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Abstract
We consider the anonymous broadcast model: a set of n anonymous processes communicate via
send-to-all primitives. We assume that underlying communication channels are asynchronous but
reliable, and that the processes are subject to crash failures. We show first that in this model,
even a single faulty process precludes implementations of atomic objects with non-commuting
operations, even as simple as read-write registers or add-only sets. We, however, show that a
sequentially consistent read-write memory and add-only sets can be implemented t-resiliently for
t < n/2, i.e., provided that a majority of the processes do not fail. We use this implementation
to establish an equivalence between the t-resilient read-write anonymous shared-memory model
and the t-resilient anonymous broadcast model in terms of colorless task solvability. As a result,
we obtain the first task computability characterization for unreliable anonymous message-passing
systems.
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1 Introduction

Algorithms for conventional distributed systems assume that every process is assigned a
distinct identifier that can be used in the code. However, anonymous algorithms that have
to program processes identically can be used in a much wider context. Many systems, such
as sensor networks, web services, peer-to-peer file repositories, are anonymous by design or
may choose anonymity for the sake of users’ privacy [2, 10].

In this paper, we consider computability issues of anonymous systems. This topic is
traditionally tackled in shared-memory models where a set of asynchronous (or partially
synchronous) anonymous processes communicate via multi-writer multi-reader shared memory
locations. A number of interesting complexity and computability bounds [16, 7, 12, 20, 8, 6]
have been established for these models. Guerraoui and Ruppert [16] showed that many
interesting abstractions, such as timestamps and atomic snapshots, can be implemented in
a wait-free way, i.e., tolerating an arbitrary number of faulty processes. Yanagisawa [20]
characterized the class of colorless tasks that can be solved wait-free in this model.1 It turns

1 Informally, a colorless task, such as consensus or set agreement, is defined in terms of relations between
sets of inputs and sets of outputs, so they allow natural formulations for anonymous systems. A wait-free
algorithm guarantees that a process makes progress, e.g., produces a task output, in a finite number of
its own steps, even if all n− 1 remaining processes are faulty.
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23:2 Task Computability in Unreliable Anonymous Networks

out the class is precisely the tasks that can be solved in the conventional non-anonymous
model, i.e., getting rid of process identifiers does not make the system weaker with respect
to solving colorless tasks. The equivalence has been recently generalized to t-resilient models
assuming that at most t processes are allowed to fail by Delporte et al. [13]: a colorless task
is t-resiliently solvable in the (non-anonymous) read-write shared-memory model if and only
it is t-resiliently solvable in the anonymous counterpart.

Anonymous computing in networks. One can argue that shared memory may be an
inadequate communication model for large-scale systems, which typically motivate assuming
anonymous algorithms. In this paper, we propose to have a closer look at anonymous
computations in message-passing systems. More precisely, we consider systems in which
processes communicate via the reliable anonymous broadcast primitive: every broadcast
message is eventually received and the integrity of received messages is ensured, while it is
impossible to detect the source of a given message.

The model has been considered earlier in the fault-free context by Aspnes et al. [3].
They showed that if no process can fail, any idemdicent object can be implemented in
the anonymous broadcast model in the linearizable way, i.e., ensuring that each operation
on it appears to be executed atomically within the operation’s interval. Intuitively, for an
idemdicent object, such as a register, an add-only set, or a counter with separate increment and
read operations, any operation modifying the object’s state returns only a (non-informative)
ack response.

Unreliable anonymous networks. We propose a set of computability results for the anony-
mous broadcast model with unreliable processes. We show first that no object exporting
non-commuting operations, including registers and add-only sets, has a linearizable imple-
mentation in this model, as long as just a single process can fail. We leverage the fact that, in
anonymous message-passing systems, no process can detect whether a given message comes
in reaction to its own action or to an earlier action performed by its clone, i.e., a process
having an identical state. Therefore, it might become impossible to ensure that operations on
the implemented object appear in an order that preserves their real-time precedence, which
is required by linearizability.

We show, however, that a t-resilient sequentially consistent add-only set can be imple-
mented in the anonymous broadcast model, assuming that t < n/2, i.e., less than half of the
processes are allowed to fail. Unlike linearizable objects, sequentially consistent ones do not
ensure that the sequential execution preserves the real time precedence between operations
and, as a result, sequential consistency is not a composable property [17]. Our t-resilient
implementation of an add-only set, inspired by the wait-free atomic snapshot algorithm by
Afek et al. [1], is interesting in its own right. To ensure that the views of the set contents
evaluated by different processes are consistent with the same sequential execution, a get
operation is only allowed to return a set of values that is agreed upon by a majority of
processes. To guarantee that every correct process completes each of its operations, we
introduce a helping mechanism: every value added to the set is equipped with a view that
can be used by future get operations.

Colorless tasks in unreliable anonymous networks. Further, we show that a sequentially
consistent add-only set is as good as a linearizable one, as long as colorless task computability
is concerned. More precisely, we can characterize the class of colorless tasks that are t-
resiliently solvable in the anonymous broadcast model, where t < n

2 . The characterization
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stipulates that a colorless task is t-resilient solvable in the anonymous broadcast model if and
only if it is t-resiliently solvable in the anonymous shared-memory model, where t < n

2 . Thus,
for colorless tasks, the anonymous broadcast model with a majority of correct processes is
as powerful as the anonymous shared-memory model and, by recalling the equivalence of
Delporte et al. [13], the regular (non-anonymous) shared-memory model.

Technically, the if part of our characterization is established by the following two steps:
First, we present an implementation of a sequentially-consistent snapshot. Then, we show
that any algorithm that t-resiliently solves a colorless task using an atomic snapshot memory
also solves the colorless task with a sequentially-consistent snapshot memory. The only
if part follows from the characterization of the t-resilient colorless task solvability in the
anonymous shared-memory model by Delporte et al. [13].

Related work. Colorless tasks, a fundamental class of distributed problems, include consen-
sus [15], set agreement [9], and loop agreement [19]. The class was extensively studied mainly
in the context of the non-anonymous shared-memory computing [18]. There are recent papers
that have studied the computability of colorless tasks in the anonymous shared-memory
model [20, 13].

In the non-anonymous setting, the message-passing model and the shared-memory model
are equivalent in the sense of simulation [4], where t < n

2 . Thus, a colorless task can be solved
in the shared-memory model if and only if it can be solved in the t-resilient message-passing
model. The situation is different in the anonymous case. In general, the anonymous broadcast
model and the anonymous shared-memory model cannot simulate each other. Thus, results
concerning the anonymous shared-memory colorless task computability cannot be directly
applied to the anonymous broadcast model.

The add-only set object has been first introduced under the name of weak set by Delporte
and Fauconnier [11]. The object has been studied mainly in the context of anonymous
shared-memory computing and used to characterize anonymous shared-memory systems
concerning colorless tasks [20, 13, 14].

Failure detectors that enable solutions to the consensus task in unreliable anonymous
networks have been discussed by Bonnet and Raynal [5]. In contrast, this paper focuses on
general task computability in asynchronous anonymous networks, i.e., without help from
external oracles.

Roadmap. The rest of the paper is organized as follows. In Section 2, we give our model
definitions. In Section 3, we show that no type with weakly non-commutative operations
allows a linearizable implementation in an unreliable atomic broadcast model. In Section 4,
we present a sequentially consistent implementation of an add-only set in the anonymous
broadcast model with a majority of correct processes. In Section 5, we present our anonymous
colorless task computability theorem. In Section 6, we discuss relaxations of linearizability
that might fit the anonymous broadcast context.

2 Preliminaries

We consider the anonymous model of n processes, p1, . . . , pn, that have no knowledge of
their identifiers and execute an identical algorithm. We particularly focus on the anonymous
asynchronous broadcast model. In the model, a distributed system is composed of n anonymous
processes that run asynchronously and communicate by broadcasting messages via a fully
connected reliable network: every pair of processes are connected via a first-in-first-out
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23:4 Task Computability in Unreliable Anonymous Networks

(FIFO) reliable link. To send a message m to all, a process invokes broadcast(m) primitive,
and an event receive(m) occurs when the message is received.

Broadcast models. Here we distinguish two broadcast models: instantaneous and non-
instantaneous broadcasts. In the instantaneous broadcast model, every event broadcast(m)
performed by a process pi instantaneously sends message m to every other process and, as
the links are assumed to be reliable, it is guaranteed that the message will eventually be
received by every correct process. In the non-instantaneous broadcast model, if broadcast(m)
is the last event performed by a faulty process, then it sends m to a subset of processes
and guarantees that the message will be eventually received by every correct process in this
subset. In both cases, the communication channels ensure FIFO semantics: the messages are
delivered in the order they have been sent. Notice, however, that a process cannot detect
through which link a message has been received.

Our impossibility result is shown for the stronger instantaneous model and our upper
bounds hold for the weaker non-instantaneous model. (By default we assume that the model
is non-instantaneous.)

Object types and implementations. A sequential object type is defined as a tuple T =
(Q, q0, O,R,∆), where Q is a set of states, q0 ∈ Q is an initial state, O is a set of operations,
R is a set responses and ∆ ⊆ Q × O × Q × R is a relation that associates a state and an
operation to a set of possible new states and corresponding responses. Here we assume that ∆
is total on the first two elements, i.e., for each state q ∈ Q and each operation in o ∈ O, some
transition to a new state is defined, i.e., ∀(q, o) ∈ Q×O,∃(q′, r) ∈ Q×R: (q, o, q′, r) ∈ ∆.

A history is a sequence of (operation) invocations and responses and a sequential history
is a history that starts with an invocation of an operation and in which every invocation is
immediately followed with a matching response. A sequential history o1, r1, o2, r2, . . ., where
∀i ≥ 1, oi ∈ O, ri ∈ R, is legal with respect to type T = (Q, q0, O,R,∆) if there exists a
sequence q1, q2, . . . of states in Q such that ∀i ≥ 1, (qi−1, oi, qi, ri) ∈ ∆.

An implementation of an object type T is an algorithm that, for each invoked operation,
prescribes the actions that a process needs to take to perform it. In our case, the actions are
invocations of broadcast primitives, processing of receive events and returning responses to the
invoked operations. An execution of an implementation is a sequence of events: invocations
and responses of operations, broadcast calls and receive events: the sequence of events at
every process must respect the algorithm assigned to it. A process is called faulty in an
infinite execution if it stops before performing an event prescribed by its algorithm; otherwise
it is called correct.

Linearizability and sequential consistency. We assume that no process invokes a new
operation before receiving a response for the previous one. For each pattern of invocations,
the implementation produces a history, i.e., the sequence of distinct invocations and responses,
labelled with process identifiers and unique sequence numbers.

A projection of a history H to process pi, denoted H|i is the subsequence of elements of
H labelled with pi. An invocation o by a process pi is incomplete in H if it is not followed by
a response in H|i. A history is complete if it has no incomplete invocations. A completion
of H is a history H̄ that is identical to H except that every incomplete invocation in H is
either removed or completed by inserting a matching response somewhere after it.

A sequentially consistent implementation of an object type T ensures that for every
history H it produces, there exists a completion H̄ and a legal sequential history S such that
for all processes pi, H̄|i = S|i.
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A linearizable implementation, additionally, preserves the real-time order between invoca-
tions. Formally, an invocation o1 precedes an invocation o2 in H, denoted o1 ≺H o2, if o1 is
complete and the corresponding response r1 precedes o2 in H. Note that ≺H stipulates a
partial order on invocations in H. Now a linearizable implementation of T ensures that for
every history H it produces, there exists a completion H̄ and a legal sequential history S
such that (1) for all processes pi, H̄|i = S|i and (2) ≺H⊆≺S .

A (sequentially consistent or linearizable) implementation is t-resilient if, under the
assumption that at most t processes crash, it ensures that every invocation performed by a
correct process is eventually followed by a response.

An anonymous implementation is not allowed to use process identifiers: every process is
assigned the same algorithm that only depends on the sequence of operation invocations and
received messages.

3 Linearizable objects with non-commuting operations

In this section, we show that nontrivial sequential object types cannot be implemented in a
linearizable way in the anonymous broadcast model if t ≥ 1, i.e., at least one process may
fail.

Given a type T = (Q, q0, O,R,∆), we say that operations o1, o2 ∈ O are weakly-non-
commutative if, for all r1, r2 ∈ R such that o1r1o2r2 is legal, o1r1o2r2o1r1 is not legal.
Intuitively, o1 is a read operation and o2 is an update: swapping the order of the two
operations affects the response of o1.

Two examples of types with weakly non-commutative operations are read-write register
and add-only set. A register stores an integer value, initially 0, and exports operations read,
which returns the value, and write(v), v ∈ N, which replaces the value with v. Here read()
and write(1) are examples of weakly non-commutative operations. An add-only set stores a
set of integer values, initially ∅, and exports operations get, which returns the set, and add(v),
v ∈ N, which adds v to the set. Similarly, get() and add(1) are weakly non-commutative.

I Theorem 1. There does not exist a 1-resilient linearizable implementation of a type with
weakly non-commutative operations in the anonymous instantaneous broadcast model.

Proof. Suppose, by contradiction, that there exists such an implementation of a type
T = (Q, q0, O,R,∆) with weakly non-commutative operations. Let o1, o2 ∈ O be operations
of T such that for all r1, r2 ∈ R, whenever o1r1o2r2 is legal, it holds that o1r1o2r2o1r1 is not
legal.

Consider the following execution of the implementation. Process p1 invokes o1 and takes
steps of the algorithm until a response r1 is returned, then invokes o2 and takes steps of
the algorithm until a response r2 is returned. In this execution, we pick another process
p2 and delay all messages broadcast by and to p2 at least until r2 is returned at p1. The
remaining processes obediently take steps of the algorithm and all messages sent across these
processes are eventually received. Note that both o1 and o2 must eventually return at p1, as
the implementation is 1-resilient and, from p1’s perspective, the execution is indistinguishable
from an execution in which p2 has crashed initially and all other processes are correct. Let α
be the resulting (finite) execution and e1, . . . , ek be the subsequence of events of p1 in α that
starts with o1 and ends with r1.

Let e′1, . . . , e′k be the sequence of events that is identical to e1, . . . , ek, except that every
event is now labelled with p2 (or, in other words, is performed by p2).

We claim that αe′1, . . . , e′k is an execution of our implementation. By the construction
of α, e′1 is the invocation of o1, i.e., αe′1 is an execution of the implementation. Inductively,
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Figure 1: A failure of item A in the learning tree for input pattern 1, 2, 3 can be obviated by using
one the two other trees in T3.

1

Figure 1 The execution constructed in the proof of Theorem 1. Processes p1 and p2 are clones:
they execute exactly the same sequence of events in which operation o1 returns response r1.

suppose that for some `, 1 ≤ ` < k, αe′1, . . . , e′` is an execution of the implementation. Note
that, since the algorithm is anonymous, the local state of p2 after αe′1, . . . , e′` is identical to
the local state of p1 after e1, . . . , e`.

Thus, if e`+1 is a broadcast event, then p2 can also perform a similar broadcast event
e′`+1 after αe′1, . . . , e′` and, thus, e′`+1 after αe′1, . . . , e′`+1 is indeed an execution.

Now suppose that e`+1 is a receive event, for some message m previously broadcast by
a process pi. Recall that in α, p2 has not received a single broadcast message. Note that
in αe′1, . . . , e′`, p2 received every message received by p1 in e1, . . . , e`, but no other messages.
Thus, as m is the next message to be received by p1 from pi in e1, . . . , e`, it is also the
next message to be received by p2 from pi in αe′1, . . . , e′`. Hence, αe′1, . . . , e′`+1 is indeed an
execution of our implementation. By induction, we constructed an execution αe′1, . . . , e

′
k

which produces a history o1r1o2r2o1r1 that is not legal – a contradiction. J

4 Sequentially consistent add-only set

We now describe a sequentially consistent t-resilient implementation of add-only set in the
anonymous broadcast model.

Overview. In spirit, our t-resilient implementation (Algorithm 1) is close to the wait-free
atomic snapshot implementation by Afek et al. [1]. Similar to the snapshot operation in
the algorithm by Afek al., a get operation executed by pi repeatedly broadcasts its current
(constantly evolving) evaluation of the set contents until either “sufficiently many” processes
agree with it, or some process pj reports a set of values containing all the values known to pi

at the beginning of the operation (in which case pj helps pi with completing the operation).
The algorithm proceeds in monotonically increasing rounds. Every process pi maintains

a set of values Vi, its local version of the set contents, where each value is equipped with a
“witness set” (the set obtained by a get operation before the value has been added).

A get operation returns a set of values as soon as it establishes that a majority of processes
evaluate the same set of values for the current round (line 21). Here, given a set of tuples
[u,W ], where u is a value and W is a set of values “witnessed” by the process that added u,
values(V ) returns the set of first entries of tuples in V .

Otherwise, the process updates its local set with new values and proceeds to the next
round. Note that if no values are added to the set from some point on, every get operation
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Algorithm 1 Implementation of sequentially consistent add-only set: code for process pi

1 Local variables :
2 Vi: set initially ∅ // local estimate of the set of values ,
3 // equipped with witness sets
4 Mr

i : multiset initially ∅ // messages of round r

5 ri: integer initially 0 // current round number

6 add(v):
7 Vals = get()
8 Vi = Vi ∪ {[v, Vals]}
9 broadcast ([Vi])

10 upon receive [V ]
11 Vi = Vi ∪ V

12 get ():
13 U = Vi

14 while true do
15 ri ++
16 V = Vi

17 if Mri
i = ∅ then

18 broadcast ([V, ri])
19 wait until |Mri

i | >
n
2

20 if ∀V ′ ∈Mri
i : V ′ = V then

21 return values (V )
22 if ∃V ′ ∈Mri

i , ∃[u, W ] ∈ V ′ : values(U) ⊆W then
23 return W

24 upon receive [V, r]
25 Vi = Vi ∪ V

26 if Mr
i = ∅ then

27 broadcast ([Vi, r])
28 Mr

i = Mr
i ∪ {V }

invoked by a correct process will eventually return. Thus, the only reason for a get operation
not to return is an infinite number of successful add operations performed by a concurrent
process. To ensure that each correct process eventually completes every operation it invokes,
we introduce a helping mechanism: before adding a new value to the set, a process gets the
current set of values (line 7) and attaches it to the new value. If, within a get operation, a
process finds a value equipped with a “sufficiently recent” outcome of another get operation,
it adopts it and outputs as its own (line 23).

Of course, in an anonymous system, detecting the source of a received message is
impossible. Therefore, to guarantee that all received messages associated with a round r are
coming from distinct processes and to render the “majority condition” in line 19 meaningful,
we require that a process broadcasts a message associated with a given round exactly once
(lines 25-27). Of course, such messages can be associated to an identical request sent by a
process different from pi (clone of pi). But, as we will see below, this is not an issue for
the algorithm’s correctness. To account for a “slow” process that might receive messages
associated with rounds the process has not reached yet, it proactively stores all the messages
it receives.

OPODIS 2018
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Correctness. Fix an execution of Algorithm 1. We show first that views, sets of values
returned by get operations, are ordered by containment.

I Lemma 2. For any two views U and W returned by get operations, U ⊆W or W ⊆ U .

Proof. Note that each set of values U returned by a get operation is either evaluated by
the operation itself and returned in line 21 or “adopted” from another get operation that
terminated earlier and returned in line 23. But there can be only finitely many get operations
that terminated before a given get operation returns. Thus, each such view U was returned
in line 21 by some get operation. We then can associate U with the round number r in which
this happened, we say U was returned in round r.

Let U and W be returned, respectively in rounds r and r′, r ≤ r′. We show below that
U ⊆W . Indeed, a get operation returns U in round r if a majority of processes broadcast
the same message [V, r] such that values(V ) = U . Since a process only broadcasts its set for
a given round only once, two processes returning in a given round return the same set of
values. Furthermore, if a process returns U in round r, then every process pi that passed
through that round, will get U ⊆ values(Vi). Thus, W returned in round r′ ≥ r must satisfy
U ⊆W . J

I Lemma 3. If two get operations invoked by the same process pi return U and then W ,
then U ⊆W .

Proof. By the algorithm, every view returned by a get operations (lines 13 and 22) invoked
by a process pi contains values(Vi) at the time of the invocation. As Vi grows monotonically
with time (lines 8 and 25), we have U ⊆W . J

I Lemma 4. If pi complete an add(v) and later a get operation that returns U , then v ∈ U .

Proof. As every get operation by pi returns a superset of values(Vi) evaluated at the moment
of its invocation (line 13), and every add(v) operation by pi adds v to values(Vi) (line 13),
and Vi grows monotonically with time (lines 8 and 25), we have v ∈ U . J

I Lemma 5. Every operation invoked by a correct process eventually returns.

Proof. Suppose, by contradiction, that an operation op invoked by a correct process pi never
terminates. Note that op must be a get operation, either invoked directly or within an
add operation. By the algorithm, as at most t < n/2 processes are faulty, pi goes through
infinitely many rounds in lines 14–23. Let U be the set of values (line 13) with which pi

started op.
Suppose first that there is a time after which no process completes an add operation.

Then, there is a time after which no process pj adds a new value to its local Vj . Since the
broadcast channels are reliable, every message sent by a correct process is eventually received
by every correct process (line 27). Thus, there exists a round r and a set of tuples V such
that every process that broadcasts a message of the kind [V ′, r′], where r′ ≥ r, will have
V ′ = V . Eventually, after sufficiently many rounds, pi will reach a round for which every
received set of values is V and, thus, pi will return values(V ) in line 23 – a contradiction.

Thus, a concurrent process pj completes infinitely many add operations. Before adding
a new value v, pj performs a get operation and attaches the returned view to the added
value v. Moreover, eventually pj will receive and include in Vj all values that appear in
U . Thus, eventually, pj will attach a view W such that values(U) ⊆ W to every value it
adds (line 8). As pj is correct, [v,W ] will be included to Vi and pi will return in line 23 – a
contradiction. J
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I Theorem 6. Algorithm 1 implements a sequentially consistent add-only set in the anony-
mous non-instantaneous broadcast model.

Proof. Fix an execution of the algorithm. Let H be the corresponding history.
By Lemma 2, all views returned by complete get operations in this execution can be

totally ordered based on the growing containment relation. Let S be the corresponding
sequential history of get operations. By the algorithm, all values that appear in these views
are arguments of some (complete or incomplete) add operations. Thus, we can amend S
by inserting each such operation add(v) just before the first get in S that returns a view
containing v. By Lemma 3 and 4, we can choose S to be consistent with local histories H|i
which end up with complete get operations.

If there are only finitely many complete get operations in H, all complete add operations
in H whose arguments do not appear in views returned in H can be inserted after the last
get operation in S without affecting legality.

Otherwise, if there are infinitely many get operations in H, we claim that the argument
of every complete add operation in H appears in some view returned in H. Indeed, by the
algorithm (line 9), every complete add(v) operation by pi broadcasts Vi that includes v and,
eventually, every correct process will have v in its local view. Thus, there is a time after
which every complete get operation returns a view containing v.

Thus, the resulting legal sequential history S is equivalent to a completion of H that
contains all complete add and get operations and some incomplete add operations in H.

Finally, by Lemma 5, every operation invoked by a correct process returns. Thus,
Algorithm 1 is a sequentially consistent implementation of add-only set. J

5 Colorless tasks in anonymous networks

Our sequentially consistent implementation of an add-only set allows us to prove several
interesting computability results for colorless tasks.

Colorless tasks. A process invokes a distributed task with an input value and the task
returns an output value, so that the inputs and the outputs across the processes respect the
task specification. In a colorless task, processes are free to use each others’ input and output
values, so the task can be defined in terms of input sets and output sets.

Formally, a colorless task is defined through a set I of input sets, a set O of output sets,
and a total relation ∆ : I 7→ 2O that associates each input set with a set of possible output
sets. We require that ∆ is carrier map i.e., ∀τ, σ ∈ I : τ ⊆ σ ⇒ ∆(τ) ⊆ ∆(σ). A colorless
task is said to be t-resiliently solvable if there exists a t-resilient protocol that guarantees
that, in every execution with t or fewer failures and input set σ ∈ I, every correct process
outputs a value such that the output set τ satisfies τ ∈ ∆(σ). Check [18] for more details on
the definition.

In this section, we show that the anonymous broadcast model is equivalent, from the
colorless task computability viewpoint, to the non-anonymous read-write shared memory
model.

Sequentially-consistent snapshot. We now describe an implementation of a sequentially-
consistent snapshot object, that maintains a vector of ` values and exports two types of
operations, update(i, v) and snapshot(), where i = 0, 1, . . . , `, with the following sequential
specification. Operation update(i, v) replaces the content of the i-th component of the
object with value v, and snapshot() returns the current state of the vector. Without loss of
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Algorithm 2 implementation of sequentially-consistent snapshot: code for a process pi

1 Shared variables :
2 SET: a sequentially - consistent add -only set

3 update (i, v):
4 S = SET.get ()
5 t = maxTS(S)
6 SET.add ([i, t + 1, v])

7 snapshot ():
8 S = SET.get ()
9 v = recent (S)

10 return v

11 macro maxTS(S):
12 if S = ∅ then
13 return 0
14 return max{t | ∃i, v : [i, t, v] ∈ S}

15 macro recent (S):
16 for i in 1, . . . , ` do
17 snap[i] = recent i(S)
18 return snap

19 macro recent i(S):
20 if {(t, v) | ∃i : [i, t, v] ∈ S} = ∅ then
21 return ⊥
22 (t′, v′) = max{(t, v) | ∃i : [i, t, v] ∈ S}
23 return v′

generality, we assume that the values that can be stored in the vector are natural numbers.
We also assume that each component of the object is initialized with a default value ⊥.

Our implementation of a sequentially-consistent snapshot maintains a single shared
sequentially consistent set SET and operates as follows. To update the i-th component by a
value v, a process takes the current copy of the underlying add-only set, calculates the largest
timestamp t, increments it, and then adds tuple [i, t, v] to the set. To take a snapshot, the
process first evaluates the current state S of the underlying add-only set. Then, the process
calculates the most recent value of the each i-th component based on the lexicographic order
on the set {(t, v) | [i, t, v] ∈ S}, where the empty set corresponds the initial value ⊥. Overall,
the implementation, presented in Algorithm 2, resembles an implementation of a linearizable
register in the non-anonymous broadcast model [4].

I Theorem 7. Algorithm 2 implements a sequentially-consistent snapshot in the anonymous
non-instantaneous broadcast model.

Proof. Fix an execution of the algorithm and let H be the corresponding history. In the
executions, each update(i, v) is associated with a timestamp TS(update(i, v)) = maxTS(S)+1
for S in Line 4. For each snapshot(), underlyingSet(snapshot()) denotes the set S of Line 8.
We write (t, v) < (t′, v′) if and only if (t, v) is lexicographically smaller than (t′, v′).

We may assume, without loss of generality, that every process performs updates and
snapshots alternatively, e.g., running a full-information protocol: the first update carries
the input value of the process and every next update carries the outcome of the preceding
snapshot operation.
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We can now construct a sequential history S corresponding to H in the following manner:
Let op1 and op2 be update or snapshot operations appeared in H.

In the case of op1 = update(i, v) and op2 = update(i, v′), op1 precedes op2 in S if and
only if (TS(op1), v) < (TS(op2), v′).
In the case of op1 = snapshot() and op2 = snapshot(), op1 precedes op2 in S if and only
if underlyingSet(op1) ⊆ underlyingSet(op2).
In the case of op1 = update(i, v) and op2 = snapshot(), op1 precedes op2 in S if and
only if the tuple [i, t, v] that op1 has added at Line 6 is in underlyingSet(op2).

In all other cases, op1 and op2 can be arbitrarily ordered as long as the order keeps the
process local histories of H. J

Since decision tasks do not concern the order of inputs or outputs, the following lemma
holds:

I Lemma 8. Assume that there is an anonymous shared-memory protocol that runs on top
of an atomic snapshot object and t-resiliently solve a colorless task T . Then the very same
protocol can be run on top of a sequentially-consistent snapshot object and still t-resiliently
solve the colorless task T .

Proof. Let P (resp. P ′) be the protocol that runs on top of the atomic snapshot object
(resp. a sequentially-consistent object). Fix a set of inputs σ ∈ I and fix the execution E′ of
the protocol P ′ starting from σ. Let H ′ be the corresponding history of E′ and S′ be the
sequential history that is equivalent to H ′. Then, there exists an execution E of the protocol
P that corresponds to the execution S′.

In executions E and E′, every process pi reads and writes the exactly same values in
the same order. Thus, if the process terminates and makes output in E, the process must
terminate and produce the same output in E′. By the above arguments, if the protocol
P t-resiliently solves the given colorless task T , the protocol P ′ also t-resiliently solves the
colorless task T . J

Therefore, every decision task that can be t-resiliently solved with an atomic snapshot object
can be t-resiliently solved with a sequentially-consistent snapshot object.

Combining Theorem 6, Theorem 7, and Lemma 8 we obtain the following result.

I Lemma 9. Every colorless task that is t-resiliently solvable in the anonymous shared-
memory model is also t-resiliently solvable in the anonymous broadcast model, where t < n

2 .

We can prove the converse of Lemma 9 by [13, Theorem 3].

I Theorem 10 ([13, Theorem 3]). A colorless task is t-resiliently solvable in the anonymous
shared-memory model if and only if it is t-resiliently solvable in the non-anonymous one.

I Lemma 11. Every colorless task that is t-resiliently solvable in the anonymous broadcast
model is also t-resiliently solvable in the anonymous shared-memory model, where t < n

2 .

Proof. If a colorless task T is t-resiliently solvable in the anonymous broadcast model, it is
obviously t-resiliently solvable in the non-anonymous broadcast model. Then, T is also t-
resiliently solvable in the non-anonymous shared-memory model because the non-anonymous
shared-memory model simulates the non-anonymous broadcast model, where t < n

2 [4]. Thus,
by Theorem 10, the colorless task T is t-resiliently solvable in the anonymous shared-memory
model. J

OPODIS 2018



23:12 Task Computability in Unreliable Anonymous Networks

Let us note that the above argument is necessary because, in the anonymous setting, the
shared-memory model does not simulate the broadcast model. In the anonymous shared-
memory model, processes cannot know the number of clone processes if they take steps
alternately and keep in the identical state. On the other hand, in the anonymous broadcast
model, each process eventually receives the messages sent by clone processes by an amount
equal to the number of the clones.

I Theorem 12. A colorless task T is t-resiliently solvable in the anonymous broadcast model
if and only if it is t-resiliently solvable in the anonymous shared-memory model, where t < n

2 .

The theorem says that the anonymous broadcast model is equivalent to the anonymous
shared-memory model from the viewpoint of colorless task solvability when less than majority
of processes may fail.

6 Concluding remarks: on linearizability in anonymous networks

We showed that the anonymous broadcast model does not allow linearizable implementations
of nontrivial object types (Theorem 1). On the positive side, we suggested to consider
sequential consistency and proposed a sequentially consistency implementation of add-only
set. While sequential consistency is good enough for exploring one-shot task computability
(Section 5), it may not be an attractive property for long-lived abstractions that can be
composed in a larger context. Unlike linearizability, the property does not preserve real-time
precedence of operations: precisely because of this, sequentially consistent implementations
do not compose [17].

A closer look at the proof of Theorem 1 reveals that sequential consistency might be a
very rough fix to obviate the impossibility. Indeed, in the constructed non-linearizable history,
a clone of a process that completed its operation earlier cannot distinguish the current state
from the initial one and, thus, must return a “stale”, inconsistent response. However, modulo
operations executed by the clone, the constructed history can be seen as a linearizable one
that preserves real-time ordering of “original” (non-cloning) operations.

Intuitively, we can think of a straightforward modification of our add-only set implemen-
tation that seems to enable this kind of relaxed linearizability. Before returning, an add
operation may ensure that the added value is accepted by a majority of processes.

An interesting open question is whether this intuition is justified: can we come up with a
composable relaxation of linearizability that applies to the anonymous broadcast model?
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