all positive integers n and all non-integer k ∈ [0, n], index degree

min{2bmin {k, n− k}c+ 3, n} SOS fails to refute the knapsack equations.
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2. For all odd n, index degree n SOS fails to refute the equations for the MOD 2 principle.
3. For all n ≥ 6, and all k ∈ [1, n] such that k /∈ Z or n

k /∈ Z, index degree 2bmin {k, nk }c+ 2
SOS fails to refute the claim that Goodman’s bound can be achieved for the triangle
problem.
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