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Abstract
We show that there is a zero-error randomized algorithm that, when given a small constant-
depth Boolean circuit C made up of gates that compute constant-degree Polynomial Threshold
functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials),
counts the number of satisfying assignments to C in significantly better than brute-force time.

Formally, for any constants d, k, there is an ε > 0 such that the zero-error randomized
algorithm counts the number of satisfying assignments to a given depth-d circuit C made up of
k-PTF gates such that C has size at most n1+ε. The algorithm runs in time 2n−nΩ(ε)

.

Before our result, no algorithm for beating brute-force search was known for counting the
number of satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit of
linear size).

The main new tool is the use of a learning algorithm for learning degree-1 PTFs (or Linear
Threshold Functions) using comparison queries due to Kane, Lovett, Moran and Zhang (FOCS
2017). We show that their ideas fit nicely into a memoization approach that yields the #SAT
algorithms.
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8:2 A #SAT Algorithm for Small Constant-Depth PTF Circuits

1 Introduction

This paper adds to the growing line of work on circuit-analysis algorithms, where we are
given as input a Boolean circuit C from a fixed class C computing a function f : {−1, 1}n →
{−1, 1},3 and we are required to compute some parameter of the function f . A typical
example of this is the question of satisfiability, i.e. whether f is the constant function 1
or not. In this paper, we are interested in computing #SAT(f), which is the number of
satisfying assignments of f (i.e. |{a ∈ {−1, 1}n | f(a) = −1}|).

Problems of this form can always be solved by “brute-force” in time poly(|C|) · 2n by
trying all assignments to C. The question is can this brute-force algorithm be significantly
improved, say to time 2n/nω(1) when C is small, say |C| ≤ nO(1).

Such algorithms, intuitively are able to distinguish a small circuit C ∈ C from a “black-box”
and hence find some structure in C. This structure, in turn, is useful in answering other
questions about C, such as proving lower bounds against the class C.4 There has been a large
body of work in this area, a small sample of which can be found in [21, 20, 26, 27]. A striking
result of this type was proved by Williams [26] who showed that for many circuit classes C,
even co-non-deterministic satisfiability algorithms running in better than brute-force time
yield lower bounds against C.

Recently, researchers have also uncovered tight connections between many combinatorial
problems and circuit-analysis algorithms, showing that even modest improvements over brute-
force search can be used to improve long-standing bounds for these combinatorial problems
(see, e.g., [30, 2, 3, 1]). This yields further impetus in improving known circuit-analysis
algorithms.

This paper is concerned with #SAT algorithms for constant depth threshold circuits,
denoted as TC0, which are Boolean circuits where each gate computes a linear threshold
function (LTF); an LTF computes a Boolean function which accepts or rejects based on the
sign of a (real-valued) linear polynomial evaluated on its input. Such circuits are surprisingly
powerful: for example, they can perform all integer arithmetic efficiently [4, 9], and are at
the frontier of our current lower bound techniques [16, 5].

It is natural, therefore, to try to come up with circuit-analysis algorithms for threshold
circuits. Indeed, there has a large body of work in the area (reviewed below), but some
extremely simple questions remain open.

An example of such a question is the existence of a better-than-brute-force algorithm for
satisfiability of degree-k PTFs where k is a constant greater than 1. Informally, the question
is the following: we are given a degree-k polynomial Q(x1, . . . , xn) in n Boolean variables
and we ask if there is any Boolean assignment a ∈ {−1, 1}n to x1, . . . , xn such that Q(a) < 0.
(Note that for a linear polynomial (i.e. k = 1), this problem is trivial.)

Surprisingly, no algorithm is known for this problem that is significantly better than
2n time.5 In this paper, we solve the stronger counting variant of this problem for any
constant-degree PTFs. We start with some definitions and then describe this result.

I Definition 1 (Polynomial Threshold Functions). A Polynomial Threshold Function (PTF)
on n variables of degree-k is a Boolean function f : {−1, 1}n → {−1, 1} such that there is

3 We work with the {−1, 1} basis for Boolean functions, which is by now standard in the literature. (See
for instance [18].) Here −1 stands for True and 1 stands for False.

4 This intuition was provided to us by Ryan Williams.
5 An algorithm was claimed for this problem in the work of Sakai, Seto, Tamaki and Teruyama [22].
Unfortunately, the proof of this claim only works when the weights are suitably small. See Footnote 1
on page 4 of [14].
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a degree-k multilinear polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn] that, for all a ∈ {−1, 1}n,
satisfies f(a) = sgn(P (a)). (We assume that P (a) 6= 0 for any a ∈ {−1, 1}n.)

In such a scenario, we call f a k-PTF. In the special case that k = 1, we call f a Linear
Threshold function (LTF). We also say that the polynomial P sign-represents f .

When P ∈ Z[x1, . . . , xn], we define the weight of P , denoted w(P ), to be the bit-complexity
of the sum of the absolute values of all the coefficients of P . In particular, the coefficients of
P are integers in the range [−2w(P ), 2w(P )].

We now formally define the #SAT problem for k-PTFs. Throughout, we assume that k
is a constant and not a part of the input.

I Definition 2 (#SAT problem for k-PTFs). The problem is defined as follows.
Input: A k-PTF f , specified by a degree-k polynomial P (x1, . . . , xn) with integer
coefficients.6
Output: The number of satisfying assignments to f . That is, the number of a ∈ {−1, 1}n
such that P (a) < 0.

We use #SAT(f) to denote this output. We say that the input instance has parameters
(n,M) if n is the number of input variables and w(P ) ≤M .

I Remark. An interesting setting of M is poly(n) since any k-PTF can be represented by
an integer polynomial with coefficients of bit-complexity at most Õ(nk) [17]. However, note
that our algorithms are even when M is exp(no(1)), i.e. when the weights are slightly short
of doubly exponential in n.

We give a better-than-brute-force algorithm for #SAT(k-PTF). Formally we prove the
following theorem.

I Theorem 3. Fix any constant k. There is a zero-error randomized algorithm that solves the
#SAT problem for k-PTFs in time poly(n,M) · 2n−S where S = Ω̃(n1/(k+1)) and (n,M) are
the parameters of the input k-PTF f. (The Ω̃(·) hides factors that are inverse polylogarithmic
in n.)

I Remark. An anonymous ITCS 2019 referee pointed out to us that from two results of
Williams [25, 28], it follows that satisfiability for 2-PTFs can be solved in 2n−Ω(

√
n) time.

Note that this is better than the runtime of our algorithm. However, the method does not
extend to k ≥ 3.

We then extend this result to a powerful model of circuits called k-PTF circuits, where
each gate computes a k-PTF. This model was first studied by Kane, Kabanets and Lu [13] who
proved strong average case lower bounds for slightly superlinear-size constant-depth k-PTF
circuits. Using these ideas, Kabanets and Lu [14] were able to give a #SAT algorithm for a
restricted class of k-PTF circuits, where each gate computes a PTF with a subquadratically
many, say n1.99, monomials (while the size remains the same, i.e. slightly superlinear).7 A
reason for this restriction on the PTFs was that they did not have an algorithm to handle
even a single degree-2 PTF (which can have Ω(n2) many monomials).

Building on our #SAT algorithm for k-PTFs and the ideas of [14], we are able to handle
general k-PTF circuits of slightly superlinear size. We state these results formally below.

We first define k-PTF circuits formally.

6 It is known [17] that such a representation always exists.
7 Their result also works for the slightly larger class of PTFs that are subquadratically sparse in the {0, 1}-

basis with no restriction on degree. Our result can also be stated for the larger class of polynomially
sparse PTFs, but for the sake of simplicity, we stick to constant-degree PTFs.

ITCS 2019



8:4 A #SAT Algorithm for Small Constant-Depth PTF Circuits

I Definition 4 (k-PTF circuits). A k-PTF circuit on n variables is a Boolean circuit on n
variables where each gate g of fan-in m computes a fixed k-PTF of its m inputs. The size of
the circuit is the number of wires in the circuit, and the depth of the circuit is the longest
path from an input to the output gate.8

The problems we consider is the #SAT problem for k-PTF circuits, defined as follows.

I Definition 5 (#SAT problem for k-PTF circuits). The problem is defined as follows.
Input: A k-PTF circuit C, where each gate g is labelled by an integer polynomial that
sign-represents the function that is computed by g.
Output: The number of satisfying assignments to C.

We use #SAT(C) to denote this output. We say that the input instance has parameters
(n, s, d,M) where n is the number of input variables, s is the size of C, d is the depth of C
and M is the maximum over the weights of the degree-k polynomials specifying the k-PTFs
in C. We will say that M is the weight of C, denoted by w(C).

We now state our result on #SAT for k-PTF circuits. The following result implies
Theorem 3, but we prove them separately.

I Theorem 6. Fix any constants k, d. Then the following holds for some constant εk,d > 0
depending on k, d. There is a zero-error randomized algorithm that solves the #SAT problem
for k-PTF circuits of size at most s = n1+εk,d with probability at least 1/4 and outputs ?
otherwise. The algorithm runs in time poly(n,M) · 2n−S, where S = nεk,d and (n, s, d,M)
are the parameters of the input k-PTF circuit.

Previous work. Satisfiability algorithms for TC0 have been widely investigated. Impagliazzo,
Lovett, Paturi and Schneider [12, 10] give algorithms for checking satisfiability of depth-2
threshold circuits with O(n) gates. An incomparable result was proved by Williams [29] who
obtained algorithms for subexponential-sized circuits from the class ACC0 ◦ LTF, which is
a subclass of subexponential TC0.9 For the special case of k-PTFs (and generalizations to
sparse PTFs over the {0, 1} basis) with small weights, a #SAT algorithm was devised by
Sakai et al. [22].10 The high-level idea of our algorithm is the same as theirs.

For general constant-depth threshold circuits, the first satisfiability algorithm was given
by Chen, Santhanam and Srinivasan [7]. In their paper, Chen et al. gave the first average
case lower bound for TC0 circuits of slightly super linear size n1+εd , where εd depends on the
depth of the circuit. (These are roughly the strongest size lower bounds we know for general
TC0 circuits even in the worst case [11].) Using their ideas, they gave the first (zero-error
randomized) improvement to brute-force-search for satisfiability algorithms (and indeed even
#SAT algorithms) for constant depth TC0 circuits of size at most n1+εd .

The lower bound results of [7] were extended to the much more powerful class of k-PTF
circuits (of roughly the same size as [7]) by Kane, Kabanets and Lu [13]. In a follow-up
paper, Kabanets and Lu [14] considered the satisfiability question for k-PTF circuits, and

8 Note, crucially, that only the fan-in of a gate counts towards its size. So any gate computing a k-PTF
on m variables only adds m to the size of the circuit, though of course the polynomial representing this
PTF may have ≈ mk monomials.

9 ACC0 ◦ LTF is a subclass of TC0 where general threshold gates are allowed only just above the
variables. All computations above these gates are one of AND, OR or Modular gates (that count
the number of inputs modulo a constant). It is suspected (but not proved) that subexponential-sized
ACC0 circuits cannot simulate even a single general threshold gate. Hence, it is not clear if the class of
subexponential-sized ACC0 ◦ LTF circuits contains even depth-2 TC0 circuits of linear size.

10More specifically, the algorithm of Sakai et al. [22] works as long as the weight of the input polynomial
P ∈ Z[x1, . . . , xn] is bounded by exp(n1−Ω(1)) (or equivalently, M ≤ O(n1−Ω(1))).
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could resolve this question in the special case that each PTF is subquadratically sparse, i.e.
has n2−Ω(1) monomials. One of the reasons for this sparsity restriction is that their strategy
does not seem to yield a SAT algorithm for a single degree-2 PTF (which is a depth-1 2-PTF
circuit of linear size).

1.1 Proof outline
For simplicity we discuss SAT algorithms instead of #SAT algorithms.

Satisfiability algorithm for k-PTFs
At a high level, we follow the same strategy as Sakai et al. [22]. Their algorithm uses
memoization, which is a standard and very useful strategy for satisfiability algorithms (see,
e.g. [23]). Let C be a circuit class and Cn be the subclass of circuits from C that have n
variables. Memoization algorithms for C-SAT fit into the following two-step template.

Step 1: Solve by brute-force all instances of C-SAT where the input circuit C ′ ∈ Cm
for some suitable m� n. (Typically, m = nε for some constant ε.) Usually this takes
exp(mO(1))� 2n time.
Step 2: On the input C ∈ Cn, set all input variables xm+1, . . . , xn to Boolean values
and for each such setting, obtain C ′′ ∈ Cm on m variables. Typically C ′′ is a circuit for
which we have solved satisfiability in Step 1 and hence by a simple table lookup, we
should be able to check if C ′′ is satisfiable in poly(|C|) time. Overall, this takes time
O∗(2n−m)� 2n.

At first sight, this seems perfect for k-PTFs, since it is a standard result that the number
of k-PTFs on m variables is at most 2O(mk+1) [8]. Thus, Step 1 can be done in 2O(mk+1) � 2n
time.

For implementing Step 2, we need to ensure that the lookup (for satisfiability for k-PTFs
on m variables) can be done quickly. Unfortunately how to do this is unclear. The following
two ways suggest themselves.

Store all polynomials P ′ ∈ Z[x1, . . . , xm] with small coefficients. Since every k-PTF f

can be sign-represented by an integer polynomial with coefficients of size 2poly(m) [17],
this can be done with a table of size 2poly(m) and in time 2poly(m). When the coefficients
are small (say of bit-complexity ≤ no(1)), then this strategy already yields a #SAT
algorithm, as observed by Sakai et al. [22]. Unfortunately, in general, given a restriction
P ′′ ∈ Z[x1, . . . , xm] of a polynomial P ∈ Z[x1, . . . , xn], its coefficients can be much larger
(say 2poly(n)) and it is not clear how to efficiently find a polynomial with small coefficients
that sign-represents the same function.
It is also known that every k-PTF on m variables can be uniquely identified by poly(m)
numbers of bit-complexity O(m) each [8]: these are called the “Chow parameters” of
f . Again for this representation, it is unclear how to compute efficiently the Chow
parameters of the function represented by the restricted polynomial P ′′. (Even for an
LTF, computing the Chow parameters is as hard as Subset-sum [19].)

The way we solve this problem is by using a beautiful recent result of Kane, Lovett,
Moran and Zhang [15], who show that there is a simple decision tree that, when given as
input the coefficients of any degree-k polynomial P ′ ∈ Z[x1, . . . , xm], can determine the sign
of the polynomial P ′ at all points in {−1, 1}m using only poly(m) queries to the coefficients
of P . Here, each query is a linear inequality on the coefficients of P ; such a decision tree is
called a linear decision tree.

ITCS 2019



8:6 A #SAT Algorithm for Small Constant-Depth PTF Circuits

Our strategy is to replace Step 1 with the construction of this linear decision tree (which
can be done in exp(mO(1)) time). At each leaf of the linear decision tree, we replace the
truth table of the input polynomial P ′ by a single bit that indicates whether f ′ = sgn(P ′) is
satisfiable or not.

In Step 2, we simply run this decision tree on our restricted polynomial P ′′ and obtain the
answer to the corresponding satisfiability query in poly(m,w(P ′′)) time. Note, crucially, that
the height of the linear decision tree implied by [15] construction is poly(m) and independent
of the bit-complexity of the coefficients of the polynomial P ′′ (which may be as big as poly(n)
in our algorithm). This concludes the description of the algorithm for k-PTF.

Satisfiability algorithm for k-PTF circuits

For k-PTF circuits, we follow a template set up by the result of Kabanets and Lu [14] on
sparse-PTF circuits. We start by describing this template and then describe what is new in
our algorithm.

The Kabanets-Lu algorithm is an induction on the depth d of the circuit (which is a fixed
constant). Given as input a depth d k-PTF circuit C on n variables, Kabanets and Lu do
the following:

Depth-reduction: In [14], it is shown that on a random restriction that sets all but n1−2β

variables (here, think of β as a small constant, say 0.01) to random Boolean values, the
bottom layer of C simplifies in the following sense.

All but t ≤ nβ gates at the bottom layer become exponentially biased, i.e. on all but
δ = exp(−nΩ(1)) fraction of inputs they are equal to a fixed b ∈ {−1, 1}. Now, for each
such biased gate g, there is a minority value bg ∈ {−1, 1} that it takes on very few inputs.
[14] show how to enumerate this small number of inputs in δ · 2n time and check if there
is a satisfying assignment among these inputs. Having ascertained that there is no such
assignment, we replace these gates by their majority value and there are only t gates at the
bottom layer. At this point, we “guess” the output of these t “unbiased” gates and for each
such guess σ ∈ {−1, 1}t, we check if there is an assignment that simultaneously satisfies:
(a) the depth d − 1 circuit C ′, obtained by setting the unbiased gates to the guess σ, is

satisfied.
(b) each unbiased gate gi evaluates to the corresponding value σi.

Base case: Continuing this way, we eventually get to a base case which is an AND of
sparse PTFs for which there is a satisfiability algorithm using the polynomial method.

In the above algorithm, there are two steps where subquadratic sparsity is crucially used.
The first is the minority assignment enumeration algorithm for PTFs, which uses ideas of
Chen and Santhanam [6] to reduce the problem to enumerating biased LTFs, which is easy [7].
The second is the base case, which uses a non-trivial polynomial approximation for LTFs [24].
Neither of these results hold for even degree-2 PTFs in general. To overcome this, we do the
following.

Enumerating minority assignments. Given a k-PTF onm variables that is δ = exp(−nΩ(1))
-close to b ∈ {−1, 1}, we enumerate its minority assignments as follows. First, we set up a
linear decision tree as in the k-PTF satisfiability algorithm. Then we set all but q ≈ log 1

δ

variables of the PTF. On most such settings, the resulting PTF becomes the constant function
and we can check this using the linear decision tree we created earlier. In this setting, there
is nothing to do. Otherwise, we brute-force over the remaining variables to find the minority
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assignments. Setting parameters suitably, this yields an O(
√
δ · 2m) time algorithm to find

the minority assignments of a δ-biased k-PTF on m variables.

Base case. Here, we make the additional observation (which [14] do not need) that the
AND of PTFs that is obtained further is small in that it only has slightly superlinear size.
Hence, we can apply another random restriction in the style of [14] and using the minority
assignment enumeration ideas, reduce it to an AND of a small (say n0.1) number of PTFs on
n0.01 (say) variables. At this point, we can again run the linear decision tree (in a slightly
more generalized form) to check satisfiability.

2 A result of Kane, Lovett, Moran, and Zhang [15]

I Definition 7 (Coefficient vectors.). Fix any k,m ≥ 1. There are exactly r =
∑k
i=0
(
m
i

)
many multilinear monomials of degree at most k. Any multilinear polynomial P (x1, . . . , xm)
can be identified with a list of the coefficients of its monomials in lexicographic order (say)
and hence with some vector w ∈ Rr. We call w the coefficient vector of P and use coeffm,k(P )
to denote this vector. When m, k are clear from context, we will simply use coeff(P ) instead
of coeffm,k(P ).

I Definition 8 (Linear Decision Trees). A Linear Decision Tree for a function f : Rr → S

(for some set S) is a decision tree where each internal node is labelled by a linear inequality
of the form

∑r
i=1 wizi ≥ θ (here z1, . . . , zn denote the input variables). Depending on the

answer to this linear inequality, computation proceeds to the left or right child of this node,
and this process continues until a leaf is reached, which is labelled with an element of S that
is the output of f on the given input.

The following construction of linear decision trees due to Kane, Lovett, Moran and
Zhang [15] will be crucial for us.

I Theorem 9. There is a randomized algorithm, which on input a positive integer r, a subset
H ⊆ {−1, 1}r, and an error parameter ε, produces a (random) linear decision tree T of depth
∆ = O(r log r · log(|H|/ε)) that computes a (random) function F : Rr → {−1, 1}|H| ∪ {?}
that has the following properties.
1. Each linear query has coefficients in {−2,−1, 0, 1, 2}.
2. Given as input any w ∈ Rr such that 〈w, a〉 6= 0 for all a ∈ {−1, 1}r, F (w) is either the

truth table of the LTF defined by w (with constant term 0) on inputs from H ⊆ {−1, 1}r,
or is equal to ?. Further, we have PrF [F (w) =?] ≤ ε.

The randomized algorithm runs in time 2O(∆).

I Remark. The last statement in the above theorem is not formally stated in [15] but can
easily be inferred from their proof and a remark [15, Page 363] on the “Computational
Complexity” of their procedure.11

We will need a generalization of this theorem for evaluating (tuples of) k-PTFs. However,
it is a simple corollary of this theorem.

I Corollary 10. Fix positive constants k and c. Let r =
∑k
i=0
(
m
i

)
= Θ(mk) denote the

number of coefficients in a degree-k multilinear polynomial in m variables. There is a
randomized algorithm which on input positive integers m and ` ≤ mc produces a (random)

11We also thank Daniel Kane (personal communication) for telling us about this.

ITCS 2019



8:8 A #SAT Algorithm for Small Constant-Depth PTF Circuits

linear decision tree T of depth ∆ = O(` ·mk+1 logm) that computes a (random) function
F : Rr·` → N ∪ {?} that has the following properties.
1. Each linear query has coefficients in {−2,−1, 0, 1, 2}.
2. Given as input any `-tuple of coefficient vectors w = (coeffm,k(P1), . . . , coeffm,k(P`)) ∈

Rr·` such that Pi(a) 6= 0 for all a ∈ {−1, 1}m, F (w) is either the number of common
satisfying assignments to all the k-PTFs on {−1, 1}m sign-represented by P1, . . . , P`, or
is equal to ?. Further, we have PrF [F (w) =?] ≤ (1/2).

The randomized algorithm runs in time 2O(∆).

Proof. For each b ∈ {−1, 1}m, define evalb ∈ {−1, 1}r to be the vector of all evaluations of
multilinear monomials of degree at most k, taken in lexicographic order, on the input b. Define
H ⊆ {−1, 1}r to be the set {evalb | b ∈ {−1, 1}m}. Clearly, |H| ≤ 2m. Further, note that
given any polynomial P (x1, . . . , xm) of degree at most k, the truth table of the k-PTF sign-
represented by P is given by the evaluation of the LTF represented by coeff(P ) at the points
in H. Our aim, therefore, is to evaluate the LTFs corresponding to coeff(P1), . . . , coeff(P`)
at all the points in H.

For each i, we use the randomized algorithm from Theorem 9 to produce a decision
tree Ti that evaluates the Boolean function fi : {−1, 1}m → {−1, 1} sign-represented by
Pi (or equivalently, evaluating the LTF corresponding to coeff(Pi) at all points in H)
with error ε = 1/2`. Note that Ti has depth O(mk logm · log(2m/`)) = O(mk+1 logm) as
` ≤ mc. The final tree T is obtained by simply running T1, . . . , T` in order, which is of depth
O(`mk+1 logm). The tree T outputs the number of common satisfying assignments to all the
fi if all the Tis succeed and ? otherwise. Since each Ti outputs ? with probability at most
1/2`, the tree T outputs ? with probability at most (1/2`) · ` = 1/2.

The claim about the running time follows from the analogous claim in Theorem 9 and
the fact that the number of common satisfying assignments to all the fi can be computed
from the truth tables in 2O(m) time. This completes the proof. J

3 The PTF-SAT algorithm

We are now ready to prove Theorem 3. We first state the algorithm, which follows a standard
memoization idea (see, e.g. [23]). We assume that the input is a polynomial P ∈ Z[x1, . . . , xn]
of degree at most k that sign-represents a Boolean function f on n variables. The parameters
of the instance are assumed to be (n,M). Set m = n1/(k+1)/ logn.

Algorithm A.
1. Use n1 = 10n independent runs of the algorithm from Corollary 10 with ` = 1 to construct

independent random linear decision trees T1, . . . , Tn1 such that on any input polynomial
Q(x1, . . . , xm) (or more precisely coeffm,k(Q)) of degree at most k that sign-represents
an k-PTF g on m variables, each Ti computes the number of satisfying assignments to g
with error at most 1/2.

2. Set N = 0. (N will ultimately be the number of satisfying assignments to f .)
3. For each setting σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn, do the following:

a. Compute the polynomial Pσ obtained by substituting the variables xm+1,...,xn accord-
ingly in P .
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b. Run the decision trees T1, . . . , Tn1 on coeff(Pσ) and compute their outputs. If all the
outputs are ?, output ?. Otherwise, some Ti outputs Nσ, the number of satisfying
assignments to Pσ. Add this to the current estimate to N .

4. Output N .

Correctness. It is clear from Corollary 10 and step 3b that algorithm A outputs either ? or
the correct number of satisfying assignments to f . Further, we claim that with probability
at least 1 − 1/2Ω(n), the output is indeed the number of satisfying assignments to f . To
see this, observe that it follows from Corollary 10 that for each setting σ ∈ {−1, 1}n−m to
the variables xm+1, . . . , xn, each linear decision tree Ti produced in step 1 errs on coeff(Pσ)
(i.e. outputs ?) with probability at most 1/2. The probability of each Ti doing so is thus at
most 1/2n1 , as they are constructed independently. So the probability that the algorithm
fails to determine Nσ is at most 1/2n1 . Finally, taking a union bound over all σ, which are
2n−m in number, we conclude that the probability of algorithm A outputting ? is at most
2n−m/2n1 ≤ 1/2Ω(n).

Running time. We show that the running time of algorithm A is poly(n,M) · 2n−m. First
note that by Corollary 10, the construction of a single linear decision tree Ti takes 2O(Γ)

time, where Γ = mk+1 logm, and hence, step 1 takes n1 · 2O(Γ) time. Next, for a setting
σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn, computing Pσ and constructing the vector
coeff(Pσ) takes only poly(n,M) time. Recall that the depth of each linear decision tree
Ti is O(Γ) and thus, on input vector coeff(Pσ), each of whose entries has bit complexity
at most M , it takes time O(Γ) · poly(M,n) to run all Ti and obtain the output Nσ or ?.
Therefore, step 3 takes poly(n,M) · 2n−m time. Finally, the claim about the total running
time of algorithm A follows at once when we observe that for the setting m = n1/(k+1)/ logn,
Γ = o(n/(logn)k) = o(n).

4 Constant-depth circuits with PTF gates

In this section we give an algorithm for counting the number of satisfying assignment for a
k-PTF circuit of constant depth and slightly superlinear size. We begin with some definitions.

I Definition 11. Let δ ≤ 1 be any parameter. Two Boolean functions f, g are said to be
δ-close if Prx[f(x) 6= g(x)] ≤ δ.

A k-PTF f specified by a polynomial P is said to be δ-close to an explicit constant if
it is δ-close to a constant and such a constant can be computed efficiently, i.e. poly(n,M),
where n is the number of variables in P and w(P ) is at most M .

I Definition 12. For a Boolean function f : {−1, 1}n → {−1, 1}, the majority value of f is
the bit value b ∈ {−1, 1} which maximizes Prx[f(x) = b] and the bit value −b is said to be
its minority value.

For a Boolean function f with majority value b, an assignment x ∈ {−1, 1}n is said to be
a majority assignment if f(x) = b and minority assignment otherwise.

I Definition 13. Given a k-PTF f on n variables specified by a polynomial P , a parameter
m ≤ n and a partial assignment σ ∈ {−1, 1}n−m on n−m variables, let Pσ be the polynomial
obtained by substituting the variables in P according to σ. If P has parameters (n,M)
then Pσ has parameters (m,M). For a k-PTF circuit C, Cσ is defined similarly. If C has
parameters (n, s, d,M) then Cσ has parameters (m, s, d,M).
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Outline of the #SAT procedure. For designing a #SAT algorithm for k-PTF circuits, we
use the generic framework developed by Kabanets and Lu [14] with some crucial modifications.

Given a k-PTF circuit C on n variables of depth d we want to count the number of
satisfying assignments a ∈ {−1, 1}n such that C(a) = −1. We in fact solve a slightly more
general problem. Given (C,P), where C is a small k-PTF circuit of depth d and P is a set
of k-PTF functions, such that

∑
f∈P fan-in(f) is small, we count the number of assignments

that simultaneously satisfy C and all the function in P.
At the core of the algorithm that solves this problem, Algorithm B, is a recursive procedure

A5, which works as follows: on inputs (C,P) it first applies a simplification step that outputs
� 2n instances of the form (C ′,P ′) such that

Both C ′ and functions in P ′ are on m� n variables.
The sets of satisfying assignments of these instances “almost” partition the set of satisfying
assignments of (C,P).
With all but very small probability the bottom layer of C ′ has the following nice structure.

At most n gates are δ-biased. We denote this set of gates by B (as we will simplify
them by setting them to the values they are biased towards).
At most nβd gates are not δ-biased. We denote these gates by G (as we will simplify
them by “guessing” their values).

There is a small set of satisfying assignments that are not covered by the satisfying
assignments of (C ′,P ′) but we can count these assignments with a brute-force algorithm
that does not take too much time.

For each C ′ with this nice structure, then we try to use this structure to create C ′′ which
has depth d− 1. Suppose we reduce the depth as follows:

Set all the gates in B to the values that they are biased towards.
Try all the settings of the values that the gates in G can take, thereby from C ′ creating
possibly 2nβd instances (C ′′,P ′).

(C ′′,P ′) now is an instance where C ′′ has depth d−1. Unfortunately, by simply setting biased
gates to the values they are biased towards, we may miss out on the minority assignments to
these gates which could eventually satisfy C ′. We design a subroutine A3 to precisely handle
this issue, i.e. to keep track of the number of minority assignments, say NC′ . This part of
our algorithm is completely different from that of [14], which only works for subquadratically
sparse PTFs.

Once A3 has computed NC′ , i.e. the number of satisfying assignments among the minority
assignments, we now need to only count the number of satisfying assignments among the
rest of the assignments.

To achieve this we use an idea similar to that in [7, 14], which involves appending P ′
with a few more k-PTFs (this forces the biased gates to their majority values). This gives
say a set P̃ ′. Similarly, while setting gates in G to their guessed values, we again use the
same idea to ensure that we are counting satisfying assignments consistent with the guessed
values, once again updating P̃ ′ to a new set P ′′. This creates instances of the form (C ′′,P ′′),
where the depth of C ′′ is d− 1.

This way, we iteratively decrease the depth of the circuit by 1. Finally, we have instances
(C ′′,P ′′) such that the depth of C ′′ is 1, i.e. it is a single k-PTF, say h. At this stage we
solve #SAT(C̃), where C̃ = h ∧

∧
f∈P′′ f . This is handled in a subroutine A4. Here too our

algorithm differs significantly from [14].

In what follows we will prove Theorem 6. In order to do so, we will set up various
subroutines A1,A2,A3,A4,A5 designed to accomplish certain tasks and combine them
together at the end to finally design algorithm B for the #SAT problem for k-PTF circuits.
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A1 will be an oracle, used in other routines, which will compute number of common
satisfying assignments for small AND of PTFs on few variables (using the same idea as in
the algorithm for #SAT for k-PTFs). A2 will be a simplification step, which will allow us to
argue to argue about some structure in the circuit (this algorithm is from [14]). It will make
many gates at the bottom of the circuit δ-close to a constant, thus simplifying it. A3 will be
used to count minority satisfying assignments for a bunch of δ-biased PTFs, i.e. assignments
which cause at least one of the PTFs to evaluate to its minority value. A4 will be a general
base of case of our algorithm, which will count satisfying assignments for AND of superlinear
many PTFs, by first using A2 to simplify the circuit, then reducing it to the case of small
AND of PTFs and then using A1. A5 will be a recursive procedure, which will use A2 to
first simplify the circuit, and then convert it into a circuit of lower depth, finally making a
recursive call on the simplified circuit.

Parameter setting. Let d be a constant. Let A,B be two fixed absolute large constants.
Let ζ = min(1, A/2Bk2). For each 2 ≤ i ≤ d, let βi = A · εi and εi = ( ζ

10A(k+1) )i. Choose
β1 = 1/10 and ε1 = 1/10A.

Oracle access to a subroutine. Let A1(n′, s, f1, . . . , fs) denote a subroutine with the
following specification. Here, n is the number of variables in the original input circuit.

Input: AND of k-PTFs, say f1, . . . , fs specified by polynomials P1, . . . , Ps respectively,
such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1)) variables and
w(Pi) ≤M .
Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], Pi(a) = −1}.

In what follows, we will assume that we have access to the above subroutine A1. We will set
up such an oracle and show that it answers any call to it in time poly(n,M) in Section 4.5.

4.1 Simplification of a k-PTF circuit
For any 1 > ε� (logn)−1, let β = Aε and δ = exp(−nβ/B·k2), where A and B are constants.
Note that it is these constants A,B we use in the parameter settings paragraph above. Let
A2(C, d, n,M) be the following subroutine.

Input: k-PTF circuit C of depth d on n variables with size n1+ε and weight M .
Output: A decision tree TDT of depth n− n1−2β such that for a uniformly random leaf
σ ∈ {−1, 1}n−n1−2β it outputs a good circuit Cσ with probability 1 − exp(−nε), where
Cσ is called good if its bottom layer has the following structure:

there are at most n gates which are δ-close to an explicit constant. Let Bσ denote this
set of gates.
there are at most nβ gates that are not δ-close to an explicit constant. Let us denote
this set of gates by Gσ.

In [14], such a subroutine A2(C, d, n,M) was designed. Specifically, they proved the
following theorem.

I Theorem 14 (Kabanets and Lu [14]). There is a zero-error randomized algorithm A2(C, d, n,
M) that runs in time poly(n,M) ·O(2n−n1−2β ) and outputs a decision tree as described above
with probability at least 1− 1/210n (and outputs ? otherwise). Moreover, given a good Cσ,
there is a deterministic algorithm that runs in time poly(n,M) which computes Bσ and Gσ.
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8:12 A #SAT Algorithm for Small Constant-Depth PTF Circuits

I Remark. In [14], it is easy to see that the probability of outputting ? is at most 1/2. To
bring down this probability to 1/210n, we run their procedure in parallel 10n times, and
output the first tree that is output by the algorithm. The probability that no such tree is
output is 1/210n.

I Remark. In designing the above subroutine in [14], they consider a more general class
of polynomially sparse-PTF circuits (i.e. each gate computes a PTF with polynomially
many monomials) as opposed to the k-PTF circuits we consider here. Under this weaker
assumption, they get that δ = exp(−nΩ(β3)). However, by redoing their analysis for degree
k-PTFs, it is easy to see that δ could be set to exp(−nβ/B·k2) for some constant B. Under
this setting of δ, we get exactly the same guarantees. In this sense, the above theorem
statement is a slight restatement of [14, Theorem 3.11].

4.2 Enumerating the minority assignments
We now design an algorithm A3(m, `, δ, g1, . . . , g`), which has the following behaviour.

Input: parameters m ≤ n, `, δ such that δ ∈
[
exp(−m1/10(k+1)), 1

]
, ` ≤ m2, k-PTFs

g1, g2, . . . , g` specified by polynomials P1, . . . , P` on m variables (x1, . . . , xm) each of
weight at most M and which are δ-close to −1.
Oracle access to: A1.
Output: a ∈ {−1, 1}m such that ∃i ∈ [`] for which Pi(a) > 0.

I Lemma 15. There is a deterministic algorithm A3(m, `, δ, g1, . . . , g`) as specified above
that runs in time poly(m,M) ·

√
δ · 2m.

Proof. We start with the description of the algorithm.
A3(m, `, δ, g1, . . . , g`).

1. Set q = 1
2 log 1

δ ≤
m
2 and let N = ∅. (N will eventually be the collection of minority

assignments i.e. all a ∈ {−1, 1}m such that ∃i ∈ [`] for which Pi(a) > 0.)
2. For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm, do the following:

a. Construct the restricted polynomials P1,ρ, . . . , P`,ρ. Let gi,ρ = sgn(Pi,ρ) for i ∈ [`].
b. Using oracle A1(q, 1,−gi,ρ), check for each i ∈ [`] if gi,ρ is the constant function −1

by checking if the output of the oracle on the input −gi,ρ is zero.
c. If there is an i ∈ [`] such that gi,ρ is not the constant function −1, try all possible

assignments χ to the remaining q variables x1, . . . , xq. This way, enumerate all
assignments b = (χ, ρ) to x1, . . . , xm for which there is an i ∈ [`] such that Pi(b) > 0.
Add such an assignment to the collection N .

3. Output N .
Correctness. If a ∈ {−1, 1}m is a minority assignment (i.e. ∃i0 ∈ [`] so that Pi0(a) < 0) and

if a = (χ, ρ) where ρ is an assignment to the last m− q variables, and χ to the first q, a
will get added to N in the loop of step 2 corresponding to ρ and that of χ in step 2c,
because of i0 being a witness. Conversely, observe that we only add to the collection N
when we encounter a minority assignment.

Running time. For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm, step 2a takes
poly(m,M) time and step 2b takes O(`) = O(m2) time and so combined, they take only
poly(m,M) time. Let T be the set consisting of all assignments ρ to the last m − q
variables such that the algorithm enters the loop described in step 2c i.e.

T = {ρ ∈ {−1, 1}m−q|∃i ∈ [`] : gi,ρ is not the constant function− 1}
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and let T c denote its complement. Also note that for a ρ ∈ T , enumeration of minority
assignments in step 2c takes 2q · ` · poly(m,M) time. Therefore, we can bound the total
running time by

poly(m,M)(2q · |T |+ |T c|).

Next, we claim that the size of T is small:

I Lemma 16. |T | ≤ ` ·
√
δ · 2m−q.

Proof. We define for i ∈ [`], Ti = {ρ ∈ {−1, 1}m−q|gi,ρ is not the constant function − 1}.
By the union bound, it is sufficient to show that |Ti| ≤

√
δ · 2m−q for a fixed i ∈ [`]. Let Dm

denote the uniform distribution on {−1, 1}m i.e. on all possible assignments to the variables
x1, . . . , xm. Then from the definition of δ-closeness, we know

Pr
a∼Dm

[gi(a) = 1] ≤ δ.

Writing LHS in the following way, we have

E
ρ∼Dm−q

[
Pr

χ∼Dq
[gi,ρ(χ) = 1]

]
≤ δ

where Dm−q and Dq denote uniform distributions on assignments to the last m− q variables
and the first q variables respectively. By Markov’s inequality,

Pr
ρ∼Dm−q

[ Pr
χ∼Dq

[gi,ρ(χ) = 1] ≥
√
δ] ≤

√
δ

Consider a ρ for which this event does not occur i.e. for which Prχ∼Dq [gi,ρ(χ) = 1] <
√
δ.

For such a ρ, gi,ρ has only 2q = 1/
√
δ many inputs and therefore, gi,ρ must be the constant

function −1. Thus, we conclude that

Pr
ρ∼Dm−q

[gi,ρ is not the constant function− 1] ≤
√
δ

or in other words, |Ti| ≤
√
δ · 2m−q. J

Finally, by using the trivial bound |T c| ≤ 2m−q and the above claim, we obtain a total
running time of poly(m,M) ·

√
δ · 2m and this concludes the proof of the lemma. J

4.3 #SAT for AND of k-PTFs

We design an algorithm A4(n,M, g1, . . . , gτ ) with the following functionality.

Input: A set of k-PTFs g1, . . . , gτ specified by polynomials P1, . . . , Pτ on n variables
such that w(pi) ≤M for each i ∈ [τ ] and

∑
i∈[τ ] fan-in(gi) ≤ n1+ε1 .

Output: #{a ∈ {−1, 1}n | ∀i ∈ [τ ], Pi(a) < 0}.
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4.3.1 The details of the algorithm
A4(n,M,g1, . . . ,gτ ).
1. Let m = nα for α = ζε1

2(k+1) . Let C denote the AND of g1, . . . , gτ .
2. Run A2(C, 2, n,M) to obtain the decision tree TDT. Initialize N to 0.
3. For each leaf σ of TDT, do the following:

(A) If Cσ is not good, count the number of satisfying assignments for Cσ by brute-force
and add to N .

(B) If Cσ is good, do the following:
(i) Cσ is now an AND of PTFs in Bσ and Gσ, over n′ = n1−2β1 variables, where

all PTFs in Bσ are δ-close to an explicit constant, where δ = exp(−nβ1/B·k2).
Moreover, |Bσ| ≤ n, |Gσ| ≤ nβ1 .
Let Bσ = {h1, . . . , h`} be specified by Q1, . . . , Q`.
Suppose for i ∈ [`], hi is close to ai ∈ {−1, 1}. Then let Q′i = −ai · Qi and
h′i = sgn(Q′i). Let B′σ = {Q′1, . . . , Q′`}.

(ii) For each restriction ρ : {xm+1, . . . , xn′} → {−1, 1}, do the following:
(a) Check if there exists h′ ∈ B′σ such that h′ρ is not the constant function −1

using A1(m, 1, h′ρ).
(b) If such an h′ ∈ B′σ exists, then count the number of satisfying assignments

for Cσρ by brute-force and add to N .
(c) If the above does not hold, we have established that for each hi ∈ Bσ, hi,ρ

is the constant function ai. If ∃i ∈ [`] such that ai = 1, it means Cσρ is
also a constant 1 . Then simply halt. Else set each hi to ai.
Thus, Cσρ has been reduced to an AND of nβ1 many PTFs over m variables.
Call this set G′σρ, use A1(m,nβ1 , G′σρ) to calculate the number of satisfying
assignments and add the output to N .

4. Finally, output N .

4.3.2 The correctness argument and running time analysis
I Lemma 17. A4 is a zero-error randomized algorithm that counts the number of satisfying
assignments correctly. Further, A4 runs in time poly(n,M) · 2n−nα and outputs the right
answer with probability at least 1/2 (and outputs ? otherwise).

Proof.
Correctness. For a leaf σ of TDT, when Cσ is not good, we simply use brute-force, which is

guaranteed to be correct. Otherwise,
If h′ρ not the constant function −1 for some h′ ∈ B′σ, then we again use brute-force,
which is guaranteed to work correctly.
Otherwise, for each h′ ∈ B′σ, h′ρ is the constant function −1. Here we only need to
consider the satisfying assignments for the gates in Gσρ. For this we use A1, that
works correctly by assumption.

Further, we need to ensure that the parameters that we call A1 on, are valid. To see
this, observe that m = nα ≤ n1/(2(k+1)) because of the setting of α and further, we have
nβ1 ≤ n0.1.
Finally, the claim about the error probability follows from the error probability of A2
(Theorem 14).

Running Time. The time taken for constructing TDT is O∗(2n−n1−2β1 ), by Theorem 14. For
a leaf σ of TDT, we know that step 3A is executed with probability at most 2−nε1 . The
total time for running step 3A is thus O∗(2n−nε1 ). We know that the oracle A1 answers
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calls in poly(n,M) time. Hence, the total time for running step 3(B)iia is O∗(2n−nα).
Next, note that if step 3(B)iib is executed, then all PTFs in Bσ are δ-close to −1. So,
the number of times it runs is at most δ · 2n′ . Therefore, the total time for running
step 3(B)iib is O∗(2n+nα−nβ1/Bk2

). Similar to the analysis of step 3(B)iia, the total time
for running step 3(B)iic is also O∗(2n−nα).
Summing them up, we conclude that total running time is O∗(2n−nα), as due to our
choice of various parameters, n− nα is the dominating power of 2. This completes the
proof. J

4.4 #SAT for larger depth k-PTF circuits
Let C be a k-PTF circuit of depth d ≥ 1 on n variables and let P be a set of k-PTFs
g1, . . . , gτ , which are specified by n-variate polynomials P1, . . . , Pτ . Let #SAT(C,P) denote
#{a ∈ {−1, 1}n | C(a) < 0 and ∀i ∈ [τ ], Pi(a) < 0}. We now specify our depth-reduction
algorithm A5(n, d,M, n1+εd , C,P).

Input: (C,P) as follows:
k-PTF circuit C with parameters (n, n1+εd , d,M).
a set P of k-PTFs g1, . . . , gτ on n variables, which are specified by polynomials
P1, . . . , Pτ such that

∑τ
i=1 fan-in(gi) ≤ n1+εd and for each i ∈ [τ ], w(Pi) ≤M .

Oracle access to: A1,A4.
Output: #SAT(C,P).

We start by describing the algorithm.

4.4.1 The details of the algorithm
Let count be a global counter initialized to 0 before the execution of the algorithm.

A5(n, d,M, n1+εd ,C,P).
1. If d = 1, output A4(n,M, {C} ∪ P) and halt.
2. Run A2(C, d, n,M), which gives us a TDT.
3. For each leaf σ ∈ {−1, 1}n−n1−2βd of TDT. (If not, output ?.)

a. For each i ∈ [τ ] compute Pi,σ, the polynomial obtained by substituting σ in its variables.
Let Pσ = {P1,σ, . . . , Pτ,σ}.

b. Obtain Cσ. If Cσ is not a good circuit, then brute-force to find the number of satisfying
assignments of (Cσ,Pσ), say Nσ, and set count = count +Nσ.

c. If Cσ is good then obtain Bσ and Gσ.
d. Let Bσ = {h1, . . . , h`} be specified by Q1, . . . , Q`. We know that each h ∈ Bσ is δ-close

to an explicit constant, for δ = exp(−nβd/Bk2).
Suppose for i ∈ [`], hi is close to ai ∈ {−1, 1}. Then let Q′i = −ai ·Qi and h′i = sgn(Q′i).
Let B′σ = {Q′1, . . . , Q′`}.

e. Run A3(n1−2βd , `, δ, h′1, . . . , h
′
`) to obtain the set Nσ of all the minority assignments

of Bσ. (Note that this uses oracle access to A1.)
for each a ∈ Nσ, if ((C(a) < 0) AND (∀i ∈ [`], Pi(a) < 0)), then count = count + 1.

f. Let Gσ = {f1, . . . , ft} be specified by polynomials R1, . . . , Rt. We know that t ≤ nβd .
For each b ∈ {−1, 1}t,
i. Let R′i = −bi ·Ri for i ∈ [t]. Let G′σ,b = {R′1, . . . , R′t}.
ii. Let Cσ,b be the circuit obtained from Cσ by replacing each hi by ai 1 ≤ i ≤ ` and

each fj by bj for 1 ≤ j ≤ t.
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iii. Pσ,b = Pσ ∪B′σ ∪G′σ,b.
iv. If d > 2 then run A5(n1−2βd , d− 1,M, n1+εd , Cσ,b,Pσ,b) n1 = 10n times and let Nσ

be the output of the first run that does not output ?. Set count = count +Nσ. (If
all runs of A5 output ?, then output ?.)

v. If d = 2 then run A4(n1−2βd ,M,Cσ,b ∪ Pσ,b) n1 = 10n times and let Nσ be the
output of the first run that does not output ?. Set count = count +Nσ. (If all runs
of A5 output ?, then output ?.)

4. Output count.

4.4.2 The correctness argument and running time analysis
I Lemma 18. The algorithm A5 described above is a zero-error randomized algorithm which
on input (C,P) as described above, correctly #SAT(C,P). Moreover, the algorithm outputs
the correct answer (and not ?) with probability at least 1/2. Finally, A5(n, d,M, n1+εd , C, ∅)
runs in time poly(n,M) ·2n−nζεd/2(k+1) , where parameters εd, ζ are as defined at the beginning
of Section 4.

Proof. We argue correctness by induction on the depth d of the circuit C.
Clearly, if d = 1, correctness follows from the correctness of algorithm A4. This takes

care of the base case.
If d ≥ 2, we argue first that if the algorithm does not output ?, then it does output

#SAT(C,P) correctly. Assume that the algorithm A2 outputs a decision tree TDT as required
(otherwise, the algorithm outputs ? and we are done). Now, it is sufficient to argue that
for each σ, the number of satisfying assignments to (Cσ,Pσ) is computed correctly (if the
algorithm does not output ?).

Fix any σ. If Cσ is not a good circuit, then the algorithm uses brute-force to compute
#SAT(Cσ,Pσ) which yields the right answer. So we may assume that Cσ is indeed good.

Now, the satisfying assignments to (Cσ,Pσ) break into two kinds: those that are minority
assignments to the set Bσ and those that are majority assignments to Bσ. The former set
is enumerated in Step 3e (correctly by our analysis of A3) and hence we count all these
assignments in this step.

Finally, we claim that the satisfying assignments to (Cσ,Pσ) that are majority assignments
of all gates in Bσ are counted in Step 3f. To see this, note that each such assignment
a ∈ {−1, 1}n1−2βd forces the gates in Gσ to some values b1, . . . , bt ∈ {−1, 1}. Note that for
each such b ∈ {−1, 1}t, these assignments are exactly the satisfying assignments of the pair
(Cσ,b,Pσ,b) as defined in the algorithm. In particular, the number satisfying assignments to
(Cσ,Pσ) that are majority assignments of all gates in Bσ can be written as∑

b∈{−1,1}t
#SAT(Cσ,b,Pσ,b).

We now want to apply the induction hypothesis to argue that all the terms in the sum are
computed correctly. To do this, we need to argue that the size of Cσ,b and the total fan-in of
the gates in Pσ,b are bounded as required (note that the total size of C remains the same,
while the total fan-in of P increases by the total fan-in of the gates in B′σ ∪G′σ,b which is at
most n1+εd). It can be checked that this boils down to the following two inequalities

n(1−2βd)(1+εd−1) ≥ n1+εd and n(1−2βd)(1+εd−1) ≤ 2n1+εd

both of which are easily verified for our choice of parameters (for large enough n). Thus, by
the induction hypothesis, all the terms in the sum are computed correctly (unless we get ?).
Hence, the output of the algorithm is correct by induction.
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Now, we analyze the probability of error. If d = 1, the probability of error is at most 1/2
by the analysis of A4. If d > 2, we get an error if either A2 outputs ? or there is some σ
such that the corresponding runs of A5 or A4 output ?. The probability of each is at most
1/210n. Taking a union bound over at most 2n many σ, we see that the probability of error
is at most 1/2Ω(n) ≤ 1/2.

Finally, we analyze the running time. Define T (n, d,M) to be the running time of the
algorithm on a pair (C,P) as specified in the input description above. We need the following
claim.

I Lemma 19. T (n, d,M) ≤ poly(n,M) · 2n−nζεd/2(k+1)
.

To see the above, we argue by induction. The case d = 1 follows from the running time of
A4. Further from the description of the algorithm, we get the following inequality for d ≥ 2.

T (n, d, M) ≤ poly(n, M) · (2n−n1−2βd + 2n−nεd + 2n− 1
2 ·n−βd/(Bk

2)
+ 2n−n

(1−2βd)ζεd−1/2(k+1)
) (1)

The first term above accounts for the running time of A2 and all steps other Steps 3b,3e and
3f. The second term accounts for the brute force search in Step 3b since there are only a 2−nεd

fraction of σ where it is performed. The third term accounts for the minority enumeration
algorithm in Step 3e (running time follows from the running time of that algorithm). The
last term is the running time of Step 3f and follows from the induction hypothesis.

It suffices to argue that each term in the RHS of (1) can be bounded by 2n−nζεd/2(k+1)
.

This is an easy verification from our choice of parameters and left to the reader. This
concludes the proof. J

4.5 Putting it together
In this subsection, we complete the proof of Theorem 6 using the aforementioned subroutines.
We also need to describe the subroutine A1, which is critical for all the other subroutines.
We shall do so inside our final algorithm for the #SAT problem for k-PTF circuits, algorithm
B. Recall that A1 has the following specifications:

Input: AND of k-PTFs, say f1, . . . , fs specified by polynomials P1, . . . , Ps respectively,
such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1)) variables and
w(Pi) ≤M .
Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], fi(a) = −1}.

We are now ready to complete the proof of Theorem 6. Suppose C is the input k-PTF
circuit with parameters (n, n1+εd , d,M). On these input parameters (C, n, n1+εd , d, k,M),
we finally have the following algorithm for the #SAT problem for k-PTF circuits:

B(C, n, n1+εd , d, k,M).
1. (Oracle Construction Step) Construct the oracle A1 as follows. Use n1 = 10n independent

runs of the algorithm from Corollary 10, with ` chosen to be n0.1 and m to be n1/2(k+1),
to construct independent random linear decision trees T1, . . . , Tn1 such that on any input
w = (coeffm,k(Q1), . . . , coeffm,k(Q`)) ∈ Rr·` (where Qis are polynomials of degree at
most k that sign-represent k-PTFs gi, each on m variables), each Ti computes the number
of common satisfying assignments to g1, . . . , g` with error at most 1/2.

2. RunA5(n, d,M, n1+εd , C, ∅). For an internal call toA1, say on parameters (n′, s, f1, . . . , fs)
where n′ ≤ m and s ≤ `, do the following:
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a. Run each Ti on the input w = (coeffn′,k(P1), . . . , coeffn′,k(Ps)) ∈ Rr·s. (We expand
out the coefficient vectors with dummy variables so that they depend on exactly m
variables. Similarly, using some dummy polynomials, we can assume that there are
exactly ` polynomials.)

b. If some Ti outputs the number of common satisfying assignments to f1, . . . , fs, then
output that. Otherwise, if all Ti output ?, then output ?.

I Lemma 20. The construction of the zero-error randomized oracle A1 in the above algorithm
takes 2O(n0.6) time. Once constructed, the oracle A1 answers any call (with the correct
parameters) in poly(n,M) time with error at most 1/210n.

Proof.
Correctness. It is clear from Corollary 10 that algorithm A1 outputs either ? or the correct

number of common satisfying assignments to f1, . . . , fs. Further, as the Tis in step 1
are constructed independently, it follows that with probability at least 1− 1/210n, the
algorithm indeed outputs the number of common satisfying assignments to f1, . . . , fs.

Running Time. Substituting the parameters ` = n0.1 and m = n1/(2(k+1)) in Corollary 10,
we see that the construction of A1 (step 1) takes n1 ·2n

0.6 time. Also, the claimed running
time of answering a call follows upon observing that steps 2a and 2b combined take only
poly(n,M) time to execute. J

With the correctness of A1 now firmly established, we finally argue the correctness and
running time of algorithm B.

Correctness. The correctness of B follows from that of A1,A2,A3,A4, and A5 (see Lemma
20, Theorem 14, Lemmas 15, 17, and 18 respectively). Furthermore, if the algorithm A1 is
assumed to have no error at all, then from the analysis of A5, we see that the probability
of error in B is at most 1/2. However, as algorithm A1 is itself randomized, we still need
to bound the probability that any of the calls made to A1 produce an undesirable output
(i.e. an output of ?). To this end, first note that as the running time of A5 is bounded by
2n, the number of calls to A1 is also bounded by 2n. But by Theorem 14 and Lemma 20,
the probability of A1 outputting ? is bounded by 1/210n. Therefore, by the union bound,
algorithm B correctly outputs the number of satisfying assignments to the input circuit C
with probability at least 1/2− 1/2Ω(n) ≥ 1/4.

Running Time. By Lemma 18 and 20, the running time of B will be 2O(n0.6) + poly(n,M) ·
2n−nζεd/2(k+1) . Thus, the final running time is poly(n,M) · 2n−S where S = nζεd/2(k+1) and
where εd > 0 is a constant depending only on k and d. Setting εk,d = ζεd/2(k + 1) gives the
statement of Theorem 6.
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