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Abstract
It has been recently shown via simulations [8] that random projection followed by a cap operation
(setting to one the k largest elements of a vector and everything else to zero), a map believed
to be an important part of the insect olfactory system, has strong locality sensitivity properties.
We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verify-
ing mathematically this empirical finding. We then focus on the far more complex homologous
operation in the mammalian brain, the creation through successive projections and caps of an
assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence
of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove
that the operation of assembly projection converges with high probability, over the randomness
of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plas-
ticity). We also show that assembly projection has itself some locality preservation properties.
Finally, we propose a large repertoire of assembly operations, including associate, merge, recip-
rocal project, and append, each of them both biologically plausible and consistent with what we
know from experiments, and show that this computational system is capable of simulating, again
with high probability, arbitrary computation in a quite natural way. We hope that this novel way
of looking at brain computation, open-ended and based on reasonably mainstream ideas in neur-
oscience, may prove an attractive entry point for computer scientists to work on understanding
the brain.
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1 Introduction

The striking computational nature of the animal brain manifests itself even in the humblest
circumstances. Flies sense odorants in their environment through specialized olfactory
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57:2 Computation with Assemblies

receptor neurons, of which there are roughly fifty different kinds. So, each smell is initially
coded as a vector in 50 dimensions, where each coordinate is the level of activity of neurons
of each kind. Then a remarkable thing happens: This vector undergoes a random projection
– a familiar ingredient of many algorithms, especially in connection to learning [7, 2, 23, 1, 3]
– to a higher dimensional space. There is a 50× 2000 sparse, and by all evidence [6] random,
bipartite graph of synapses projecting the 50 kinds of olfactory receptors to a population of
2000 neurons called Kenyon cells. Next, the resulting 2000-dimensional vector of synaptic
inputs undergoes an operation that is routine in neural systems: The activity of the Kenyon
cells excites an inhibitory neuron, and the resulting activity of this neuron, at equilibrium,
has the effect of increasing everybody’s membrane potential, “turning off” all but roughly
the 100 most active cells. We call this operation cap; it is also known as k winners take all,
in this case with k = 100.

In a recent paper [8] it was shown empirically that this mapping, random projection
followed by cap, has strong locality sensitivity properties (and therefore preserves similarity
of smells, presumably to the animal’s advantage), in fact outperforming in simulations
certain variants of locality-sensitive hashing1. One of our results in this paper puts some
mathematical teeth to this interesting empirical observation: We prove that if two binary
vectors of the same sparsity overlap in a fraction α of their entries, and both undergo random
projection to n dimensions followed by k-cap, then the two results will overlap in a fraction
of about ( kn )

1−α
1+α (Theorem 1). For the small numbers of the insect brain (nk ≈

2000
100 ), this is

substantial overlap that helps explain the empirical findings in [8] (see Figure 1).
In the mammalian brain numbers get roughly three orders of magnitude higher, and

yet something similar seems to happen. Importantly, there is strong recurrent synaptic
connectivity between excitatory neurons; that is, the random graph is now not just a directed
bipartite graph, but the union of a bipartite directed graph and a non-bipartite directed
graph interconnecting the receiving side (in contrast, synapses between the fly’s Kenyon cells,
if any, play no role there). In mammals, the random projection and cap operation does take
place, but it is only the first step of a complex and sophisticated process, culminating in the
creation of an assembly of neurons.

Assemblies. Already in 1949, neuroscience pioneer Donald Hebb predicted that memories
and concepts are represented by tightly connected sets of neurons he called assemblies, whose
near-simultaneous firing is tantamount to these concepts being thought about. During the
last decade, it has been established experimentally [13, 14, 19], see also the survey [5], that
such near-simultaneous firing of stable sets of neurons is an important part of the way the
brain works. Assemblies have been hypothesized to underlie many of the higher cognitive
operations in mammals, such as memory, reasoning, language, planning, etc., and yet, the
way and manner in which this happens has not begun to be articulated; the computational
framework of this paper is a first attempt at understanding how assemblies of neurons can
carry out computation.

In our framework. In our framework, the brain is divided into a bounded number of brain
areas. Each brain area contains a number of excitatory neurons denoted by n; there are
of course other neurons as well, for instance see the discussion on inhibition below. These
excitatory neurons are interconnected in a sparse directed Gn,p graph. Pairs of brain areas

1 As Alex Andoni notes (private communication, 2018), this is not true of the more advanced versions of
LSH.
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may also be connected, in one or both directions, through bipartite directed Gn,p graphs2.
Finally, the other two important aspects of our model are cap and plasticity. We assume

that neurons fire – or do not – in discrete time steps (a very convenient and unrealistic
assumption, which however does not interfere much with the rest of our framework). At
each time and each brain area, the k out of n neurons that have largest synaptic input fire.
That is, at time t for each neuron we add together the weights of the incoming synapses that
originate in neurons (in the same or different area) which fired the previous time t− 1, and
select the k neurons out of the n in the brain area that have the largest sums. These are
the neurons in the area that will fire at time t. The k-cap process is a simplification and
approximation of the reality of inhibition, whereby an independent population of inhibitory
neurons cause the excitatory neurons to have high enough membrane potential that an
equilibrium at k firing neurons is quickly reached. Finally, plasticity: we assume that if there
is a synapse from neuron i to neuron j, and neuron i fires at time t while neuron j at t+ 1,
the weight of the synapse is increased by a factor of 1 + β with β > 0; synaptic weights start
at one, say3. Thus, the key parameters of our model are n, k, p, β, whose indicative intended
values for the mammalian brain are, respectively, 107, 104, 10−3 − 10−2, 10−1.

Defining Assemblies. An assembly is of course a set of neurons, in our framework all
belonging to the same brain area. In past theoretical work [17] this is exactly how they were
defined, a set of k neurons firing simultaneously. It is a highly interconnected set to ensure
stability, that is, if enough neurons in it fire then soon all of them will4 – and one of the
main points of [17] was that there is a biologically plausible algorithm for selecting such a
highly connected set of neurons in a sparse Gn,p graph. These neurons might be poised to
fire in a particular pattern, not necessarily all simultaneously as was assumed in [17] – and
indeed, in our simulations, as well as in the literature on assembly simulations, one does see
nontrivial patterns of firing. We believe the right way to define assemblies is as distributions
over the set of neurons in a Brain area whose support has size at most a fixed multiple of the
cap size k.

Projection. The most basic operation of assemblies is what we call projection – this is
how assemblies are created and, once created, copied to other brain areas for further use.
Assembly projection has been conjectured for a long time and has been established in several
simulation papers [20, 18] and recently analytically proved [17] for a range of parameters. An
assembly x in area A can project to a different area B, to which A has ample connectivity,
creating a new assembly y; this operation is denoted project(x,B, y). If in the future x
is activated, y will follow suit; we say that x = parent(y). We show that the operation
project(x,B, y) is carried out by assembly A simply firing for a small number of steps5.
Once an assembly x has been created, its area is implicit, denoted by area(x). To create

2 See [17] for a technical discussion of synaptic biases, departures from the Gn,p model noted in experiments,
and the reasons why they may provide further support for the assembly hypothesis. We do not pursue
this direction in the present paper.

3 There should also be a process of homeostasis which, at a slower time scale, keeps the sum of all weights
from growing; but this aspect of the model, taken up in Section 5, does not affect the relative ordering
of synaptic weights or sums thereof.

4 This is one of the many important differences between this work and Valiant’s pioneering theory of
items from the 1990s [21, 22]

5 project(x,B, y) may seem superficially equivalent to an assignment x = y in a programming language –
except that, after such an assignment, variables x and y go on to live largely independent lives, whereas
in assemblies x retains power over y, while y can only exist through x.

ITCS 2019
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an altogether new assembly y by project(x,B, y), x must be a “proto-assembly,” a set of
neurons coding a world experience and residing at some higher area of the sensory cortex
(such as the area IT of the visual cortex where whole objects are represented), projected
to a non-sensory area admitting new assemblies (typically the hippocampus). One of our
main results in this paper (Theorem 3) is that projection indeed works as described – with
high probability, of course, with randomness supplied by the graph, and in fact for quite
low plasticity.

The projection process is quite intricate. It starts with the random projection plus k-cap
described early in this introduction, creating a set of neurons that we call A1, namely, the
cells that happen to have the largest synaptic input from the projecting assembly x. We
assume that the synaptic input of a neuron from assembly x is a Bernoulli random variable
with parameters k, p and n samples. Notice also that, after the first round, the synapses
between x and A1 have been boosted by plasticity. As the projecting assembly keeps firing,
cap will select the set of neurons A2 that have highest combined synaptic input from x and
A1, and these will include two kinds of cells: the core neurons in A1 ∩A2, and new winners
from outside A1. What fraction of A1 will become core? This is an important parameter of
the situation, and we call it λ. To compute it, we set up an algebraic equation of Bernoulli
expectations; as the expectation of a Bernoulli quantile depends explicitly on the fraction of
winners, and concentration is strong, we can set up the equation and solve it in the “high
probability” sense. For the parameter range of interest, λ is about half. Notice that, after
this step, all synapses from x and A1 to A2 are boosted by plasticity.

Then the process is repeated, A3, A4, . . . , At, . . ., and we wish to show that |B∗| = |
⋃
tAt|

converges to some finite multiple of k (recall that this is our definition of an assembly). That
is, eventually there will be a time after which there are no first-time winners. Unfortunately
our already complicated Bernoulli analysis is no longer an option, for a variety of reasons.
First, at time t the number of types of neurons grows exponentially with t: the type of each
neuron is the set of τ ’s for which the neuron was in Aτ . In addition, the distribution of
the synaptic input of neurons with complex type is not Bernoulli, because of conditioning.
Instead, we resort to classifying each neuron by its rough type at time t, which is the number
of consecutive times τ leading to t− 1 during which the neuron was in Aτ . A crucial lemma
states that the probability that the run will end at time t and the neuron will find itself
outside At decreases exponentially with the length of the run (that is to say, the neuron’s
rough type), and in fact uniformly in t. Convergence to a union size that is a multiple of k
(with a multiplier that is, naturally, a steeply increasing function of 1

β ) follows (Theorem 3).

The proof is quite a bit easier in the high plasticity regime defined by β >
√

(1−p) lnn
pk , in

which case convergence is stronger in that the sequence At itself converges in finitely many
steps (as indicated in [17]).

Operations on Assemblies. What is the right scale for understanding computation in
the brain? We suspect that assemblies may underlie an important and powerful mode of
brain computation, complementary to the computation involved in the processing of sensory
input – heretofore the main focus of neuroscience. Such computation would encompass
memory recall and association, deduction and reasoning, generating and parsing natural
language, generating and manipulating stories and plans, even math. It happens at a level of
abstraction intermediate between individual neurons and synapses at the lowest level, and
whole brain computation at the highest; it is far more expressive than the latter, and much
less cumbersome to describe than the former. In our quest to understand the full power of
this mode of computation, in Section 5 we identify a repertoire of additional operations on
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assemblies, beyond projection. We only seek operations that are “realistic” in the following
two orthogonal senses: (a) operations for which there is experimental evidence, in the sense
that their existence would help explain extant experimental data, and which could possibly be
themselves tested experimentally; and (b) operations which are in addition plausible, shown
(analytically if at all possible, otherwise through simulations) to be realizable at the level of
neurons and synapses in our framework. That is to say, each assembly operation must be
“compiled down” to the level of neurons and synapses. Our list of operations includes, besides
projection: association, in which two assemblies in the same area increase their intersection
to reflect conceptual or statistical affinity – there is extensive experimental evidence for this
operation, see [17] for an extensive discussion; merge, in which two assemblies from two
different areas project to the same new assembly in a third area, an operation that seems
important for processing syntax in natural language; reciprocal project (like project, except
that the projected assembly is able to activate the original one, in addition to vice-versa); and
append, an operation useful for creating and maintaining sequences. There are also several
control operations allowing one to read the information of assembly activity in specific areas,
or disable synaptic connectivity between areas – ultimately, to write simple programs. We
show that this repertoire of assembly operations constitutes a programming system6 which
can simulate arbitrary computation in a way that is quite natural (Theorem 4). The point
of this exercise is to demonstrate the power of this basis of primitives, not to hypothesize
that the brain must function exactly this way.

Related work
Our work on assemblies is superficially related to (and was undoubtedly inspired by) Valiant’s
theory of items. There are stark contrasts between the two approaches: Assemblies are
hypothesized to be densely connected, a requirement that makes their creation challenging,
while items are ransom sets of neurons. And we believe that our model is far closer to
the realities of the brain, as they are known now, than Valiant’s; for one key difference,
Valiant assumes plasticity (change in synaptic weights) to be arbitrarily programmable at the
post-synaptic site, while we assume a very simple implementation of Hebb’s rule. With this
model we are able to address the problem of how the brain creates similar representations
for similar stimuli.

Our earlier work on assemblies established experimentally the plausibility of projection
and association [20], and theoretically so by relying on very high plasticity [17]. In this paper,
we attack analytically the more realistic and considerably more challenging regime of small
plasticity.

2 Model

We assume a finite number of brain areas, denoted by A,B, . . .. Each brain area is a weighted
directed graph whose vertices are n (think of n as 106 or 107) excitatory neurons, and whose
edges are synapses between neurons; the positive weights vary dynamically through plasticity,
see below. We assume that the edges are drawn from a Gn,p distribution. That is, we
assume that the probability of any edge is p and edges are chosen independently. In addition,
between certain ordered pairs of areas (A,B) there is a Gn,p directed bipartite graph from
nodes of A to nodes of B. In other words, there is a finite directed graph with the areas as

6 Which, to our credit, we refrained from dubbing “Assembly Language”...

ITCS 2019
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nodes, determining whether the two areas have synaptic connections. We assume that there
is a mechanism to disable the synaptic connections between two areas A and B at any time.

We assume that events happen in discrete time steps (think of each step as about 20 ms).
At each step t, every neuron i in every area A may or may not fire. Whether i fires depends
on its synaptic input at time t. This is defined the sum over all neurons j that have synapses
(j, i) (note that j can be either in area A or in an area B that does have synapses into A that
are not disabled at time t). Denote this quantity as SI(j). We assume that neuron i in area
A fires at time t if and only if |{j ∈ A : SI(j) ≥ SI(i)}| < k, where k is a key parameter of
the model (think of it as roughly

√
n). We call the set of neurons firing at a time t the cap

of the area. The cap is a mathematically tractable way of capturing the important process
of inhibition, whereby inhibitory neurons in an area (typically outnumbering excitatory ones)
are excited by the firing of excitatory neurons in the area, and in response fire, preventing
some excitatory neurons from further firing, and eventually reaching an equilibrium (called
the E-I balance in the literature). Here we model this equilibrium by a constant k and ignore
the transient.

The other important ingredient of our model is plasticity: We assume that if there is a
synapse with weight w from neuron i to neuron j (either in the same area, or in another area
with enabled synapses), and it so happens that i fires in time t− 1 and j fires in time t, then
the weight of synapse ij is in time t+ 1 equal to w(1 + β), where β (think of it as between 0
and 1, realistically at the lower end of this) is the plasticity coefficient. Plasticity is a very
complex phenomenon with many important aspects and cases, but we feel that this simple
rule (corresponding to Hebb’s “fire together wire together” maxim) captures the essence of
the matter reasonably well.

We shall elaborate certain further aspects of our model in the section on assembly
operations.

3 The Overlap of Projections

In this and the next section we analyze how assemblies can be formed in our model. We
assume that there is a stimulus A of k neurons firing in an area, with enabled synaptic
projections to another area, where the assembly will be formed. We start with the simple
case (modeling the insect brain) where A fires only once, forming the cap in the downstream
area denoted cap(A), and analyze how the overlap of two stimuli A and B is maintained in
the process; note that here recurrent connections and plasticity do not get involved, and the
weights can be thought to be one. The following observation will be useful: conditioning on
a neuron not making it to a cap cannot increase its cap probability for future steps.

I Lemma 1. Let A,B be two stimuli. Then for any node i ∈ V ,

Pr(i ∈ cap(B) | i 6∈ cap(A)) ≤ Pr(i ∈ cap(B)) = k

n

where the probability is over the randomness of the graph.

Also, we will need the following well-known bound on the Gaussian tail.

I Lemma 2 (Gaussian tail). For x ∼ N(0, 1) and t > 0,

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).

Now we state and prove our quantitative assessment of the locality sensitivity properties
of the insect olfactory map pointed out empirically in [8].
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I Theorem 3. The expected overlap of the caps two stimuli that overlap in an α fraction of
their nodes is

|cap(A) ∩ cap(B)|
k

&
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α

.

Proof. We bound the probability that any neuron i is in the cap of both A and B. For
this, let xi, yi, zi be the total input to node i ∈ V from A \ B,A ∩ B and B \ A. Then
xi, zi ∼ N((1 − α)kp, (1 − α)kp(1 − p)) and yi ∼ N(αkp, αkp(1 − p)). Then, using the
independence of xi + yi and zi + yi given yi,

Pr i ∈ cap(A) ∩ cap(B)

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} and zi + yi ∈ top k of {zj + yj}) dγ(x)dγ(z)dγ(y)

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} | y)χ(zi + yi ∈ top k of {zj + yj} | y) dγ(x)dγ(z)dγ(y)

≥
∫ (∫

χ(xi + yi ∈ top k of {xj + yj} | y) dγ(x)
)2

dγ(y)

≥
∫
yi

[Pr(xi ≥ −yi + kp+ t | yi)]2 dγ(yi).

The last step above is the simple observation that a random draw xi+yi from N(kp, kp(1−p))
is, with constant probability, in the top k of n iid draws from the same distribution if
xi + yi ≥ E(xi + y + i) + t where Pr(xi + yi ≥ t) ≥ k/n. The tail bound below shows that

t ∼
√

(2 ln(n/k)− ln(2 ln(n/k))kp.

For convenience, we shift the distributions of xi, yi to x̄ = (x − (1 − α)kp)/kp and ȳ =
(y − αkp)/kp so that x̄ ∼ N(0, (1− α)) and ȳ ∼ N(0, α). For x ∼ N(0, 1), we will use the
tail bound in Lemma 2:

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).

Thus, for any α < 1,

Pr(i ∈ cap(A) ∩ cap(B))

≥
∫
ȳ

Pr
x̄

(x̄ ≥ −ȳ + t)2 dγ(ȳ)

≥
∫
ȳ

1
2π(1− α) min

{
1− α

(t− ȳ)2 , 1− α
}

exp
(
−2 (t− ȳ)2

2(1− α)

)
1√
2πα

exp
(
− ȳ

2

2α

)
dȳ

≥
(

1
2πt2/(1+α) exp

(
− t2

1 + α

))∫
ȳ

t2/(1+α)
√

2πα
min

{
1

(t− ȳ)2 , 1
}

exp
(
−

(ȳ − 2α
(1+α) t)

2

2α(1− α)/(1 + α)

)
dȳ

≥

√
1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

min
{

1(
1−α
1+α− y

t

)2 , 1
}

√
2πα(1− α)/(1 + α)

exp
(
− y2

2α(1− α)/(1 + α)

)
dy

≥

√
1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

1√
2π

min


1(

1−α
1+α −

y
t

√
α(1−α)

1+α

)2 , 1

 exp
(
−y

2

2

)
dy

≥

√
1−α
1+α

(2 ln(n/k))α/(1+α)

(
k

n

) 2
1+α

.
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Figure 1 The first figure is with n = 2000, k = 100 and the second with n = 10000, k = 100; each
empirical plot is the average of 5 independent trials. For the assembly creation we used plasticity of
β = 0.1. The theoretical bound plotted is (k/n)(1−α)/(1+α)/ ln(n/k)α/(1+α), while the conjectured
bound is the same without the log factor.

Thus the expected fraction of overlap is this probability times n divided by k, i.e.,

Ω
(

1
(ln(n/k))

α
1+α

(
k

n

) 2
1+α n

k

)
= Ω

(
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α
)
. J

It seems that the steps in this proof, including the suppression of constants in the end,
are quite parsimonious, in that the stated lower bound is not very far from the truth. In
Figure 1 we compare our bound with simulations of the map for various values of α and with
n/k = 2000/100 = 20 (the values that pertain to insect olfaction) and n = 104, k = 100, and
also to our bound without the logarithmic factor.

4 Bounding the Support of an Assembly

In this section we turn to assemblies in the mammalian brain, in which recurrent synapses
and plasticity become important. We assume that a stimulus consisting of k ≥

√
n neurons

in an upstream area fires repeatedly. The cap at t = 1, denoted A1, which was analyzed in
the previous section, is only the preamble of a complex process. At t = 2 the stimulus fires
again, and now the area receives combined input from the stimulus and from A1. A cap
denoted A2 will be formed, probably containing a considerable part of A1 but also first-timers
(by which we mean, neurons not heretofore participating in any cap). Meanwhile, plasticity
has changed the weights. The process is repeated a number of times, with new winners
displacing some past winners from the new cap, while plasticity acts in a stabilizing way.
Convergence – that is, At = A for all t > t0 – cannot be guaranteed with high probability
(experiments show some periodic-like movement of neurons, without any new first-timers).
The interesting question is, will the process converge, in that after some point and after there
will be no new winners? (Recall that this is what we mean by an assembly, a set of neurons
of size a small multiple of k firing in a pattern.). If so, we are interested in the size of the
assembly’s support, the union of all the Ats. The bound on the support depends crucially on
the plasticity parameter β, with high plasticity leading to small support (close to the cap
size k) but even very small positive plasticity leading to bounded support size (a fact that is
harder to prove). We denote by A∗ the union of A0, A1, A2, . . ..
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I Theorem 4 (High Plasticity). Assume that the plasticity parameter β ≥ β0 =
(
√

2−1)
√

lnn+
√

2√
pk+
√

lnn
. Then WHP the total support of the assembly can be bounded as

|A∗| ≤ k 1
1− exp(−( ββ0

)2)
≤ k +O

(
lnn
pβ2

)
.

Proof. Let µ1 = 1, µ2, . . . , µt, . . . be the fraction of first-timers in the cap at step t. The
process stabilizes when µt < 1/k. Using the tail bound of the Gaussian, since the new
winners must be in the top µtk of remaining n− k ∼ n neurons, the activation threshold at
step t is therefore very close to

C1 = pk +
√

2pk ln n
k
, Ct = 2pk + 2

√
pk ln n

µtk
for t ≥ 2.

Note that the mean term is pk for the first step and 2pk for all subsequent steps since the
number of neurons firing is the k stimulus ones plus k from the brain area.

First consider a neuron that make it to the first cap. To bound the probability that
that it will remain in the next cap, we note that at this point, the total activation from the
input synapses is at least (1 + β)C1 and from the recurrent synapses it is at least X where
X ∼ N(pk, p(1− p)k) is the signal from the recurrent synapses coming from nodes in the
first cap. In order for a node to remain in the next cap, we need that

(1 + β)C1 + pk +X ≥ C2

where now X ∼ N(0, p(1− p)k). Substituting for C1, C2, and using L = 2 ln(n/k), and µ as
the fraction of first-timers in the second cap, we have

Pr(j ∈ C2 | j ∈ C1) = 1− µ ≥ Pr(X ≥ −βpk − (1 + β)
√
pkL+

√
2pk(L+ 2 ln(1/µ)))

≥ Pr(X ≥ −β
√
pk +

√
2(L+ ln(1/µ))− (1 + β)

√
L)

rescaling so that X ∼ N(0, 1).

& 1− exp
{
−(β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.

In other words,√
2 ln(1/µ) ≤ β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)).

Now setting

β ≥ β0 = (
√

2− 1)
√
L+
√

2
√
pk +

√
L

gives µ < 1/e, i.e., the overap with the next cap is at least a 1 − (1/e) fraction. The
probability of remaining in the cap rapidly increases with the number of consecutive times a
neuron stays in the cap. To see this, suppose neuron j enters the cap for the first tiema at
time t, by exceeding the threshold Ct and stays for i consecutive caps (including Ct. The, to
stay in the next cap, it suffices that

(1 + β)iC1 + pk +X ≥ Ci+1

where X ∼ (0, p(1− p)k). Then, rescaling so X ∼ N(0, 1),

Pr(j ∈ Ci+1 | j ∈ C1) = 1− µ
≥ Pr(X ≥ (1− (1 + β)i

√
pk − (1 + β)i

√
L+

√
2(L+ 2 ln(1/µ)))

& 1− exp
{
−(iβ

√
pk + (1 + iβ)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.
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Rewriting,√
2 ln(1/µ) +

√
2(L+ ln(1/µ))−

√
L ≤ iβ(

√
pk +

√
L)

or

β ≥ 1
i
·
√

2 ln(1/µ) +
√

2(L+ ln(1/µ))−
√
L

(
√
pk +

√
L)

which is less than β0 for µ = e−i
2 .

Next we consider a new first time winner in round t. In order for this neuron to make it
to the cap at time t+ 1, we need that

(1 + β) (2− µ)
2 Ct + µpk +X ≥ Ct+1

where µ = µt+1 is the fraction of newcomers in the next cap and X ∼ N(0, µp(1 − p)k).
Rescaling so that X ∼ N(0, µ), we have Pr(j ∈ Ct+1 | j ∈ Ct) is

1− µ ≥ Pr(X ≥ −β(1− µ

2 )2
√
pk− (1 + β)(1− µ

2 )
√

2(L+ ln(1/µt)) +
√

2(L+ ln(1/µ)))

Using the tail bound and rewriting as before, we have

β ≥
2 ln(1/µ) + µ

2
√

2(L+ ln(1/µt)) + ln(µt/µ)
L

(1− µ
2 )(2
√
pk +

√
2(L+ ln(1/µt)))

which is less than β0 for µ = µt/e. In other words, the β threshold to do this and ensure
that µ drops by a constant factor is lower than the threshold β0 for the first step. Finally, as
before, the probability of staying in the cap increases rapidly with the length of the neurons’
winning streak.

If β ≥ β0, then µt drops off exponentially. i.e., the probability of leaving the cap once in
the cap for i consecutive times 1− pti drops off exponentially. Using these facts, we get

I Claim 1.∏
i≥1

pi ≥
∏
i≥1

(1− exp(−i2( β
β0

)2)) ≥ 1
2 .

The claim gives a lower bound on the probability that a neuron that makes it to a cap
for the first time remains in the cap for all future times. As a result, each neuron that makes
it a cap for the first time has a probability of at least q = 1− exp(−( ββ0

)2) of remaining in
all future caps. Thus, the total support of all caps together is at most k/q in expectation.
This completes the proof of the theorem. J

We now turn to the regime of low plasticity, including zero plasticity. The bounds here
will be higher asymptotically, as reflected also in our experiments (see Figure 2). We note
however that for parameter ranges of interest for the brain, e.g., n = 106, k = 103,(n

k

)1/4
< ln(n/k).

The guarantees below are meaningful and nontrivial only when k is sufficiently large as a
function of n.
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Figure 2 The total support size at different values of plasticity β ranging from 0 to just over 0.5
for a random network with n = 104 neurons, edge probability p = 0.01 and assembly size k = 100.
The x axis is the number of iterations.

I Theorem 5 (Low Plasticity). Let a network with n nodes have edge density p, plasticity
parameter β, and cap size k ≥

√
n. For a sequence of caps A0, A1, A2, ... . . . At, . . ., let A∗ be

their union. Denote µ =
√
k/n. Then,

1. for β = 0,

E (|A∗|) ≤ k
(

1
µ

) 1
µ

.

2. for β > 0,

E (|A∗|) ≤ k
(

1
µ

) 1
2β

.

Proof. For the first part, let µ0, µ1, . . . , µt, . . . be defined as µ0 = 0 and

µt = |At ∩At−1|
k

,

the fraction of the cap that persists to the next step.
We will show that the expected values of µt form an increasing sequence and give a

recursive lower bound. To get a lower bound on µ1, for a neuron j, let x be the total signal
from the stimulus and y from A0, normalized, i.e., x, y ∼ N(0, 1). Then,

Pr(j ∈ A1 | j ∈ A0)

≥ Pr(x+ y ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)))

≥ Pr(y ≥ (2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ µ0 =
(
k

n

)−(
√

2−1)2

.
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For general t > 1, let x be the signal from the stimulus y from the overlap At ∩At−1 and z
from the rest of At. Then, with z ∼ N(0, (1− µt)),

µt+1 = Pr(j ∈ At+1 | j ∈ At)

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ Pr(x ≥ (2−
√

2)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(
√

2−1)2(1−µt)

= µ1−µt
0 .

The probability that a neuron j, which enters the cap at the first step, stays in the cap is
thus at least∏

t

µt ≥ µ0 · µ1−µ0
0 · µ1−µ1−µ0

0
0 · . . .

= µ
1+(1−µ0)+(1−µ1−µ0

0 )+...
0

≥ µ1+(1−µ0)+(1−µ0)2+(1−µ0)3+...
0

= µ
1
µ0
0

where we used the fact that 1− µ(1−µ0)i
0 = 1− (1− (1− µ0))(1−µ0)i ≥ (1− µ0)i+1.

So far, the computation was only for neurons that were in the very first caps. For neurons
that make their first entrance later, the calculation is a bit different. Suppose a neuron enters
the cap for the first time at iteration t. For general t > 1, let x be the signal from the stimulus
y from the overlap At ∩ At−1 and z from the rest of At. Then, with z ∼ N(0, (1 − µt)),
noting that x, y make up (1 + µt)/2 of the threshold Ct,

µt+1

= Pr(j ∈ At+1 | j ∈ At)

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x+ y

≥ (1 + µt)
√

ln(n/k)− ln(2 ln(n/k))

≥ Pr(x ≥ (1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(1−µt)/2

= µ1−µt .

Note that µ here is smaller than µ0 for neurons that enter in the first cap. The computation
for later steps, for such a neuron is similar, and we get that the probability that such a
neuron stays in the cap forever is∏

t

µt ≥ µ · µ1−µ · µ1−µ1−µ
· . . . ≥ µ

1
µ

as before. This completes the first part for β = 0.
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For the second part, with β > 0, the calculation follows the same outline, except that
the signal from the input is boosted by a factor of (1 + β) in each iteration, and the signal
from previous caps is boosted by (1 + β) for a diminishing fraction

∏
t µt. Ignoring the latter

boost (for a lower bound),

µt+1 ≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ Pr(x ≥ (2−
√

2(1 + β)t)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(
√

2−(1+β)t)2(1−µt)

= µ(1−tβ)(1−µt).

We can now lower bound the probability of a neuron staying in the cap once it enters, and
thereby the expected size of the total support. J

Locality Sensitivity of Assemblies. Returning to the motivating story on fly olfaction, is
the assembly projection operation as locality sensitive as the simpler variant in insects? It
appears that overlap of assemblies is an important indication of affinity of various sorts
(co-occurrence, correlation, connection, similarity, etc.), and thus it matters whether or not
it is preserved in projection. What we are able to show is that, if two sets of k cells overlap
in a fraction of α, and these two sets are projected sequentially to the same brain area, the
cores of two resulting assemblies will share at least λ2 fraction of the overlap of their initial
projections (given by Theorem 3); recall that λ is the size of the core over k, and for the
parameters of interest is about half. Such a modest overlap at the core – the best connected
part of the assembly – is a good omen for a large overlap of the two assemblies that will
eventually emerge, an intuition that is supported by simulations, see Figure 1.7

5 Computing with Assemblies

The assembly hypothesis proposes that assemblies are the standard representations used
in higher brain functions – memory, language, reasoning, decision-making, planning, math,
music, story-telling and discourse – suggesting a grand and mysterious computational system
with assemblies at its center, its basic data type. How does this computational system work?
Foremost, what are its elementary operations?

Assemblies do appear to project (see the discussion in [12] for an inspiring description of
the process in the mouse piriform cortex): this is about the only way that assemblies can
be created, and projection appears to be a most useful operation – in fact, in its absence,
it is hard to imagine what assemblies may be good for. We denote the operation of an
assembly x projecting to area A to create a new assembly y as project(x,A, y) (the area
of assembly x, denoted area(x) 6= A, is implicit). Henceforth, parent(y) = x8. Through
project, arbitrary relations can be maintained, with brain areas being the columns and
time steps the rows; for example, a recent experiment [11] seems to suggest that the
“subject-verb-object” relation in natural language may be achieved this way.

7 We can prove something weaker, namely that substantial overlap persists to the assemblies, albeit only
for sufficiently high plasticity, and under the additional assumption that the synaptic weights from the
first projection have “faded” enough by homeostasis.

8 As we shall see, some operations such as reciprocal-project make the parent function ambiguous,
but we shall be ignoring this issue here.
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We also know from experiments [15, 9] that assemblies associate by exchanging cells
(apparently a few percentage points of their support) when they become related through
co-occurrence in the world and perhaps through other acquired relations. We denote this
by associate(x, y) – x and y should of course be in the same area. It can be provably
carried out by activating parent(x) and parent(y), assumed to be in different areas,
for a few steps [17]. It is natural to hypothesize that cell sharing between x and y has
the effect that y may be henceforth activated, with some non-zero probability, when
x is activated, and vice-versa. This opens up intriguing possibilities of sophisticated
probabilistic reasoning and programming, and we suspect that much of the power of the
assembly model may lie in this direction – which however we do not explore or exploit
here.
On another front, recent fascinating experiments [10, 24, 25, 16] suggest that language
processing in humans involves the building and maintenance of syntactic structures such as
syntax trees, and it is natural to assume that assemblies representing words are implicated
there as well. We postulate the operation merge(x, y,A, z) which takes two assemblies
x, y in different areas, and projects them both to assembly z in a third area A. Merge,
the ability to consider two things as one, has been hypothesized in linguistics to be the
quintessence of syntax, see for example [4]. It follows from the results in this paper that
it can be implemented in our framework.
A more complex and very useful operation is reciprocal-project(x,A, y,B, z) which
creates in two areas A and B two assemblies y and z that can activate one another
(while y can activated by x, as in ordinary project). It is assumed that there is synaptic
connectivity from area(x) to A and both ways between A and B. The original assembly
x, residing in a third area, can activate directly y. We conjecture that this operation can
be carried out in our framework with high probability; it works reliably in simulations.
reciprocal-merge is a straightforward generalization, which seems useful for language
generation. Finally, another related operation is append(x,A, y), useful for creating
sequences, which we do not detail here.

5.1 The Power of Computation with Assemblies
According to the assembly hypothesis, assemblies and their operations are crucial for higher
mental activities such as planning, language, and reason. The question may then arise: Is
this purported computational system powerful enough? In particular, is it Turing complete?
Many computer scientists are by instinct dubious about the value of such a pursuit; we
agree, and in addition we are convinced that, if the assembly hypothesis is correct, the
computational power of assemblies is wielded through means that are orthogonal to computer
programming. On the other hand, an assessment of the computational power of this system
can usefully inform our modeling, and in particular our search for essential primitives.

To continue on this path, we must create a programming system, formal enough to
address the Turing completeness question, for writing simple programs with lines such as

if area(y) = A, project(parent(y), B, z).

To this end, we need to assume an environment in which names of assemblies, once declared
– typically in a command such as project(x,A, y) – can be used in subsequent steps of the
same program (area names are finite and fixed). Also, we introduce certain new primitives:
activate(x) simply activates assembly x for a few steps; that is, we assume that project
creates as a side-effect a fuse that can activate the new assembly. Also, we assume that
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the downstream synapses from area A to area B are by default inactive, and must be
activated explicitly by the operation enable(A,B). To illustrate, project(x,A, y) is almost
equivalent to

enable(area(x), A); repeat T times: activate(x); disable(area(x), A),

missing only a mechanism that names the new assembly y. Here T is the number of spikes
required for assembly projection (about a dozen in simulations). Of course, it is debatable
how realistically one expect such a programming framework to be operating in the brain.

We also introduce a read operation9 returning information about the assemblies that
are presently active, and their areas. Notice that all this assumes a simple computational
mechanism acting as an interpreter, and lying outside our framework10.

Finally, we must address the issue of reliability in assembly computation. We shall make
some assumptions:

Any newly created assembly is a random set of k = γ
√
n neurons in its area.

Two assemblies can interfere destructively in their operations, for example by spurious
associations between them, but only if they overlap in more than ε

√
n cells; the literature

seems to suggest that ε is at least 1%.
At last we need to introduce homeostasis:. We assume that synaptic weights fade
with time, regressing to the value 1. That is, at every time step weight w becomes
max{ w

(1+β′) , 1}, where 0 < β′ << β, the plasticity parameter.11
Fading is both realistic and necessary for the simulation, since in its absence the compu-
tational system cannot erase information, and is therefore severely limited.
Fading means that eventually all assemblies will lose their synaptic density and connection
with their parent. To prevent this, we introduce permanent versions of operations
such as project. For example, permanent_project(x,A, y) involves, besides executing
n ordinary project operation, repeating activate(x) every τ steps (with synaptic
connections between the two areas in focus enables), where τ is a small constant, much
smaller than β

β′ , either indefinitely or until an explicit fade(y) command. There is
evidence that such processes do happen in the brain, for example by fading, or reviving
through rehearsal raw memory traces in the hippocampus.

The following is needed in the proof of the main result:

I Lemma 6. The probability that a new assembly will interact destructively with a particular
already existing assembly in the same area is at most exp(− ε

√
n

γ2 ).

I Theorem 7. The computational system described above can correctly simulate arbitrary
O(
√
n)-space computations with probability 1− exp(O(

√
n)).

Sketch: A Turing machine with a one-way circular tape of length m = O(
√
n), tape alphabet

Σ and state set K can be simulated by a program of assembly operations. Let us assume the
input-output convention that a new assembly appears in one of two designated input areas
I0, I1 at designated and well separated times, encoding a binary input tape; and that, upon

9 Following a suggestion by Buszáki [5] that assemblies must be accompanied by a reader mechanism – as
Buszáki puts it: “if a tree falls in the forest and there is nobody around to hear it fall, has it really
fallen?”

10We do realize this is a strong assumption, unlikely to be literally true; we expect that the computational
power of assemblies is realized through more organic means

11An equivalent, and perhaps more realistic, model of homeostasis would be to normalize the incoming
weights of each neuron separately.
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Figure 3 Our representation of configuration (state, circular tape contents) [p, 011a].

accepting termination, an assembly will appear in another area T . The Turing machine will
be simulated by |Σ|+ |K|+ 6 brain areas: the three input-output areas I1, I0, O, two areas
for representing the tape denoted T1 and T2, one area for representing the current state,
denoted S, plus one area for each tape symbol a and state q, denoted, respectively, La and
Sq. See Figure 3.

In the input phase, while the input is read from either I0 or I1 (depending on whether
the input symbol is 0 or 1, assumed both to be in Σ (recall the input-output conventions), a
chain of assemblies is created projecting back and forth between the two Ti areas (see Figure)
through permanent project operations.

Each assembly in these two areas represents a tape square. The current symbol a in this
square is represented through a projection to an assembly in area La, a projection that is
permanent until it is explicitly faded when the same tape square is scanned again.

Similarly, another standard assembly s in area S points, through a projection (non-
permanent, since the state changes at every step), to an area Sq representing the current
state q (initially the starting state). The synapses from S to Sq are enabled, while the
synapses from S to all other Sp’s are not12.

When the square corresponding to an assembly x, in one of the areas T1, T2, is scanned
by the tape head, then x and s fire and a read is issued. Depending on the areas where
assembly activity is read, say Sq and La, the correct current symbol a and state q are
identified. Suppose that Turing machine’s transition is δ(q, a) = (p, b). The synapses from S

to Sq are disabled and those to Sp enabled, the assembly representing the previous symbol
q is faded, and permanent_project(x, Lb, y) is executed to record the current symbol of
the tape square represented by x; similarly for state. Then x fires again and a read is
issued, to identify the tape assembly corresponding to the tape square that is next, and the
computation continues. The straightforward details are omitted. J

12Notice that this effectively stores the state in the current instruction of the program; it can be done in
more natural ways.
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6 Discussion and open questions

We have identified a basic computational operation – random synaptic projection to a brain
area followed by the selection, through inhibition, of the k neurons with the highest synaptic
input – that appears to be ubiquitous in the animal brain and also useful for implementing
more complex operations, but also happens to be mathematically concrete, productive,
and interesting. Assembly projection can be the basis of a computational system at an
intermediate level of abstraction – and unlike anything else that we have seen in theoretical
neuroscience. Such a system, we hypothesize, may underlie the higher mental functions of
the human brain – not an intensely researched subject in neuroscience. This hypothesis must
be pursued both analytically, and – importantly – experimentally. We also believe that this
line of work, and the rather simple and concrete model of brain operation it entails involving
distinct brain areas, random graph connections, inhibition through cap, and probabilistic
analysis, may constitute a promising entry point for theoretical computer scientists who want
to work on brain-related problems. One of the contributions of this paper is pointing out the
locality sensitive nature of assembly projection; this, together with the computational nature
of association (which we did not consider here) promise to be important future directions for
this work.

Assemblies may be implicated in implementing natural language in the human brain.
Many recent experimental papers, see [24, 25, 11, 16, 10] among many others, appear to
suggest that assembly-like operations like projection and merge may be implicated in
language generation and processing.

We conclude with some more precise questions, that are motivated directly by our findings,
and will help solidify the mathematical theory of assemblies, some of which we have already
discussed in context in this paper.

1. Assembly support size. Is there a phase transition in the support size of an assembly
(from ω(k) to k + o(k)) as the plasticity parameter β increases?

2. Assembly convergence. For high plasticity and with high probability, the limit of the
random project plus cap process is a single fixed subset of size k. What are other possible
limiting behaviors? E.g., is it possible to get two subsets of size k (possibly overlapping)
that fire alternately? (We know cases where this happens at a small scale, that is, the
two subsets of size k differ in 1-3 cells.) Will the limit have a common core (of what size
as a function of plasticity) that always fires? Is the limit an activity pattern of finite
length/description?

3. Model. Can our results be extended to less stylized models in which neurons fire
asynchronously, or there is explicit inhibition (instead of cap)?

4. Base graph. We have assumed the base graph to have independently chosen edges. What
is a deterministic condition on the base graph that suffices? E.g., is it enough to have
expansion and roughly uniform degrees? Is global expansion necessary or do sufficiently
strong local properties suffice (e.g., degree and co-degree)?

5. Extending GNP. Are richer models, e.g., those with higher reciprocity or triangle density,
useful? For example, do they enable more powerful or efficient computations?

6. Computational power. Show that randomized s(n) space bounded computation can be
simulated with n neurons and O(1) brain areas for some function s(n) larger than

√
n.

7. Capacity. Suppose that, in a brain area, we want to maintain with high probability
pairwise intersections: two assemblies that intersect in a large (α or more, say) fraction
of their support should continue to so intersect, and similarly for pairs that intersect
in less than α fraction. For how many assemblies can we guarantee this invariant, as a
function of n?
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8. Learning. Can assemblies perform learning (supervised or unsupervised)? Simulations
suggest that assemblies can learn well-separated half-spaces quite naturally. Can this be
proved formally? And what more ambitious forms of learning through assemblies are
possible?

9. Assemblies vs 1-step Projections. Are assemblies (created as the limit of iterated random-
project-and-cap) better for learning than 1-step (insect-like) projections? Is the recurrence
of the mammalian brain a bonus or a handicap for learning?

10. Articulate a brain architecture for syntax (the building of syntactic trees) based on the
assemblies operations project and merge and involving the medial temporal lobe, the
superior temporal gyrus, and Broca’s area of the left human brain.
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