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Abstract
It is known since the work of [1] that for any permutation symmetric function f , the quantum
query complexity is at most polynomially smaller than the classical randomized query complexity,
more precisely that R(f) = Õ

(
Q7(f)

)
. In this paper, we improve this result and show that

R(f) = O
(
Q3(f)

)
for a more general class of symmetric functions. Our proof is constructive

and relies largely on the quantum hardness of distinguishing a random permutation from a
random function with small range from Zhandry [11].
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1 Introduction

The black box model has been a very fruitful model for understanding the possibilities
and limitations of quantum algorithms. In this model, we can prove some exponential
speedups for quantum algorithms, which is notoriously hard to do in standard complexity
theory. Famous examples are the Deutsch-Josza problem [7] and Simon’s problem [10]. There
has been a great line of work to understand quantum query complexity, which developed
some of the most advanced algorithms techniques. Even Shor’s algorithm [9] for factoring
fundamentally relies on a black box algorithm for period finding.

We describe here the query complexity model in a nutshell. The idea is that we have
to compute f(x1, . . . , xn) where each xi ∈ [M ] can be accessed via a query. We consider
decision problems meaning that f : S → {0, 1} with S ⊆ [M ]n. In this paper, we will consider
inputs x ∈ [M ]n equivalently as functions from [n] → [M ]. We are not interested in the
running time of our algorithm but only want to minimize the number of queries to x, which
in the quantum setting consists of applying the unitary Ox : |i〉|j〉 → |i〉|j + xi〉. D(f), R(f)
and Q(f) represent the minimal amount of queries to compute f with probability greater
than 2/3 (or = 1 for the case of D(f)) using respectively a deterministic algorithm with
classical queries, a randomized algorithm with classical queries and a quantum algorithm
with quantum queries.

As we said before, the query complexity is great for designing new quantum algortihms.
It is also very useful for providing black box limitations for quantum algorithms. There are
some cases in particular where we can prove that the quantum query complexity of f is at
most polynomially smaller than classical (deterministic or randomized) query complexity.
For example:
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for specific functions such as search [6] or element distinctness (ED) [2, 8, 4], we have
respectively Q(Search) = Θ(n1/2), D(Search) = Θ(n) and Q(ED) = Θ(n2/3), D(ED) =
Θ(n).
For any total function f i.e. when its domain S = [M ]n, Beals et al. [5] proved using the
polynomial method that D(f) ≤ O(Q6(f)).

Another case of interest where we can lower bound the quantum query complexity is the
case of permutation symmetric functions. There are several ways of defining such functions
and we will be interested in the following definitions for a function f : S → {0, 1} with
S ⊆ [M ]n.

I Definition 1.
f permutation symmetric of the first type iff. ∀π ∈ Sn, f(x) = f(x ◦ π).
f is permutation symmetric of the second type iff. ∀π ∈ Sn, ∀σ ∈ SM ,
f(x) = f(σ ◦ x ◦ π).

where Sn (resp. SM ) represents the set of permutations on [n] (resp. [M ]) and ◦ is the usual
function composition.

Here, recall that we consider strings x ∈ [M ]n as functions from [n] → [M ]. Notice also
that this definition implies that S is stable by permutation, meaning that x ∈ S ⇔ ∀π ∈
Sn, x ◦ π ∈ S. We already know from the work of Aaronson and Ambainis the following
result:

I Theorem 2 ([1]). For any permutation symmetric function f of the second type
(Definition 1), R(f) ≤ Õ(Q7(f)).

In a recent survey on quantum query complexity and quantum algorithms [3], Ambainis
writes:

“It has been conjectured since about 2000 that a similar result also holds for f with a
symmetry of the first type.”

Contribution

The contribution of this paper is to prove the above conjecture. We show the following:

I Theorem 3. For any permutation symmetric function f of the first type, R(f) ≤ O(Q3(f)).

This result not only generalizes the result for a more general class of permutation
symmetric function, but also improves the exponent from 7 to 3. In the case where M = 2,
this result was already known [1] with an exponent of 2, which is tight from Grover’s
algorithm.

The proof technique is arguably simple, constructive and relies primarily on the quantum
hardness of distinguishing a random permutation from a random function with small range
from Zhandry [11]. We start from a permutation symmetric function f . At high level, the
proof goes as follows:

We start from an algorithm A that outputs f(x) for all x with high (constant) probability.
Let q the number of quantum queries to Ox performed by A.
Instead of running A on input x, we choose a random function C : [n]→ [n] with a range
of small size r (from a distribution specified later in the paper) and apply the algorithm A

where we replace calls to Ox with calls to Ox◦C . We note that there is a simple procedure
to compute Ox◦C from Ox and OC .
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If we take r = Θ(q3), we can use Zhandry’s lower bound, we show that for each x, the
output will be close to the output of the algorithm A where we replace calls to Ox◦C
with calls to Ox◦π for a random permutation π. Using the fact that f is permutation
symmetric, the latter algorithm will output with high probability f(x ◦ π) = f(x). In
other words, if the algorithm A that calls Ox◦C wouldn’t output f(x) for a random C

and a fixed x then we would find a distinguisher between a random C and a random
permutation π, which is hard from Zhandry’s lower bound.
The above tells us that applying A where we replace calls to Ox with calls to Ox◦C gives
us output f(x) with high probability. Knowing C, we can construct the whole string
x ◦ C by querying x on inputs i ∈ Im(C) which can be done with Im(C) ≤ r classical
queries which allows us to construct the unitary Ox◦C . This means we can emulate A on
input x ◦ C with r classical queries to x and this gives us f(x) with high probability.

After presenting a few notations, we dive directly into the proof of our theorem.

2 Preliminaries

2.1 Notations

For any function f , let Im(f) be its range (or image).

Query algorithms

A query algorithm AO is described by a algorithm that calls another function O in a black
box fashion. We will never be interested in the running time or the size of A but only in the
number of calls, or queries, to O. We will consider both the cases where the algorithm AO is
classical and quantum. In the latter O will be a quantum unitary. In both cases, we only
consider algorithms that output a single bit.

Oracles

We use oracles to perform black box queries to a function. For any function g, OClassical
g is a

black box that on input i outputs g(i) while Og (without any superscript) is the quantum
unitary satisfying

Og : |i〉|j〉 → |i〉|j + g(i)〉.

Query complexity

Fix a function f : S → {0, 1} where S ⊆ [M ]n.

I Definition 4. The randomized query complexity R(f) of f is the smallest integer q such
that there exists a classical randomized algorithm AO performing q queries to O satisfying:

∀x ∈ S, Pr[AOClassical
x outputs f(x)] ≥ 2/3.

I Definition 5. The quantum query complexity Q(f) of f is the smallest integer q such that
there exists a quantum algorithm AO performing q queries to O satisfying:

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

ITCS 2019
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2.2 Hardness of distinguishing a random permutation from a random
function with small range

Our proof will use a quantum lower bound on distinguishing a random permutation from a
random function with small range proven in [11]. Following this paper, we define, for any
r ∈ [n], the following distribution Dr on functions from [n] to [n] from which can be sampled
as follows.

Draw a random function g from [n]→ [r].
Draw a random injective function h from [r]→ [n].
Output the composition h ◦ g.

Notice that any function f drawn from Dr is of small range and satisfies |Im(f)| ≤ r.
Let also Dperm be the uniform distribution on permutations on [n]. Zhandry’s lower bound
can be stated as follows:

I Proposition 6 ([11]). There exists an absolute constant Λ such that for any r ∈ [n] and
any quantum query algorithm BO performing at most dΛr1/3e queries to O:

∀b ∈ {0, 1},
∣∣Eπ←Dperm Pr[BOπ outputs b]− EC←Dr Pr[BOC outputs b]

∣∣ ≤ 2
27 .

This is obtained immediately by combining Theorem 8 and Lemma 1 of [11]1.

3 Proving our main theorem

The goal of this section is to prove Theorem 3. Fix a function f : S → {0, 1} where S ⊆ [M ]n
with Q(f) = q. This means there exists a quantum query algorithm AO performing q queries
to O such that

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

We first amplify the success probability to 20/27.

I Lemma 7. There exists a quantum query algorithm AO
3 that performs 3q queries to O such

that

∀x ∈ S, Pr[AOx
3 outputs f(x)] ≥ 20

27 .

Proof. AO
3 will consist of the following: run AO independently 3 times and take the output

that occurs the most. For each x, each run of AOx outputs f(x) with probability greater
than 2/3. The probability that the correct f(x) appears at least twice out of the 3 results is
therefore greater than 8

27 + 3 · 4
27 = 20

27 . J

Using the fact that f is permutation symmetric, we get the following corollary:

I Corollary 8.

∀x ∈ S, ∀π ∈ Sn, Pr[AOx◦π
3 outputs f(x)] = Pr[AOx◦π

3 outputs f(x ◦ π)] ≥ 20
27 .

1 Equivalently, this is obtained immediately by combining Lemma 3.2 and Lemma 3.4 from the arXiv
version quant-ph:1312.1027.
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3.1 Looking at a small number of indices of x
The main idea of the proof is to show that A3 will output f(x) with high probability when
replacing queries to Ox with queries to Ox◦C for C chosen uniformly from Dr for some
r = Θ(Q3(f)). First notice that for any x : [n]→ [M ] and any g : [n]→ [n], it is possible to
apply Ox◦g with 2 calls to Og and 1 call to Ox with the following procedure:

|i〉|j〉|0〉 → |i〉|j〉|g(i)〉 → |i〉|j + (x ◦ g)(i)〉|g(i)〉 → |i〉|j + (x ◦ g)(i)〉|0〉

where we respectively apply Og on registers (1, 3); Ox on registers (3, 2) and O†g on registers
(1, 3).

Therefore, for any fixed (and known) x, for any function g : [n] → [n], we can look at
A

Ox◦g
3 as a quantum query algorithm that queries Og. In other words, for each x ∈ S, there

is a quantum query algorithm BO
x such that B

Og
x = AOx◦g for any function g : [n] → [n].

Notice also that since a query to Ox◦g is done by doing 2 queries to Og, we have that BO

uses twice as many queries than AO
3 .

We can now prove our main proposition that shows that we can compute f(x) by looking
only at x ◦ C for a random C with |Im(C)| ≤ r.

I Proposition 9. Let f : [M ]n → {0, 1} with Q(f) = q and r = d216q3Λ−3e where Λ is the
absolute constant from Proposition 6.

∀x ∈ S, EC←Dr Pr[AOx◦C
3 outputs f(x)] ≥ 2/3.

Proof. For each x ∈ S, we consider the algorithm BO
x described above. Recall that for all

g : [n]→ [n], BOg
x = A

Ox◦g
3 . Since AO

3 uses 3q queries, BO
x uses 6q queries. We first consider

the case where g is a random permutation. Using Corollary 8:

∀x ∈ S, Eπ←Dperm Pr[BOπ
x outputs f(x)] = Eπ←Dperm Pr[AOx◦π

3 outputs f(x)] ≥ 20
27

Using the lower bound of Proposition 6 noticing that 6q ≤ Λr1/3, we have

∀x ∈ S,
∣∣Eπ←Dperm Pr[BOπ

x outputs f(x)]− EC←Dr Pr[BOC
x outputs f(x)]

∣∣ ≤ 2
27 .

which gives us

∀x ∈ S, EC←Dr Pr[BOC
x outputs f(x)] ≥ 20

27 −
2
27 = 2/3.

Since for each x ∈ S, BOC
x = Ax◦C3 , we can therefore conclude

∀x ∈ S, EC←Dr Pr[AOx◦C
3 outputs f(x)] ≥ 2/3. J

3.2 Constructing a classical query algorithm for f
We can now use the above proposition to prove our main theorem.

I Theorem 2 (Restated). For any permutation symmetric function f of the first type,
R(f) ≤ O(Q3(f)).

Proof. Fix a function f : S → {0, 1} where S ⊆ [M ]n with Q(f) = q. This means there
exists a quantum query algorithm AO performing q queries to O such that

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

We construct a randomized algorithm that performs r = d216q3Λ−3e classical queries to
OClassical
x as follows:

ITCS 2019
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1. Choose a random C according to distribution Dr.
2. Query OClassical

x to get all values xi for i ∈ Im(C). This requires |Im(C)| ≤ r queries to
OClassical
x . These queries fully characterize the function x ◦C, hence the quantum unitary

Ox◦C .
3. From AO, construct the quantum algorithm AO

3 as in Lemma 7. Recall that AO
3 just

consists of applying AO independently 3 times and output the majority outcome.
4. We consider AOx◦C

3 as a quantum unitary circuit acting on t qubits. At each step of the
algorithm, we store the 2t amplitudes. When Ox◦C is called, we use its representation
from step 2 to calculate its action on the 2t amplitudes. Other parts of AOx◦C

3 are treated
the same way. While this uses a lot of computing power, it does not require any queries
to OClassical

x or Ox other than those used at step 2.
Step 4 outputs the same output distribution than the quantum algorithm AOx◦C

3 . Using
Proposition 9, for all x ∈ S, this algorithm outputs f(x) with probability at least 2/3, which
implies

R(f) ≤ r = d216Q3(f)Λ−3e. J

Notice that after step 2, it is not possible to just compute f(x ◦C), and try to show that
it is equal to f(x) since we don’t even always have x ◦C ∈ S. This is yet another example in
query complexity where we use the behavior of a query algorithm on inputs not necessarily
in the domain of f .

4 Conclusion

This result extends the class of functions for which we can show a polynomial relationship
between the quantum and the randomized query complexity and improves the polynomial in
general for permutation symmetric functions.

The first obvious open question is to close the gap between the best known speed-up for
permutation symmetric function - which is quadratic - and the cubic lower bound obtained
in this paper. Another open question is to see if such techniques can be extended to the case
where the domain S is permutation symmetric, which implies the case of total functions.
While the techniques seem specific to permutation symmetric functions, using a more powerful
lower bound or considering inputs x in superposition (as in [12]) could give interesting results.

Also, we are currently extending those techniques to study the behavior of uniformly
random inputs x in particular in the context of the quantum random oracle model. Here, we
are interested in the power of quantum attacks on a cryptographic scheme while performing
quantum queries to a uniformly random function. This technique seems promising to show
that for many attacks, these quantum queries can be replaced with classical queries in the
same way as in our steps 2-4.
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