
Submodular Secretary Problem with Shortlists

Shipra Agrawal1
Columbia University, New York, NY, USA, 10027
sa3305@columbia.edu

Mohammad Shadravan
Columbia University, New York, NY, USA, 10027
ms4961@columbia.edu

Cliff Stein2

Columbia University, New York, NY, USA, 10027
cliff@ieor.columbia.edu

Abstract
In submodular k-secretary problem, the goal is to select k items in a randomly ordered input so
as to maximize the expected value of a given monotone submodular function on the set of selected
items. In this paper, we introduce a relaxation of this problem, which we refer to as submodular
k-secretary problem with shortlists. In the proposed problem setting, the algorithm is allowed to
choose more than k items as part of a shortlist. Then, after seeing the entire input, the algorithm
can choose a subset of size k from the bigger set of items in the shortlist. We are interested in
understanding to what extent this relaxation can improve the achievable competitive ratio for
the submodular k-secretary problem. In particular, using an O(k) sized shortlist, can an online
algorithm achieve a competitive ratio close to the best achievable offline approximation factor for
this problem? We answer this question affirmatively by giving a polynomial time algorithm that
achieves a 1− 1/e− ε−O(k−1) competitive ratio for any constant ε > 0, using a shortlist of size
ηε(k) = O(k). This is especially surprising considering that the best known competitive ratio (in
polynomial time) for the submodular k-secretary problem is (1/e−O(k−1/2))(1− 1/e) [20].

The proposed algorithm also has significant implications for another important problem of
submodular function maximization under random order streaming model and k-cardinality con-
straint. We show that our algorithm can be implemented in the streaming setting using a memory
buffer of size ηε(k) = O(k) to achieve a 1 − 1/e − ε − O(k−1) approximation. This result sub-
stantially improves upon [28], which achieved the previously best known approximation factor of
1/2 + 8 × 10−14 using O(k log k) memory; and closely matches the known upper bound for this
problem [24].

2012 ACM Subject Classification Mathematics of computing → Submodular optimization and
polymatroids, Theory of computation→ Online algorithms, Theory of computation→ Streaming,
sublinear and near linear time algorithms

Keywords and phrases Submodular Optimization, Secretary Problem, Streaming Algorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.1

Related Version A full version of the paper is available as [1], https://arxiv.org/abs/1809.
05082.

1 Research supported in part by Google Faculty Research Awards 2017 and Amazon Research Awards
2017.

2 Research supported in part by NSF grants CCF-1421161 and CCF-1714818.

© Shipra Agrawal, Mohammad Shadravan, and Cliff Stein;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 1; pp. 1:1–1:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/168410738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sa3305@columbia.edu
mailto:ms4961@columbia.edu
mailto:cliff@ieor.columbia.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.1
https://arxiv.org/abs/1809.05082
https://arxiv.org/abs/1809.05082
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


1:2 Submodular Secretary Problem with Shortlists

1 Introduction

In the classic secretary problem, n items appear in random order. We know n, but don’t
know the value of an item until it appears. Once an item arrives, we have to irrevocably
and immediately decide whether or not to select it. Only one item is allowed to be selected,
and the objective is to select the most valuable item, or perhaps to maximize the expected
value of the selected item [11, 15, 23]. It is well known that the optimal policy is to observe
the first n/e items without making any selection and then select the first item whose value
is larger than the value of the best item in the first n/e items [11]. This algorithm, given
by [11], is asymptotically optimal, and hires the best secretary with probability at least 1/e.
Hence it is also 1/e-competitive for the expected value of the chosen item, and it can be
shown that no algorithm can beat 1/e-competitive ratio in expectation.

Many variants and generalizations of the secretary problem have been studied in the
literature, see e.g., [3, 32, 30, 33, 21, 4]. [21, 4] introduced a multiple choice secretary problem,
where the goal is to select k items in a randomly ordered input so as to maximize the sum of
their values; and [21] gave an algorithm with an asymptotic competitive ratio of 1−O(1/

√
k).

Thus as k → ∞, the competitive ratio approaches 1. Recent literature studied several
generalizations of this setting to multidimensional knapsacks [26], and proposed algorithms
for which the expected online solution approaches the best offline solution as the knapsack
sizes become large (e.g., [13, 10, 2]).

In another variant of multiple-choice secretary problem, [6] and [16] introduce the submod-
ular k-secretary problem. In this secretary problem, the algorithm again selects k items, but
the value of the selected items is given by a monotone submodular function f . The algorithm
has value oracle access to the function, i.e., for any given set T , an algorithm can query
an oracle to find its value f(T ) [31]. The algorithm can select at most k items, a1 · · · , ak,
from a randomly ordered sequence of n items. The goal is to maximize f({a1, · · · , ak}).
Currently, the best result for this setting is due to [20], who achieve a 1/e-competitive ratio in
exponential time, or 1

e (1− 1
e ) in polynomial time. In this case, the offline problem is NP-hard

and hard-to approximate beyond the factor of 1− 1/e achieved by the greedy algorithm [27].
However, it is unclear if a competitive ratio of 1− 1/e can be achieved by an online algorithm
for the submodular k-secretary problem even when k is large.

Our model: secretary problem with shortlists

In this paper, we consider a relaxation of the secretary problem where the algorithm is allowed
to select a shortlist of items that is larger than the number of items that ultimately need
to be selected. That is, in a multiple-choice secretary problem with cardinality constraint
k, the algorithm is allowed to choose more than k items as part of a shortlist. Then, after
seeing the entire input, the algorithm can choose a subset of size k from the bigger set of
items in the shortlist.

This new model is motivated by some practical applications of secretary problems, such
as hiring (or assignment problems), where in some cases it may be possible to tentatively
accept a larger number of candidates (or requests), while deferring the choice of the final
k-selections to after all the candidates have been seen. Since there may be a penalty for
declining candidates who were part of the shortlist, one would prefer that the shortlist is not
much larger than k.

Another important motivation is theoretical: we wish to understand to what extent
this relaxation of the secretary problem can improve the achievable competitive ratio. This
question is in the spirit of several other methods of analysis that allow an online algorithm
to have additional power, such as resource augmentation [18, 29].



S. Agrawal, M. Shadravan, and C. Stein 1:3

The potential of this relaxation is illustrated by the basic secretary problem, where the
aim is to select the item of maximum value among randomly ordered inputs. There, it is
not difficult to show that if an algorithm picks every item that is better than the items seen
so far, the true maximum will be found, while the expected number of items picked under
randomly ordered inputs will be O(logn). Further, we show that this approach can be easily
modified to get the maximum with 1− ε probability while picking at most O(ln(1/ε)) items
for any constant ε > 0. Thus, with just a constant sized shortlist, we can break the 1/e
barrier for the secretary problem and achieve a competitive ratio that is arbitrarily close to 1.

Motivated by this observation, we ask if a similar improvement can be achieved by relaxing
the submodular k-secretary problem to allow a shortlist. That is, instead of choosing k items,
the algorithm is allowed to chose η(k) items as part of a shortlist, for some function η; and
at the end of all inputs, the algorithm chooses k items from the η(k) selected items. Then,
what is the relationship between η(·) and the competitive ratio for this problem? Can we
achieve a solution close to the best offline solution when η(k) is not much bigger than k, for
example when η(k) = θ(k)?

In this paper, we answer this question affirmatively by giving a polynomial time algorithm
that achieves 1− 1/e− ε−O(k−1) competitive ratio for the submodular k-secretary prob-
lem using a shortlist of size η(k) = O(k). This is surprising since 1−1/e is the best achievable
approximation (in polynomial time) for the offline problem. Further, for some special cases
of submodular functions, we demonstrate that an O(1) shortlist allows us to achieve a 1− ε
competitive ratio. These results demonstrate the power of (small) shortlists for closing the
gap between online and offline (polynomial time) algorithms.

We also discuss connections of secretary problem with shortlists to the related streaming
settings. While a streaming algorithm does not qualify as an online algorithm (even when a
shortlist is allowed), we show that our algorithm can in fact be implemented in a streaming
setting to use η(k) = O(k) memory buffer; and our results significantly improve the available
results for the submodular random order streaming problem.

1.1 Problem Definition
We now give a more formal definition. Items from a set U = {a1, a2, . . . , an} (pool of items)
arrive in a uniformly random order over n sequential rounds. The set U is apriori fixed but
unknown to the algorithm, and the total number of items n is known to the algorithm. In
each round, the algorithm irrevocably decides whether to add the arriving item to a shortlist
A or not. The algorithm’s value at the end of n rounds is given by

ALG = E[ max
S⊆A,|S|≤k

f(S)]

where f(·) is a monotone submodular function. The algorithm has value oracle access to this
function. The optimal offline utility is given by

OPT := f(S∗), where S∗ = arg max
S⊆[n],|S|≤k

f(S).

We say that an algorithm for this problem achieves a competitive ratio c using shortlist of
size η(k), if at the end of n rounds, |A| ≤ η(k) and ALG

OPT ≥ c.
Given the shortlist A, since the problem of computing the solution arg maxS⊆A,|S|≤k f(S)

can itself be computationally intensive, our algorithm will also track and output a subset
A∗ ⊆ A, |A∗| ≤ k. We will lower bound the competitive ratio by bounding f(A∗)

f(S∗) .

ITCS 2019



1:4 Submodular Secretary Problem with Shortlists

The above problem definition has connections to some existing problems studied in the
literature. The well-studied online submodular k-secretary problem described earlier is
obtained from the above definition by setting η(k) = k, i.e., it is same as the case when no
extra items can be selected as part of a shortlist. Another related problem is submodular
random order streaming problem studied in [28]. In that problem, items from a set U arrive
online in random order and the algorithm aims to select a subset S ⊆ U , |S| ≤ k in order to
maximize f(S). The streaming algorithm is allowed to maintain a buffer of size η(k) ≥ k.
However, the streaming problem is distinct from the submodular k-secretary problem with
shortlists in several important ways. On one hand, since an item previously selected in
the memory buffer can be discarded and replaced by a new items, a memory buffer of size
η(k) does not imply a shortlist of size at most η(k). On the other hand, in the secretary
setting, we are allowed to memorize/store more than η(k) items without adding them to the
shortlist. Thus an algorithm for submodular k-secretary problem with shortlist of size η(k)
may potentially use a buffer of size larger than η(k). Our algorithms, as described in the
paper, do use a large buffer. But we will show those algorithms can in fact be implemented
to use only η(k) = O(k) buffer, thus obtaining matching results for the streaming problem.

1.2 Our Results
Our main contributation is an online algorithm for the submodular k-secretary problem with
shortlists that, for any constant ε > 0, achieves a competitive ratio of 1− 1

e − ε−O( 1
k ) with

η(k) = O(k). Note that for submodular k-secretary problem there is an upper bound of
1 − 1/e on the achievable aproximation factor, even in the offline setting, and this upper
bound applies to our problem for arbitrary size η(·) of shortlists. On the other hand for
online monotone submodular k-secretary problem, i.e., when η(k) = k, the best competitive
ratio achieved in the literature is 1/e−O(k−1/2) [20]. Remarkably, with only an O(k) size
shortlist, our online algorithm is able to achieve a competitive ratio that is arbitrarily close
to the offline upper bound of 1− 1/e.

In the theorem statements below, big-Oh notation O(·) is used to represent asymptotic
behavior with respect to k and n. We assume the standard value oracle model: the only
access to the submodular function is through a black box returning f(S) for a given set S,
and each such query can be done in O(1) time.

I Theorem 1. For any constant ε > 0, there exists an online algorithm (Algorithm 2)
for the submodular k-secretary problem with shortlists that achieves a competitive ratio of
1− 1

e − ε−O( 1
k ), with shortlist of size ηε(k) = O(k). Here, ηε(k) = O(2poly(1/ε)k).

Specifically, we have ηε(k) =c log(1/ε)
ε2

( 1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
k for some constant c.

Further, we give an efficient implementation of Algorithm 2 that uses a memory buffer of
size at most ηε(k) to get the following result for the problem of submodular random order
streaming problem described in the previous section.

I Theorem 2. For any constant ε ∈ (0, 1), there exists an algorithm for the submodular
random order streaming problem that achieves 1− 1

e − ε−O( 1
k ) approximation to OPT while

using a memory buffer of size at most ηε(k) = O(k). Also, the number of objective function
evaluations for each item, amortized over n items, is O(1 + k2

n ).

The above result significantly improves over the state-of-the-art results in random order
streaming model [28], which are an approximation ratio of 1

2 + 8× 10−14 using a memory of
size O(k log k). In addition it closely matches the known upper bound for this problem [24].



S. Agrawal, M. Shadravan, and C. Stein 1:5

In [24], the authors demonstrate the existence of a monotone sumbodular function f such
that any constant-pass algorithm that finds a (1+ε)(1−1/k)k approximation with probability
at least 0.99 requires Ω(n/k2) space in random order streaming model.

Also note from Theorem 2 that our algorithm can be implemented with running time
linear in n, the size of the input (O(n+ k2) time to be precise). This is significant as, until
recently, it was not known if there exists a linear time algorithm achieving a 1 − 1/e − ε
approximation even for the offline monotone submodular maximization problem under
cardinality constraint[25]. Another interesting aspect of our algorithm is that it is highly
parallel. Even though the decision for each arriving item may take time that is exponential
in 1/ε (roughly ηε(k)/k), it can be readily parallelized among multiple (as many as ηε(k)/k)
processors.

It is natural to ask whether these shortlists are, in fact, too powerful. Maybe they could
actually allow us to always match the best offline algorithm. We give a negative result in
this direction and show that even if we have unlimited computation power, for any function
η(k) = o(n), we can get no better than 7/8-competitive algorithm using a shortlist of size
η(k). Note that with unlimited computational power, the offline problem can be solved
exactly. This result demonstrates that having a shortlist does not make the online problem
too easy - even with a shortlist (of size o(n)) there is an information theoretic gap between
the online and offline problem.

I Theorem 3. No online algorithm (even with unlimited computational power) can achieve a
competitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists,
while using a shortlist of size η(k) = o(n).

Finally, for some special cases of monotone submodular functions, we can asymptotically
approach the optimal solution. The first one is the family of functions we call m-submdular.
A function f is m-submodular if it is submodular and there exists a submodular function F
such that for all S:

f(S) = max
T⊆S,|T |≤m

F (T ) .

I Theorem 4. If f is an m-submodular function, there exists an online algorithm for the
submodular k-secretary problem with shortlists that achieves a competitive ratio of 1− ε with
shortlist of size ηε,m(k) = O(1). Here, ηε,m(k) = (2m+ 3) ln(2/ε).

A proof of Theorem 4 along with the relevant algorithm appear in the full version [1].
Another special case is monotone submodular functions f satisfying the following property:

f({a1, · · · , ai + α, · · · , ak}) ≥ f({a1, · · · , ai, · · · , ak}), for any α > 0 and 1 ≤ i ≤ k. We
can show that the algorithm by [21] asymptotically approaches optimal solution for such
functions, but we omit the details.

1.3 Comparison to related work
We compare our results (Theorem 1 and Theorem 2) to the best known results for submodular
k-secretary problem and submodular random order streaming problem, respectively.

The best known algorithm so far for submodular k-secretary problem is by [20], with
asymptotic competitive ratio of 1/e − O(k−1/2). In their algorithm, after observing each
element, they use an oracle to compute optimal offline solution on the elements seen so far.
Therefore it requires exponential time in n. The best competitive ratio that they can get in
polynomial time is 1

e (1− 1
e )−O(k−1/2). In comparison, by using a shortlist of size O(k) our

ITCS 2019



1:6 Submodular Secretary Problem with Shortlists

Table 1 submodular k-secretary problem settings.

#selections Comp ratio Running time Comp ratio in poly(n)
[20] k 1/e−O(k−1/2) exp(n) 1

e
(1− 1/e)

this Oε(k) 1− 1/e− ε−O(1/k) Oε(n) 1− 1/e− ε−O(1/k)

Table 2 submodular random order streaming problem.

Memory size Approximation ratio Running time update time
[17] O(k) 0.19 O(n) O(1)
[28] O(k log k) 1/2 + 8× 10−14 O(n log k) O(log k)
[5] O( 1

ε
k log k) 1/2− ε poly(n, k, 1/ε) O( 1

ε
log k)

this Oε(k) 1− 1/e− ε−O(1/k) Oε(n+ k2) amortized Oε(1 + k2

n
)

(polynomial time) algorithm achieves a competitive ratio of 1− 1
e − ε−O(k−1). In addition to

substantially improving the above-mentioned result for submodular k-secretary problem, this
closely matches the best possible offline approximation ratio of 1− 1/e in polynomial time.
Further, our algorithm is linear time. Table 1 summarizes this comparison. Here, Oε(·) hides
the dependence on the constant ε. The hidden constant in Oε(.) is c log(1/ε)

ε2

( 1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
for

some absolute constant c.
In the streaming setting, [9] provided a single pass streaming algorithm for monotone

submodular function maximization under k-cardinality constraint, that achieves a 0.25
approximation under adversarial ordering of input. Their algorithm requires O(1) function
evaluations per arriving item and O(k) memory. The currently best known approximation
under adversarial order streaming model is by [5], who achieve a 1/2− ε approximation with
a memory of size O( 1

εk log k). There is an 1/2 + o(1) upper bound on the competitive ratio
achievable by any streaming algorithm for submodular maximization that only queries the
value of the submodular function on feasible sets (i.e., sets of cardinality at most k) while
using o(n) memory [28].

[17] initiated the study of submodular random order streaming problem. Their algorithm
uses O(k) memory and a total of n function evaluations to achieve 0.19 approximation.
The state of the art result in the random order input model is due to [28] who achieve a
1/2 + 8× 10−14 approximation, while using a memory buffer of size O(k log k).

Table 2 provides a detailed comparison of our result in Theorem 2 to the above-mentioned
results for submodular random order streaming problem, showing that our algorithm sub-
stantially improves the existing results for most aspects of the problem.

There is also a line of work studying the online variant of the submodular welfare
maximization problem (e.g., [22, 7, 19]). In this problem, the items arrive online, and each
arriving item should be allocated to one of m agents with a submodular valuation functions
wi(Si) where Si is the subset of items allocated to i-th agent). The goal is to partition
the arriving items into m sets to be allocated to m agents, so that the sum of valuations
over all agents is maximized. This setting is incomparable with the submodular k-secretary
problem setting considered here.

1.4 Organization
The rest of the paper is organized as follows. Section 2 describes our main algorithm
(Algorithm 2) for the submodular k-secretary problem with shortlists, and demonstrates that
its shortlist size is bounded by ηε(k) = O(k). In Section 3, we analyze the competitive ratio



S. Agrawal, M. Shadravan, and C. Stein 1:7

Algorithm 1 Algorithm for secretary with shortlist. (finding max online)
1: Inputs: number of items N , items in I = {a1, . . . , aN} arriving sequentially, δ ∈ (0, 1].
2: Initialize: A← ∅, u = nδ/2, M = −∞
3: L← 4 ln(2/δ)
4: for i = 1 to N do
5: if ai > M then
6: M ← ai
7: if i ≥ u and |A| < L then
8: A← A ∪ {ai}
9: end if
10: end if
11: end for
12: return A, and A∗ := maxi∈A ai

of this algorithm to prove Theorem 1. In Section 4, we provide an alternate implementation
of Algorithm 2 that uses a memory buffer of size at most ηε(k), in order to prove Theorem 2.
Finally, in Section 5, we provide a proof of our impossibility result stated in Theorem 3. The
proof of Theorem 4 along with the relevant algorithm can be found in the full version [1].

2 Algorithm description

Before giving our algorithm for submodular k-secretary problem with shortlists, we describe
a simple technique for (classic) secretary problem with shortlists that achieves a 1 − δ
competitive ratio using shortlists of size logarithmic in 1/δ. Recall that in the secretary
problem, the aim is to select an item with expected value close to the maximum among a pool
of items I = (a1, . . . , aN ) arriving sequentially in a uniformly random order. We will consider
the variant with shortlists, where we now want to pick a shortlist which contains an item with
expected value close to the maximum. We propose the following simple algorithm. For the
first nδ/2 rounds, don’t add any items to the shortlist, but just keep track of the maximum
value seen so far. For all subsequent rounds, for any arriving item i that has a value ai
greater than or equal to the maximum value seen so far, add it to the shortlist if number
of items added so far is less than or equal to L = 4 ln(2/δ). This algorithm is summarized
as Algorithm 1. Clearly, for constant δ, this algorithm uses a shortlist of size L = O(1).
Further, under a uniform random ordering of input, we can show that the maximum value
item will be part of the shortlist with probability 1− δ. (See Proposition 25 in Section 3.)

There are two main difficulties in extending this idea to the submodular k-secretary
problem with shortlists. First, instead of one item, here we aim to select a set S of k items
using an O(k) length shortlist. Second, the contribution of each new item i to the objective
value, as given by the submodular function f , depends on the set of items selected so far.

The first main concept we introduce to handle these difficulties is that of dividing the input
into sequential blocks that we refer to as (α, β) windows. Below is the precise construction
of (α, β) windows, for any postivie integers α and β, such that k/α is an integer.

We use a set of random variables X1, . . . , Xm defined in the following way. Throw n balls
into m bins uniformly at random. Then set Xj to be the number of balls in the jth bin. We
call the resulting Xj ’s a (n,m)-ball-bin random set.

ITCS 2019



1:8 Submodular Secretary Problem with Shortlists

Algorithm 2 Algorithm for submodular k-secretary with shortlist.
1: Inputs: set Ī = {ā1, . . . , ān} of n items arriving sequentially, submodular function f ,

parameter ε ∈ (0, 1].
2: Initialize: S0 ← ∅, R0 ← ∅, A← ∅, A∗ ← ∅, constants α ≥ 1, β ≥ 1 which depend on the

constant ε.
3: Divide indices {1, . . . , n} into (α, β) windows as prescribed by Definition 5.
4: for window w = 1, . . . , k/α do
5: for every slot sj in window w, j = 1, . . . , αβ do
6: Concurrently for all subsequences of previous slots τ ⊆ {s1, . . . , sj−1} of length
|τ | < α in window w, call the online algorithm in Algorithm 1 with the following inputs:

number of items N = |sj |+ 1, δ = ε
2 , and

item values I = (a0, a1, . . . , aN−1), with
a0 := max

x∈R1,...,w−1
∆(x|S1,...,w−1 ∪ γ(τ))

a` := ∆(sj(`)|S1,...,w−1 ∪ γ(τ)),∀` = 1, . . . , N − 1
where sj(`) denotes the `th item in the slot sj .

7: Let Aj(τ) be the shortlist returned by Algorithm 1 for slot j and subsequence τ .
Add all items except the dummy item 0 to the shortlist A. Let’s A(j) =

⋃
τ Aj(τ).

That is,

A← A ∪ (A(j) ∩ sj)

8: end for
9: After seeing all items in window w, compute Rw, Sw as defined in (3) and (4)

respectively.
10: A∗ ← A∗ ∪ (Sw ∩A)
11: end for
12: return A, A∗.

I Definition 5 ((α, β) windows). Let X1, . . . , Xkβ be a (n, kβ)-ball-bin random set. Divide
the indices {1, . . . , n} into kβ slots, where the j-th slot, sj , consists of Xj consecutive indices
in the natural way, that is, slot 1 contains the first X1 indices, slot 2 contains the next X2
indices, etc. Next, we define k/α windows, where window w consists of αβ consecutive slots,
in the same manner as we assigned slots.

Thus, the qth slot is composed of indices {`, . . . , r}, where ` = X1 + ... + Xq−1 + 1 and
r = X1 + ...+Xq. Further, if the ordered the input is ā1, . . . , ān, then we say that the items
inside the slot sq are ā`, ā`+1, . . . , ār. To reduce notation, when clear from context, we will
use sq and w to also indicate the set of items in the slot sq and window w respectively.

When α and β are large enough constants, some useful properties can be obtained from
the construction of these windows and slots. First, roughly α items from the optimal set S∗
are likely to lie in each of these windows; and further, it is unlikely that two items from S∗

will appear in the same slot. (These statements will be made more precise in the analysis
where precise setting of α, β in terms of ε will be provided.) Consequently, our algorithm
can focus on identifying a constant number (roughly α) of optimal items from each of these
windows, with at most one item coming from each of the αβ slots in a window. The core
of our algorithm is a subroutine that accomplishes this task in an online manner using a
shortlist of constant size in each window.



S. Agrawal, M. Shadravan, and C. Stein 1:9

To implement this task, we use a greedy selection method that considers all possible
α sized subsequences of the αβ slots in a window, and aims to identify the subsequence
that maximizes the increment over the ‘best’ items identified so far. More precisely, for any
subsequence τ = (s1, . . . , s`) of the αβ slots in window w, we define a ‘greedy’ subsequence
γ(τ) of items as:

γ(τ) := {i1, . . . , i`} (1)

where

ij := arg max
i∈sj∪R1,...,w−1

f(S1,...,w−1∪{i1, . . . , ij−1}∪{i})−f(S1,...,w−1∪{i1 . . . , ij−1}). (2)

In (2) and in the rest of the paper, we use shorthand S1,...,w to denote S1 ∪ · · · ∪ Sw, and
R1,...,w to denote R1 ∪ · · · ∪ Rw, etc. We also will take unions of subsequences, which we
interpret as the union of the elements in the subsequences. Here Rw is defined to be the
union of all greedy subsequences of length α, and Sw to be the best subsequence among
those. That is,

Rw = ∪τ :|τ |=αγ(τ) (3)

and

Sw = γ(τ∗), (4)

where

τ∗ := arg max
τ :|τ |=α

f(S1,...,w−1 ∪ γ(τ))− f(S1,...,w−1). (5)

Note that ij (refer to (2)) can be set as either an item in slot sj or an item from a previous
greedy subsequence in R1 ∪ · · · ∪Rw−1. The significance of the latter relaxation will become
clear in the analysis.

As such, identifying the sets Rw and Sw involves looking forward in a slot sj to find the
best item (according to the given criterion in (2)) among all the items in the slot. To obtain
an online implementation of this procedure, we use an online subroutine that employs the
algorithm (Algorithm 1) for the basic secretary problem with shortlists described earlier.
This online procedure will result in selection of a set Hw potentially larger than Rw, while
ensuring that each element from Rw is part of Hw with a high probability 1− δ at the cost of
adding extra log(1/δ) items to the shortlist. Note that Rw and Sw can be computed exactly
at the end of window w.

Algorithm 2 summarizes the overall structure of our algorithm. In the algorithm, for any
item i and set V , we define ∆f (i|V ) := f(V ∪ {i})− f(V ).

The algorithm returns both the shortlist A which we show to be of size O(k) in the
following proposition, as well as a set A∗ = ∪w(Sw ∩A) of size at most k to compete with
S∗. In the next section, we will show that E[f(A∗)] ≥ (1− 1

e − ε−O( 1
k ))f(S∗) to provide a

bound on the competitive ratio of this algorithm.

I Proposition 6. Given k, n, and any constant α, β and ε, the size of shortlist A selected by
Algorithm 2 is of size at most 4kβ

(
αβ
α

)
log(2/ε) = O(k).

Proof. For each window w = 1, . . . , k/α, and for each of the αβ slots in this window, lines 6
through 7 in Algorithm 2 runs Algorithm 1 for

(
αβ
α

)
times (for all α length subsequences).

By construction of Algorithm 1, for each run it will add at most L ≤ 4 log(2/ε) items to the
shortlist. Therefore, over all windows, Algorithm 2 adds at most k

α × αβ
(
αβ
α

)
L = O(k) items

to the shortlist. J

ITCS 2019



1:10 Submodular Secretary Problem with Shortlists

3 Bounding the competitive ratio (Proof of Theorem 1)

In this section we show that for any ε ∈ (0, 1), Algorithm 2 with an appropriate choice of
constants α, β, achieves the competitive ratio claimed in Theorem 1 for the submodular
k-secretary problem with shortlists.

Recall the following notation defined in the previous section. For any collection of sets
V1, . . . , V`, we use V1,...,` to denote V1 ∪ · · · ∪ V`. Also, recall that for any item i and set V ,
we denote ∆f (i|V ) := f(V ∪ {i})− f(V ).

Proof overview

The proof is divided into two parts. We first show a lower bound on the ratio E[f(∪wSw)]/OPT
in Proposition 24, where Sw is the subset of items as defined in (4) for every window w. Later
in Proposition 27, we use the said bound to derive a lower bound on the ratio E[f(A∗)]/OPT,
where A∗ = A ∩ (∪wSw) is the subset of the shortlist returned by Algorithm 2.

Specifically, in Proposition 24, we provide settings of parameters α, β such that
E[f(∪wSw)] ≥

(
1− 1

e −
ε
2 −O( 1

k )
)
OPT. A central idea in the proof of this result is to

show that for every window w, given R1,...,w−1, the items tracked from the previous windows,
any of the k items from the optimal set S∗ has at least α

k probability to appear either in
window w, or among the tracked items R1,...,w−1. Further, the items from S∗ that appear
in window w, appear independently, and in a uniformly random slot in this window. (See
Lemma 15.) These observations allow us to show that, in each window w, there exists a
subsequence τ̃w of close to α slots, such that the greedy sequence of items γ(τ̃w) will be
almost “as good as” a randomly chosen sequence of α items from S∗. More precisely, denoting
γ(τ̃w) = (i1, . . . , it), in Lemma 19, for all j = 1, . . . , t, we lower bound the increment in
function value f(· · · ) on adding ij over the items in S1,...,w−1 ∪ i1,...,j−1 as:

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1})|T1,...,w−1, i1, . . . , ij−1]

≥ 1
k

(
(1− α

k
)f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.

We then deduce (using standard techniques for the analysis of greedy algorithm for submodular
functions) that

E[
(

1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ γ(τ̃w))|S1,...,w−1]

≤ e−t/k
((

1− α

k

)
f(S∗)− f(S1,...,w−1)

)
.

Now, since the length t of τ̃w is close to α (as we show in Lemma 21) and since Sw = γ(τ∗)
with τ∗ defined as the “best” subsequence of length α (refer to definition of τ∗ in (5)), we
can show that a similar inequality holds for Sw = γ(τ∗), i.e.,(

1− α

k

)
f(S∗)− E[f(S1,...,w−1 ∪ Sw)|S1,...,w−1]

≤ e−α/k
(
1− δ′

)((
1− α

k

)
f(S∗)− f(S1,...,w−1)

)
,

where δ′ ∈ (0, 1) depends on the setting of α, β. (See Lemma 23.) Then repeatedly applying
this inequality for w = 1, . . . , k/α, and setting δ, α, β appropriately in terms of ε, we can obtain
E[f(S1,...,W )] ≥

(
1− 1

e
− ε

2 −
1
k

)
f(S∗), completing the proof of Proposition 24.

However, a remaining difficulty is that while the algorithm keeps a track of the set Sw for every
window w, it may not have been able to add all the items in Sw to the shortlist A during the online
processing of the inputs in that window. In the proof of Proposition 27, we show that in fact the



S. Agrawal, M. Shadravan, and C. Stein 1:11

algorithm will add most of the items in ∪wSw to the shortlist. More precisely, we show that given
that an item i is in Sw, it will be in shortlist A with probability 1 − δ, where δ is the parameter
used while calling Algorithm 1 in Algorithm 2. Therefore, using properties of submodular functions
it follows that with δ = ε/2, E[f(A∗)] = E[f(∪wSw ∩A)] ≥ (1− ε

2 )E[f(∪wSw)] (see Proposition 27).
Combining this with the lower bound E[f(∪wSw)]

OPT ≥ (1− 1
e
− ε

2 −O( 1
k

)) proven in Proposition 24, we
complete the proof of competitive ratio bound stated in Theorem 1.

3.1 Preliminaries
The following properties of submodular functions are well known (e.g., see [8, 12, 14]).

I Lemma 7. Given a monotone submodular function f , and subsets A,B in the domain of f , we
use ∆f (A|B) to denote f(A ∪B)− f(B). For any set A and B, ∆f (A|B) ≤

∑
a∈A\B ∆f (a|B).

I Lemma 8. Denote by A(p) a random subset of A where each element has a probability at least p
to appear in A (not necessarily independently). Then E[f(A(p))] ≥ (1− p)f(∅) + (p)f(A).

We will use the following well known deviation inequality for martingales (or supermartin-
gales/submartingales).

I Lemma 9 (Azuma-Hoeffding inequality). Suppose {Xk : k = 0, 1, 2, 3, ...} is a martingale (or
super-martingale) and |Xk −Xk−1| < ck, almost surely. Then for all positive integers N and all
positive reals r,

P (XN −X0 ≥ r) ≤ exp

(
−r2

2
∑N

k=1 c
2
k

)
.

And symmetrically (when Xk is a sub-martingale):

P (XN −X0 ≤ −r) ≤ exp

(
−r2

2
∑N

k=1 c
2
k

)
.

I Lemma 10 (Chernoff bound for Bernoulli r.v.). Let X =
∑N

i=1 Xi, where Xi = 1 with probability
pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑N

i=1 pi. Then,

P (X ≥ (1 + δ)µ) ≤ e−δ
2µ/(2+δ)

for all δ > 0, and

P (X ≤ (1− δ)µ) ≤ e−δ
2µ/2

for all δ ∈ (0, 1).

3.2 Some useful properties of (α, β) windows
All the proofs in this section are omitted and are provided in the full version [1].

We first prove some useful properties of (α, β) windows defined in Definition 5 and used in
Algorithm 2. The first observation is that every item will appear uniformly at random in one of the
kβ slots in (α, β) windows.

I Definition 11. For each item e ∈ Ī, define Ye ∈ [kβ] as the random variable indicating the slot in
which e appears. We call vector Y ∈ [kβ]n a configuration.

I Lemma 12. Random variables {Ye}e∈I are i.i.d. with uniform distribution on all kβ slots.

This follows from the uniform random order of arrivals, and the use of the balls in bins process
to determine the number of items in a slot during the construction of (α, β) windows.

Next, we make some observations about the probability of assignment of items in S∗ to the slots
in a window w, given the sets R1,...,w−1, S1,...,w−1 (refer to (3), (4) for definition of these sets). To
aid analysis, we define the following new random variable Tw that will track all the useful information
from a window w.

ITCS 2019



1:12 Submodular Secretary Problem with Shortlists

I Definition 13. Define Tw := {(τ, γ(τ))}τ , for all α-length subsequences τ = (s1, . . . , sα) of
the αβ slots in window w. Here, γ(τ) is a sequence of items as defined in (1). Also define
Supp(T1,··· ,w) := {e|e ∈ γ(τ) for some (τ, γ(τ)) ∈ T1,··· ,w} (Note that Supp(T1,··· ,w) = R1,...,w).

I Lemma 14. For any window w ∈ [W ], T1,...,w and S1,...,w are independent of the ordering of
elements within any slot, and are determined by the configuration Y .

Following the above lemma, given a configuration Y , we will some times use the notation T1,...,w(Y )
and S1,...,w(Y ) to make this mapping explicit.

I Lemma 15. For any item i ∈ S∗, window w ∈ {1, . . . ,W}, and slot s in window w, define

pis := Pr(i ∈ s ∪ Supp(T )|T1,...,w−1 = T ). (6)

Then, for any pair of slots s′, s′′ in windows w,w + 1, . . . ,W ,

pis′ = pis′′ ≥
1
kβ

. (7)

I Lemma 16. For any window w, i, j ∈ S∗, i 6= j and s, s′ ∈ w, the random variables 1(Yi =
s|T1,··· ,w−1 = T ) and 1(Yj = s′|T1,··· ,w−1 = T ) are independent. That is, given T1,··· ,w−1 = T , items
i, j ∈ S∗, i 6= j appear in any slot s in w independently.

3.3 Bounding E[f(∪wSw)]/OPT
In this section, we use the observations from the previous sections to show the existence of a random
subsequence of slots τ̃w of window w such that we can lower bound f(S1,...,w−1∪γ(τ̃w))−f(S1,...,w−1)
in terms of OPT− f(S1,...,w−1). This will be used to lower bound increment ∆f (Sw|S1,...,w−1) =
f(S1,...,w−1 ∪ γ(τ∗))− f(S1,...,w−1) in every window.

I Definition 17 (Zs and γ̃w). Create sets of items Zs, ∀s ∈ w as follows: for every slot s, add
every item from i ∈ S∗ ∩ s independently with probability 1

kβpis
to Zs. Then, for every item

i ∈ S∗ ∩ Supp(T ), with probability α/k, add i to Zs for a randomly chosen slot s in w. Define
subsequence τ̃w as the sequence of slots with Zs 6= ∅.

I Lemma 18. Given any T1,...,w−1 = T , for any slot s in window w, all i, i′ ∈ S∗, i 6= i′ will appear
in Zs independently with probability 1

kβ
. Also, given T , for every i ∈ S∗, the probability to appear in

Zs is equal for all slots s in window w. Further, each i ∈ S∗ occurs in Zs for at most one slot s.

Proof. First consider i ∈ S∗ ∩ Supp(T ). Then, Pr(i ∈ Zs|T ) = α
k
× 1

αβ
= 1

kβ
by construction. Also,

the event i ∈ Zs|T is independent from i′ ∈ Zs|T for any i′ ∈ S∗ as i and i′ are independently
assigned to a Zs in construction. Further, items in S∗ ∩Supp(T ) are assigned with equal probability
to slots in window w.

Now, consider i ∈ S∗, i /∈ Supp(T ). Then, for all slots s in window w,

Pr(i ∈ Zs|T ) = Pr(Yi = s|T ) 1
piskβ

= pis ×
1

piskβ
= 1
kβ
,

where pis is defined in (6). We used that pis = Pr(Yi = s|T ) for i /∈ Supp(T ). Independence of
events i ∈ Zs|T for items in S∗\Supp(T ) follows from Lemma 16, which ensures Yi = s|T and
Yj = s|T are independent for i 6= j; and from independent selection among items with Yi = s into
Zs.

The fact that every i ∈ S∗ occurs in at most one Zs follows from construction: i is assigned to
Zs of only one slot if i ∈ Supp(T ); and for i /∈ Supp(T ), it can only appear in Zs if i appears in slot
s. J

I Lemma 19. Given the sequence τ̃w = (s1, . . . , st) defined in Definition 17, let γ(τ̃s) = (i1, . . . , it),
with γ(·) as defined in (1). Then, for all j = 1, . . . , t,

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1})|T1,...,w−1, i1, . . . , ij−1]

≥ 1
k

(
(1− α

k
)f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.



S. Agrawal, M. Shadravan, and C. Stein 1:13

Proof. For any slot s′ in window w, let {s : s �w s′} denote all the slots that appear after s′ in the
sequence of slots in window w.

Now, using Lemma 18, for any slot s such that s �w sj−1, we have that the random variables
1(i ∈ Zs|Zs1 ∪ . . . ∪ Zsj−1) are i.i.d. for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}. Next, we show that the
probabilities Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) are identical for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}:

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 )

=
∑

s:s�wsj−1

Pr(i ∈ Zs, s = sj |Zs1 ∪ . . . ∪ Zsj−1 )

=
∑

s:s�wsj−1

Pr(i ∈ Zs|s = sj , Zs1 ∪ . . . ∪ Zsj−1 ) Pr(s = sj |Zs1 ∪ . . . ∪ Zsj−1 ) .

Now, from Lemma 18, the probability Pr(i ∈ Zs|s = sj , Zs1 ∪ . . . ∪ Zsj−1 ) must be identical for all
i /∈ Zs1 ∪ . . . ∪ Zsj−1 . Therefore, from above we have that for all i, i′ ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1},

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) = Pr(i′ ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) ≥ 1
k
. (8)

The lower bound of 1/k followed from the fact that at least one of the items from S∗\{Zs1∪. . .∪Zsj−1}
must appear in Zsj for sj to be included in τ̃w. Thus, each of these probabilities is at least 1/k. In
other words, if an item is randomly picked from Zsj , it will be i with probability at least 1/k, for all
i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}.

Now, by definition of γ(·) (refer to (1)), ij is chosen greedily to maximize the increment
∆f (i|S1,...,w−1 ∪ i1,...,s−1) over all i ∈ sj ∪ Supp(T1,...,w−1) ⊇ Zsj . Therefore, we can lower bound
the increment provided by ij by that provided by a randomly picked item from Zsj . By using
monotonicity of f ,

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1}|T1,...,w−1 = T, i1, . . . , ij−1]

(by (8)) ≥ 1
k
E[

∑
i∈S∗\{Z1,...Zsj−1}

E[∆f (i|S1,...,w−1 ∪ {i1, . . . , ij−1}|T, i1, . . . , ij−1]]

(by Lemma 7) ≥ 1
k
E[
(
f(S∗\{Z1, . . . Zsj−1})− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
|T ]

≥ 1
k
E[(f(S∗\ ∪s′∈w Zs′)− f(S1,...,w−1 ∪ {i1, . . . , ij−1}) |T ]

(by Lemma 18 and 8) ≥ 1
k

((
1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
The last inequality uses the observation from Lemma 18 that given T , every i ∈ S∗ appears
in ∪s′∈wZs′ independently with probability α/k, so that every i ∈ S∗ appears in S∗\ ∪s′∈w Zs′
independently with probability 1− α

k
; along with Lemma 8 for submodular function f . J

Using standard techniques for the analysis of greedy algorithm, the following corollary of the previous
lemma can be derived: given any T1,...,w−1 = T :

I Lemma 20.

E
[(

1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ γ(τ̃w))|T

]
≤ E

[
e−
|τ̃w|
k | T

]((
1− α

k

)
f(S∗)− f(S1,...,w−1)

)
.

Proof. Let π0 = (1− α
k

)f(S∗)− E[f(S1,...,w−1)|T1,...,w−1 = T ], and for j ≥ 1,

πj := (1− α

k
)f(S∗)− E[f(S1,...,w−1 ∪ {i1, . . . , ij})|T1,...,w−1 = T, i1, . . . , ij−1],

Then, subtracting and adding (1 − α
k

)f(S∗) from the left hand side of the previous lemma, and
taking expectation conditional on T1,...,w−1 = T, i1, . . . , ij−2, we get

−E[πj |T, i1, . . . , ij−2] + πj−1 ≥
1
k
πj−1

ITCS 2019



1:14 Submodular Secretary Problem with Shortlists

which implies

E[πj |T, i1, . . . , ij−2] ≤
(

1− 1
k

)
πj−1 ≤

(
1− 1

k

)j
π0 .

By the martingale stopping theorem, this implies:

E[πt|T ] ≤ E
[(

1− 1
k

)t
|T
]
π0 ≤ E

[
e−t/k|T

]
π0

where stopping time t = |τ̃w|. (t = |τ̃w| ≤ αβ is bounded, therefore, the martingale stopping theorem
can be applied). J

Next, we compare γ(τ̃w) to Sw = γ(τ∗) . Here, τ∗ was defined has the ‘best’ greedy subsequence
of length α (refer to (4) and (5)). To compare it with τ̃w, we need a bound on size of τ̃w.

I Lemma 21. For any real δ ∈ (0, 1), and if k ≥ αβ, α ≥ 8 log(β) and β ≥ 8, then given any
T1,...,w−1 = T ,

(1− δ)
(

1− 4
β

)
α ≤ |τ̃w| ≤ (1 + δ)α,

with probability at least 1− exp(− δ
2α
8β ).

Proof. Appears in the full version. J

I Lemma 22 (Corollary of Lemma 21). For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ,
β ≥ 8

(δ′)2 , α ≥ 8β2 log(1/δ′), then given any T1,...,w−1 = T , with probability at least 1− δ′e−α/k,

|τ̃w| ≥ (1− δ′)α .

I Lemma 23. For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2 , α ≥

8β2 log(1/δ′), then

E
[
k − α
k

OPT− f(S1,...,w)|T1,...,w−1

]
≤ (1− δ′)e−α/k

(
k − α
k

OPT− f(S1,...,w−1)
)
.

Proof. The lemma follows from substituting Lemma 22 in Lemma 20. J

Now, we can deduce the following proposition.

I Proposition 24. For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2 , α ≥

8β2 log(1/δ′), then the set S1,...,W tracked by Algorithm 2 satisfies

E[f(S1,...,W )] ≥ (1− δ′)2(1− 1/e)OPT.

Proof. By multiplying the inequality Lemma 23 from w = 1, . . . ,W , where W = k/α, we get

E[f(S1,...,W )] ≥ (1− δ′)(1− 1/e)(1− α

k
)OPT.

Then, using 1− α
k
≥ 1− δ′ because k ≥ αβ ≥ α

δ′ , we obtain the desired statement. J

3.4 Bounding E[f(A∗)]/OPT
Here, we compare f(S1...,W ) to f(A∗), where A∗ = S1...,W ∩A, with A being the shortlist returned
by Algorithm 2. The main difference between the two sets is that in construction of shortlist A,
Algorithm 1 is being used to compute the argmax in the definition of γ(τ), in an online manner.
This argmax may not be computed exactly, so that some items from S1...,W may not be part of the
shortlist A. We use the following guarantee for Algorithm 1 to bound the probability of this event.

I Proposition 25. For any δ ∈ (0, 1), and input I = (a1, . . . , aN ), Algorithm 1 returns A∗ =
max(a1, . . . , aN ) with probability (1− δ).



S. Agrawal, M. Shadravan, and C. Stein 1:15

The proof of the above proposition appears in the full version. Intuitively, it follows from the
observation that if we select every item that improves the maximum of items seen so far, we would
have selected log(N) items in expectation. The exact proof involves showing that on waiting nδ/2
steps and then selecting maximum of every item that improves the maximum of items seen so far,
we miss the maximum item with at most δ probability, and select at most O(log(1/δ)) items with
probability 1− δ.

I Lemma 26. Let A be the shortlist returned by Algorithm 2, and δ is the parameter used to call
Algorithm 1 in Algorithm 2. Then, for given configuration Y , for any item a and window w, we have

Pr(a ∈ A|Y, a ∈ S1,··· ,w) ≥ 1− δ .

Proof. From Lemma 14 by conditioning on Y , the set S1,··· ,W is determined. Now if a ∈ S1,...,w,
then for some slot sj in an α length subsequence τ of some window w, we must have

a = arg max
i∈sj∪R1,...,w−1

f(S1,...,w−1 ∪ γ(τ) ∪ {i})− f(S1,...,w−1 ∪ γ(τ)).

Let w′ be the first such window, τ ′, sj′ be the corresponding subsequence and slot. Then, it must
be true that

a = arg max
i∈sj′

f(S1,...,w′−1 ∪ γ(τ ′) ∪ {i})− f(S1,...,w′−1 ∪ γ(τ ′)).

(Note that the argmax in above is not defined on R1,··· ,w′−1). The configuration Y only determines
the set of items in the items in slot sj′ , the items in sj′ are still randomly ordered (refer to Lemma
14). Therefore, from Proposition 25, with probability 1− δ, a will be added to the shortlist Aj′(τ ′)
by Algorithm 1. Thus a ∈ A ⊇ Aj′(τ ′) with probability at least 1− δ. J

I Proposition 27.

E[f(A∗)] := E[f(S1,··· ,W ∩A)] ≥ (1− ε

2)E[f(S1,··· ,W )]

where A∗ := S1,··· ,W ∩A is the size k subset of shortlist A returned by Algorithm 2.

Proof. From the previous lemma, given any configuration Y , we have that each item of S1,··· ,W is
in A with probability at least 1− δ, where δ = ε/2 in Algorithm 2. Therefore using Lemma 8, the
expected value of f(S1,··· ,W ∩A) is at least (1− δ)E[F (S1,··· ,W )]. J

Proof of Theorem 1
Now, we can show that Algorithm 2 provides the results claimed in Theorem 1 for appropriate
settings of α, β in terms of ε. Specifically for δ′ = ε/4, set α, β as smallest integers satisfying
β ≥ 8

(δ′)2 , α ≥ 8β2 log(1/δ′). Then, using Proposition 24 and Proposition 27, for k ≥ αβ we obtain:

E[f(A∗)] ≥ (1− ε

2)(1− δ′)2(1− 1/e)OPT ≥ (1− ε)(1− 1/e)OPT.

This implies a lower bound of 1− ε− 1/e− αβ/k = 1− ε− 1/e−O(1/k) on the competitive ratio.
The O(k) bound on the size of the shortlist was demonstrated in Proposition 6.

4 Streaming (Proof of Theorem 2)
In this section, we show that Algorithm 2 can be implemented in a way that it uses a memory buffer
of size at most η(k) = O(k); and the number of objective function evaluations for each arriving item
is O(1 + k2

n
). This will allow us to obtain Theorem 2 as a corollary of Theorem 1.

In the current description of Algorithm 2, there are several steps in which the algorithm potentially
needs to store O(n) previously seen items in order to compute the relevant quantities. First, in Step
6, in order to be able to compute γ(τ) for all less than α length subsequences τ of slots s1, . . . , sj−1,
the algorithm should have stored all the items that arrived in the slots s1, . . . , sj−1. However, this

ITCS 2019



1:16 Submodular Secretary Problem with Shortlists

memory requirement can be reduced by a small modification of the algorithm, so that at the end of
iteration j − 1, the algorithm has already computed γ(τ) for all such τ , and stored them to be used
in iteration j. In fact, this can be implemented in a memory efficient manner, in the following way.
For every subsequence τ of slots s1, . . . , sj−1 of length < α, consider prefix τ ′ = τ\sj−1. Assume
γ(τ ′) is available from iteration j − 2. If τ ′ = τ , then γ(τ) = γ(τ ′). Otherwise, in Step 6 of iteration
j − 1, the algorithm must have considered the subsequence τ ′ while going through all subsequences
of length less than α of slots s1, . . . , sj−2. Now, modify the implementation of Step 6 so that the
algorithm also tracks the (true) maximum Mj−1(τ ′) of a0, a1, . . . , aN for each τ ′. Then, γ(τ) can
be obtained by extending γ(τ ′) by Mj−1(τ ′), i.e., γ(τ) = {γ(τ ′),Mj−1(τ ′)}. Thus, at the end of
iteration j − 1, γ(τ) would have been computed for all subsequences τ relevant for iteration j, and
so on. In order to store these γ(τ) for every subsequence τ (of at most α slots from αβ slots), we
require a memory buffer of size at most α2(αβ

α

)
= O(1).

Secondly, across windows and slots, the algorithm keeps track of Rw, Sw, w = 1, . . . , k/α where
W = k/α. In the current description of Algorithm 2, these sets are computed after seeing all
the items in window w in Step 9. Thus, all the items arriving in that window would be needed
to be stored in order to compute them, requiring O(n) memory buffer. However, the alternate
implementation discussed in the previous paragraph reduces this memory requirement to O(k) as
well. Using the above implementation, at the end of iteration αβ for the last slot sαβ in window w,
we would have computed and stored γ(τ) for all the subsequences τ of length α of slots s1, . . . , sαβ .
Rw is simply defined as union of all items in γ(τ) over all such τ (refer to (3)). And, Sw = γ(τ∗)
for the best subsequence τ∗ among these subsequences (refer to (4)). Thus, computing Rw and Sw
does not require any additional memory buffer. Storing Rw and Sw for all windows requires a buffer
of size at most

∑
w
|Rw| + |Sw| = k

α
× α
(
αβ
α

)
+ k = O(k). Therefore, the total buffer required to

implement Algorithm 2 is of size O(k).
Finally, let’s bound the number of objective function evaluations for each arriving item. Each

arriving item is processed in Step 6, where objective function is evaluated twice for each subsequence
to compute the corresponding ai. Since there are atmost

(
αβ
α

)
subsequences τ for which this

quantity is computed, the total number of times this computation is performed is bounded by
2
(
αβ
α

)
= O(1). For each τ , we also compute a0 in the beginning of the slot. Computing a0 for each τ

involves taking max over all items in R1,...,w−1, and requires 2|R1,...,w−1| ≤ 2k
(
αβ
α

)
evaluations of the

objective function. Due to this computation, in the worst-case, the update time for an item can be
2k
(
αβ
α

)2 + 2
(
αβ
α

)
= O(k). However, since a0 is computed once in the beginning of the slot for each τ ,

the total update time over all items is bounded by 2k
(
αβ
α

)2 × kβ +
(
αβ
α

)
× n = O(k2 + n). Therefore

the amortized update time for each item is O(1 + k2

n
). This concludes the proof of Theorem 2.

5 Impossibility Result (Proof of Theorem 3)
In this section we provide an upper bound showing the following:

I Theorem 3. No online algorithm (even with unlimited computational power) can achieve a
competitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists, while
using a shortlist of size η(k) = o(n).

In the following proof, for simplicity of notation, we prove the desired bound for submodular
(k + 1)-secretary problem. For any given n, k, we construct a set of instances of the submodular
(k + 1)-secretary problem with shortlists such that any online algorithm that uses a shortlist of size
η(k+ 1) will have competitive ratio of at most 7

8 + η(k+1)
2n on a randomly selected instance from this

set.
First, we define a monotone submodular function f as follows. The ground set consists of

n
2k + n − 1 items. There are two types of items, C and D, with L := n/2k items of type C and
n− 1 items of type D. We define f(φ) := 0, f({c}) := k for c ∈ C, and f({d}) := 1 for all d ∈ D.
Also there is a collection of L disjoint sets T` = {c`, d`1, · · · , d`k}, ` = 1, 2, . . . L, such that c` ∈ C and
d`j ∈ D. We define f(T`) := 2k for all ` = 1, . . . , L. Now, let

g(t) := k + k

2 + · · ·+ k

2i−1 + (t− ik)
2i ,



S. Agrawal, M. Shadravan, and C. Stein 1:17

where i = bt/kc. It is easy to see that g is a monotone submodular function.
Now, define f on the remaining subsets of the ground set as follows. For all S with |S| ≥ 1,
|S ∩ C| ≥ 2 =⇒ f(S) := 2k + 1

|S ∩ C| = 0 =⇒ f(S) := 1 + g(|S| − 1)

|S ∩ C| = 1 =⇒ S ∩ C = {c`} for some ` ∈ [L] =⇒

f(S) := min{2k + 1, k + 1
2g(|S| − 1) + k′

2i+1 },

where k′ = |S ∩ {d`1, · · · , d`k}|, i = b(|S| − 1)/kc.

Observe that since g(k) = k, for any such subset S of size at most k + 1, we have f(S) ≤
k + k

2 + k
2 = 2k.

I Lemma 28. f is a monotone submodular function.

Now, denote D` := T `∩D = {d`1, · · · , d`k} for ` = 1, 2, . . . , L. Also, let D′ = D \ (
⋃L

`=1 D
`). Now

define L input instances {I`}`=1,...,L, each of size n, as follows. For any arbitrary subset D̃ ⊆ D′ of
size n− Lk − 1, define I` =

⋃
i=1,...,LD

i ∪ D̃ ∪ {c`}, for ` = 1, . . . , L. Thus, for instance I`, the the
optimal k + 1 subset is T ` with value f(T `) = 2k.

Now consider any algorithm for the submodular secretary problem with shortlists and cardinality
constraint k+ 1. We denote by Alg the set of η(k+ 1) items selected by the algorithm as part of the
shortlist. Let Ī denote an instance chosen uniformly at random from I`, ` = 1, . . . , L. Let π denote a
random ordering of n items in Ī. We denote by random variable (Ī , π) the randomly ordered input
instance to the algorithm. Also we denote by T̄ , D̄ and c̄, the corresponding T `, D` and c`.

Now we claim

I Lemma 29. E(Ī,π)[|Alg ∩ D̄|] ≤ k/2 + η(k + 1)/L.

Proof. Appears in the full version [1]. J

Now on input Ī, if the algorithm doesn’t select c̄ as part of shortlist Alg, then by definition of f for
sets that do not contain any item of type C, we have

f(A∗) := max
S⊆Alg:|S|≤k+1

f(S) ≤ 1 + g(k) < k + 2.

Otherwise, if algorithm selects c̄, then by definition of f ,

f(A∗) := max
S⊆Alg:|S|≤k+1

f(S) ≤ max
S⊆Alg\(D̄∪{c̄}):|S|≤k−|Alg∩D̄|

f(S ∪ D̄ ∪ {c̄}) = k+ k

2 + 1
2 |Alg ∩ D̄|,

and therefore by lemma 29

E[f(A∗)] ≤ k + k

2 + k

4 + η(k + 1)
2L = 7k

4 + kη(k + 1)
n

.

Since the optimal is equal to E[f(T̄ )] = 2k, the competitive ratio is upper bounded by

7
8 + η(k + 1)

2n .

This proves a competitive ratio upper bound of 7
8 + o(1) when η(k + 1) = o(n), to complete the

proof of Theorem 3.

ITCS 2019



1:18 Submodular Secretary Problem with Shortlists

References
1 Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular Secretary Problem

with Shortlists, 2018. arXiv:1809.05082.
2 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A Dynamic Near-Optimal Algorithm for

Online Linear Programming. Operations Research, 62(4):876–890, 2014.
3 Miklos Ajtai, Nimrod Megiddo, and Orli Waarts. Improved Algorithms and Analysis for

Secretary Problems and Generalizations. SIAM J. Discret. Math., 14(1):1–27, January
2001.

4 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online Auctions
and Generalized Secretary Problems. SIGecom Exch., 7(2):7:1–7:11, June 2008.

5 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming Submodular Maximization: Massive Data Summarization on the Fly. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, pages 671–680, New York, NY, USA, 2014. ACM.

6 Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular Secretary Problem and Extensions. ACM Trans. Algorithms, 9(4):32:1–32:23,
October 2013.

7 Niv Buchbinder, Moran Feldman, and Mohit Garg. Online Submodular Maximization:
Beating 1/2 Made Simple. arXiv preprint, 2018. arXiv:1807.05529.

8 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Submodular
Maximization with Cardinality Constraints. In Proceedings of the Twenty-fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1433–1452. Society for
Industrial and Applied Mathematics, 2014.

9 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Mathematical Programming, 154(1):225–247, December 2015.

10 Nikhil Devanur and Thomas Hayes. The Adwords Problem: Online Keyword Matching
with Budgeted Bidders under Random Permutations. In ACM EC, 2009.

11 E. B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Math. Dokl, 4, 1963.

12 Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing Non-monotone Submodular
Functions. SIAM J. Comput., 40(4):1133–1153, July 2011.

13 J. Feldman, M. Henzinger, N. Korula, V. Mirrokni, and C. Stein. Online stochastic packing
applied to display ad allocation. Algorithms–ESA 2010, pages 182–194, 2010.

14 Moran Feldman and Rico Zenklusen. The Submodular Secretary Problem Goes Linear.
In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), FOCS ’15, pages 486–505. IEEE Computer Society, 2015.

15 Thomas S Ferguson et al. Who solved the secretary problem? Statistical science, 4(3):282–
289, 1989.

16 Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained Non-
monotone Submodular Maximization: Offline and Secretary Algorithms. In Proceedings
of the 6th International Conference on Internet and Network Economics, WINE’10, pages
246–257. Springer-Verlag, 2010.

17 Tom Hess and Sivan Sabato. The submodular secretary problem under a cardinality con-
straint and with limited resources. CoRR, abs/1702.03989, 2017. arXiv:1702.03989.

18 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

http://arxiv.org/abs/1809.05082
http://arxiv.org/abs/1807.05529
http://arxiv.org/abs/1702.03989


S. Agrawal, M. Shadravan, and C. Stein 1:19

19 Michael Kapralov, Ian Post, and Jan Vondrák. Online Submodular Welfare Maximization:
Greedy is Optimal. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1216–1225. Society for Industrial and Applied
Mathematics, 2013.

20 Thomas Kesselheim and Andreas Tönnis. Submodular Secretary Problems: Cardinality,
Matching, and Linear Constraints. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 16:1–16:22, 2017.

21 Robert Kleinberg. A Multiple-choice Secretary Algorithm with Applications to Online
Auctions. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, pages 630–631, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

22 Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online Submodular Welfare
Maximization: Greedy Beats 1/2 in Random Order. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 889–898. ACM, 2015.

23 D. V. Lindley. Dynamic Programming and Decision Theory. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 10(1):39–51, 1961.

24 Andrew McGregor and Hoa T Vu. Better Streaming Algorithms for the Maximum Coverage
Problem. In 20th International Conference on Database Theory, 2017.

25 Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and
Andreas Krause. Lazier Than Lazy Greedy. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages 1812–1818. AAAI Press, 2015.

26 Martin Moser, Dusan P Jokanovic, and Norio Shiratori. An algorithm for the multidimen-
sional multiple-choice knapsack problem. IEICE transactions on fundamentals of electron-
ics, communications and computer sciences, 80(3):582–589, 1997.

27 George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of operations research, 3(3):177–188,
1978.

28 Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat
Mousavifar, and Ola Svensson. Beyond 1/2-Approximation for Submodular Maximization
on Massive Data Streams. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 3829–3838. PMLR, 10–15 jul 2018.

29 Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling
via resource augmentation. Algorithmica, 32:163–200, 2001.

30 Robert J Vanderbei. The optimal choice of a subset of a population. Mathematics of
Operations Research, 5(4):481–486, 1980.

31 Jan Vondrak. Optimal Approximation for the Submodular Welfare Problem in the Value
Oracle Model. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-
puting, STOC ’08, pages 67–74. ACM, 2008.

32 John G. Wilson. Optimal choice and assignment of the best m of n randomly arriving
items. Stochastic Processes and their Applications, 39(2):325–343, 1991.

33 John G Wilson. Optimal choice and assignment of the best m of n randomly arriving items.
Stochastic processes and their applications, 39(2):325–343, 1991.

ITCS 2019


	Introduction
	Problem Definition
	Our Results
	Comparison to related work
	Organization

	Algorithm description
	Bounding the competitive ratio (Proof of Theorem 1)
	Preliminaries
	Some useful properties of (alpha, beta) windows
	Bounding E[f(cup_w S_w)]/OPT
	Bounding E[f(A*)]/OPT

	Streaming (Proof of Theorem 2)
	Impossibility Result (Proof of Theorem 3)

