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Abstract
We initiate a study of testing properties of graphs that are presented as subgraphs of a fixed (or
an explicitly given) graph. The tester is given free access to a base graph G = ([n], E), and oracle
access to a function f : E → {0, 1} that represents a subgraph of G. The tester is required to
distinguish between subgraphs that posses a predetermined property and subgraphs that are far
from possessing this property.

We focus on bounded-degree base graphs and on the relation between testing graph properties
in the subgraph model and testing the same properties in the bounded-degree graph model. We
identify cases in which testing is significantly easier in one model than in the other as well as
cases in which testing has approximately the same complexity in both models. Our proofs are
based on the design and analysis of efficient testers and on the establishment of query-complexity
lower bounds.
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1 Introduction

Property testing refers to probabilistic algorithms with sub-linear complexity for deciding
whether a given object has a predetermined property or is far from any object having this
property. Such algorithms, called testers, obtain local views of the object by performing
queries and their performance guarantees are stated with respect to a distance measure that
(combined with a distance parameter) determines what objects are considered far from the
property.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [13, 31, 32, 14]). Much of this attention was devoted to testing graph properties in
a variety of models ranging from the dense graph model [15], to the bounded-degree graph
model [17], and to the sparse and general graph models [30, 24].1 These models differ in
two main parameters: the types of queries that potential testers can make, and the distance
measure against which their performance is measured.

1 These models are surveyed in Chapters 8, 9, and 10 of the textbook [14].
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37:2 The Subgraph Testing Model

In all aforementioned models, the input graph is arbitrary, except for its size (and possibly
its degree, in the case of the bounded-degree graph model). The same holds with respect to
the graphs that are used to determine the distance of the input from the property. While
some prior works (see, e.g., [3, 22, 6, 20, 9, 7, 29, 5]) restrict the input graph in certain natural
ways, the restrictions considered so far were expressed in terms of general (“uniform”) graph
properties (such as degree bound, hyperfiniteness, planarity, etc). See further discussion in
Section 1.5.1.

In contrast, we envision circumstances in which the input is restricted to be a subgraph
of some fixed graph that is known beforehand. For example, the fixed graph may represent
an existing (or planned) network, and the subgraph represents the links that are actually
in operation (or actually constructed). Alternatively, the graph may represent connections
between data items that may exist under some known constraints, and the edges of the
subgraph represent connections that actually exist. Either way, the input is a subgraph
of some fixed graph, and the distance to having the property is measured with respect to
subgraphs of the same fixed graph.

1.1 The model
In accordance with the foregoing discussion, in the subgraph testing model, there is a fixed base
graph, denoted G = ([n], E), and the tester is given oracle access to a function f : E → {0, 1}
that represents a subgraph of G in the natural manner (i.e., f represents the subgraph
([n], {e∈E : f(e)=1})). Alternatively, the base graph G is not fixed, but the tester is given
free access to G.

I Definition 1.1 (subgraph tester). Fixing G = ([n], E) and ΠG ⊆ FG
def= {f : E→{0, 1}},

a subgraph tester for ΠG is a probabilistic oracle machine, denoted T , that, on input a
(proximity) parameter ε, and oracle access to a function f : E→{0, 1}, outputs a binary
verdict that satisfies the following two conditions.
1. T accepts inputs in ΠG: For every ε > 0, and for every f ∈ ΠG, it holds that Pr[T f (ε)=

1] ≥ 2/3.
2. T rejects inputs that are ε-far from Π: For every ε > 0, and for every f : E→{0, 1} that

is ε-far from ΠG it holds that Pr[T f (ε)=0] ≥ 2/3, where f is ε-far from ΠG if for every
h ∈ ΠG it holds that |{e∈E : f(e) 6= h(e)}| > ε · |E|.

If the first condition holds with probability 1 (i.e., Pr[T f (ε)=1] = 1 for f ∈ ΠG), then we
say that T has one-sided error; otherwise, we say that T has two-sided error.

In the alternative formulation, the subgraph tester is given G as an explicit input (along
with ε). In this case, the random variable being considered is T f (G, ε).

Definition 1.1 falls within the framework of massively parameterized property testing
(cf. [28]). The massive parameter is the base graph G = ([n], E), and the actual input is a
function f : E → {0, 1} (which represents a subgraph of G).

(The subgraph testing model is syntactically identical to the orientation model [21], but
semantically these models are fundamentally different; see further discussion in Section 1.5.2.)

As usual in the area, our primary focus is on the query complexity of such testers, and our
secondary focus is on their time complexity. Both complexities are stated as a function of the
proximity parameter ε and the base graph G. Indeed, the dependency of these complexities
on G, or rather on some parameters of G, will be of major interest.

As an illustration, consider the problem of testing whether the subgraph is bipartite. If
the base graph is bipartite, then this problem is trivial (since every subgraph is bipartite).
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Figure 1 For n ≥ 6, the n-vertex path is oriented by the additional edge {n− 3, n− 1}.

If the base graph isM-minor free2, for any fixed family of graphsM, then testing (with
distance parameter ε) can be done in poly(1/ε)-time (see Proposition 2.2). Lastly, if the
base graph is of bounded-degree, then testing can be done in poly(1/ε) · Õ(

√
n)-time (see

Theorem 1.2), and this result is optimal in general (i.e., for arbitrary bounded-degree base
graphs, see Part 1 of Theorem 1.4).

Our main focus will be on the case that the base graph is sparse (e.g., of bounded-degree).
Furthermore, we shall be interested in cases in which the subgraph testing model is different
from other testing models. Still, let us make a couple of comments regarding cases in which
the subgraph testing model coincides with other testing models.

The dense graph model is a special case of subgraph testing. For the base graph G = Kn

(i.e., the n-vertex clique), the subgraph testing model coincides with the dense graph model.
This is the case since adjacency queries (as in the dense graph model) correspond to edges of
the base graph G, and the distance measure used in both models is the same.

General property testing as a special case of subgraph testing. If the base graph G is
sparse and asymmetric (i.e., its automorphism group consists solely of the identity permuta-
tion), then the subgraph testing model captures property testing (for Boolean functions) at
large. This is shown as follows.

For n ≥ 6, consider an n-vertex graph G′ consisting of an n-vertex long path augmented
with the edge {n − 3, n − 1} (see Figure 1). Observe that the only automorphism of this
graph is the identity permutation, and augment G′ with self-loops on each of the n vertices,
deriving a base graph G with 2n edges. (We note that the construction can be modified
so that self-loops are avoided, by replacing them with disjoint cycles of length 3.) Lastly,
associate any function f : [n] → {0, 1} with a subgraph of G that contains G′ as well as
the self-loop on vertices in f−1(1). Note that, by the asymmetry of G′, there is a bijection
between the set of Boolean functions over [n] and the subgraphs of G that contain G′, and
that distances between the two models are preserved up to a factor of 2.3

On our terminology: Testing graph properties in the subgraph model. Unless the base
graph G = ([n], E) is closed under all possible relabelings of [n] (which happens if and only if
G is either the complete graph or the empty graph),4 we cannot expect a (non-empty) set of

2 Recall that a graph M is a minor of graph G if M can be obtained from G by vertex deletions, edge
deletions and edge contractions; a graph G isM-minor free for a family of graphsM, if no graph inM
is a minor of G.

3 The argument extends to any sparse graph G′ that is asymmetric. Recall that almost all (bounded
degree) graphs are asymmetric (cf. [10, 25]). On the other hand, an asymmetric graph cannot contain
two isolated vertices, and thus it must contain at least a linear number of edges.

4 Indeed, the n-vertex complete graph and the empty (n-vertex) graph are closed under all possible
relabelings of [n]. On the other hand, if G is neither the complete graph nor the empty graph, then G
is not closed under all possible relabelings of [n]. To see this observe that G must contain a vertex w
that has degree in [n− 2]; that is, its neighbor set, denoted ΓG(w), is neither empty nor contains all
other vertices in G. Picking u ∈ ΓG(w) and v 6∈ ΓG(w), observe that the permutation π that switches u

ITCS 2019



37:4 The Subgraph Testing Model

its subgraphs, ΠG, to constitute a graph property (i.e., to be closed under all relabelings of
[n]). That is, in the general case, the property ΠG ⊆ FG is not a graph property, since it is
not closed under isomorphism (because FG is not closed under isomorphism). Nevertheless,
for any base graph G and every graph property Π, we shall refer to ΠG = FG ∩Π as a graph
property.

Throughout this paper, we assume that G contains no isolated vertices. This can be
assumed without loss of generality, because, for every graph G′ that is obtained from the
graph G = ([n], E) by adding isolated vertices, it holds that FG = FG′ , since in both cases
the subgraphs are represented by Boolean functions on the same edge-set (i.e., E).

1.2 Results
Throughout this paper, the base graph G is viewed as a varying parameter, which may grow
when other parameters (e.g., the degree bound d) are fixed. We focus on bounded-degree
base graphs and on the relation between testing graph properties in the subgraph model and
testing the same properties in the bounded-degree graph (BDG) model.

Recall that in the BDG model [17], the tester is explicitly given three parameters: n, d,
and ε. Its goal is to distinguish with probability at least 2/3 between the case that a graph
G = ([n], E) (of maximum degree bounded by d) has a prespecified property Π, and the case
that G is ε-far from having the property Π, where a graph is said to be ε-far from having
Π if more than ε · d · n edge modifications (additions or removals) are required in order to
obtain a graph (of maximum degree bounded by d) that has Π. To this end the tester can
perform queries of the form “who is the ith neighbor of vertex v?”, for v ∈ [n] and i ∈ [d].5
Unless stated explicitly otherwise, the degree bound d is a constant.

Obviously, the relationship between the subgraph model and the BDG model depends
on the property being tested as well as on the base graph used in the subgraph model. We
identify cases in which testing is significantly easier in one model than in the other as well as
cases in which testing has approximately the same complexity in both models.

More specifically, we distinguish downward-monotone graph properties from other graph
properties, where a graph property is called downward-monotone if it is preserved under
omission of edges (i.e., if G = ([n], E) has the property, then so does G′ = ([n], E′) for every
E′ ⊂ E).

For each of the theorems stated in this section, we provide either a proof outline or a proof
idea in Section 1.3. Full proofs of Theorems 1.2, 1.3, and 1.7 (as well as Propositions 1.6
and 2.1) appear in Section 2. The proofs of our other results can be found in our technical
report [19].

1.2.1 Downward-monotone properties
We first observe that, for every bounded-degree graph G = ([n], E) and any downward-
monotone graph property Π, testing Π ∩ FG in the subgraph model (w.r.t. the base graph
G) reduces to testing Π in the BDG model.

I Theorem 1.2 (a general upper bound on the complexity of testing downward-monotone
properties (see Section 2.1)). Let Π be a downward-monotone graph property that is testable
with query complexity Qd(·, ·) in the bounded-degree graph model, where d ≥ 2 denotes the

and v, while keeping all other vertices intact, does not preserve the graph G (i.e., π(G) 6= G).
5 If v has less than i neighbors, then a special symbol is returned. It is sometimes assumed that the
algorithm can also query the degree of any vertex of its choice, but this assumption saves at most a
multiplicative factor of log d in the complexity of the algorithm.
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degree bound, and Qd is a function of the proximity parameter and (possibly) the size of the
graph. Then, for every base graph G = ([n], E) of degree d, testing whether a subgraph of
G satisfies Π (with proximity parameter ε) can be done with query complexity d ·Qd(ε′, n),
where ε′ = ε/d. The same holds with respect to the time complexity. Furthermore, one-sided
error is preserved.

(Note that, for constant d, it holds that ε′ = Ω(ε).) Properties covered by Theorem 1.2
include bipartitness, cycle-freeness, and all subgraph-freeness and minor-freeness properties.
Hence, testers known for these properties in the BDG model (see [14, Chap. 9]) get translated
to testers of similar complexity for the subgraph testing model.

While Theorem 1.2 asserts that testing downward-monotone graph properties in the
subgraph model is not harder than testing these properties in the BDG model, it raises the
question of whether the former task may be easier.

Testing in the subgraph model may be trivial. A trivial positive answer holds in case the
base graph itself has the property (i.e, G ∈ Π). In this case, by the downward-monotonicity
of Π, every subgraph of G has the property Π, which means that testing Π ∩ FG in the
subgraph model (w.r.t. the base graph G) is trivial.

Testing in the subgraph model may be easier (than in the BDG model). A more inter-
esting case in which testing in the subgraph model may be easier than in the BDG model
occurs when the base graph is not in Π, but has some suitable property Π′ that is not related
to Π. In particular, if the base graph isM-minor free, for some fixed set of graphsM, then,
for any downward-monotone graph property Π, testing Π ∩ FG in the subgraph model has
complexity that is independent of the size of the tested graph, whereas testing Π in the
BDG model may require query complexity that depends on the size of the tested graph.
More generally, we consider hyperfinite families of graphs [8], where an n-vertex graph G is
t-hyperfinite for t : (0, 1)→ N if, for every ε > 0, removing at most εn edges from G results
in a graph with no connected component of size exceeding t(ε). We mention that minor-free
(bounded-degree) graphs are hyperfinite (with t(ε) = O(1/ε2)).

I Theorem 1.3 (on the complexity of testing downward-monotone properties of subgraphs of
hyperfinite base graphs (see Section 2.2)). Let Π be a downward-monotone graph property and
G be a family of t-hyperfinite graphs. Then, for every bounded-degree base graph G = ([n], E)
in G, testing whether a subgraph of G satisfies Π can be done in time that depends only on the
proximity parameter ε. Furthermore, if Π is additive (i.e., a graph is in Π iff all its connected
components are in Π), then its query complexity is O(t(ε/4)/ε) and the tester has one-sided
error.6

Note that by Theorem 1.3, testing bipartiteness of subgraphs of any (bounded-degree) planar
graph G has complexity poly(1/ε), whereas (by [17]) testing bipartiteness of n-vertex graphs
in the BDG model has complexity Ω(

√
n).7

Testing in the subgraph model may not be easier (than in the BDG model). On the
other hand, there are cases in which the testers provided by Theorem 1.2 are essentially the
best possible. Indeed, these cases correspond to base graphs that are not hyperfinite.

6 In general, the tester has two-sided error and the query complexity is at most exponential in O(t(ε/4)2).
7 As discussed in Section 1.5.1, weaker results may be obtained by using testers for the BDG model that
work under the corresponding promise.

ITCS 2019
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I Theorem 1.4 (testing c-colorability of subgraphs of general bounded-degree base graphs
(see [19, Sec. 3])).
1. There exist explicit bounded-degree graphs G = ([n], E) such that testing whether a

subgraph of G is bipartite, with proximity parameter 1/poly(log |E|), requires Ω̃(
√
|E|)

queries.
2. There exist bounded-degree graphs G = ([n], E) such that testing whether a subgraph of G

is 3-colorable, with constant proximity parameter, requires Ω(|E|) queries.
Item 2 asserts that the complexity of testing 3-Colorability in the subgraph model may be
linear, just as in the BDG model. Item 1 should be contrasted with the tester obtained by
applying Theorem 1.2 to the known tester for the BDG model [16]. The derived tester has
complexity poly(1/ε) · Õ(

√
|E|), where ε denotes the proximity parameter, whereas Item 1

implies that one cannot obtain better complexity in terms of ε and |E| (e.g., complexity
poly(1/ε) ·Q(|E|) is possible only for Q(n) = Ω̃(

√
n)).

1.2.2 Other properties (i.e., non downward-monotone properties)

When turning to graph properties that are not downward-monotone, the statement of
Theorem 1.2 no longer holds. There exist graph properties that are significantly harder to
test in the subgraph model than in the BDG model. Specifically:

I Theorem 1.5 (testing in the subgraph model may be harder than in the BDG model (see [19,
Sec. 4])). There exists a property of graphs Π for which the following holds. On one hand, Π
is testable in poly(1/ε)-time in the bounded-degree graph model. On the other hand, there
exist explicit graphs G = ([n], E) of constant degree such that testing whether a subgraph of G
satisfies Π requires Ω(log logn) queries. Furthermore, the property Π is (upwards) monotone,
and the family of base graphs is hyperfinite.8

The first part of the furthermore-clause implies that a result analogous to Theorem 1.2 does
not hold for monotone (rather than downward-monotone) graph properties. The second part
of the furthermore-clause implies that also a result analogous to Theorem 1.3 does not hold
for monotone graph properties.

We comment that the property Π used in Theorem 1.5 is related to being Eulerian, and
the base graphs are related to a cyclic grid. Hence, it is interesting to note that testing
whether subgraphs of a cyclic grid are Eulerian can be done in complexity that only depends
on the proximity parameters (see [19, Prop. 4.2]).

Turning back to monotone graph properties, we first note the trivial case in which the
base graph G does not have the property (which implies that all its subgraphs lack this
property as well). A non-trivial case is that of testing minimum degree (see Proposition 2.1).
A more interesting case is that of connectivity.

I Proposition 1.6 (testing connectivity in the subgraph model – see Section 2.1)). For every
base graph G = ([n], E), testing whether a subgraph of G is connected can be done in
poly(1/ε)-time.

We mention that even the case of 2-edge connectivity, which has an efficient tester in the
BDG model, seems challenging in the subgraph testing model (see Problem 1.9).

8 See the definition of hyperfinite graphs preceding Theorem 1.3.



O. Goldreich and D. Ron 37:7

A relatively general positive result. We next state a result for a class of properties that
are not downward-monotone (and not necessarily monotone either). This result is of the
flavor of Theorem 1.2, but introduces an overhead that is logarithmic in the number of
vertices. Specifically, we refer to the class of all graph properties that have proximity-oblivious
testers of constant query complexity (in the BDG model) [18, Sec. 5]. We mention that such
properties are “local” in the sense that satisfying them can be expressed as the conjunction
of conditions that refer to constant-distance neighborhood in the graph (see Definition 2.4).

I Theorem 1.7 (testing local properties in the subgraph model (see Section 2.3)). Let Π be a
local property and suppose that the base graph G is outerplanar and of bounded degree. Then,
testing whether a subgraph of G = ([n], E) has property Π can be done using O(ε−1 logn)
queries.

The result stated in Theorem 1.7 extends to every graph having constant-size separating sets
(the dependence on the size of the separating sets is given explicitly in Theorem 2.5).

Testing in the subgraph model may be easier than in the BDG model. Lastly we note
that moving from the BDG model to the subgraph testing model makes the testing task
potentially easier, since the subgraph tester knows a priori the possible locations of edges.
This is reflected by the following result, which refers to any (bounded-degree) base graph.

I Theorem 1.8 (a property that is extremely easier in the subgraph model). For every constant
d, there exists a graph property Πd that requires linear query complexity in the bounded-degree
model but can be tested using O(1/ε) queries in the subgraph model w.r.t. every base graph
of maximum degree d.

Since the proof of Theorem 1.8 is short and simple, we provide it next.

Proof. Fixing d, let Πd be a set of d-regular graphs such that testing Πd in the BDG model
(with degree bound d) requires a linear number of queries (e.g., Πd is the set of 3-colorable
d-regular graphs [4]). To establish the upper bound in the subgraph model, observe that for
any base graph G that has maximum degree d, the only subgraph of G that may be d-regular
is G itself. Therefore, if the base graph G is not in Πd, then the subgraph-tester can reject
without performing any queries. If G ∈ Πd, then the subgraph-tester simply tests whether
the subgraph of G is G itself (by performing O(1/ε) queries). J

The proof of Theorem 1.8 begs the question of whether the theorem holds also for
downward-monotone properties, and more generally, which properties Πd can be tested
using O(1/ε) queries in the subgraph model w.r.t. every base graph of maximum degree d?
Alternatively, one may reverse the order of quantifiers and ask whether there exists a graph
property Π that satisfies the conclusion of Theorem 1.8 for any constant d.

1.3 Techniques
Some of the testers (algorithms) presented in this paper (e.g., Theorems 1.3 and 1.7) are
based on structural properties of the base graph. In some cases (e.g., Theorem 1.3) these
structural properties, which are inherited by the subgraphs, make the testing task (in the
subgraph model) easier than in the BDG model. The proofs of the lower bounds constitute
the more technically challenging part of the paper. Typically, the challenge is emulating
lower bounds obtained for other testing models on the subgraph testing model. The brief
overviews, especially those referring to the lower bounds, are merely intended to give a flavor
of the techniques (and are not supposed to convince the reader of the validity of the claims).

ITCS 2019
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1.3.1 Algorithms
The tester used in proving Theorem 1.2 is a simple emulation of the BDG-model tester by
the subgraph tester, and its analysis is based on the observation that the distance between
a graph G′ and a downward-monotone graph property Π equals the number of edges that
should be omitted from G′ in order to place the resulting graph in Π. Proposition 1.6 is also
proved by a simple emulation of the BDG-model tester, but the analysis of the resulting
tester relies on special features of connectivity (and does not extend to 2-connectivity; see
Problem 1.9).

The proofs of Theorems 1.3 and 1.7 are more interesting. In both cases we reduce testing
subgraphs of the base graph G to testing subgraphs of a fixed subgraph G′ of G such that
G′ is close of G and testing subgraphs of G′ is (or seems) relatively easier. Such a reduction
is valid since the property that we test is downward-monotone, and the subgraph G′ is found
without making any queries.

In the proof of Theorem 1.3 the fixed subgraph G′ consists of small connected components.
Hence, in the special case of Theorem 1.3 (i.e., properties that are determined by their
connected components), it suffices to test that the subgraphs induced by the connected
components of the base graph have the relevant property. In the general case, we follow
Newman and Sohler [29] in estimating the frequency of the various graphs that are seen in
these induced subgraphs. We stress that, unlike in [29], we do not use a partition oracle of
the tested graph (which may be implemented based on standard queries (following Hassidim
et al. [22])), but rather determine such a partition of the base graph (without making any
queries).

Theorem 1.7 is proved by applying a recursive decomposition of the base graph using
constant-size separating sets. Essentially, in addition to checking the local neighborhood of
random vertices, we also check the local neighborhoods of the vertices in the separating sets
that correspond to the path in the recursion tree (i.e., the tree of recursive decomposition)
that isolates the chosen vertices. Actually, we check that all these local neighborhoods are
consistent with some subgraph that has the property. These additional checks are used in
the analysis in order to establish the consistency of the various local neighborhoods (i.e., not
only those examined in the same execution).

We highlight the fact that the foregoing testers are non-adaptive. This is remarkable,
because the corresponding testers for the BDG model (which in some cases are actually
emulated by our testers) are inherently adaptive. However, these “BDG model testers”
utilize their adaptivity only for conducting local searches in the input graph, whereas in the
subgraph testing model the input is a subgraph of a fixed (or a priori known) graph, and so
the queries that support these local searches can be determined non-adaptively.

1.3.2 Lower bounds
The lower bound on testing 3-colorability of a subgraph (asserted in Part 2 of Theorem 1.4)
is established by combining the query complexity lower bound of [2] with a variant of the
standard reduction of 3SAT to 3COL (cf. [12, Prop. 2.27]). Recall that Ben-Sasson et al. [2]
prove the existence of (sparse) 3CNF formulae for which testing satisfiability of a given
assignment requires linear query complexity. We reduce this testing problem, which refers to
an explicitly given 3CNF formula (viewed as a massive parameter), to testing 3-colorability of
a subgraph of a base graph. That is, we view the NP-reduction of 3SAT to 3COL as a mapping
of a parameter (i.e., 3CNF formula) of one testing problem to a parameter (i.e., base graph)
of another testing problem. In addition, we establish a one-to-one correspondence between
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Figure 2 A subgraph of the 2-by-8 grid that misses 4 edges. The subgraph is marked by solid
lines, the missing edges by dashed lines, and an external edge that makes this subgraph 2-connected
is dotted.

the bits of the assignment and part of the edges in the base graph, while considering only
subgraphs that contain all other edges of the base graph (i.e., those not in correspondence to
the bits of the assignment).

The proof of Item 1 of Theorem 1.4 (which refers to testing 2-colorability of a subgraph)
is more complicated. The basic idea is to emulate the lower bound on bipartite testing
established in the BDG model [17]. The obvious question is what should be the base graph.
It is natural to pick a base graph that allows an embedding of any bounded-degree graph
in it such that edges of the embedded graph are mapped to short vertex-disjoint paths.
Furthermore, the mapping of edges to paths should be determined in a local manner. We
use a base graph that is related to a routing network of logarithmic depth, and employ
(randomized) oblivious routing on it. This allows us to map bipartite graphs (of the BDG
model) to bipartite subgraphs of the base graph, while mapping graphs that are far from
bipartite (in the BDG model) to subgraphs that are far from bipartite (in the subgraph
testing model). The actual analysis of this construction is quite complicated (as evident from
the length of [19, Sec. 3.1]), because we have to locally emulate a subgraph of the base graph
(by making few queries to the input graph in the BDG model).

The proof of Theorem 1.5 uses a reduction from testing Eulerian orientations of cyclic
grids in the orientation model. As discussed in Section 1.5.2, the orientation model (presented
by Halevy et al. [21]) is related but different from the subgraph testing model. Our reduction
maps the (cyclic) grid, used in the lower bound of Fischer et al. [11], to a base graph that
looks like such a grid, except that edges are replaced by small gadgets. The orientations
of edges in the orientation model are mapped to choices of subgraphs of the corresponding
gadgets. In this case, it is easy to locally emulate a subgraph of the base graph by making
queries to the orientation oracle, and the claimed Ω(log logn) lower bound follows (from
the analogous lower bound of [11]). On the other hand, the property at the image of the
reduction is local, and so it is testable within poly(1/ε) queries in the BDG model.

1.4 Open problems
Moving from the BDG model to the subgraph testing model makes the testing task potentially
easier, since the subgraph tester knows a priori the possible locations of edges. But, when
dealing with properties that are not downward-monotone, there is an opposite effect that
arises from the fact that the distance to the set of subgraphs (of G) that have graph property
Π may be much bigger than the distance to the set of (bounded-degree) graphs that have
property Π. This may require the subgraph tester to reject the input (since its distance to
Π ∩ FG is large), whereas the BDG model tester may be allowed to accept the input (since
its distance Π is small). This difficulty is reflected in the following open problems.

I Problem 1.9 (testing 2-connectivity of subgraphs). Is the query complexity of testing 2-
edge-connectivity in the subgraph testing model independent of the size of the graph? What
about c-edge-connectivity for any constant c ∈ N?
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Recall that c-connectivity is testable in the BDG model within complexity that depends
only on the proximity parameter [17]. We note that a straightforward emulation of the
BDG-model tester (for 2-connectivity) calls for trying to find a small 2-connected component
that has a cut of size at most 1 to the rest of the graph. But this approach fails when
considering a base graph that is a 2-by-n grid (since, as illustrated in Figure 2, any subgraph
that misses at most one horizontal edge of each vertex (of degree 4) is O(1/n)-close to being
2-connected but may be far from any 2-connected subgraph of the 2-by-n grid).

The straightforward emulation of the BDG-model tester also fails for testing whether a
subgraph of the n-cycle is a perfect matching (i.e., is 1-regular), but a tester that considers
the locations of edges in the subgraph does work (we discuss this shortly at the very end
of [19, Sec. 4]). Testers of complexity that does not depend on the graph size do exist for this
property when the base graph is a tree (since each tree has at most one perfect matching)9,
but we do not know if they exist when the graph is outerplaner.

I Problem 1.10 (testing whether the subgraph is a perfect matching). What is the complexity
of testing 1-regularity when the base graph is outerplanar? What about the case that the base
graph is planar (e.g., a grid)? And what about testing degree-regularity?

Note that c-connectivity, degree-regularity, and Eulerianity are the only properties covered
in [14, Chap. 9] that are not downward-monotone. Also note that [19, Prop. 4.2] refers to
the complexity of testing the Eulerian property for a base graph that is a grid, and it is clear
that the underlying ideas apply to base graphs of “similar structure” (as arising in the proof
of [19, Prop. 4.2]). But what about going beyond that?

I Problem 1.11 (testing whether the subgraph is Eulerian). What is the complexity of testing
the Eulerian property in any base graph of bounded degree?

The foregoing problems are all rooted in the difficulties that are introduced by the fact that
distances under the subgraph model may be significantly larger than under the BDG model,
which makes the task of the tester potentially harder. On the other hand, the fact that the
base graph is known to the tester makes its task potentially easier. Recalling that only the
latter effect is relevant in the case of downward-monotone properties, begs the following
question.

I Problem 1.12 (a property that is always easier in the subgraph model). Does there exist
a downward-monotone graph property Π such that testing Π in the bounded-degree model
has higher query complexity than testing Π in the subgraph model w.r.t. every base graph of
bounded-degree?

Recall that Theorem 1.8 refers to an upward-monotone property (which depends on the
degree bound).

The foregoing problems are aimed at concretizing the abstract challenge of making better
use of the knowledge of the base graph that is available to the tester. Although Theorem 1.4
indicates that this extra knowledge is not always helpful, other results point out to cases in
which it is helpful. We would like to see more such cases and more substantial use of the
knowledge of the base graph.

9 This perfect matching is determined by a pruning process (started at the leaves), and the tester just
checks that the subgraph equals this perfect matching (if it exists). Note that, also in this case, the
tester does not emulate the BDG-model tester (which just samples vertices and checks their degree);
such an emulation will fail poorly (even when the base graph is a path).
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1.5 Related models
1.5.1 Testing under a promise
As mentioned earlier, testing graph properties under the promise that the tested graph
has some (other) property was considered before (see discussion in [14, Sec. 12.2]). In
fact, the bounded-degree graph model itself may be viewed as postulating such a promise.
More conspicuous cases include the study of testing under the promise that the graph is
hyperfinite [29] or more specifically planar [3], or with bounded tree-width [7]. In continuation
to Theorem 1.2, we observe that testing downward-monotone graph properties in the subgraph
model can be reduced to testing the same property under a promise that contains the base
graph.

I Theorem 1.13 (a generalization of Theorem 1.2). Let G and Π be downward-monotone graph
properties such that G contains graphs of degree at most d. Suppose that, when promised that
the tested graph is in G, the property Π is testable (in the bounded-degree graph model) with
query complexity QG(·, ·), where QG is a function of the proximity parameter and (possibly)
the size of the graph. Then, for every base graph G = ([n], E) in G, testing whether a subgraph
of G satisfies Π (with proximity parameter ε) can be done with query complexity d ·QG(ε′, n),
where ε′ = ε/d.

Hence, results weaker than Theorem 1.3 may be obtained by combining Theorem 1.13 with
the tester provided in [29] (see discussion in Section 2.2). Indeed, the improved results are
due to the fact that in the subgraph model the tester is given the base graph for free. In the
current case (of hyperfinite graphs), the tester does not need to query the tested graph in
order to obtain a partition oracle of the tested graph; it may just use an adequate partition
of the base graph. In general, a main challenge in the study of the subgraph model is in how
to utilize the knowledge of the base graph in order to improve the complexity of testing.

1.5.2 The orientation model
A property testing model that is related to the subgraph model is the orientation model, which
was introduced by Halevy et al. [21]. Similarly to the subgraph model, in the orientation
model there is a fixed (undirected) base graph G = ([n], E). However, the goal in the latter
model is to test properties of directed graphs (digraphs) that are defined by orientations of
the edges of G. That is, for each edge {u, v} ∈ E, either the edge is directed from u to v, or
from v to u, and the algorithm may perform queries in order to obtain the orientation of
edges of its choice. For a property Π of digraphs, the algorithm should distinguish (with
probability at least 2/3) between the case that the tested orientation ~G has the property Π
and the case in which the orientation of more than ε · |E| edges should be flipped in order to
obtain the property.

While the subgraph model and the orientation model are syntactically identical, the
semantics are very different, as we explain next. Similarly to the subgraph model, an
orientation ~G = ([n], ~E) of G is defined by a function f : E → {0, 1}. Here, f(e) = 1
indicates that in ~G the edge e is directed from its smaller (id) endpoint to its larger endpoint.
Querying the orientation of an edge hence corresponds to querying f , and distance between
two functions f and f ′ (representing two different digraphs) is simply the Hamming distance
between the functions.

The fundamental difference in the semantic between the two models is reflected in the
fact that natural properties of digraphs in the orientation model do not correspond to nature
properties of graphs in the subgraph testing model, and vice versa. For example, the functions
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f that define Eulerian orientations of an undirected graph G = ([n], E) (as described above)
do not necessarily define subgraphs of G (i.e., in which f(e) = 1 indicates that e belongs to
the subgraph) that are Eulerian. Hence, natural properties in one model do not necessarily
translate to natural properties in the other model. Still, it may be possible to emulate or
reduce testing properties in one model to testing properties in the other model, as we do in
the proof of Theorem 1.5.

2 Algorithms

In this section we prove Theorems 1.2, 1.3, and 1.7 (as well as Propositions 1.6 and 2.1).
These results refer to different types of base graphs and different classes of properties. We
have organized them according to the type of the base graph. Recall that G is assumed to
have no isolated vertices, so that |E| ≥ n/2.

2.1 General bounded-degree base graphs
In this section d ≥ 2 is a fixed constant, and the base graph G is an arbitrary graph in which
each vertex has degree at most d (and at least 1).

2.1.1 Testing downward-monotone properties
We first consider any graph property Π that is preserved under edge omission. Such properties
are called downward-monotone or downwards monotone. We prove Theorem 1.2, which asserts
that for every graph G = ([n], E) of degree at most d and any downward-monotone graph
property Π, testing Π ∩ FG in the subgraph model (w.r.t. the base graph G) is not harder
than testing Π in the bounded-degree graph (BDG) model.

Proof of Theorem 1.2. Given oracle access to f : E → {0, 1}, the subgraph tester invokes
the tester of the BDG model, and emulates an incidence oracle for the subgraph of G
represented by f in the natural manner. That is, the query (v, i) ∈ [n]× [d] is answered with
the ith vertex in the set Γf (v) = {u : {u, v}∈E & f(u, v)=1}, where vertices are ordered
arbitrarily (e.g., by lexicographic order), and the answer is ⊥ if |Γf (v)| < i. This means
that each query (v, i) of the BDG model tester, denoted T , in answered by first retrieving
Γf (v), which in turn amounts to making at most d queries to f (i.e., querying all edges
incident to v in G). Hence, the subgraph tester emulates the execution of T on the graph
Gf = ([n], {e ∈ E : f(e)=1}).

In the analysis, downward monotonicity is used to associate distance from Π in each
of the two models with the number of edges that should be omitted from the subgraph.
Specifically, in both cases, the distance from the property reflects the number of edges that
should be omitted in order to make the graph satisfy the property (because adding edges
never decreases that distance). Specifically, if f ∈ Π ∩ FG, then Gf ∈ Π, and T accepts
(with probability at least 2/3 in general, and with probability 1 if T has one-sided error).
On the other hand, if f : E → {0, 1} is ε-far from Π ∩ FG, then (by downward-monotonicity
of Π) any graph in Π that is closest to Gf must be a subgraph of Gf (i.e., is in Π ∩ FG
and so differs from Gf on more than ε · |E| edges). It follows that Gf is ε′-far from Π for
ε′ = ε·|E|

dn/2 ≥
ε
d . J

Proof of Theorem 1.13. The proof is identical to the proof of Theorem 1.2, except that
here we rely on the hypothesis that G is downward-monotone. J
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2.1.2 Testing monotone properties
Theorem 1.2 does not apply to monotone properties. Still, several such properties are quite
easy to test in the subgraph testing model. One simple example is the property of having a
specified minimal degree.

I Proposition 2.1 (testing minimal degree in the subgraph model). For d′ ≥ 1, testing whether
all vertices in the subgraph have degree at least d′ can be done in time O(d/ε).

Proof. If d′ is bigger than the minimum degree of the base graph G = ([n], E), then the
tester rejects without performing any queries. Otherwise, the tester selects Θ(1/ε) vertices,
uniformly at random, and computes their degrees in the tested subgraph Gf , by querying all
their incident edges in G. The tester accepts if and only if all sampled vertices have degree
at least d′.

Hence, the tester makes O(d/ε) queries, and always accepts subgraphs that have the
property. To prove that it rejects subgraphs that are ε-far from having the property with
probability at least 2/3, we establish the contrapositive statement. Consider a graph Gf
that is accepted with probability at least 1/3. This implies that the number of vertices in Gf
whose degree is smaller than d′ is at most (ε/2) · n. Since in G every vertex has degree at
least d′, it is possible to add edges to Gf in order to obtain a subgraph that has the property,
whereas the number of required added edges is at most (εn/2) · d′ ≤ ε · |E|. J

Proof of Proposition 1.6. We now turn to the proof of Proposition 1.6, which asserts a
poly(d/ε)-time tester for connectivity in the subgraph model. If the base graph G = ([n], E) is
not connected, then testing is trivial (since all subgraphs of G are disconnected). Otherwise
(i.e., the base graph G is connected), connectivity of the input f ∈ FG can be tested by
emulating the tester used for the BDG model [17]. This tester samples vertices and explores
their local neighborhood in search of small connected components.

The analysis is even simpler than the original (bounded-degree) one since we can add edges
without worrying about the degree bound (similarly to the analysis of testing connectivity in
the sparse (unbounded-degree) model [30]). Specifically, we use the fact that if f represents
a subgraph with t connected components, then by modifying f at one entry we can obtain a
function that represents a subgraph with t− 1 connected components. (This relies on the
fact that G must contain edges between the connected components of Gf .) J

As noted in the introduction (see Section 1.4), the argument does not extend to 2-
connectivity. The reason is that in that case the known tester for the BDG model [17] does
not search for arbitrary 2-connected components but rather for 2-connected components that
are connected to the rest of the graph by at most one edge. The problem with that tester is
that its analysis requires the ability to add edges between any given pair of such 2-connected
components, whereas we can only add edges that exist in the base graph.

2.2 Hyperfinite base graphs
A graph G = ([n], E) is said to have an (ε, t)-partition if its vertex set can be partitioned
into connected components of size at most t such that the number of edges between these
components is at most εn.

Recall that a graph M is called a minor of a graph G if M is isomorphic to a graph that
can be obtained by (zero or more) edge contractions on a subgraph of G. A graph G is
M -minor free if M is not a minor of G. If G has degree at most d and is minor-free (i.e., G is
M -minor free for some fixed subgraph M), then it has an (ε, O((d/ε)2))-partition, for every
ε > 0 (the size of M is “hidden” in the O(·) notation – see [1, 22]).
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More generally, Theorem 1.3 refers to any family of hyperfinite graphs, where a family of
graph G is hyperfinite if there exists a function t : (0, 1)→ N such that, for every ε > 0, every
graph in the family has an (ε, t(ε))-partition. We shall first prove the second clause in the
theorem, which refers to downward-monotone properties that are additive (i.e., determined
by the connected components of the graph).

A special case of interest. We say that a graph property Π is additive if it holds that a
graph is in Π if and only if all its connected components are in Π. We comment that not
every downward-monotone graph property is additive. For example, consider the graph
property Π that consists of all graphs that either constitute of a single (Hamiltonian) cycle
or consist of a collection of isolated paths and vertices. Note that Π is closed under omission
of edges and vertices, but a graph that consists of several isolated cycles is not in Π (i.e., Π
is not additive).10

I Proposition 2.2 (testing downward-monotone properties that are additive). Let Π 6= ∅ be a
downward-monotone graph property that is additive. Let G = ([n], E) be a graph of maximum
degree d, and t : (0, 1)→ N be such that, for every ε > 0, the graph G has an (ε, t(ε))-partition.
Then, testing whether a subgraph of G is in Π can be done by performing O(d2 · t(ε/4)/ε)
queries. Furthermore, the tester is non-adaptive and has one-sided error.

In particular, Proposition 2.2 implies that, for every fixed graph M , testing bipartiteness of
a subgraph of G, when G is M-minor free, can be done in poly(d/ε)-time, when given an
(ε/4, O((d/ε)2))-partition of G.11 This is much more efficient than testing bipartitness in
the bounded-degree model, for which the query complexity is Ω(

√
n) [17]. It is also more

efficient than testing bipartiteness of bounded-degree graphs under the promise that the
graph is minor-free, let alone under the weaker promise that the graph is t-hyperfinite. Indeed,
under these promises, the tester may implement an (ε/4, t(ε/4))-partition oracle of the tested
subgraph, but such an implementation requires more than poly(t(ε/4)) queries. Specifically,
in the special case of minor-free graphs the best implementation known uses O(d/ε)O(log(1/ε))

queries [26], whereas in the general (t-hyperfinite) case the best implementation known uses
exp(dO(t(poly(1/ε)))) queries [22],

Proof Sketch. Let (C1, . . . , Cr) be an (ε/4, t(ε/4))-partition of G. Given query access to
f : E → {0, 1}, which represents the subgraph Gf = ([n], {e ∈ E : f(e) = 1}), we select
at random Θ(d/ε) vertices, and for each selected vertex v we inspect all edges in the
subgraph of G = ([n], E) induced by the part Ci that contains v (i.e., we query all pairs
(u,w) ∈ E ∩ (Ci ×Ci)). We accept if and only if all the retrieved subgraphs are in Π; that is,
we accept if and only if for each inspected Ci it holds that the subgraph of Gf induced by
Ci is in Π.

Using the fact that Π is preserved by omission of edges (and omission of connected
components), we observe that if Gf is in Π, then so are the subgraphs of Gf induced by
the Ci’s. Hence, our tester accepts Gf ∈ Π with probability 1. On the other hand, if Gf is
ε-far from Π, then the subgraph of Gf obtained by omitting all edges between the Ci’s is
(ε/2)-far from Π (since (ε/4)n ≤ (ε/2)|E|). Denoting the latter subgraph by Ĝf , we claim
that at least (ε/4)n/d of its vertices reside in connected components that are not in Π, and
it follows that the tester rejects Gf with high probability (since each connected component
is contained in one of the Ci’s).

10 Indeed, if a graph is in (this) Π, then all its connected are in Π, but the converse does not hold.
11 Such a partition can be found in polynomial-time [1].
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The foregoing claim is proved by relying on the hypothesis that Π is additive. Specifically,
if less than (ε/4)n/d vertices reside in connected components that are not in Π, then by
omitting less that (ε/4)n < (ε/2)|E| edges we can make all connected components reside in
Π (since Π contains the graph consisting of a single vertex). This implies that the graph
consisting of these modified connected components is in Π, which in turn contradicts the
hypothesis that Ĝf is (ε/2)-far from Π. J

Greater generality at larger cost. A more general result refers to graph properties Π that
are only preserved under edge omission (and to hyperfinite base graphs G). The cost of this
generalization is an increase in the query complexity of the tester, as asserted next.

I Proposition 2.3 (testing general downward-monotone properties). Suppose that Π is a
downward-monotone graph property and that, for some t : [0, 1] → N and every ε > 0, the
graph G = ([n], E) has an (ε, t(ε))-partition. Then, we can test whether a subgraph of G is in
Π with query complexity O(d2 · exp(t(ε/4)2)/ε2).

We mention that the exponential dependence on t of query complexity of the foregoing tester
is unavoidable (in the general case of downward-monotone graph properties). Consider, for
example, the case that the base graph is an

√
n-by-

√
n grid augmented by diagonal edges in

each small square, and the following downward-monotone property Π: A graph is in Π if
there exists a k such that the graph consists of connected component that are each a k-by-k
grid augmented by some of the foregoing diagonal edges such that at most half of the possible
patterns occur in these small grids. Now, on proximity parameter ε > 0, consider the task of
distinguishing the case that the subgraph consists of 0.1/ε-by-0.1/ε grids in which half of the
possible patterns occur from the case in which all patterns occur. A lower bound that is a
square root of the nubmber of patterns follows from a birthday paradox argument (and a
lower bound that is almost linear follows from [34, 33]).

Proof Sketch. By the premise of the proposition, for every ε > 0, the base graph G has
an (ε/4, t(ε/4))-partition. Let g ∈ FG denote the all-ones function, and let g′ be ε/2-close
to g and describe a subgraph of G in which each connected component has size at most
t(ε/4). Hence, Gg′ is a subgraph of G that is obtained from G by removing the at most
(ε/4)n ≤ (ε/2)|E| edges between parts in the (ε/4, t(ε/4))-partition.

By the closure of Π to edge omissions, every function f ∈ FG ∩ Π is 0.5ε-close to the
function f ′ ∈ FG∩Π such that f ′(e) = f(e)∧g′(e). Let Π′G denote the set of graphs obtained
in this way; that is, Π′G = {f ∧ g′ : f ∈ FG ∩Π}. Since Π is a graph property, it follows that
Π′G = FG ∩Π′, where Π′ is the set of all graphs that are isomorphic to graphs that appear
in Π′G. Hence, the set Π′G is closed under all automorphisms of the graph G.

Recalling that Π′G and likewise Π′ contain only graphs that consist of connected compon-
ents of size at most t = t(ε/4), it follows Π′ is characterized by the frequencies in which the
various graphs of size at most t appear as connected components. Hence, f ∈ FG describes
a graph in Π if and only if f ′ = f ∧ g′ is in FG ∩Π′, where Π′ is characterized in terms of
the number of connected component that are isomorphic to each of the graphs with at most
t(ε/4) vertices (and contain no smaller connected components). It follows that testing with
proximity parameter ε whether subgraphs of G satisfy Π can be performed by estimating
these numbers in the subgraph described by f ∧ g′, where f is the tested function. Lastly,
we note that estimating the frequencies in which the various t(ε/4)-vertex graphs appear as
connected components can be done using O(d2 · exp(t(ε/4)2)/ε2) queries, where exp(t(ε/4)2)
account for the number of t(ε/4)-vertex graphs. J
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2.3 Local properties and base graphs with small separators
Loosely speaking, a graph property is called local if satisfying it can be expressed as the
conjunction of local conditions, where each local condition refers to a constant-distance
neighborhood of one of the graph’s vertices. A precise definition is given next.

I Definition 2.4. For a constant ` ∈ N, the `-neighborhood of a vertex v in a graph G is the
subgraph of G induced by all vertices that are at distance at most ` from v. A property
Π of n-vertex graphs is called `-local if there exists a graph property Π′ such that G is in
Π if and only if the `-neighborhood of each vertex is G is in Π′. (Actually, Π′ is a set of
rooted graphs, where the root corresponds to the “center” of the `-neighborhood.)12 A graph
property Π =

⋃
n Πn is local if there exists a constant ` such that Πn is an `-local property

of n-vertex graphs.

We mention that this definition coincides with [18, Def. 5.2], and that (in the bounded degree
graph model) every graph property that has a proximity-oblivious tester of constant query
complexity is local [18, Sec. 5].

For s : N→ N we say that a graph G = ([n], E) has separating sets of size s if for every
set of vertices U ⊆ [n] there exists a subset S ⊆ U of at most s(|U |) vertices such that the
subgraph of G induced by U \S has no connected component of size greater than 2

3 · |U |. For
example, every tree has separating sets of size 1, every outerplanar graph has separating sets
of size 2 [23, Lem. 3], and n-vertex planar graphs have separating sets of size O(

√
n) [27].

I Theorem 2.5 (Theorem 1.7, generalized). Let Π be an `-local property and let s : N→ N.
Suppose that the base graph G is of bounded degree d and has separators of size s. Then,
testing whether a subgraph of G = ([n], E) has property Π can be done by performing
O(ε−1s(n) logn · d`+1) queries. Furthermore, the tester is non-adaptive and has one-sided
error.

Proof. We consider a recursive decomposition of the graph G, obtained by applying the
guaranteed separators, and a tree that corresponds to these applications. Specifically, the
root of the tree corresponds to the separating set, denoted Sλ, that disconnects the graph
Gλ

def= G. Collecting the resulting connected components into two subgraphs, each containing
at most two-thirds of G’s vertices, we proceed to obtain separating sets, denoted S0 and S1,
for each of these two subgraphs, denoted G0 and G1, respectively. In general, an internal
node in the tree is labeled by a string α and corresponds to the subgraph Gα as well as to
a separating set Sα for Gα. The children of this node correspond to subgraphs Gα0 and
Gα1 that result from removing Sα from Gα (where the number of vertices in each of these
subgraphs is at most two-thirds of the number of vertices in Gα). When the subgraph reaches
some constant size, the process stops. Hence, the leaves of the tree correspond to subgraphs
of constant size. For a leaf labeled by α, we let Sα be the set of vertices of the subgraph Gα.

For the sake of clarity, we reserve the term ‘node’ for nodes in the tree (describing the
recursive decomposition), and the term ‘vertex’ for the vertices of G. We shall never talk of
edges of the (rooted) tree, but only of the descendance and ancestry relations induced by
it. Recall that each node in the tree is associated with a set of vertices of G, and note that
these sets form a partition of the vertex set of G. We say that vertex v resides in a node
labeled by α if v ∈ Sα. Observe that edges of the graph G can connect vertices that reside in

12Marking the root is important only in case that the center of the graph of radius ` cannot be uniquely
determined.
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the same node and vertices that reside in nodes that are in an ancestry relation, but cannot
connect vertices that reside in nodes that are not in an ancestry relation (equiv., reside in
nodes α′0α′′ and α′1α′′′ for any α′, α′′, α′′ ∈ {0, 1}∗).

We are now ready to describe the tester for Π, which is an `-local property for some
constant ` ∈ N. Given a fixed based graph G = ([n], E) and oracle access to a subgraph
represented by f : E → {0, 1}, the tester repeats the following procedure Θ(d/ε) times, where
if no invocation of the procedure causes rejection, then it accepts.
1. Uniformly select a vertex that resides in one of the leaves of the decomposition tree.

(Note that a constant fraction of the vertices of G resides in leaves of the tree.)
2. For each vertex v of G that resides in a node on the path from the selected leaf to the

root (including both the leaf and the root), explore the `-neighborhood of v in G (i.e.,
query f on each of the edges in that neighborhood).

3. If the subgraph discovered in the previous step is not consistent with any n-vertex
subgraph of G that has property Π, then reject.
Note that the aforementioned discovered subgraph includes not only the explored edges
but also indication that certain edges do not exist in the subgraph (i.e., the latter include
all non-edges of G as well as some edges of G that were queried by the procedure and
answered by the value 0).

The query complexity of this procedure is O(s(n) logn · d`), where d is the degree-bound of
G. Clearly, the tester always accepts subgraphs of G that have the property Π. It remains
to show that if the subgraph is ε-far from Π, then the probability that a single invocation of
the procedure causes rejection is Ω(ε/d).

We establish the contrapositive statement. Suppose that the foregoing procedure rejects
with probability ρ < 1. We show that it suffices to modify an O(ρ · d) fraction of the edges
in G in order to obtain a graph that satisfies Π. We say that a leaf of the tree is good if the
procedure does not reject when it selects a vertex that resides in this leaf. We say that an
internal node of the tree is good if it appears on the path from some good leaf to the root.
Note that ρ < 1 implies that there exist good leaves, and hence the root of the tree is good.
More generally, if a node is good, then all its ancestors are good. Also note that each vertex
that resides in a good node has an `-neighborhood in Gf that satisfies the local condition
(i.e., the `-neighborhood is in Π′), where recall that Gf denotes the subgraph of G defined
by f .

Hence, we only need to modify the neighborhoods of vertices residing in bad nodes, and
we should do so without harming the neighborhoods of vertices that reside in good nodes.
But before explaining how this is done, we note that the number of vertices that reside in
internal nodes belonging to the subtree rooted in node α is only a constant factor larger
than the number of vertices that reside in the leaves of this subtree. On the other hand,
considering the set of bad nodes that have good parents, we note that ρ equals the fraction
of vertices that reside in leaves of the subtrees rooted at these bad nodes.

Consider an arbitrary bad node, denoted ασ, that has a good parent, denoted α. Then,
the `-neighborhoods of the vertices residing in node α satisfy the local condition (in the
subgraph Gf ). We claim that the `-neighborhoods of vertices in Gασ can be modified so
that they satisfy the local conditions as well without modifying the `-neighborhoods of
any vertex that resides in a good node. To verify this claim observe the intersection of
the `-neighborhoods of vertices in Gασ and the `-neighborhoods of vertices that reside in
good nodes is contained in the intersection of the `-neighborhoods of vertices in Gασ and
the `-neighborhoods of vertices that reside either in node α or in one of its ancestors. The
reasoning is that if vertex v in Gασ is adjacent in G to a vertex u, then either u is in Gασ or
u is in Sα′ such that α′ is a (not necessarily proper) prefix of α.
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Recall that by Item 3 of the procedure (based on which the notion of good node is defined)
the fact that node α is good, implies that the `-neighborhoods of vertices in Gασ can be
modified to satisfy Π′ in a manner that is consistent with the `-neighborhoods of all vertices
that reside in node α and its ancestors, and so with the `-neighborhoods of all vertices
that reside in good nodes. It follows that by modifying f on Gασ, while maintaining the
`-neighborhoods of vertices in Sα (as well as Sα′ for each α′ that is an ancestor of α) intact,
we can “fix” the `-local neighborhood of all vertices in Gασ.

The foregoing process modifies f into a function that describes a subgraph of G that is
in Π, while modifying O(ρ · d · n) = O(ρ · d · |E|) edges. The theorem follows. J
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