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Abstract
Let κ ∈ N`+ satisfy κ1 + · · ·+κ` = n, and let Uκ denote the multislice of all strings u ∈ [`]n having
exactly κi coordinates equal to i, for all i ∈ [`]. Consider the Markov chain on Uκ where a step
is a random transposition of two coordinates of u. We show that the log-Sobolev constant %κ for
the chain satisfies

%−1
κ ≤ n ·

∑̀
i=1

1
2 log2(4n/κi),

which is sharp up to constants whenever ` is constant. From this, we derive some consequences
for small-set expansion and isoperimetry in the multislice, including a KKL Theorem, a Kruskal–
Katona Theorem for the multislice, a Friedgut Junta Theorem, and a Nisan–Szegedy Theorem.
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1 Introduction

Suppose we have a deck of n cards, with κ1 of them colored red, κ2 of them colored blue,
and κ3 of them colored green. If we “shuffle” the cards by repeatedly transposing random
pairs of cards, how long does it take for the deck to get to a well-mixed configuration? This
question is asking about the mixing time and expansion in a Markov chain known variously
as the multi-urn Bernoulli–Laplace diffusion process or the multislice.

Let ` ∈ N+ denote a number of colors and let n ∈ N+ denote a number of coordinates
(or positions). Following computer science terminology, we refer to elements u ∈ [`]n as
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34:2 A Log-Sobolev Inequality for the Multislice, with Applications

strings. Given a color i ∈ [`], we write #iu for the number of coordinates j ∈ [n] for which
uj = i. The vector κ = (#1u, . . . ,#`u) ∈ N` is referred to as the histogram of u. In general,
if κ ∈ N`+ satisfies κ1 + · · ·+ κ` = n (so κ is a composition of n), we define the associated
multislice to be

Uκ = {u ∈ [`]n : #iu = κi for all i ∈ [`]}.

The terminology here is inspired by the well-studied case when ` = 2, in which case Uκ is a
Hamming slice of the Boolean cube. We also remark that when ` = n and κ = (1, 1, . . . , 1),
the set Uκ is the set of all permutations of [n].

1.1 The random transposition Markov chain
The symmetric group Sn acts on strings u ∈ [`]n in the natural way, by permuting coordinates:
(uσ)j = uσ(j) for σ ∈ Sn. This action preserves each multislice Uκ. This paper is concerned
with the Markov chain on Uκ generated by random transpositions. Let Trans(n) ⊆ Sn denote
the set of transpositions on n coordinates. We will specifically be interested in the reversible,
discrete-time Markov chain on state space Uκ in which a step from u ∈ Uκ consists of moving
to uτ , where τ ∼ Trans(n) is chosen uniformly at random. (We always use boldface to
denote random variables.) One also has the associated Schreier graph, with vertex set Uκ
and edges {u, uτ} for all u ∈ Uκ and τ ∈ Trans(n). Since this graph is regular, it follows that
the invariant distribution for the Markov chain is the uniform distribution on Uκ. We will
denote this distribution by πκ, or just π if κ is clear from context.

1.2 Log-Sobolev inequalities
One of the most powerful ways to study mixing time and “small-set expansion” in Markov
chains is through log-Sobolev inequalities (see, e.g., [25, 11]). For a subset A ⊆ Uκ, define its
conductance (or expansion) to be

Φ[A] = Pr
u∼A

τ∼Trans(n)

[uτ 6∈ A].

Sets A with small conductance are natural bottlenecks for mixing in the Markov chain. An
example when ` = 2 and κ = (n/2, n/2) is the “dictator” set A = {u : u1 = 1}. It has
expansion Φ[A] = 1

n−1 , and indeed, if we start the random walk from a string u with u1 = 1,
it will take about n/2 steps on average before there’s even a chance that u1 will change
from 1.

One feature of this example is that the set A is “large”; its (fractional) volume,

vol(A) = |A|/|Uκ| = Pr
u∼π

[u ∈ A],

is bounded below by a constant. The “small-set expansion” phenomenon [28, 37, 47] (occurring
most famously in the standard random walk on the Boolean cube {0, 1}n) refers to the
possibility that all “small” sets have high conductance. Intuitively, if small-set expansion
holds for a Markov chain, then a random walk with a deterministic starting point should
mix rapidly in its early stages, with the possibility for slowdown occurring only when the
chain is somewhat close to mixed.

A log-Sobolev inequality for the Markov chain is one way that such a phenomenon may
be captured. In particular, if the log-Sobolev constant for the transposition chain on Uκ is
%κ, it follows that

Φ[A] ≥ 1
2%κ · ln(1/vol(A)) for all nonempty subsets A ⊆ Uκ. (1)
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So sets of constant volume must have conductance Ω(%κ), but sets of volume 2−Θ(n) (for
example) must have conductance Ω(n%κ). A known further consequence of a log-Sobolev
inequality is a hypercontractive inequality, which concerns expansion in the continuous-time
version of the Markov chain. It implies that if σ is the random permutation generated by
performing the continuous-time chain for t = ln c

2%κ time – i.e.,

σ is the product of Poisson
(

ln c
2%κ

)
random transpositions, c ≥ 1

– then

Pr
u∼A

σ∼Trans(n)

[uσ 6∈ A] ≥ 1− vol(A)(c−1)/(c+1) for all nonempty subsets A ⊆ Uκ.

Thus again, if vol(A) is small, then the Markov chain will almost surely exit A after running
for Θ(%−1

κ ) steps.
We remark that Inequality (1) is merely a consequence of the log-Sobolev constant being %κ.

It is not the case that %κ is defined to be the largest constant for which Inequality (1) holds
(for all A) – though this is a reasonable intuition. Instead, %κ is defined to be the largest
constant for which a certain generalization of Inequality (1) to nonnegative functions holds;
namely,

E
u∼π

τ∼Trans(n)

(√
φ(u)−

√
φ(uτ )

)2
≥ %κ ·KL(φπ ‖ π) for all probability densities φ. (2)

(Here a probability density function is a function φ : Uκ → R≥0 satisfying Eπ[φ] = 1, and
KL(φπ ‖ π) denotes the KL divergence between distributions φπ and π.) Inequality (2)
includes Inequality (1) by taking φ = 1A/vol(A).

Our main theorem in this work is a lower bound on the log-Sobolev constant for Uκ:

I Theorem 1. Let κ ∈ N`+ satisfy κ1 + · · · + κ` = n, and let %κ denote the log-Sobolev
constant for the transposition chain on the multislice Uκ (i.e., the largest constant for which
Inequality (2) holds). Then

%−1
κ ≤ n ·

∑̀
i=1

1
2 log2(4n/κi).

The main case of interest for us is n −→ ∞ with ` = O(1) and κi/n ≥ Ω(1) for each i; in
other words, when we are at a “middling” histogram of a high-dimensional multicube [`]n.
In this case our bound is %κ ≥ Ω(1/n), which is the same bound that holds for the standard
random walk on the Boolean cube. Thus for this parameter setting, the random transposition
chain on the multislice enjoys all of the same small-set expansion properties as the Boolean
cube (up to constants).

1.3 On the sharpness of Theorem 1
When ` is considered to be a constant, Theorem 1 is sharp up to constant factors (which we
did not attempt to optimize); i.e.,

%−1
κ = Θ(n) · log

(
n

mini{κi}

)
for ` = O(1). (3)
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34:4 A Log-Sobolev Inequality for the Multislice, with Applications

To see the upper bound on %κ, assume without loss of generality that ` = argmini{κi}, and
take

A = {u ∈ Uκ : uj = ` for all j ∈ [κ`]}.

It is easy to compute that Φ[A] = Θ(κ`/n) and vol(A) =
(
n
κ`

)−1 (hence ln(1/vol(A)) =
Θ(κ` log(n/κ`))). Putting this into Inequality (1) shows the claimed upper bound on %κ.

At the opposite extreme, when ` = n and κ = (1, 1, . . . , 1), we have the random trans-
position walk on the symmetric group Sn. In this case, Theorem 1 as stated gives the poor
bound of %κ ≥ Ω(1/n2 logn), whereas the optimal bound is %κ = Θ(1/n logn) [11, 35]. In
fact, our proof of Theorem 1 (which generalizes that of [35]) can actually achieve the tight
lower bound of %κ ≥ Ω(1/n logn) in this case. However, we tailored our general bound for
the case of ` = O(1), and did not try to optimize for the most general scenario of ` varying
with n. A reasonable prediction might be that Equation (3) always holds, up to universal
constants, without the assumption of ` = O(1); we leave investigation of this for future work.

2 Applications

There are many known applications of log-Sobolev and hypercontractive inequalities in
combinatorics and theoretical computer science (see, e.g., [42, Ch. 9, 10]). In this paper we
present four particular consequences of Theorem 1 for analysis/combinatorics of Boolean
functions on the multislice. We anticipate the possibility of several more.

2.1 KKL and Kruskal–Katona for multislices
Throughout the remainder of this section, let us think of n as large, of ` as constant, and let
us fix a histogram κ (with κ1 + · · ·+κ` = n) satisfying κi/n ≥ Ω(1) for all i. For example, we
might think of ` = 3 and κ = (n/3, n/3, n/3), so that Uκ consists of all ternary strings with
an equal number of 1’s, 2’s, and 3’s. The isoperimetric problem for Uκ would ask: for a given
fixed 0 < α < 1, which subset A ⊆ Uκ with vol(A) = α has minimal “edge boundary”, i.e.,
minimal Φ[A]? (Here “edge boundary” is with respect to performing a single transposition,
although in our Kruskal–Katona application we will relate this to the size of A’s “shadows”
at neighboring multislices.)

We typically think of α as “constant”, bounded away from 0 and 1. In our example
with κ = (n/3, n/3, n/3), when α = 1/3 the isoperimetric minimizer is a “dictator” set
like A = {u : u1 = 1}; it has Φ[A] = 4/3

n−1 . The “99% regime” version of the isoperimetric
question would be: if Φ[A] is within a factor 1 + o(1) of minimal, must A be “o(1)-close”
to a minimizer? This question will be considered in a companion paper. We will instead
consider the “1% regime” version of the isoperimetric question: if Φ[A] is at most O(1) times
the minimum, must A at least “slightly resemble” a minimizer?

To orient ourselves, first note that for constant α (bounded away from 0 and 1), the
minimum possible value of Φ[A] among A with vol(A) = α is Θ(1/n); indeed, this follows
from our Theorem 1 and Inequality (1). From this fact, we will derive a multislice variant of
the Kruskal–Katona Theorem. Up to O(1) factors, this minimum is achieved not just
by “dictator” sets like {u ∈ U(n/3,n/3,n/3) : u1 = 1}, but also by any “junta” set, meaning a
set A for which absence or presence of u ∈ A depends only on the colors (uj : j ∈ J) for a set
J ⊆ [n] of cardinality c = O(1). It is not hard to see that if A ⊆ Uκ is such a c-junta, then
Φ[A] ≤ O(c/n). We may now ask: if Φ[A] ≤ O(1/n), must A at least slightly “resemble” a
junta?
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We give two closely related positive answers to this question, as a consequence of our
log-Sobolev inequality. The first answer, a KKL Theorem for the multislice (cf. [28] and
Talagrand’s strengthening of it [51]), follows immediately from previous work [43, 44]. It
says that for any set with Φ[A] ≤ O(1/n), there must exist some transposition τ ∈ Trans(n)
with at least constant influence on A, where the influence of the transposition τ on A is
defined to be

Infτ [A] = Pr
u∼π

[
1A
(
u
)
6= 1A

(
uτ
)]
.

Formally, Talagrand’s strengthening of the KKL theorem in this setting is:

I Theorem 2. Let f : Uκ → {0, 1}. Then

avg
τ∈Trans(n)

{
Infτ [f ]

lg(2/Infτ [f ])

}
& ρκ ·Var

πκ
[f ].

Substituting our lower bound on ρκ from Theorem 1 yields concrete new results. For example,
consider our model scenario of n −→∞ with ` = O(1) and κi/n ≥ Ω(1) for each i; suppose
further that f is “roughly balanced”, meaning Ω(1) ≤ Var[f ] ≤ 1− Ω(1). Then

avg
τ∈Trans(n)

{
Infτ [f ]

lg(2/Infτ [f ])

}
&

1
n
,

and hence the maximum influenceM[f ] satisfies

M[f ] & logn
n

.

The latter statement here is the traditional conclusion of the KKL Theorem.
Let us record here one more concrete corollary of Theorem 2. In our model scenario, that

theorem (roughly speaking) says that the energy E [1A] = avgτ∈Trans(n) Infτ [1A] is at least
Ω
( logn

n

)
unless some transposition (i j) has a rather large influence, like 1/n.01, on 1A.

I Corollary 3. Let A ⊆ Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε ≤ vol(A) ≤ 1 − ε.
Then

E [1A] ≥ Ω
(

ε

` log(1/p)

)
· log(1/M[1A])

n
.

It is the hallmark of a junta A that every transposition τ has either Infτ [A] = 0 or Infτ [A] ≥
Ω(1). Mirroring the original KKL Theorem, our work shows that: (i) if Φ[A] ≤ c/n then
there exists τ with Infτ [A] ≥ exp(−O(c)); (ii) for any A ⊆ Uκ with Ω(1) ≤ vol(A) ≤ 1−Ω(1),
there exists τ with Infτ [A] ≥ Ω

( logn
n

)
.

From our KKL Theorem, we obtain various versions of the Kruskal–Katona Theorem for
multislices. The classical Kruskal–Katona Theorem [50, 33, 29] concerns subsets of Hamming
slices of the Boolean cube. To recall it, let us write a 2-color histogram κ ∈ N2

+ as (κ0, κ1),
with n = κ0 + κ1. If A ⊆ Uκ, then the (lower) shadow of A is defined to be

∂A =
{
v ∈ U(κ0+1,κ1−1) : v ≤ u for some u ∈ A

}
.

It is not hard to show that vol(∂A) ≥ vol(A) always (here the fractional volume vol(∂A) is
vis-à-vis the containing slice U(κ0+1,κ1−1)). The Kruskal–Katona Theorem improves this by
giving an exactly sharp lower bound on vol(∂A) as a function of vol(A). The precise function
is somewhat cumbersome to state, but the qualitative consequence, assuming that vol(A)

ITCS 2019



34:6 A Log-Sobolev Inequality for the Multislice, with Applications

and κ0/n are bounded away from 0 and 1, is that vol(∂A) ≥ vol(A) + Ω(1/n). This is sharp,
up to the constant in the Ω(·), as witnessed by the “dictator set” A = {u : u1 = 0}. See [43,
Sec. 1.2] for more discussion.

To extend the Kruskal–Katona Theorem to multislices, we first need to extend the notion
of neighboring slices and shadows. Fix an ordering on the colors, 1 ≺ 2 ≺ · · · ≺ `. This total
order extends to a partial order on strings in [`]n in the natural way.

I Definition 4. Let κ ∈ N`+ be a histogram. We say that histogram κ′ is a lower neighbor
of κ, and write κ′ / κ, if there exists some c ≺ d ∈ [`] such that κ′c = κd + 1, κ′d = κc − 1,
and κ′i = κi for all other colors i. In the opposite case, when c � d, we say κ′ is an upper
neighbor of κ, and write κ′ . κ.

I Definition 5. Let A ⊆ Uκ, and let κ′ / κ. The lower shadow of A at κ′ is

∂κ′A = {u ∈ Uκ′ : u ≺ v for some v ∈ A}.

We similarly define upper shadows. We may use the same notation ∂κ′A for both kinds of
shadows, since whether a shadow is upper or lower is determined by whether κ′ . κ or κ′ / κ.

I Definition 6. Given a histogram κ ∈ N`+, we define a natural probability distribution
lower(κ) on the lower neighbors of κ as follows. To draw κ′ ∼ lower(κ): take an arbitrary
u ∈ Uκ; choose j, j′ ∼ [n] independently and randomly, conditioned on uj 6= uj′ ; let c,d
denote the two colors uj , uj′ , with the convention c ≺ d; finally, let κ′ be the lower neighbor
of κ with κ′c = κc + 1 and κ′d = κd − 1.

We similarly define a probability distribution upper(κ) on the upper neighbors of κ by
interchanging the roles of c and d.

I Theorem 7. For A ⊆ Uκ we have

E
κ′∼lower(κ)

[vol(∂κ′A)] ≥ vol(A) + 1
n
· vol(A) ln(1/vol(A)) ·

(
n∑
i=1

log2(4n/κi)
)−1

.

In particular, at least one lower shadow of A has volume at least the right-hand side. The
analogous statement for upper shadows also holds.

Thus in the model case when vol(A) and each κi/n is bounded away from 0 and 1, and
` = O(1), we get that the average lower shadow of A has volume at least vol(A) + Ω(1/n).
Using our KKL Theorem (Corollary 3) we can get a “robust” version of this statement;
the volume increase is in fact on the order of (logn)/n unless there is a highly influential
transposition for A:

I Theorem 8. Let A ⊆ Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε ≤ vol(A) ≤ 1 − ε.
Then for any δ > 0 we have

E
κ′∼lower(κ)

[vol(∂κ′A)] ≥ vol(A) + logn
n
· Ω
(

εδ

` log(1/p)

)
,

or else there exists τ ∈ Trans(n) with Infτ [A] ≥ 1/nδ. The analogous statement for upper
shadows also holds.

As in [43], we give a conceptual improvement to the “or else” clause in Theorem 8.
Let us work with upper shadows rather than lower shadows going forward. The natural
example for sets A with upper-shadow expansion “only” Ω(1/n) are “dictator” sets such
as A = {u : u1 = `}. For such sets, all transpositions of the form (1 j) indeed have huge
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influence. However, it’s not so natural to single out one such (1 j) as the “reason” for the
small expansion; instead, we would prefer to say the reason is that A is highly “correlated”
with coordinate 1:

I Theorem 9. For n −→ ∞, let A ⊆ Uκ, with ` = O(1), κi/n ≥ Ω(1) for all i ∈ [`] and
Ω(1) ≤ vol(A) ≤ 1− Ω(1). Then

E
κ′∼upper(κ)

[vol(∂κ′A)] ≥ vol(A) + Ω
(

logn
n

)
,

or else there exists j ∈ [n] and colors c ≺ d ∈ [`] with

Pr
u∼πκ

[u ∈ A | uj = d]− Pr
u∼πκ

[u ∈ A | uj = c] ≥ 1/n.01.

2.2 Friedgut Junta Theorem for multislices

A closely related consequence of our work is a Friedgut Junta Theorem for the multislice
(cf. [24]), which follows (using a small amount of representation theory) from work of
Wimmer [53] (see also [18] for a different account). It states that for any A with Φ[A] ≤ c/n,
and any ε > 0, there is a genuine exp(O(c/ε))-junta A′ ⊆ Uκ that is ε-close to A, meaning
vol(A4A′) ≤ ε. The junta theorem can also be generalized to real-valued functions, following
the work of Bouyrie [4], with a worse dependence on ε in the exponent.

I Theorem 10. Let f : Uκ → {0, 1} be such that Inf[f ] ≤ Kn. Write pi = κi/n. Then for

every ε > 0 there exists h : Uκ → {0, 1} depending on at most
(

1
p1p2···p`

)O(K/ε)
coordinates

such that Pru∼πκ [f(u) 6= h(u)] ≤ ε.

2.3 Nisan–Szegedy Theorem for multislices

Finally, with a little more representation theory effort, we are able to derive from Theorem 1
a Nisan–Szegedy Theorem for the multislice (cf. [41]), which is (roughly) an ε = 0 version
of the Friedgut Junta Theorem; this generalizes previous work on the Hamming slice [20]. It
says that if A ⊆ Uκ is of “degree k” – meaning that its indicator function can be written as
a linear combination of k-junta functions – then A must be an exp(O(k))-junta itself. (The
k = 1 case of this theorem, with the conclusion that A is a 1-junta, was proven recently
in [21].)

More formally, the Nisan–Szegedy Theorem says that a degree-k Boolean-valued function
on the Hamming cube is a k2k-junta. (We remark that the smallest quantity γ2(k) that can
replace k2k here is now known [7] to satisfy 3 · 2k−1− 2 ≤ γ2(k) < 22 · 2k.) Let us extend the
definition of γ2(k); we’ll define γ`(k) to be the least integer such that the following statement
is true: Every degree-k Boolean-valued function f : [`]n → {0, 1} on the “`-multicube” is a
γ`(k)-junta.

Here we say that f : [`]n → R has degree at most k if it is a linear combination of k-juntas
(as usual for functions on product spaces, see [42, Def. 8.32]). We can obtain the following
Nisan–Szegedy Theorem:

I Theorem 11. There is a universal constant C such that the following holds. For all k ∈ N+
and all κ ∈ N`+ with mini{κi} ≥ `Ck, if f : Uκ → {0, 1} has degree at most k, then f is an
γ`(k)-junta.

ITCS 2019
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3 Context and prior work

In this section we review similar contexts where log-Sobolev inequalities and small-set
expansion have been studied.

3.1 The Boolean cube
The simplest and best-known setting for these kinds of results is the Boolean cube {0, 1}n with
the nearest-neighbour random walk. The optimal hypercontractive inequality in this setting
was proven by Bonami [3]. Later, Gross [25] introduced log-Sobolev inequalities, showed
that they were equivalent to hypercontractive inequalities in this setting, and determined the
exact log-Sobolev constant for the Boolean cube, namely % = 2/n. Gross also observed that
all the same results also hold for Gaussian space in any dimension (recovering prior work of
Nelson [40]); Gaussian space is in fact a “special case” of the Boolean cube, by virtue of the
Central Limit Theorem. The Boolean cube also generalizes the well-studied Ehrenfest model
of diffusion [15].

These inequalities for the Boolean cube, as well as the associated small-set expansion
corollaries, have had innumerable applications in analysis, combinatorics, and theoretical
computer science, in topics ranging from communication complexity to inapproximability;
see, e.g., [34] or [42, Chapters 9–11].

A different line of work sought to determine the exact minimum value of Φ[A] in terms of
the size of A. This challenge, known as the edge isoperimetric problem, has been solved by
Harper [26], Lindsey [36], Bernstein [2], and Hart [27], who have shown that the optimal sets
are initial segments of a lexicographic ordering of the vertices of the Boolean cube. Recently
Ellis, Keller and Lifshitz gave a new proof of the edge isoperimetric inequality using the
Kruskal–Katona Theorem [16]. The same set of authors also recently proved a stability
version of the edge isoperimetric inequality in the 99% regime [17].

Returning to log-Sobolev inequalities, an extraordinarily helpful feature of the random
walk on the Boolean cube is that it is a product Markov chain, with a stationary distribution
that is independent across the n coordinates. Because of this, a simple induction lets
one immediately reduce the log-Sobolev (and hypercontractivity) analysis to the base case
of n = 1.

3.2 Other product chains
For any product Markov chain, one can similarly reduce the analysis to the n = 1 case. In
general, let ν be a probability distribution of full support on [`], and consider the Markov
chain on [`]n in which a step from u ∈ [`]n consists of choosing a random coordinate j ∼ [n]
and replacing uj with a random draw from ν. The invariant distribution for this chain is
the product distribution ν⊗n. Though the n = 1 case of this chain is, in a sense, trivial – it
mixes perfectly in one step – it is not especially easy to work out the optimal log-Sobolev
constant. Nevertheless, Diaconis and Saloffe-Coste [11] showed that for the n = 1 chain, the
log-Sobolev constant is

%triv
ν = 2 q − p

ln q − ln p , where p = min
i∈[`]
{ν(i)}, q = 1− p.

It follows immediately that the log-Sobolev constant in the general-n case is %triv
ν /n. In

particular, if κ1 + · · ·+ κ` = n and ν(i) = κi/n, then ν⊗n resembles the uniform distribution
πκ on Uκ, and the product chain on [`]n somewhat resembles the random transposition chain
on Uκ. This gives credence to the possibility that Equation (3) may hold with absolute
constants for any `.
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3.3 The Boolean slice / Bernoulli–Laplace model / Johnson graph
Significant difficulties arise when one moves away from product Markov chains. One of the
simplest steps forward is to the Boolean slice. This is the ` = 2 case of the Markov chains
studied in this paper, with the “balanced” case of κ = (n/2, n/2) being the most traditionally
studied. This Markov chain is also equivalent to the Bernoulli–Laplace model for diffusion
between two incompressible liquids, and to the standard random walk on Johnson graphs;
taking multiple steps in the chain is similar to the random walk in generalized Johnson
graphs. The chain has been studied in wide-ranging contexts, from genetics [38], to child
psychology [45], to computational learning theory [43]. An asymptotically exact analysis of
the time to stationarity of this Markov chain was given by Diaconis and Shahshahani [12],
using representation theory. However, the log-Sobolev constant for the chain took a rather
long time to be determined; it was left open in Diaconis and Saloff-Coste’s 1996 survey [11]
before finally being determined (up to constants) by Lee and Yau in 1998 [35]. This
sharp log-Sobolev inequality, and its attendant hypercontractivity and small-set expansion
inequalities, have subsequently been used in numerous applications – for the Kruskal–Katona
and Erdős–Ko–Rado theorems in combinatorics [43, 8, 22], for computational learning
theory [52, 43], for property testing [39], and for generalizing classic “analysis of Boolean
functions” results [43, 44, 18, 19, 23, 22, 5].

3.4 The Grassmann graph
One direction of generalization for the Johnson graphs are their “q-analogues”, the Grassmann
graphs; understanding this Markov chain was posed as an open problem even in the early
work of Diaconis and Shahshahani [12, Example 2]. For a finite field F and integer parameters
n ≥ k ≥ 1, the associated Grassmann graph has as its vertices all k-dimensional subspaces
of Fn, with two subspaces connected by an edge if their intersection has dimension k − 1.
Understanding small-set expansion (and lack thereof) in the Grassmann graphs was central
to the very recent line of work that positively resolved the 2-to-2 Conjecture [31, 14, 13, 1, 32]
(with the analogous problems on the Johnson graphs serving as an important warmup [30]).
Still, it seems fair to say that the mixing properties of the Grassmann graph are far from
being fully understood.

3.5 The multislice
We now come to the multislice, the other natural direction of generalization for the Johnson
graphs, and the subject of the present paper. One can see the multislice as a generalization
of the Bernoulli–Laplace model, modeling diffusion between three or more liquids. As well,
the space of functions f : Uκ → R, together with the action of Sn on Uκ, is precisely the
Young permutation module Mκ arising in the representation theory of the symmetric group.
Understanding the mixing properties of the Uκ Markov chain with random transpositions was
suggested as an open problem several times [12], [9, p. 59], [20]. The multislice has also played
a key combinatorial role in problems in combinatorics, such as the Density Hales–Jewett
problem (where ` = 3 was the main case under consideration) [46].

Although it might at first appear to be a simple generalization of the Boolean slice,
there are several fundamental impediments that arise when moving from ` = 2 even to
` = 3. These include: the fact that a Hamming slice disconnects the nearest-neighbour
graph in [2]` but not in [3]`; the fact that one can introduce just one variable per coordinate
when representing functions [2]` → R as multilinear polynomials; the fact that 2-row irreps
of Sn (Young diagrams) are completely defined by the number of boxes not in the first
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row; and, the fact that when ` ≥ 3, the decomposition of the permutation module Mκ

into irreps has multiplicities. The last of these was the main difficulty to be overcome in
Scarabotti’s work [48] giving the asymptotic mixing time for the transposition walk on
balanced multislices U(n/`,...,n/`) (see also [10, 49]). It also prevents the multislice from
forming an association scheme.

For the purposes of this paper, the main difficulty that arises when analyzing the log-
Sobolev inequality is the following: when ` = 2, any nontrivial step in the Markov chain
(switching a 1 and a 2) has the property that the histogram within [`]n−2 of the unswitched
colors is always the same: (κ1 − 1, κ2 − 1). By contrast, once ` ≥ 3, the multiple “kinds” of
transpositions (switching a 1 and a 2, or a 1 and a 3, or a 2 and a 3, etc.) lead to differing
histograms within [`]n−2 for the unswitched colors. This significantly complicates inductive
arguments.

3.6 The symmetric group and beyond
Finally, we mention that analysis of the multislice can also be motivated simply as a necessary
first step in a full understanding of spectral analysis on the symmetric group and other
algebraic structures, an opinion also espoused in, e.g., [6]. Such structures include classical
association schemes such as polar spaces and bilinear forms, matrix groups such as the
general linear group, and the q-analog of the multislice.
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