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Abstract
Property-preserving hashing is a method of compressing a large input x into a short hash h(x)
in such a way that given h(x) and h(y), one can compute a property P (x,y) of the original
inputs. The idea of property-preserving hash functions underlies sketching, compressed sensing
and locality-sensitive hashing.

Property-preserving hash functions are usually probabilistic: they use the random choice
of a hash function from a family to achieve compression, and as a consequence, err on some
inputs. Traditionally, the notion of correctness for these hash functions requires that for every
two inputs x and y, the probability that h(x) and h(y) mislead us into a wrong prediction of
P (x,y) is negligible. As observed in many recent works (incl. Mironov, Naor and Segev, STOC
2008; Hardt and Woodruff, STOC 2013; Naor and Yogev, CRYPTO 2015), such a correctness
guarantee assumes that the adversary (who produces the offending inputs) has no information
about the hash function, and is too weak in many scenarios.

We initiate the study of adversarial robustness for property-preserving hash functions, provide
definitions, derive broad lower bounds due to a simple connection with communication complexity,
and show the necessity of computational assumptions to construct such functions. Our main
positive results are two candidate constructions of property-preserving hash functions (achieving
different parameters) for the (promise) gap-Hamming property which checks if x and y are “too
far” or “too close”. Our first construction relies on generic collision-resistant hash functions, and
our second on a variant of the syndrome decoding assumption on low-density parity check codes.
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1 Introduction

The problem of property-preserving hashing, namely how to compress a large input in a way
that preserves a class of its properties, is an important one in the modern age of massive data.
In particular, the idea of property-preserving hashing underlies sketching [23, 22, 1, 8, 6],
compressed sensing [7], locality-sensitive hashing [14], and in a broad sense, much of machine
learning.

As two concrete examples in theoretical computer science, consider universal hash func-
tions [5] which can be used to test the equality of data points, and locality-sensitive hash
functions [14, 13] which can be used to test the `p-distance between vectors. In both cases,
we trade off accuracy in exchange for compression. For example, in the use of universal
hash functions to test for equality of data points, one stores the hash h(x) of a point x
together with the description of the hash function h. Later, upon obtaining a point y, one
computes h(y) and checks if h(y) = h(x). The pigeonhole principle tells us that mistakes are
inevitable; all one can guarantee is that they happen with an acceptably small probability.
More precisely, universal hash functions tell us that

∀x 6= y ∈ D,Pr[h← H : h(x) 6= h(y)] ≥ 1− ε

for some small ε. A cryptographer’s way of looking at such a statement is that it asks the
adversary to pick x and y first; and evaluates her success w.r.t. a hash function chosen
randomly from the family H. In particular, the adversary has no information about the hash
function when she comes up with the (potentially) offending inputs x and y. Locality-sensitive
hash functions have a similar flavor of correctness guarantee.

The starting point of this work is that this definition of correctness is too weak in the face
of adversaries with access to the hash function (either the description of the function itself
or perhaps simply oracle access to its evaluation). Indeed, in the context of equality testing,
we have by now developed several notions of robustness against such adversaries, in the form
of pseudorandom functions (PRF) [11], universal one-way hash functions (UOWHF) [25]
and collision-resistant hash functions (CRHF). Our goal in this work is to expand the reach
of these notions beyond testing equality; that is, our aim is to do unto property-preserving
hashing what CRHFs did to universal hashing.

Several works have observed the deficiency of the universal hash-type definition in
adversarial settings, including a wide range of recent attacks within machine learning in
adversarial environments (e.g., [20, 17, 28, 26, 16]). Such findings motivate a rigorous approach
to combatting adversarial behavior in these settings, a direction in which significantly less
progress has been made. Mironov, Naor and Segev [21] showed interactive protocols for
sketching in such an adversarial environment; in contrast, we focus on non-interactive hash
functions. Hardt and Woodruff [12] showed negative results which say that linear functions
cannot be robust (even against computationally bounded adversaries) for certain natural
`p distance properties; our work will use non-linearity and computational assumptions to
overcome the [12] attack. Finally, Naor and Yogev [24] study adversarial Bloom filters
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which compress a set in a way that supports checking set membership; we were able to use
their lower bound techniques (in the full version of this paper), proving the necessity for
cryptographic assumptions for many predicates.

Motivating Robustness: Facial Recognition

In the context of facial recognition, authorities A and B store the captured images x of
suspects. At various points in time, say authority A wishes to look up B’s database for a
suspect with face x. A can do so by comparing h(x) with h(y) for all y in B’s database.

This application scenario motivated prior notions of fuzzy extractors and secure sketching.
As with secure sketches and fuzzy extractors, a locality-sensitive property-preserving hash
guarantees that close inputs (facial images) remain close when hashed [9]; this ensures that
small changes in ones appearance do not affect whether or not that person is authenticated.
However, neither fuzzy extractors nor secure sketching guarantees that far inputs remain far
when hashed. Consider an adversarial setting, not where a person wishes to evade detection,
but where she wishes to be mistaken for someone else. Her face x′ will undoubtably be
different (far) from her target x, but there is nothing preventing her from slightly altering
her face and passing as a completely different person when using a system with such a
one-sided guarantee. This is where our notion of robustness comes in (as well as the need for
cryptography): not only will adversarially chosen close x and x′ map to close h(x) and h(x′),
but if adversarially chosen x and x′ are far, they will be mapped to far outputs, unless the
adversary is able to break a cryptographic assumption.

Comparison to Secure Sketches and Fuzzy Extractors

It is worth explicitly comparing fuzzy extractors and secure sketching to this primitive [9],
as they aim to achieve similar goals. Both of these seek to preserve the privacy of their
inputs. Secure sketches generate random-looking sketches that hide information about the
original input so that the original input can be reconstructed when given something close to
it. Fuzzy extractors generate uniform-looking keys based off of fuzzy (biometric) data also
using entropy: as long as the input has enough entropy, so will the output. As stated above,
both guarantee that if inputs are close, they will ‘sketch’ or ‘extract’ to the same object.
Now, the entropy of the sketch or key guarantees that randomly generated far inputs will
not collide, but there are no guarantees about adversarially generated far inputs. To use the
example above, it could be that once an adversary sees a sketch or representation, she can
generate two far inputs that will reconstruct to the correct input.

Robust Property-Preserving Hash Functions

We put forth several notions of robustness for property-preserving hash (PPH) functions
which capture adversaries with increasing power and access to the hash function. We then
ask which properties admit robust property-preserving hash functions, and show positive
and negative results.

On the negative side, using a connection to communication complexity, we show that most
properties and even simple ones such as set disjointness, inner product and greater-than
do not admit non-trivial property-preserving hash functions.
On the positive side, we provide two constructions of robust property-preserving hash
functions (satisfying the strongest of our notions). The first is based on the standard
cryptographic assumption of collision-resistant hash functions, and the second achieves
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more aggressive parameters under a new assumption related to the hardness of syndrome
decoding on low density parity-check (LDPC) codes. The first is expanded upon in this
version (section 4), while the second is in the full version.
Finally, in the full version, we show that for essentially any non-trivial predicate (which we
call collision-sensitive), achieving even a mild form of robustness requires cryptographic
assumptions.

We proceed to describe our contributions in more detail.

1.1 Our Results and Techniques
We explore two notions of properties. The first is that of property classes P = {P : D →
{0, 1}}, sets of single-input predicates. This notion is the most general, and is the one in which
we prove lower bounds. The second is that of two-input properties P : D×D → {0, 1}, which
compares two inputs. This second notion is more similar to standard notions of universal
hashing and collision-resistance, stronger than the first, and where we get our constructions.
We note that a two-input predicate has an analogous predicate-class P = {Px}x∈D, where
Px1(x2) = P (x1, x2).

The notion of a property can be generalized in many ways, allowing for promise properties
which output 0, 1 or ? (a don’t care symbol), and allowing for more than 2 inputs. The simplest
notion of correctness for property-preserving hash functions requires that, analogously to
universal hash functions,

∀x, y ∈ D, Pr[h← H : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ)

or for single-input predicate-classes

∀x ∈ D and P ∈ P, Pr[h← H : H.Eval(h, h(x), P ) 6= P (x)] = negl(λ)

where λ is a security parameter. Notice in the single-input case, the “second” input can be
seen as the predicate chosen from the class.

For the sake of simplicity in our overview, we will focus on two-input predicates.

Defining Robust Property-Preserving Hashing

We define several notions of robustness for PPH, each one stronger than the last. Here, we
describe the strongest of all, called direct-access PPH.

In a direct-access PPH, the (polynomial-time) adversary is given the hash function and is
asked to find a pair of bad inputs, namely x, y ∈ D such that H.Eval(h, h(x), h(y)) 6= P (x, y).
That is, we require that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ),

where we use the notation Pr[A1; . . . ;Am : E] to denote the probability that event E
occurs following an experiment defined by executing the sequence A1, . . . , Am in order. The
direct-access definition is the analog of collision-resistant hashing for general properties.

Our other definitions vary by how much access the adversary is given to the hash function,
and are motivated by different application scenarios. From the strong to weak, these include
double-oracle PPH where the adversary is given access to a hash oracle and a hash evaluation
oracle, and evaluation-oracle PPH where the adversary is given only a combined oracle.
Definitions similar to double-oracle PPH have been proposed in the context of adversarial
bloom filters [24], and ones similar to evaluation-oracle PPH have been proposed in the
context of showing attacks against property-preserving hash functions [12]. For more details,
we refer the reader to Section 2.
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Connections to Communication Complexity and Negative Results

Property-preserving hash functions for a property P , even without robustness, imply
communication-efficient protocols for P in several models. For example, any PPH for
P implies a protocol for P in the simultaneous messages model of Babai, Gal, Kimmel and
Lokam [3] wherein Alice and Bob share a common random string h, and hold inputs x and y
respectively. Their goal is to send a single message to Charlie who should be able to compute
P (x, y) except with small error. Similarly, another formalization of PPH that we present,
called PPH for single-input predicate classes (see Section 2) implies efficient protocols in the
one-way communication model [31].

We use known lower bounds in these communication models to rule out PPHs for several
interesting predicates (even without robustness). There are two major differences between
the PPH setting and the communication setting, however: (a) in the PPH setting, we demand
an error that is negligible (in a security parameter); and (b) we are happy with protocols
that communicate n − 1 bits (or the equivalent bound in the case of promise properties)
whereas the communication lower bounds typically come in the form of Ω(n) bits. In other
words, the communication lower bounds as-is do not rule out PPH.

At first thought, one might be tempted to think that the negligible-error setting is the
same as the deterministic setting where there are typically lower bounds of n (and not
just Ω(n)); however, this is not the case. For example, the equality function which has a
negligible error public-coin simultaneous messages protocol (simply using universal hashing)
with communication complexity CC = O(λ) and deterministic protocols require CC ≥ n.
Thus, deterministic lower bounds do not (indeed, cannot) do the job, and we must better
analyze the randomized lower bounds. Our refined analysis shows the following lower bounds:

PPH for the Gap-Hamming (promise) predicate with a gap of
√
n/2 is impossible by

refining the analysis of a proof by Jayram, Kumar and Sivakumar [15]. The Gap-Hamming
predicate takes two vectors in {0, 1}n as input, outputs 1 if the vectors are very far, 0 if
they are very close, and we do not care what it outputs for inputs in the middle.
We provide a framework for proving PPHs are impossible for some total predicates,
characterizing these classes as reconstructing. A predicate-class is reconstructing if, when
only given oracle access to the predicates of a certain value x, we can efficiently determine
x with all but negligible probability.4 With this framework, we show that PPH for the
Greater-Than (GT) function is impossible. It was known that GT required Ω(n) bits (for
constant error) [27], but we show a lower bound of exactly n if we want negligible error.
Index and Exact-Hamming are also reconstructing predicates.
We also obtain a lower bound for a variant of GT: the (promise) Gap-k GT predicate
which on inputs x, y ∈ [N = 2n], outputs 1 if x− y > k, 0 if y − x > k, and we do not
care what it outputs for inputs in between. Here, exactly n− log(k)− 1 bits are required
for a perfect PPH. This is tight: we show that with fewer bits, one cannot even have a
non-robust PPH, whereas there is a perfect robust PPH that compresses to n− log(k)− 1
bits.

New Constructions

Our positive results are two constructions of a direct-access PPH for gap-Hamming for
n-length vectors for large gaps of the form ∼ O(n/ logn) (as opposed to an O(

√
n)-gap for

which we have a lower bound). Let us recall the setting: the gap Hamming predicate Pham,

4 In the single-predicate language of above, the predicate class corresponds to P = {P (x, ·)}.
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parameterized by n, d and ε, takes as input two n-bit vectors x and y, and outputs 1 if the
Hamming distance between x and y is greater than d(1 + ε), 0 if it is smaller than d(1− ε)
and a don’t care symbol ? otherwise. To construct a direct-access PPH for this (promise)
predicate, one has to construct a compressing family of functions H such that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : Pham(x, y) 6= ?

∧H.Eval(h, h(x), h(y)) 6= Pham(x, y)] = negl(λ). (1)

Our two constructions offer different benefits. The first provides a clean general approach,
and relies on the standard cryptographic assumption of collision-resistant hash functions.
The second builds atop an existing one-way communication protocol, supports a smaller
gap and better efficiency, and ultimately relies on a (new) variant of the syndrome decoding
assumption on low-density parity check codes.

Construction 1. The core idea of the first construction is to reduce the goal of robust
Hamming PPH to the simpler one of robust equality testing; or, in a word, “subsampling.”
The intuition is to notice that if x1 ∈ {0, 1}n and x2 ∈ {0, 1}n are close, then most small
enough subsets of indices of x1 and x2 will match identically. On the other hand, if x1 and
x2 are far, then most large enough subsets of indices will differ.

The hash function construction will thus fix a collection of sets S = {S1, . . . , Sk}, where
each Si ⊆ [n] is a subset of appropriately chosen size s. The desired structure can be
achieved by defining the subsets Si as the neighbor sets of a bipartite expander. On input
x ∈ {0, 1}n, the hash function will consider the vector y = (x|S1 , . . . ,x|Sk) where x|S denotes
the substring of x indexed by the set S. The observation above tells us that if x1 and x2 are
close (resp. far), then so are y1 and y2.

Up to now, it is not clear that progress has been made: indeed, the vector y is not
compressing (in which case, why not stick with x1,x2 themselves?). However, y1,y2 satisfy
the desired Hamming distance properties with fewer symbols over a large alphabet, {0, 1}s.
As a final step, we can then leverage (standard) collision-resistant hash functions (CRHF) to
compress these symbols. Namely, the final output of our hash function h(x) will be the vector
(g(x|S1), . . . , g(x|Sk)), where each substring of x is individually compressed by a CRHF g.

The analysis of the combined hash construction then follows cleanly via two steps. The
(computational) collision-resistence property of g guarantees that any efficiently found pair
of inputs x1,x2 will satisfy that their hash outputs

h(x1) = (g(x1|S1), . . . , g(x1|Sk)) and h(x2) = (g(x2|S1), . . . , g(x2|Sk))

are close if and only if it holds that

(x1|S1 , . . . ,x1|Sk) and (x2|S1 , . . . ,x2|Sk)

are close as well; that is, x1|Si = x2|Si for most Si. (Anything to the contrary would imply
finding a collision in g.) Then, the combinatorial properties of the chosen index subsets
Si ensures (unconditionally) that any such inputs x1,x2 must themselves be close. The
remainder of the work is to specify appropriate parameter regimes for which the CRHF can
be used and the necessary bipartite expander graphs exist. Informally, we get the following
theorem statement:

I Theorem 1 (Collision-resistance-PPH informal). Let λ be a security parameter. Assuming
that CRHFs exist, for any polynomial n = n(λ), and any constants ε, η, c > 0, there is
an η-compressing robust property preserving hash family for GapHamming(n, d, ε) where
d = o(n/λc).
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Construction 2. The starting point for our second construction is a simple non-robust
hash function derived from a one-way communication protocol for gap-Hamming due to
Kushilevitz, Ostrovsky, and Rabani [19]. In a nutshell, the hash function is parameterized by
a random sparse m× n matrix A with 1’s in 1/d of its entries and 0’s elsewhere; multiplying
this matrix by a vector z “captures” information about the Hamming weight of z. However,
this can be seen to be trivially not robust when the hash function is given to the adversary.
The adversary simply performs Gaussian elimination, discovering a “random collision” (x, y)
in the function, where, with high probability x⊕ y will have large Hamming weight. This
already breaks equation (1).

The situation is somewhat worse. Even in a very weak, oracle sense, corresponding to
our evaluation-oracle-robustness definition, a result of Hardt and Woodruff [12] shows that
there are no linear functions h that are robust for the gap-`2 predicate. While their result
does not carry over as-is to the setting of `0 (Hamming), we conjecture it does, leaving us
with two options: (a) make the domain sparse: both the Gaussian elimination attack and
the Hardt-Woodruff attack use the fact that Gaussian elimination is easy on the domain of
the hash function; however making the domain sparse (say, the set of all strings of weight
at most βn for some constant β < 1) already rules it out; and (b) make the hash function
non-linear: again, both attacks crucially exploit linearity. We will pursue both options, and
as we will see, they are related.

But before we get there, let us ask whether we even need computational assumptions to
get such a PPH. Can there be information-theoretic constructions? The first observation is
that by a packing argument, if the output domain of the hash function has size less than
2n−n·H( d(1+ε)

n ) ≈ 2n−d logn(1+ε) (for small d), there are bound to be “collisions”, namely, two
far points (at distance more than d(1 + ε)) that hash to the same point. So, you really
cannot compress much information-theoretically, especially as d becomes smaller. A similar
bound holds when restricting the domain to strings of Hamming weight at most βn for
constant β < 1.

With that bit of information, let us proceed to describe in a very high level our con-
struction and the computational assumption. Our construction follows the line of thinking
of Applebaum, Haramaty, Ishai, Kushilevitz and Vaikuntanathan [2] where they used the
hardness of syndrome decoding problems to construct collision-resistant hash functions.
Indeed, in a single sentence, our observation is that their collision-resistant hash functions
are locality-sensitive by virtue of being input-local, and thus give us a robust gap-Hamming
PPH (albeit under a different assumption).

In slightly more detail, our first step is to simply take the construction of Kushilevitz,
Ostrovsky, and Rabani [19], and restrict the domain of the function. We show that finding
two close points that get mapped to far points under the hash function is simply impossible
(for our setting of parameters). On the other hand, there exist two far points that get mapped
to close points under the hash functions (in fact, they even collide). Thus, showing that it is
hard to find such points requires a computational assumption.

In a nutshell, our assumption says that given a random matrix A where each entry
is chosen from the Bernoulli distribution with Ber(1/d) with parameter 1/d, it is hard to
find a large Hamming weight vector x where Ax (mod 2) has small Hamming weight. Of
course, “large” and “small” here have to be parameterized correctly (see the full version for
more details), however we observe that this is a generalization of the syndrome decoding
assumption for low-density parity check (LDPC) codes, made by [2].

In our second step, we remove the sparsity requirement on the input domain of the
predicate. We show a sparsification transformation which takes arbitrary n-bit vectors and
outputs n′ > n-bit sparse vectors such that (a) the transformation is injective, and (b) the
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expansion introduced here does not cancel out the effect of compression achieved by the
linear transformation x→ Ax. This requires careful tuning of parameters for which we refer
the reader to the full version of this paper. Informally, our theorem statement is

I Theorem 2 (Shortest-Vector PPH informal). Let λ be a security parameter. Assuming the
shortest-vector assumption (discussed above) with reasonable parameter settings, for any
polynomial n = n(λ), and any constants ε, η > 0, there is an η-compressing robust property
preserving hash family for GapHamming(n, d, ε) where d ≤ n

2 logn ((1− ε) + (1 + ε)).

Notice that we get a better parameter d than from our first construction. This is, of course,
because we make a stronger assumption. For more details, we refer the reader to the full
version of this paper.

The Necessity of Cryptographic Assumptions

The goal of robust PPH is to compress beyond the information theoretic limits, to a regime
where incorrect hash outputs exist but are hard to find. If robustness is required even when
the hash function is given, this inherently necessitates cryptographic hardness assumptions.
A natural question is whether weaker forms of robustness (where the adversary sees only
oracle access to the hash function) similarly require cryptographic assumptions, and what
types of assumptions are required to build non-trivial PPHs of various kinds.

As a final contribution, we identify necessary assumptions for PPH for a kind of predicate
we call collision sensitive. In particular, PPH for any such predicate in the double-oracle
model implies the existence of one-way functions, and in the direct-access model implies
existence of collision-resistant hash functions. In a nutshell, collision-sensitive means that
finding a collision in the predicate breaks the property-preserving nature of any hash. The
proof uses and expands on techniques from the work of Naor and Yogev on adversarially
robust Bloom Filters [24]. The basic idea is the same: without OWFs, we can invert arbitrary
polynomially-computable functions with high probability in polynomial time, and using this
we get a representation of the hash function/set, which can be used to find offending inputs.

2 Defining Property-Preserving Hash Functions

Our definition of property-preserving hash functions (PPHs) comes in several flavors, de-
pending on whether we support total or partial predicates; whether the predicates take a
single input or multiple inputs; and depending on the information available to the adversary.
We discuss each of these choices in turn.

Total vs. Partial Predicates

We consider total predicates that assign a 0 or 1 output to each element in the domain, and
promise (or partial) predicates that assign a 0 or 1 to a subset of the domain and a wildcard
(don’t-care) symbol ? to the rest. More formally, a total predicate P on a domain X is a
function P : X → {0, 1}, well-defined as 0 or 1 for every input x ∈ X. A promise predicate P
on a domain X is a function P : X → {0, 1, ?}. Promise predicates can be used to describe
scenarios (such as gap problems) where we only care about providing an exact answer on a
subset of the domain.

Our definitions below will deal with the more general case of promise predicates, but we
will discuss the distinction between the two notions when warranted.
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Single-Input vs Multi-Input Predicates

In the case of single-input predicates, we consider a class of properties P and hash a single
input x into h(x) in a way that given h(x), one can compute P (x) for any P ∈ P . Here, h is
a compressing function. In the multi-input setting, we think of a single fixed property P that
acts on a tuple of inputs, and require that given h(x1), h(x2), . . . , h(xk), one can compute
P (x1, x2, . . . , xk). The second syntax is more expressive than the first, and so we use the
multi-input syntax for constructions and the single-input syntax for lower bounds5.

Before we proceed to discuss robustness, we provide a working definition for a property-
preserving hash function for the single-input syntax. For the multi-input predicate definition
and further discussion, see the full version.

I Definition 3. A (non-robust) η-compressing Property Preserving Hash (η-PPH) family
H = {h : X → Y } for a function η and a class of predicates P requires the following two
efficiently computable algorithms:
H.Samp(1λ)→ h is a randomized p.p.t. algorithm that samples a random hash function
from H with security parameter λ.
H.Eval(h, P, y) is a deterministic polynomial-time algorithm that on input the hash
function h, a predicate P ∈ P and y ∈ Y (presumably h(x) for some x ∈ X), outputs a
single bit.

Additionally, H must satisfy the following two properties:
η-compressing, namely, log |Y | ≤ η(log |X|), and
robust, according to one of four definitions that we describe below, leading to four notions
of PPH: definition 4 (non-robust PPH), 5 (evaluation-oracle-robust PPH or EO-PPH), 7
(double-oracle-robust PPH or DO-PPH), or 9 (direct-access robust PPH or DA-PPH).
We will refer to the strongest form, namely direct-access robust PPH as simply robust
PPH when the intent is clear from the context. See also Table 1 for a direct comparison
between these.

The Many Types of Robustness

We will next describe four definitions of robustness for PPHs, starting from the weakest to
the strongest. Each of these definitions, when plugged into the last bullet of Definition 3,
gives rise to a different type of property-preserving hash function. In each of these definitions,
we will describe an adversary whose goal is to produce an input and a predicate such that the
hashed predicate evaluation disagrees with the truth. The difference between the definitions
is in what an adversary has access to, summarized in Table 1.

2.1 Non-Robust PPH
We will start by defining the weakest notion of robustness which we call non-robust PPH. Here,
the adversary has no information at all on the hash function h, and is required to produce a
predicate P and a valid input x, namely where P (x) 6= ?, such that H.Eval(h, P, x) 6= P (x)
with non-negligible probability. When P is the family of point functions (or equality functions),
this coincides with the notion of 2-universal hash families [5]6.

5 There is yet a third possibility, namely where there is a fixed predicate P that acts on a single input
x, and we require that given h(x), one can compute P (x). This makes sense when the computational
complexity of h is considerably less than that of P , say when P is the parity function and h is an AC0

circuit, as in the work of Dubrov and Ishai [10]. We do not explore this third syntax further in this
work.

6 While 2-universal hashing corresponds with a two-input predicate testing equality, the single-input
version ({Px1} where Px1 (x2) = (x1 == x2)) is more general, and so it is what we focus on.
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Table 1 A table comparing the adversary’s access to the hash function within different robustness
levels of PPHs.

For security parameter λ, fixed predicate class P, and h sampled from H.Samp
Non-Robust PPH Adversary has no access to hash function or evaluation.

Evaluation-Oracle PPH Access to the evaluation oracle OEval
h (x, P ) = H.Eval(h, P, h(x)).

Double-Oracle PPH Access to both OEval
h (as above) and hash oracle OHash

h (x) = h(x).
Robust PPH Direct access to the hash function, description of h.

“Direct Access”

Here and in the following, we use the notation Pr[A1; . . . ;Am : E] to denote the
probability that event E occurs following an experiment defined by executing the sequence
A1, . . . , Am in order.

I Definition 4. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of non-robust PPH functions if for any P ∈ P and x ∈ X such that for P (x) 6= ?,

Pr[h← H.Samp(1λ) : H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

2.2 Evaluation-Oracle Robust PPH

In this model, the adversary has slightly more power than in the non-robust setting. Namely,
she can adaptively query an oracle that has h← H.Samp(1λ) in its head, on inputs P ∈ P
and x ∈ X, and obtain as output the hashed evaluation result H.Eval(h, P, h(x)). Let
Oh(x, P ) = H.Eval(h, P, h(x)).

I Definition 5. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of evaluation-oracle robust (EO-robust) PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← AOh(1λ) :
P (x) 6= ? ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

The reader might wonder if this definition is very weak, and may ask if it follows just
from the definition of a non-robust PPH family. In fact, for total predicates, we show that
the two definitions are the same. At a high level, simply querying the evaluation oracle on
(even adaptively chosen) inputs cannot reveal information about the hash function since with
all but negligible probability, the answer from the oracle will be correct and thus simulatable
without oracle access. The proof of the following lemma is in the full version.

I Lemma 6. Let P be a class of total predicates on X. A non-robust PPH H for P is also
an Evaluation-Oracle robust PPH for P for the same domain X and same codomain Y .

However, when dealing with promise predicates, an EO-robustness adversary has the
ability to make queries that do not satisfy the promise, and could get information about the
hash function, perhaps even reverse-engineering the entire hash function itself. Indeed, Hardt
and Woodruff [12] show that there are no EO-robust linear hash functions for a certain
promise-`p distance property; whereas, non-robust linear hash functions for these properties
follow from the work of Indyk [14, 13].
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2.3 Double-Oracle PPH
We continue our line of thought, giving the adversary more power. Namely, she has access
to two oracles, both have a hash function h← H.Samp(1λ) in their head. The hash oracle
OHash
h , parameterized by h ∈ H, outputs h(x) on input x ∈ X. The predicate evaluation

oracle OEval
h , also parameterized by h ∈ H, takes as input P ∈ P and y ∈ Y and outputs

H.Eval(h, P, y). When P is the family of point functions (or equality functions), this coincides
with the notion of psuedo-random functions.

I Definition 7. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of double-oracle-robust PPH (DO-PPH) functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← AO
Hash
h ,OEval

h (1λ) :
P (x) 6= ? ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

We show that any evaluation-oracle-robust PPH can be converted into a double-oracle-
robust PPH at the cost of a computational assumption, namely, one-way functions. In a
nutshell, the observation is that the output of the hash function can be encrypted using a
symmetric key that is stored as part of the hash description, and the evaluation proceeds by
first decrypting. The proof of the following lemma is in the full version.

I Lemma 8. Let P be a class of (total or partial) predicates on X. Assume that one-way
functions exist. Then, any EO-robust PPH for P can be converted into a DO-robust PPH
for P.

2.4 Direct-Access Robust PPH
Finally, we define the strongest notion of robustness where the adversary is given the
description of the hash function itself. When P is the family of point functions (or equality
functions), this coincides with the notion of collision-resistant hash families.

I Definition 9. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of direct-access robust PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← A(h) :
P (x) 6= ? ∧H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

We will henceforth focus on direct-access-robust property-preserving hash functions and
refer to them simply as robust PPHs.

3 Property-Preserving Hashing and Communication Complexity

In this section, we identify and examine a relationship between property-preserving hash
families (in the single-input syntax) and protocols in the one-way communication (OWC)
model. A OWC protocol is a protocol between two players, Alice and Bob, with the goal of
evaluating a certain predicate on their inputs and with the restriction that only Alice can
send messages to Bob.

Our first observation is that non-robust property-preserving hash functions and OWC
protocols [31] are equivalent except for two changes. First, PPHs require the parties to be
computationally efficient, and second, PPHs also require protocols that incur error negligible
in a security parameter. It is also worth noting that while we can reference lower-bounds in
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the OWC setting, these lower bounds are typically of the form Ω(n) and are not exact. On
the other hand, in the PPH setting, we are happy with getting a single bit of compression,
and so an Ω(n) lower bound still does not tell us whether or not a PPH is possible. So, while
we can use previously known lower bounds for some well-studied OWC predicates, we need to
refine them to be exactly n in the presence of negligible error. We also propose a framework
(for total predicates) that yields exactly n lower bounds for Indexn, GreaterThan,and
ExactHamming.

3.1 PPH Lower Bounds from One-Way Communication Lower Bounds
In this section, we will review the definition of OWC, and show how OWC lower bounds
imply PPH impossibility results.

I Definition 10. [31, 18] A δ-error public-coin OWC protocol Π for a two-input predicate
P : {0, 1}n × {0, 1}n → {0, 1} consists of a space R of randomness, and two functions
ga : X1 ×R→ Y and gb : Y ×X2 ×R→ {0, 1} so that for all x1 ∈ X1 and x2 ∈ X2,

Pr[r ← R; y = ga(x1; r) : gb(y, x2; r) 6= P (x1, x2)] ≤ δ.

A δ-error public-coin OWC protocol Π for a class of predicates P = {P : {0, 1}n → {0, 1}},
is defined much the same as above, with a function ga : X ×R→ Y , and another function
gb : Y × P ×R→ {0, 1}, which instead of taking a second input, takes a predicate from the
predicate class. We say Π has δ-error if

Pr[r ← R; y = ga(x; r) : gb(y, P ; r) 6= P (x)] ≤ δ

Let Protocolsδ(P ) denote the set of OWC protocols with error at most δ for a predicate
P , and for every Π ∈ Protocolsδ(P ), let YΠ be the range of messages Alice sends to Bob (the
range of ga) for protocol Π.

I Definition 11. The randomized, public-coin OWC complexity of a predicate P with error
δ, denoted RA→Bδ (P ), is the minimum over all Π ∈ Protocolsδ(P ) of dlog |YΠ|e.

For a predicate class P, we define the randomized, public-coin OWC complexity with
error δ, denoted RA→Bδ (P), is the minimum over all Π ∈ Protocolsδ(P) of dlog |YΠ|e.

A PPH scheme for a two-input predicate7 P yields a OWC protocol for P with commu-
nication comparable to a single hash output size.

I Theorem 12. Let P be any two-input predicate P and P = {Px}x∈{0,1}n be the corres-
ponding predicate class where Px2(x1) = P (x1, x2). Now, let H be a PPH in any model for
P that compresses n bits to m = ηn. Then, there exists a OWC protocol Π such that the
communication of Π is m and with negligible error.

Conversely, the amount of possible compression of any (robust or not) PPH family
H : {h : X → Y } is lower bounded by RA→Bnegl(λ)(P ). Namely, log |Y | ≥ RA→Bnegl(λ)(P).

Essentially, the OWC protocol is obtained by using the public common randomness r to
sample a hash function h = H.Samp(1λ; r), and then Alice simply sends the hash h(x1) of
her input to Bob. (Proof in full version.)

7 Or rather, for the induced class of single-input predicates P = {Px2}x2∈{0,1}n , where Px2 (x1) =
P (x1, x2); we will use these terminologies interchangeably.
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3.2 OWC and PPH lower bounds for Reconstructing Predicates

We next leverage this connection together with OWC lower bounds to obtain impossibility
results for PPHs. First, we will discuss the total predicate case; we consider some partial
predicates in section 3.3.

As discussed, to demonstrate the impossibility of a PPH, one must give an explicit n-bit
communication complexity lower bound (not just Ω(n)) for negligible error. We give such
lower bounds for an assortment of predicate classes by a general approach framework we
refer to as reconstructing. Intuitively, a predicate class is reconstructing if, when given only
access to predicates evaluated on an input x, one can, in polynomial time, determine the
exact value of x with all but negligible probability.

I Definition 13. A class P of total predicates P : {0, 1}n → {0, 1}, is reconstructing if there
exists a PPT algorithm L (a ‘learner’) such that for all x ∈ {0, 1}n, given randomness r and
oracle access to predicates P on x, denoted Ox(P ) = P (x),

Pr
r

[LOx(r)→ x] ≥ 1− negl(n).

I Theorem 14. If P is a reconstructing class of predicates on input space {0, 1}n, then a
PPH does not exist for P.

The full proof appears in the full version. The main idea is to simulate the learner L on two
different inputs x1 and x2: at some query, L must get a different answer from the oracle,
differentiating x1 from x2. Since h is compressing, there are many x1 and x2 that collide
on the same output. We show that we can guess such an x1 that is paired with an x2, and
the query that they differ on with 1/poly(n) probability. Once we do that, the oracle must
answer incorrectly for one of x1 or x2, and there is a half chance that we chose the xi that
evaluated incorrectly.

Reconstructing using Indexn, GreaterThan, or ExactHamming

We turn to specific examples of predicate classes and sketch why they are reconstructing.
For formal proofs, we refer the reader to the full version of this paper.

The Indexn class of predicates {P1, . . . , Pn} is defined over x ∈ {0, 1}n where Pi(x) = xi,
the i’th bit of x. Indexn is reconstructing simply because the learner L can just query
the each of the n indices of the input and exactly reconstruct: xi = Pi(x).
The GreaterThan class of predicates {Px}x∈[2n] is defined over x ∈ [2n] = {0, 1}n
where Px2(x1) = 1 if x1 > x2 and 0 otherwise. GreaterThan is reconstructing because
we can run a binary search on the input space, determining the exact value of x in
n queries. GreaterThan is an excellent example for how an adaptive learner L can
reconstruct.
The ExactHamming(α) class of predicates {Px}x∈{0,1}n is defined over x ∈ {0, 1}n
where Px2(x1) = 1 if ||x1−x2||0 > α and 0 otherwise. To show that ExactHamming(n/2)
is reconstructing requires a little more work. The learner L resolves each index of x
independently. For each index, L makes polynomially many random-string queries r to
Ox; if the i’th bit of r equals xi, then r is more likely to be within n/2 hamming distance
of x, and if the bits are different, r is more likely to not be within n/2 hamming distance
of x. The proof uses techniques from [15], and is an example where the learner uses
randomness to reconstruct.
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We note that it was already known that Indexn and ExactHamming(n/2) had OWC
complexity of n-bits for any negligible error [18], though no precise lower bound for randomized
OWC protocols was known for GreaterThan. What is new here is our unified framework.

3.3 Lower bounds for some partial predicates

In the previous section, we showed how the ability to reconstruct an input using a class
of total predicates implied that PPHs for the class cannot exist. This general framework,
unfortunately, does not directly extend to the partial-predicate setting, since it is unclear
how to define the behavior of an oracle for the predicate. Nevertheless, we can still take
existing OWC lower bounds and their techniques to prove impossibility results in this case.
We will show that GapHamming(n, n/2, 1/

√
n) (the promise version of ExactHamming)

cannot admit a PPH, and that while Gap-k GreaterThan has a perfectly correct PPH
compressing to n− log(k)− 1 bits, compressing any further results in polynomial error (and
thus no PPH with more compression).

First, we define these partial predicates.

I Definition 15. The definitions for GapHamming(n, d, ε) and Gap-k GreaterThan are:
The GapHamming(n, d, ε) class of predicates {Px}x∈{0,1}n has Px2(x1) = 1 if ||x1 −
x2||0 ≥ d(1 + ε), 0 if ||x1 − x2||0 ≤ d(1− ε), and ? otherwise.
The Gap-k GreaterThan class of predicates {Px}x∈[2n] has Px2(x1) = 1 if x1 > x2 + k,
0 if x1 < x2 − k, and ? otherwise.

Now, we provide some intuition for why these lower bounds (and the upper bound) exist.

Gap-Hamming

Our lower bound will correspond to a refined OWC lower bound for the Gap-Hamming
problem in the relevant parameter regime. Because we want to prove that we cannot even
compress by a single bit, we need to be careful with our reduction: we want the specific
parameters for which we have a lower bound, and must keep close track of how the error
changes within our reduction.

I Theorem 16. There does not exist a PPH for GapHamming(n, n/2, 1/
√
n).

To prove, we show the OWC complexity RA→Bnegl(n) (GapHamming (n, n/2, 1/
√
n)) = n. A

Ω(n) OWC lower bound for Gap-Hamming in this regime has been proved in a few different
ways [29, 30, 15]. Our proof will be a refinement of [15] and is detailed in the full version.

The high-level structure of the proof is to reduce Indexn to GapHamming with the
correct parameters. Very roughly, the ith coordinate of an input x ∈ {0, 1}n can be inferred
from the bias it induces on the Hamming distance between x and random public vectors.
The reduction adds negligible error, but since we require n bits for negligible-error Indexn,
we also require n bits for a OWC protocol for GapHamming.

Notice that this style of proof looks morally as though we are “reconstructing” the
input x using Indexn. However, the notion of getting a reduction from Indexn to another
predicate-class in the OWC model is not the same as being able to query an oracle about
the predicate and reconstruct based off of oracle queries. Being able to make a similar
reconstructing characterization of partial-predicates as we have for total predicates would be
useful and interesting in proving further lower bounds.
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Gap-k GreaterThan

This predicate is a natural extension of GreaterThan: we only care about learning
that x1 < x2 if |x1 − x2| is larger than k (the gap). Intuitively, a hash function can
maintain this information by simply removing the log(k) least significant bits from inputs
and directly comparing: if h(x1) = h(x2), they can be at most k apart. We can further
remove one additional bit using the fact that we know x2 when given h(x1) (considering
Gap-k GreaterThan as the corresponding predicate class parameterized by x2).

For the lower bound, we prove a OWC lower bound, showing RA→Bnegl(n)(P) = n− log(k)−1.
This will be a proof by contradiction: if we compress to n− log(k)− 2 bits, we obtain many
collisions that are more than 3.5k apart. These far collisions imply the existence of inputs
that the OWC protocol must fail on, even given the gap. We are able to find these inputs
the OWC must fail on with polynomial probability, and this breaks the all-but-negligible
correctness of the protocol. Our formal theorem statement is below.

I Theorem 17. There exists a PPH with perfect correctness for Gap-k GreaterThan com-
pressing from n bits to n− log(k)− 1. This is tight: no PPH for Gap-k GreaterThan can
compress to fewer than n− log(k)− 1 bits.

For the proof, see the full version. To understand the construction of the PPH, first
consider a hash function that just chops off the least-significant log(k) bits from the inputs.
Clearly, comparing two hashed values for which is greater than the other gives the gap-k-
GreaterThan result correctly. In order to get the last bit off, we chop off the least-significant
log(k) bits and then round up or down depending on the log(k) + 1’th significant bit before
removing it. Evaluation is almost essentially comparing hashes, but we exploit the fact that
we know the entire second input (x2), which is why we are able to remove one extra bit.
Proving the lower bound is a bit trickier, but essentially involves simulating a binary search.

4 A Gap-Hamming PPH from Collision Resistance

In this section, we present one of our constructions for a PPH for the GapHamming problem.
Recall from section 3.3 that the gap-Hamming property P = GapHamming(n, d, ε) is
parameterized by the input domain {0, 1}n, an integer d ∈ [n] and a parameter ε ∈ R≥0,
so that P (x1,x2) = 1 if ||x1 ⊕ x2||0 ≥ d(1 + ε) and 0 if ||x1 ⊕ x2||0 ≤ d(1 − ε). Both
of our constructions will distinguish between d(1 − ε)-close and d(1 + ε)-far vectors for
d ≈ O(n/ logn). This means that the gap is quite large, approximately O(n/ logn).

This construction is a robust m/n-compressing GapHamming(n, d, ε) PPH for any
m = nΩ(1), d = o(n/ log λ) and any constant ε > 0. Security of the construction holds under
the (standard) assumption that collision-resistant hash function families (CRHFs) exist.

We now informally describe the idea of the construction which, in one word, is “sub-
sampling”. In slightly more detail, the intuition is to notice that if x1 ∈ {0, 1}n and
x2 ∈ {0, 1}n are close, then most small enough subsets of indices of x1 and x2 will match
identically. On the other hand, if x1 and x2 are far, then most large enough subsets of indices
will differ. This leads us to the first idea for the construction, namely, fix a collection of sets
S = {S1, . . . , Sk} where each Si ⊆ [n] is a subset of appropriately chosen size s. On input
x ∈ {0, 1}n, output y = (x|S1 , . . . ,x|Sk) where x|S denotes the substring of x indexed by the
set S. The observation above tells us that if x1 and x2 are close (resp. far), so are y1 and y2.

However, this does not compress the vector x. Since the union of all the sets
⋃
i∈[k] Si

has to be the universe [n] (or else, finding a collision is easy), it turns out that we are just
comparing the vectors index-by-index. Fortunately, it is not necessary to output x|Si by
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themselves; rather we can simply output the collision-resistant hashes. That is, we will let
the PPH hash of x, denoted y, be (g(x|S1), . . . , g(x|Sk)) where g is a collision resistant hash
function randomly drawn from a CRHF family.

This simple construction works as long as s, the size of the sets Si, is Θ(n/d), and the
collection S satisfies that any subset of disagreeing input indices T ⊆ [n] has nonempty
intersection with roughly the corresponding fraction of subsets Si. The latter can be achieved
by selecting the Si of size Θ(n/d) at random, or alternatively as defined by the neighbor sets
of a bipartite expander. We are additionally constrained by the fact that the CRHF must be
secure against adversaries running in time poly(λ). So, let t = t(λ) be the smallest output
size of the CRHF such that it is secure against poly(λ)-time adversaries. Since the input
size s to the CRHF must be ω(t) so that g actually compresses, this forces n/d = ω(t), and
thus d = o(n/t).

Before presenting our construction more formally, we define our tools.

We will use a family of CRHFs that take inputs of variable size and produce outputs of t
bits and denote it by Ht = {h : {0, 1}∗ → {0, 1}t}. We implicitly assume a procedure for
sampling a seed for the CRHF given a security parameter 1λ. One could set t = ω(log λ)
and assume the exponential hardness of the CRHF, or set t = λO(1) and assume polynomial
hardness. These choices will result in different parameters of the PPH hash function.
We will use an (n, k,D, γ, α)-bipartite expander G = (L ∪R,E) which is a D-left-regular
bipartite graph, with |L| = n and |R| = k such that for every S ⊂ L for which |S| ≤ γn,
we have |N(S)| ≥ α|S|, where N(S) is the set of neighbors of S. For technical reasons,
we will need the expander to be δ-balanced on the right, meaning that for every v ∈ R,
|N(v)| ≥ (1− δ)nD/k.
A simple probabilistic construction shows that for every n ∈ N, k = o(n) and constant
a ∈ (0, 1), and any γ = o( k

n log(n/k) ) and D = Θ(log(1/γ)) so that for every δ > 0, δ-
balanced (n, k,D, γ, α)-bipartite expanders exist. In fact, there are even explicit efficient
constructions that match these parameters [4].

The construction is in Table 2. We first discuss explicit parameter settings.

Setting the Parameters

The parameters required for this construction to be secure and constructible are as follows.
Let n ∈ N and constant ε > 0.
We require two building blocks: a CRHF and an expander. So, let Ht = {g : {0, 1}∗ →
{0, 1}t} be a family of CRHFs secure against poly(λ)-time adversaries. Let G be a δ-
balanced (n, k,D, γ, α)-expander for a constant δ bounding the degree of the right-nodes,
where n is the size of the left side of the graph, k is the size of the right, D is the
left-degree, γn is the upper bound for an expanding set on the right that expands to a
set of size α times the original size.
These building blocks yield the following parameters for the construction: compression is
η = kt/n and our center for the Gap-Hamming problem is bounded by γn

(1+ε) ≤ d <
k

D(1−ε) .

If we consider what parameter settings yield secure CRHFs with output size t and for
what parameters we have expanders, we have a PPH construction where given any n and
ε, there exists a d = o(n) and η = O(1) such that Construction 2 is a robust PPH for
gap-Hamming. We will see that the smaller t is, the stronger the CRHF security assumption,
but the better our compression.

Now, given these settings of parameters, we have the following theorem that Construction
2 is a robust Gap-Hamming PPH.
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Table 2 Construction 2 of a robust GapHamming(n, d, ε) PPH family from CRHFs. Resulting
parameters (n,m, d, ε) discussed in text.

Robust GapHamming(n, d, ε) PPH family H from any CRHF

Our (n,m, d, ε)-robust PPH family H = (H.Samp,H.Eval) is defined as follows.
H.Samp(1λ, n). Fix a δ-balanced (n, k,D, γ, α)-bipartite expander G = (L ∪R,E) (either
deterministically or probabilistically). Sample a CRHF g ← Ht. Output h = (G, g).
H.Hash(h = (G, g),x). For every i ∈ [k], compute the (ordered) set of neighbors of the i-th
right vertex in G, denoted N(i). Let x̂(i) := x|N(i) be x restricted to the set N(i). Output

h(x) :=
(
g(x̂(1)), . . . , g(x̂(k))

)
as the hash of x.
H.Eval(h = (G, g),y1,y2). Compute the threshold τ = D · d · (1 − ε). Parse y1 =
(ŷ(1)

1 , . . . , ŷ(k)
1 ) and y2 = (ŷ(1)

2 , . . . , ŷ(k)
2 ). Compute

∆′ =
k∑
i=1

Ind(ŷ(i)
1 6= ŷ(i)

2 ),

where Ind denotes the indicator predicate. If ∆′ ≤ τ , output CLOSE. Otherwise, output
FAR.

I Theorem 18. Let λ be a security parameter. Assuming that exponentially secure CRHFs
exist, then for any polynomial n = n(λ), and any constants ε, η > 0, Construction 2 is
an η-compressing robust property preserving hash family for GapHamming(n, d, ε) where
d = o(n/ log λ log log λ). Assuming only that polynomially secure CRHFs exist, for any
constant c > 0, we achieve d = o(n/λc).

Proof. Before getting into the proof, we more explicitly define the parameters, including
parameters associated with the expander in our construction:
1. Let n ∈ N be the input size and let ε > 0 be any constant.
2. Our CRHF is Ht = {g : {0, 1}∗ → {0, 1}t}.
3. Our expander will be a δ-balanced (n, k,D, γ, α)-expander, where k < n/t, γ =

o( k
n log(n/k) ), D = Θ(log(1/γ)), and α > D · d(1−ε)

γn .
4. Our center for the gap-hamming problem is d, and is constrained by γn

1+ε ≤ d <
k

D(1−ε) .

5. Constraint 4 implies that k = nΩ(1), since γn·D(1−ε)
1+ε < k.

Now, we prove our construction is well-defined and efficient. Fix any δ, a ∈ (0, 1). In the
full version, we explicitly prove that δ-balanced (n, k,D, γ, α = an)-bipartite expanders exist
and can be efficiently sampled for k = o(n/ logn), D = Θ(log logn), and γ = Θ̃(1/ logn).
Thus, sampling the graph G before running the construction is efficient. Once we have a
G, sampling and running a CRHF k = O(n) times is efficient. Comparing k outputs of the
hash function is also efficient. Therefore, each of H.Samp, H.hash, and H.Eval is efficient in
λ = poly(n).

Now, we prove that Construction 2 is compressing. Points 2 and 3 mean that m = k · t <
n/t · t = n, as required.
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Lastly, we will prove our construction is robust. Let A be a PPT adversary. We will
show that A (in fact, even an unbounded adversary) cannot find x1 and x2 such that
||x1 − x2|| ≤ d(1− ε) but H.Eval(h, h(x1), h(x2)) evaluates to FAR, and that A must break
the collision-resistance of Ht in order to find x1 and x2 where ||x1 − x2|| ≥ d(1 + ε) but
H.Eval(h, h(x1), h(x2)) evaluates to CLOSE.

First, consider any x1,x2 ∈ {0, 1}n where ||x1 − x2||0 ≤ d(1− ε). Let ∆ = ||x1 − x2||0.
So, consider the set S ⊂ L corresponding to the indices that are different between x1 and
x2, and T = N(S) ⊂ R. The maximum size of T is |S| ·D, the degree of the graph.
For every i ∈ T , we get that the intermediate computation has x̂(i)

1 6= x̂(i)
2 , but for

every j 6∈ T , we have x̂(j)
1 = x̂(j)

2 which implies ŷ(j)
1 = ŷ(j)

2 after applying g. Therefore∑k
i=1 Ind(ŷ(i)

1 6= ŷ(i)
2 ) ≤

∑
i∈S Ind(ŷ(i)

1 6= ŷ(i)
2 ) +

∑
j 6∈S Ind(ŷ(j)

1 6= ŷ(j)
2 ) ≤ ∆ ·D.

We set the threshold τ = D · d · (1− ε) in the evaluation. Point 4 guarantees that τ < k

(and implicitly implies k > D(1− ε)), so because D ·∆ ≤ D ·d(1− ε) = τ < k, H.Eval will
evaluate ∆′ ≤ τ . Thus, H.Eval will always evaluate to CLOSE in this case, regardless of
the choice of CRHF.
Now consider ||x1 − x2||0 ≥ d(1 + ε), and again, let ∆ = ||x1 − x2||0 and define S ⊂ L

and T ⊂ R as before.
By point 4 again (γn ≤ d(1 + ε)), we can restrict S to S′ where |S′| = γn, and by the
properties of expanders |N(S′)| ≥ γn ·α. Now, point 3 guarantees that τ = D ·d ·(1−ε) <
α · γn. So, for every i ∈ T ′, x̂(i)

1 6= x̂(i)
2 , and |T ′| ≥ α · γn > τ . Now we want to argue

that with all but negligible probability over our choice of g, g will preserve this equality
relation, and so ∆′ = |T ′|. Given that our expander is δ-balanced for some constant
δ > 0, we have that |x̂(i)

1 | = |x̂
(i)
2 | = |N(ri)| ≥ (1− δ)nD/k. Now, point 3 states that the

constraints have k < n/t, implying n/k > t. So, (1− δ)D · n/k > (1− δ)D · t.
This means that every input to g will be larger than the output ((1− δ) is a constant
and D = ω(1)), and so if g(x̂(i)

1 ) = g(x̂(i)
2 ) but x̂(i)

1 6= x̂(i)
2 for any i, then our adversary

has found a collision, which happens with all but negligible probability for adversaries
running in time poly(λ).
Therefore, with all but negligible probability over the choice of g and adversarially chosen
x1 and x2 in this case, ∆′ =

∑m′

i=1 Ind(ŷ(i)
1 6= ŷ(i)

2 ) ≥ α · γn = τ , and H.Eval outputs
FAR. J
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