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Abstract
The Paulsen problem is a basic problem in operator theory that was resolved in a recent tour-
de-force work of Kwok, Lau, Lee and Ramachandran. In particular, they showed that every
ε-nearly equal norm Parseval frame in d dimensions is within squared distance O(εd13/2) of an
equal norm Parseval frame. We give a dramatically simpler proof based on the notion of radial
isotropic position, and along the way show an improved bound of O(εd2).
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1 Introduction

The Paulsen problem is a basic problem in operator theory that was resolved in a recent work
of Kwok, Lau, Lee and Ramachandran [12]. To state the problem, we need the following
definition:

I Definition 1. We say that a set of vectors v1, v2, . . . , vn ∈ Rd is an equal norm Parseval
frame if

n∑
i=1

viv
T
i = I and ‖vi‖2

2 = d

n
for each i.

Alternatively, we say that it is an ε-nearly equal norm Parseval frame if

(1− ε)I �
n∑

i=1
viv

T
i � (1 + ε)I and (1− ε) d

n
≤ ‖vi‖2

2 ≤ (1 + ε) d
n

for each i.

When we drop the condition on the norm of each vector, we refer to the set of vectors
as a Parseval frame or an ε-nearly Parseval frame respectively. Let F denote the set of
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all equal norm Parseval frames. Lastly for two sequences of vectors V = v1, v2, . . . , vn and
W = w1, w2, . . . , wn of the same length, we let

dist2(V,W ) =
n∑

i=1
‖vi − wi‖2.

With this terminology in hand, the Paulsen problem asks:

I Conjecture 2. For every ε-nearly equal norm Parseval frame V , is

inf
W∈F

dist2(V,W )

bounded by a fixed polynomial in ε and d?

See [12] and references therein for a detailed account of the history of the Paulsen problem
along with earlier bounds on the squared distance that were polynomial in ε, d and n.
Through a tour-de-force utilizing operator scaling, connections to dynamical systems and
ideas from smoothed analysis, Kwok, Lau, Lee and Ramachandran [12] proved that the
squared distance is at most O(εd13/2). The paper was 104 pages long and highly complex.
Our main result is a dramatically simpler proof of the Paulsen conjecture, that also yields a
much better bound:

I Theorem 3 (Main). For any ε-nearly equal norm Parseval frame V , there is an equal
norm Parseval frame W with

dist2(V,W ) ≤ 20εd2.

In terms of lower bounds, Cahill and Casazza [4] gave a family of examples of ε-nearly
equal norm Parseval frames where the squared distance to the closest equal norm Parseval
frame is at least Ω(εd). It is an interesting open question to close this gap.

Our main idea is to make use of the notion of radial isotropic position3. In the next
section, we define it formally. But to understand it informally, it is useful to compare it to the
more familiar notion of placing a set of vectors in isotropic position: Given a set of vectors
V = v1, v2, . . . , vn ∈ Rd, is there an invertible affine transformation that generates a new set
of vectors Y = Av1 + b, Av2 + b, . . . , Avn + b that has mean zero and identity covariance? It
is well known that there is such a transformation if and only if

∑
i viv

T
i has full rank.

However such a transformation can also stretch out some directions much more than
others – e.g. if all but one of the vectors in V are contained in a d− 1-dimensional subspace.
In this case, the set of vectors after applying the transformation would be quite far from
where it started out, in total squared distance. Informally, radial isotropic position asks for a
linear transformation A so that the renormalized vectors wi = Avi/‖Avi‖ have the property
that

∑
i wiw

T
i is a scalar multiple of the identity. The transformation is now nonlinear but

is particularly well suited for constructing a close by equal norm Parseval frame.
One can now ask the same sort of question as before: When can a set of vectors be placed

in radial isotropic position? Barthe [2] gave a complete characterization of when this is and
is not possible which in turn plays a key role in our proof. It turns out that a sufficient
condition is that every d vectors are linearly independent. Now we construct an equal norm
Parseval frame as follows: First we renormalize the vectors in V and then we perturb them.

3 This concept goes by many other names in the literature, such as well-spread vectors [5] or geometric
scaling for rank one Brascamp-Lieb datum [9]. The name we use here originated in [11].
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Perturbations play a delicate role in [12]. They give a dynamical system which constructs an
equal norm Parseval frame from an ε-nearly equal norm Parseval frame as its input. In order
to bound the total squared distance between the input and output, they need to lower bound
the convergence rate. They do this through a certain pseudorandom property (Definition
4.3.2) which they show holds when the input is appropriately perturbed. In our proof, all
we need is that the perturbations do not move the set of points by too much in squared
distance and that afterwards every d of them are linearly independent4. The latter condition
guarantees that there is a linear transformation that places them in radial isotropic position.
Let W be the set of vectors, after applying the linear transformation and renormalizing.
By definition, it is an equal norm Parseval frame. Our main technical contribution is in
bounding the squared distance between V and W , which we do through some elementary
but subtle algebraic manipulations.

Taking a step back, the notion of radial isotropic position seems quite powerful and
mysterious but has thus far only found a handful of applications. Forster [7] used it to prove
a remarkable lower bound in communication complexity (by lower bounding the sign rank
of the Hadamard matrix). Hardt and Moitra [11] gave the first algorithm for computing
the transformation that places a set of vectors in radial isotropic position (under a slight
strengthening of Barthe’s conditions). They also gave applications to linear regression in
the presence of outliers. Dvir, Saraf and Wigderson [5] used it to prove superquadratic
lower bounds for 3-query locally correctable codes over the reals. Here we use it to give a
simple proof of the Paulsen conjecture. Are there other exciting applications waiting to be
discovered?

Connections to Operator Scaling and the Brascamp-Lieb Inequality
Radial isotropic position is itself a special case of the more general notion of geometric position
[1, 2] where we are given an n tuple of linear transformations B1, B2, . . . , Bn of dimensions
d1 × d, d2 × d, . . . , dn × d and a nonnegative vector c of dimension n with

∑n
i=1 cidi = d and

the goal is to find square, invertible matrices A1, A2, . . . , An and A so that

n∑
i=1

ci

(
A−1

i BiA
)T(

A−1
i BiA

)
= I and

(
A−1

i BiA
)(
A−1

i BiA
)T

= I for each i.

If we set di = 1 for all i, then each linear transformation Bi can be written as the inner-
product with some vector vi. Now if we also set ci = d

n for all i, it is easy to check that A
places the set of vectors v1, v2, . . . , vn in radial isotropic position.

It turns out that having A1, A2, . . . , An and A that place B1, B2, . . . , Bn in geometric
position with respect to the vector c yields an explicit expression for the best constant C for
which the inequality∫

x∈Rd

n∏
i=1

(
fi(Bix)

)ci

dx ≤ C
n∏

i=1

(∫
xi∈Rdi

fi(xi)dxi

)ci

holds over allm tuples of nonnegative functions f1, f2, . . . , fm [3]. This is called the Brascamp-
Lieb inequality.

4 In particular, essentially all sufficiently small perturbations would work for us. It could even be an
infinitesimal perturbation because we do not need any quantitative bounds on how far they are from
having a non-trivial linear dependence.

ITCS 2019



41:4 The Paulsen Problem Made Simple

Finally, in terms of how to compute A1, A2, . . . , An and A, a popular approach is operator
scaling [10] and there has been considerable recent progress in bounding the number of
iterations it needs [8, 9]. As we mentioned, Kwok, Lau, Lee and Ramachandran [12] used
operator scaling to solve the Paulsen conjecture. In this sense, our approach and theirs
are closely related in that they both revolve around algorithms (in our case the ellipsoid
algorithm) for computing radial isotropic position. Perhaps the main technical divergence is
that they track how the squared distance changes after each iteration of operator scaling,
while we are able to bound the squared distance just based on transformation that places
v1, v2, . . . , vn into radial isotropic position. It is also worth mentioning that if instead of
proving existence of a nearby equal norm Parseval frame, we want to find it up to some
target precision δ, the approaches based on operator scaling typically require the number of
iterations to be polynomial in 1/δ. In contrast, we will give algorithms whose running time
is polynomial in log 1/δ.

2 Radial Isotropic Position and the Proof

First we introduce some of the basic concepts and results about radial isotropic position. We
will do so in slightly more generality than we will ultimately need.

I Definition 4. We say that a set of vectors u1, u2, . . . , un ∈ Rd is in radial isotropic position
with respect to a coefficient vector c ∈ Rn if

n∑
i=1

ci

( ui

‖ui‖

)( ui

‖ui‖

)T

= I.

Note that if we take the trace of both sides in the expression, we get the necessary
condition that

∑n
i=1 ci = d. In fact we will only ever consider the case when each ci = d

n .
We will also need the following key definition:

I Definition 5 ([6]). For a set U of vectors u1, u2, . . . , un ∈ Rd, its basis polytope is defined
as

B(U) =
{
c ∈ Rn s.t.

n∑
i=1

ci = d and for all A ⊆ [n], dim
(
span{ui}i∈A

)
≥
∑
i∈A

ci

}
.

Now we are ready to state Barthe’s theorem:

I Theorem 6 ([2]). A set of vectors U = u1, u2, . . . , un ∈ Rd can be put into radial isotropic
position with respect to c by a linear transformation if and only if c ∈ B(U).

Some further remarks: (1) The usual definition of the basis polytope is based on taking the
convex hull of the indicators of subsets of vectors in U that form a basis. (2) The alternative
definition we gave in Definition 5 will be more directly useful for our purposes, and was
proven to be equivalent by Edmonds [6]. He used this equivalence to give a separation oracle
for the basis polytope, which in turn plays a key role in the algorithm of Hardt and Moitra
[11] for computing the linear transformation that puts a set of vectors into radial isotropic
position.

See https://arxiv.org/abs/1809.04726 for the proof of the main theorem. The main
idea is to renormalize and then perturb the vectors in V . After the perturbation, we can
invoke Theorem 6 to find a transformation A that places the vectors in radial isotropic
position. We show that we can assume without loss of generality that A is a nonnegative
diagonal matrix whose entries are sorted in non-increasing order along the diagonal. Our
main technical lemma gives a bound on the squared distance:

https://arxiv.org/abs/1809.04726
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I Lemma 7. Suppose U is a 4ε-nearly Parseval frame and A is an entrywise diagonal matrix
that puts U in radial isotropic position. Also suppose that for each i

(1− γ′) d
n
≤ ‖ui‖2

2 ≤ (1 + γ′) d
n
.

Now set

W = w1, w2, . . . , wn with wi ,

√
d

n

( Aui

‖Aui‖

)
.

Then we have that dist2(U,W ) ≤ 8εd2 + 4γ′d2.

See https://arxiv.org/abs/1809.04726 for the proof of the main technical lemma.

3 An Algorithm for the Paulsen Problem

Every step of the proof of Theorem 3 is straightforward to implement algorithmically, except
for the step where we compute the transformation A that places the set of vectors U in radial
isotropic position. Fortunately, Hardt and Moitra [11] gave an algorithm for computing A
under a slight strengthening of Barthe’s conditions which holds in our setting. Informally,
they require the vector c to be strictly inside the basis polytope according to the following
notion of scaling:

I Definition 8. Let (1−α)B(U) denote the set of vectors c with the following properties: (1)∑n
i=1 ci = d, (2) 0 ≤ ci ≤ 1 for all i and (3) for all nonnegative directions u with umin = 0,

(1− α) max
v∈B(U)

uT v ≥ uT c.

We will state a special case of their main theorem, which is sufficient for our purposes.

I Theorem 9 ([11]). Let δ > 0 and α > 0. Suppose U = u1, u2, . . . , un ∈ Rd has the property
that every set of d vectors are linearly independent. Then given c ∈ (1− α)B(U), there is an
algorithm to find a linear transformation A so that

n∑
i=1

ci

( Aui

‖Aui‖

)( Aui

‖Aui‖

)T

= I + J

where ‖J‖∞ ≤ δ – i.e. the largest entry of J in absolute value is at most δ. The running
time is polynomial in 1/α, log 1/δ and L where L is an upper bound on the bit complexity of
U and c.

By combining their algorithm with our proof of Theorem 3 we get:

I Corollary 10. Suppose V = v1, v2, . . . , vn ∈ Rd is an ε-nearly equal norm Parseval frame.
Furthermore suppose n > d. Then given δ > 0, there is an algorithm to compute a δ-nearly
equal norm Parseval frame W with

dist2(V,W ) ≤ 20εd2

whose running time is polynomial in log 1/δ and L where L is an upper bound on the bit
complexity of V .

See https://arxiv.org/abs/1809.04726 for the proof of the corollary. This answers
an open question of [12], where they ask whether there is an algorithm for finding an equal
norm Parseval frame up to some precision δ whose running time is polynomial in log 1/δ.
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