-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Correctness of Tendermint-Core Blockchains

Yackolley Amoussou-Guenou
Institut LIST, CEA, Université Paris-Saclay, F-91120, Palaiseau, France
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France

Antonella Del Pozzo
Institut LIST, CEA, Université Paris-Saclay, F-91120, Palaiseau, France

Maria Potop-Butucaru
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France

Sara Tucci-Piergiovanni
Institut LIST, CEA, Université Paris-Saclay, F-91120, Palaiseau, France

—— Abstract

Tendermint-core blockchains (e.g. Cosmos) are considered today one of the most viable altern-
atives for the highly energy consuming proof-of-work blockchains such as Bitcoin and Ethereum.
Their particularity is that they aim at offering strong consistency (no forks) in an open system
combining two ingredients (i) a set of validators that generate blocks via a variant of Practical
Byzantine Fault Tolerant (PBFT) consensus protocol and (ii) a selection strategy that dynamic-
ally selects nodes to be validators for the next block via a proof-of-stake mechanism. The exact
assumptions on the system model under which Tendermint underlying algorithms are correct and
the exact properties Tendermint verifies, however, have never been formally analyzed. The con-
tribution of this paper is as follows. First, while formalizing Tendermint algorithms we precisely
characterize the system model and the exact problem solved by Tendermint, then, we prove that
in eventual synchronous systems a modified version of Tendermint solves (i) under additional
assumptions, a variant of one-shot consensus for the validation of one single block and (ii) a
variant of the repeated consensus problem for multiple blocks. These results hold even if the set
of validators is hit by Byzantine failures, provided that for each one-shot consensus instance less
than one third of the validators is Byzantine.

2012 ACM Subject Classification Computer systems organization — Dependable and fault-
tolerant systems and networks

Keywords and phrases Blockchain, Consensus, Proof-of-Stake, Fairness
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.16
Related Version A full version is available at https://eprint.iacr.org/2018/574.pdf.

Acknowledgements The authors thank anonymous reviewers for their insightful comments.

1 Introduction

Blockchain is today one of the most appealing technology since its introduction in the Bitcoin
White Paper [30] in 2008. Blockchain systems, similar to P2P systems in the early 2000, take
their roots in the non academic research. After the releasing of the most popular blockchains
(e.g. Bitcoin [30] or Ethereum [36]) with a specific focus on economical transactions, their
huge potential for various other applications ranging from notary to medical data recording
became evident. In a nutshell, Blockchain systems maintain a continuously-growing history
of ordered information, encapsulated in blocks. Blocks are linked to each other by relying on

© Yackolley Amoussou-Guenou, and Antonella Del Pozzo, and Maria Potop-Butucaru, and Sara
5v Tucci-Piergiovanni;
licensed under Creative Commons License CC-BY
22nd International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 16; pp. 16:1-16:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/168410721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.OPODIS.2018.16
https://eprint.iacr.org/2018/574.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

Correctness of Tendermint-Core Blockchains

collision resistant hash functions, i.e., each block contains the hash of the previous block.
The Blockchain itself is a distributed data structure replicated among different peers. In
order to preserve the chain structure those peers need to agree on the next block to append
in order to avoid forks. The most popular technique to decide which block will be appended
is the proof-of-work mechanism of Dwork and Naor [15]. The block that will be appended
to the blockchain is owned by the node (miner) having enough CPU power to solve first a
crypto-puzzle first. The only possible way to solve this puzzle is by repeated trials. The
major criticisms for the proof-of-work approach are as follows: it is assumed that the honest
miners hold a majority of the computational power, the generation of a block is energetically
costly, which yield to the creation of mining pools and finally, multiple blockchains might
coexist in the system due to accidental or intentional forks.

Recently, the non academic research developed alternative solutions to the proof-of-work
technique such as proof-of-stake (the power of block building is proportional to the participant
wealth), proof-of-space (similar to proof-of-work, instead of CPU power the prover has to
provide the evidence of a certain amount of space) or proof-of-authority (the power of block
building is proportional to the amount of authority owned in the system). These alternatives
received little attention in the academic research. Among all these alternatives proof-of-
stake protocols and in particular those using variants of Practical Byzantine Fault-Tolerant
consensus [8] became recently popular not only for in-chain transaction systems but also in
systems that provide cross-chain transactions. Tendermint [27, 7, 25, 28] was the first in this
line of research having the merit to link the Practical Byzantine Fault-Tolerant consensus to
the proof-of-stake technique and to propose a blockchain where a dynamic set of validators
(subset of the participants) decide on the next block to be appended to the blockchain.
Although, the correctness of the original Tendermint protocol [27, 7, 25] has never been
formally analyzed from the distributed computing perspective, it or slightly modified variants
became recently the core of several popular systems such as Cosmos [26] for cross-chain
transactions.

In this paper we analyse the correctness of the original Tendermint agreement protocol as
it was described in [27, 7, 25] and discussed in [28, 22]. The code of this protocol is available
in [35]. One of our fundamental results proved in this paper is as follows:

In an eventual synchronous system, a slightly modified variant of the original Tendermint
protocol implements the one-shot and repeated consensus, provided that (i) the number of
Byzantine validators, f, is f < n/3 where n is the number of validators participating in each
single one-shot consensus instance and (ii) eventually a proposed value will be accepted by at
least 2n/3 + 1 processes (Theorem 7 and Theorem 8).

More in detail, we prove that the original Tendermint (specified for the first time in a
preliminary version of this work, see technical report [2]) verifies the consensus termination
with a small twist in the algorithm (a refinement of the timeout) and with the additional
assumption stating that there exists eventually a proposer such that its proposed value will be
accepted, or voted, by more than two-third of validators. The rest of the paper is organized
as follows. Related works are discussed in Section 2. Section 3 defines the model and the
formal specifications of one-shot and repeated consensus. Section 4 formalizes the original
Tendermint One-Shot and Repeated Consensus protocols through pseudo-code and proves
the correctness of the One-Shot Consensus algorithm. Due to space limitations, the fairness
study along with full descriptions of the counter-examples that motivate the modification of
the original algorithm and the additional assumptions for correctness are provided in [2].

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

2 Related Work

Interestingly, only recently distributed computing academic scholars focus their attention on
the theoretical aspects of blockchains motivated mainly by the intriguing claim of popular
blockchains, as Bitcoin and Ethereum, that they implement consensus in an asynchronous
dynamic open system. This claim is refuted by the famous impossibility result in distributing
computing [17]. In distributed systems, the theoretical studies of proof-of-work based
blockchains have been pioneered by Garay et al [19]. Garay et al. decorticate the pseudo-
code of Bitcoin and analyse its agreement aspects considering a synchronous round-based
communication model. This study has been extended by Pass et al. [31] to round based
systems where messages sent in a round can be received later. [16] proposes a mix between
proof-of-work blockchains and proof-of-work free blockchains referred as Bitcoin-NG. Bitcoin-
NG inherits, however, the drawbacks of Bitcoin: costly proof-of-work process, forks, no
guarantee that a leader in an epoch is unique, no guarantee that the leader does not change
the history at will if it is corrupted. On another line of research, in [11] Decker et al. propose
the PeerCensus system that targets linearizability of transactions. PeerCensus combines
the proof-of-work blockchain and the classical results in Practical Byzantine Fault Tolerant
agreement area. PeerCensus suffers the same drawbacks as Bitcoin because of the proof-of-
work. Byzcoin [24] builds on top of Practical Byzantine Fault-Tolerant consensus [8] enhanced
with a scalable collective signing process. [24] is based on a leader-based consensus over a
group of members chosen by a proof-of-membership mechanism. When a miner succeeds to
mine a block, it gains a membership share, and the miners with the highest shares are part
of the fixed size voting member set. In the same spirit, SBFT [21] and Hyperledger Fabric
[3] build on top of [8]. In [32] and [20], sortition based blockchains are discussed, where the
proof-of-work mechanism is completely replaced by a probabilistic ingredient.

The only academic works that address the consensus in proof-of-stake based blockchains
are [10] and [23]. In [10], Daian et al. which proposes a protocol for weakly synchronous
networks. The execution of the protocol is organized in epochs. Similar to Bitcoin-NG [16]
in each epoch a different committee is elected and inside the elected committee a leader will
be chosen. The leader is allowed to extend the new blockchain. The protocol is validated
via simulations and only partial proofs of correctness are provided. Ouroboros [23] proposes
a sortition based proof-of-stake protocol and addresses mainly the security aspects of the
proposed protocol. Red Belly [9] focuses on consortium blockchains, where only a predefined
subset of processes are allowed to update the blockchain, and proposes a Byzantine consensus
protocol.

Interestingly, none of the previous academic studies made the connection between the
repeated consensus specification [5, 13, 12] and the repeated agreement process in blockchain
systems. Moreover, in terms of fairness of rewards, no academic study has been conducted
related to blockchains based on repeated consensus.

3 System model and Problem Definition

The system is composed of an infinite set IT of asynchronous sequential processes, namely
II = {p1,...}; i is called the index of p;. Asynchronous means that each process proceeds
at it own speed, which can vary with time and remains unknown to the other processes.
Sequential means that a process executes one step at a time. This does not prevent it from
executing several threads with an appropriate multiplexing. As local processing times are
negligible with respect to message transfer delays, they are considered as being equal to zero.

16:3

OPODIS 2018

16:4

Correctness of Tendermint-Core Blockchains

Arrival model. We assume a finite arrival model [1], i.e. the system has infinitely many
processes but each run has only finitely many. The size of the set 1I, C II of processes
that participate in each system run is not a priori-known. We also consider a finite subset
V C1I, of validators. The set V' may change during any system run and its size n is a-priori
known. A process is promoted in V based on a so-called merit parameter, which can model
for instance its stake in proof-of-stake blockchains. Note that in the current Tendermint
implementation, it is a separate module included in the Cosmos project [26] that is in charge
of implementing the selection of V.

Communication network. The processes communicate by exchanging messages through
an eventually synchronous network [14]. Eventually Synchronous means that after a finite
unknown time 7 there is an upper bound d on the message transfer delay.

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [33]
in the system, but up to f validators can exhibit a Byzantine behaviour at each point of the
execution. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send
or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary
state transitions, etc. Byzantine processes can control the network by modifying the order in
which messages are received, but they cannot postpone forever message receptions. Moreover,
Byzantine processes can collude to “pollute” the computation (e.g., by sending messages
with different contents, while they should send messages with the same content if they were
non-faulty). A process (or validator) that exhibits a Byzantine behaviour is called faulty.
Otherwise, it is non-faulty or correct. To be able to solve the consensus problem, we assume
that f < n/3.

Communication primitives. In the following we assume the presence of a broadcast prim-
itive. A process p; broadcasts a message by invoking the primitive broadcast({ TAG,m)),
where TAG is the type of the message, and m its content. To simplify the presentation, it
is assumed that a process can send messages to itself. The primitive broadcast() is a best
effort broadcast, which means that when a correct process broadcasts a value, eventually all
the correct processes deliver it. A process p; receives a message by executing the primitive
delivery(). Messages are created with a digital signature, and we assume that digital signa-
tures cannot be forged. When a process p; delivers a message, it knows the process p; that
created the message.

Let us note that the assumed broadcast primitive in an open dynamic network can be
implemented through gossiping, i.e. each process sends the message to current neighbors
in the underlying dynamic network graph. In these settings the finite arrival model is a
necessary condition for the system to show eventual synchrony. Intuitively, a finite arrival
implies that message losses due to topology changes are bounded, so that the propagation
delay of a message between two processes not directly connected can be bounded [29, 4].

Problem definition. In this paper we analyse the correctness of Tendermint protocol against
two abstractions in distributed systems: one-shot consensus and repeated consensus defined
formally as follows.

» Definition 1 (One-Shot Consensus). We say that an algorithm implements One-Shot
Consensus if and only if it satisfies the following properties:

Termination. Every correct process eventually decides some value.

Integrity. No correct process decides twice.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

More than 2n/3 Prevote(nil) vV

TimeOutPrecommit expired V

More than 2n/3 of any Precommit(-)
More than 2n/3 Prevote(B) V

More than 2n/3 Prevote(nil) V
TimeOutProposeexpired V TimeOutPrevoteexpired V

Propose(B,PolCR) delivered More than 2n/3 of any Prevote(-)

Prevote
(H,r)

Propose
(Hr=r+1)

More than

2n/3 Precommit(B)

lines 5 - 16 lines 17 - 29 lines 30 - 40

Commit
(H)

New Height
(H=H+1)

Figure 1 State Machine for Tendermint One-Shot algorithm described in Figure 3.

Agreement. If there is a correct process that decides a value B, then eventually all the
correct processes decide B.

Validity[9]. A decided value is valid, it satisfies the predefined predicate denoted
isValid().

The concept of multi-consensus is presented in [5], where the authors assume that only
the faulty processes can postpone the decision of correct processes. In addition, the consensus
is made a finite number of times. The long-lived consensus presented in [13] studies the
consensus when the inputs are changing over the time, their specification aims at studying
in which condition the decisions of correct process do not change over time. None of these
specifications is appropriate for blockchain systems. In [12], Delporte-Gallet et al. defined
the Repeated Consensus as an infinite sequence of One-Shot Consensus instances, where
the inputs values may be completely different from one instance to another, but where all
the correct processes have the same infinite sequence of decisions. We consider a variant
of the repeated consensus problem as defined in [12]. The main difference is that we do
not predicate on the faulty processes. Each correct process outputs an infinite sequence of
decisions. We call that sequence the output of the process.

» Definition 2 (Repeated Consensus). An algorithm implements a repeated consensus if and
only if it satisfies the following properties:
Termination. Every correct process has an infinite output.
Agreement. If the i'" value of the output of a correct process is B, then B is the i*"
value of the output of any other correct process.
Validity. Each value in the output of any correct process is valid, it satisfies the
predefined predicate denoted isValid().

4 Tendermint Formalization

4.1 Informal description of Tendermint and its blockchain

Tendermint protocol [27, 7] aims at building a blockchain without forks relying on a variant
of PBFT consensus. When building the blockchain, a subset of fixed size n of processes called

16:5

OPODIS 2018

16:6

Correctness of Tendermint-Core Blockchains

\%

) w
a More than 2n/3 Prevote(B) CU
% o £
: 8 g
£ :
» 2 £
T2 dB: 5
ST v
g & IOCk(B) 2
R ©
R 7
= :
- m More than 2n/3 Prevote(nil) V %
am (PROPOSE(B’,PolCR) delivered A isValid(B’) A PolCR # L)V =

Commit

Figure 2 State machine Lock/Unlock

validators should agree on the next block to append to the blockchain. The set of validators is
deterministically determined by the current content of the blockchain, referred as the history.
We note that this subset may change once a block is appended. The mechanism to choose
the validators from a given history is further referred as selection mechanism. Note that
in the current Tendermint implementation, it is a separate module included in the Cosmos
project [26] that is in charge of implementing the selection mechanism. Intuitively, such
mechanism should be based on the proof-of-stake approach but its actual implementation is
currently left open.

The first block of Tendermint blockchain, called the genesis block, is at height 0. The
height of a block is the distance that separates that block to the genesis block. Each block
contains: (i) a Header which contains a pointer to the previous block and the height of the
block, (ii) the Data which is a list of transactions, and (iii) a set LastCommit which is the set
of validators that signed on the previous block. Except the first block, each block refers to the
previous block in the chain. Given a current height of Tendermint blockchain, a total ordered
set of validators V is selected to add a new block. The validators start a One-Shot Consensus
algorithm. The first validator creates and proposes a block B, then if more than 2n/3 of
the validators accept B, B will be appended as the next block, otherwise the next validator
proposes a block, and the mechanism is repeated until more than 2n/3 of the validators
accept a block. For each height of Tendermint blockchain, the mechanism to append a new
block is the same, only the set of validators may change. Therefore, Tendermint applies
a Repeated Consensus algorithm to build a blockchain, and at each height, it relies on a
One-Shot Consensus algorithm to decide the block to be appended. Due to space limitations,
Repeated Consensus proofs are provided in [2].

Although the choice of validators is managed by a separate module (see Cosmos project
[26]) the rewards for the validators that contributed to the block at some specific height H
are determined during the construction of the block at height H + 1. The validators for H
that get a reward for H are the ones that validators for H + 1 “saw” when proposing a block.
This mechanism can be unfair, since some validator for H may be slow, and its messages
may not reach the validators involved in H + 1, implying that it may not get the rewards it
deserved. Due to space limitations, our fairness study are provided in [2].

4.2 Tendermint One-Shot Consensus algorithm

Tendermint One-Shot Consensus algorithm is a round-based algorithm used to decide on the
next block for a given height H. In each round there is a different proposer that proposes a
block to the validators that try to decide on that block. A round consists of three steps: (i)
the Propose step, the proposer of the round broadcasts a proposal for a block; (ii) the Prevote

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

Function consensus(H, II,, signature); %One-Shot Consensus for the height H with the set I, of processes%

Init:

(1) r <+ 0; LLR; < —1; PoLCR; <+ L; lockedBlock; <+ nil; B <+ nil;

(2) TimeOutPropose <— Apropose; TimeOutPrevote <— Aprevote;

(3) pmposalReceivediH’T — 1 prevotesReceivedf’r — 1 precommitsReceivedf’T — 1;

while (true) do
(4) 7« r+1; PoLCR; + L;

Propose step r

(5) if (p; == proposer(H,r)) then

(6) if (LLR; # —1) then PoLCR; <+ LLR;; B <+ lockedBlock;;
(7) else B < createNewBlock(signature);

(8) endif

9) trigger broadcast (PROPOSE, (B, H,r, PoOLCR;););

(10) else

(11) set timerProposer to TimeOutPropose;
7
(12) wait until ((témerProposer expired) V (p'r'o;z)osulRecei'Uede’7 # 1));

(13) if ((timerProposer expired) A (pTOpOSﬂ.lRECE’L"UEde'T, == 1)) then
(14) TimeOutPropose <— TimeOutPropose + 1;

(15) endif

(16) endif

Prevote step r

(17)if (PoLCR; # 1) A (LLR; # —1) A (LLR; < PoLCR; < 7)) then

(18) wait until |prevotesReceived?’P°LCR| > 2n/3;

(19) if (3B’ : (is23Maj(B’, prevotesReceived, **“"i)) A (B' # lockedBlock;)) then lockedBlock; « nil; endif

(20) endif

(21)if (lockedBlock; # nil) then trigger broadcast (PREVOTE, (lockedBlock;, H,1););

(22) else if (isValid(proposalRecei’Uedf{’T)) then trigger broadcast (PREVOTE, (proposalReceivede’T, H,r);); endif

(23) else trigger broadcast (PREVOTE, (nil, H,7););

(24) endif

(25) wait until ((is23Maj(nil, prevotesReceivedfi’T)) V (3B" : (is23Maj(B"’, prevotesReceived?’T)))\/
(\prevotesReeei7}edf{'r| > 2n/3)); %Delivery of any 2n/3 prevotes for the round r%

(26) if (—(is23Maj(nil, p'revotesReceivede‘r)) A =(3B" : (is23Maj(B", p'revotesReceiuedLH‘r)))) then

(27) set timerPrevote to TimeOutPrevote;

(28) wait until (timerPrevote expired);

(29) if (timerPrevote expired) then TimeOutPrevote - TimeOutPrevote + 1; endif

Precommit step r

(30)if (3B’ : (is23Maj(B/,prevotesReceivedf”‘))) then

(31) lockedBlock; + B’;

(32) trigger broadcast (PRECOMMIT, (B’, H,7););

(833) LLR; < r;

(34) else if (is23Maj(nil, pre’uotesRcccivcdf"")) then

(35) lockedBlock; < mil; LLR; + —1;

(36) trigger broadcast (PRECOMMIT, (nil, H,r););

(37) endif

(38) else trigger broadcast (PRECOMMIT, (nil, H,7);));

(39) endif

(40) wait until ((is23Maj(nil, preuotesRcccivcdf”")) v (|precommitsRcceivcdf{’"| > 2n/3))

endwhile

Figure 3 First part of Tendermint One-shot Consensus algorithm at correct process p;.

step, validators broadcast their prevotes depending on the proposal they delivered during the
previous step; and (iii) the Precommit step, validators broadcast their precommits depending

on the occurrences of prevotes for the same block they delivered during the previous step.

To preserve liveness, steps have a timeout associated, so that each validator moves from one
step to another either if the timeout expires or if it delivers enough messages of a particular
typology. When p; broadcasts a message ((TAG,m)), m contains a block B along with other

information. We say that p; prevotes (resp. precommits) on B if TAG = PREVOTE (resp.

TAG=PRECOMMIT). In Figure 1 is depicted the state machine for the Tendermint one-Shot
Consensus.

To preserve safety of the protocol and to satisfy the Agreement property, when a validator
delivers more than 2n/3 prevotes for B then it “locks” on such block. Informally, it means
that there are at least n/3 + 1 prevotes for B from correct processes, then B is a possible
candidate for a decision so that validators try to stick on that. More formally, a validator

16:7

OPODIS 2018

16:8

Correctness of Tendermint-Core Blockchains

upon event delivery (PROPOSE, (B, H,r’, PoLCR;);):
f . GHxr!
(41)if (proposalReceived; L= 1) then
proposalReceived; " <« JH,)55
42 IReceived,"" B’ H,r");
(43) PoLCR; +— PoLCRy;
trigger broadcast (PROPOSE, ,H,r", Po i)i)s
44 i broad B',H,r', PoLCR;);
(45) endif

upon event delivery (PREVOTE, (B’, H,r’, LLR);):
’
46)if ((B’, H,r',LLR); ¢ p'revotesRecewedH ") then

’
prevotesReceivede’r — p’I"C’UOtGSRGCEZ’UedHT U (B’,H,r’",LLR);;

(
(47)
(48) trigger broadcast (PREVOTE, (B’, H,r’ LLR))
)

549) if ((r < r ") and (|prevotesRecewedH T/| > 2/3)) then
50 r—r';

(51) goto Prevote step r;

(52) endif

(53) endif

upon event delivery (PRECOMMIT, (B', H,r');):

(54)if ((B',H,r"); ¢ precommitsReceivedf""/) then

(55) precommitsReceivedf’rl — precommitsReceivedf’T, U (B, H,1");;
(56) trigger broadcast (PRECOMMIT, (B', H,r'););

(57) if ((r < v) and (|precommitsReceivedf1‘w| > 2/3)) then

(58) rr

(59) goto Precommit step r;
(60) endif

(61) endif

when (3B’ : is23Maj(B’, precommztsRecewedH ")):
(62) return B’;%Terminate the consensus for the height H by deciding B'%

Figure 3 Second part of Tendermint One-shot Consensus algorithm at correct process p;.

has a Proof-of-LoCk (PoLC) for a block B (resp. for nil) at a round r for the height H if it
received at least 2n/3 4 1 prevotes for B (resp. for nil). In this case we say that a process is
locked on such block. A PoLC-Round (PoLCR) is a round such that there was a PoLC for a
block at round PoLCR. In Figure 2 the state machine concerning the process of locking and
unlocking on a block B is shown.

Preamble. Note that our analysis of the original Tendermint protocol [27, 7, 25] led to the
conclusion that several modifications were needed in order to implement One-Shot Consensus
problem. Full description of these bugs in the original Tendermint protocol are reported
in [2]. In more details, with respect to the original Tendermint, our Tendermint One-shot
Consensus algorithm (see Figure 3) has the following modifications. We added line 29 in
order to catch up the communication delay during the synchronous periods. Moreover, we
modified the line 19 in order to guarantee the agreement property of One-Shot Consensus
(defined in Section 3). The correctness of Tendermint One-shot Consensus algorithm needs
an additional assumption stating that eventually a proposal is accepted by a majority of
correct processes. This assumption, stated formally in Theorem 7, is necessary to guarantee
the termination.

Variables and data structures. r and PoLCR; are integers representing, respectively, the
current round and the PolCR. lockedBlock; is the last block on which p; is locked, if it is
equal to a block B, we say that p; is locked on B, otherwise it is equal to nil, and we say
that p; is not locked. When lockedBlock; # nil and switches the value to nil, then p; unlocks.
Last-Locked-Round (LLR;) is an integer representing the last round where p; locked on a
block. B is the block the process created.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

Each validator manages timeouts, TimeQutPropose and TimeQutPrevote, concerning the
propose and prevote phases respectively. Those timeouts are set to Apropose and Aprevote
and are started at the beginning of the respective step. Both are incremented if they expire
before the validator moves to the next step.

Each validator manages three sets for the messages delivered. In particular, the set
proposalRecei’uedf’r contains the proposal that p; delivered for the round r at height H.
prevotesRecei’uedf’r is the set containing all the prevotes p; delivered for the round r at
height H. precommitsReceivediH’r is the set containing all the precommits p; delivered for
the round r at height H.

Functions. We denote by Block the set containing all blocks, and by MemPool the structure
containing all the transactions.
proposer : V' x Height x Round — V is a deterministic function which gives the proposer
out of the validators for a given round at a given height in a round robin fashion.
createNewBlock : 21> x MemPool — Block is an application-dependent function which
creates a valid block (w.r.t. the application), where the subset of processes is a parameter
of the One-Shot Consensus, and is a subset of processes that send a commit for the block
at the previous height, called the signature of the previous block.
is23Maj : (Block U nil) x (prevotesReceived U precommitsReceived) — Bool is a predicate
that checks if there is at least 2n/3 + 1 of prevotes or precommits on the given block or
nil in the given set.
isValid : Block — Bool is an application dependent predicate that is satisfied if the given

block is valid. If there is a block B such that isValid(B) = true, we say that B is valid.

We note that for any non-block, we set isValid to false, (e.g. isValid(nil) = false).

Detailed description of the algorithm. In Figure 3 we describe Tendermint One-Shot
algorithm to solve the One-Shot Consensus (defined in Section 3) for a given height H.
For each round r at height H the algorithm proceeds in 3 phases:

1. Propose step (lines 5 - 16): If p; is the proposer of the round and it is not locked on
any block, then it creates a valid proposal and broadcasts it. Otherwise it broadcasts
the block it is locked on. If p; is not the proposer then it waits for the proposal from
the proposer. p; sets the timer to TimeQOutProposal, if the timer expires before the
delivery of the proposal then p; increases the time-out, otherwise it stores the proposal in
proposalRecez’vele’r. In any case, p; goes to the Prevote step.

2. Prevote step (lines 17 - 29): If p; delivers the proposal during the Propose step, then it
checks the data on the proposal. If lockedBlock; # nil, and p; delivers a proposal with
a valid PoLCR then it unlocks. After that check, if p; is still locked on a block, then it
prevotes on lockedBlock;; otherwise it checks if the block B in the proposal is valid or
not, if B is valid, then it prevotes B, otherwise it prevotes on nil. Then p; waits until
|prevotesReceivedf{’r| > 2n/3. If there is no PoLC for a block or for nil for the round r,
then p; sets the timer to TimeQutPrevote, waits for the timer’s expiration and increases
TimeOQutPrevote. In any case, p; goes to Precommit step.

3. Precommit step (lines 30 - 40): p; checks if there was a PolC for a particular block or
nil during the round (lines 30 and 34). There are three cases: (i) if there is a PoLC for
a block B, then it locks on B, and precommits on B (lines 30 - 32); (ii) if there is a
PoLC for nil, then it unlocks and precommits on nil (lines 34 - 36); (iii) otherwise, it
precommits on nil (line 38); in any case, p; waits until | precommitsReceivedf’r\ > 2n/3
or (is23Maj(nil, prevotesRecez’ved?’r)), and it goes to the next round.

16:9

OPODIS 2018

16:10 Correctness of Tendermint-Core Blockchains

Whenever p; delivers a message, it broadcasts it (lines 44, 48 and 56). Moreover, during
a round r, some conditions may be verified after a delivery of some messages and either (i)
p; decides and terminates or (ii) p; goes to the round 7’ (with ' > r). The conditions are:
For any round 7/, if for a block B, is23Maj(B,precommitsReceivedf’T,) = true , then p;
decides the block B and terminates, or

dfl’rl| > 2n/3 where 7/ > r, then

If p; is in the round r at height H and |prevotesReceive
it goes to the Prevote step for the round 7/, or
If p; is in the round r at height H and |precommitsRecez’vele’r | > 2n/3 where ' > r,

then it goes to the Precommit step for the round r’.

4.2.1 Correctness of Tendermint One-Shot Consensus

In this section we prove the correctness of Tendermint One-Shot Consensus algorithm (Fig.
3) for a height H under the assumption that during the synchronous period there exists
eventually a proposer such that its proposed value will be accepted by at least 2n/3 + 1
processes.

» Lemma 1 (One-Shot Integrity). In an eventual synchronous system, Tendermint One-Shot
Consensus Algorithm verifies the following property: No correct process decides twice.

» Lemma 2 (One-Shot Validity). In an eventual synchronous system, Tendermint One-Shot
Consensus Algorithm verifies the following property: A decided value is valid, if it satisfies
the predefined predicate denoted isValid().

» Lemma 3. In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm
verifies the following property: If f + 1 correct processes locked on the same value B during
a round r then no correct process can lock during round v’ > r on a value B’ # B.

Proof. We assume that f + 1 correct processes are locked on the same value B during the
round 7, and we denote by X" the set of those processes. We first prove by induction that
no process in X" will unlock or lock on a new value. Let let p; € X".
Initialization: round r 4+ 1. At the beginning of round » + 1, all processes in X" are
locked on B. Moreover, we have that LLR,; = r, since p; locks on round r (line 31). Let
p; be the proposer for round r + 1. If LLR; = r, it means that p; is also locked on B,
since there cannot be a value B’ # B such that is23Maj(B, prevotesReceivedf’r) = true,
for that to happen, at least n/3 processes should prevote both B and B’ during round r,
which means that at least a correct process prevoted two times in the same round, which
is not possible, since it is correct, and the protocol does not allow to vote two times in
the same round (lines 17 - 29). Three cases can then happen:
p; locked on a value B; during the round LLR; < r. This means that during the round
LLR; is23Maj(B;, prevotesReceivedf’LLRj) = true (line 31). p; the proposer proposes
a value B; along with LLR; (lines 5 - 9). Since LLR; < LLR; = r, p; does not unlock
and prevotes B for the round r + 1, and so are all the other processes in X" (lines 17 -
21). The only value that can have more than 2n/3 prevotes is then B. So p; is still
locked on B at the end of r + 1.
If p; is not locked, the value it proposes cannot unlock processes in X" because
—1 = LLR; < r, and they will prevote on B (lines 17 - 21). The only value that can
have more than 2n/3 prevotes is then B. So p; is still locked on B at the end of r + 1.
p; locked on a value B; during the round LLR; > r, p; the proposer proposes a value
B; along with LLR; (lines 5 - 9). Since LLR; > r+1, p; does not unlock and prevotes

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

B for the round r + 1, and so are all the other processes in X" (lines 17 - 21). The

only value that can have more than 2n/3 prevotes is then B. So p; is still locked on B

at the end of r + 1.
At the end of round r + 1, all processes in X" are still locked on B and it may happen
that other processes are locked on B for round r 4+ 1 at the end of the round.
Induction: We assume that for a given a > 0, the processes in X" are still locked on B
at each round between r and r + a. We now prove that the processes in X" will still be
locked on B at round r + a + 1.
Let p; be the proposer for round r+a+1. Since the f+1 processes in X" were locked on B
for all the rounds between r and r + a, no new value can have more than 2n/3 of prevotes
during one of those rounds, so 3B’ # B : is23Maj(B’, prevotesReceivedf’”) = true where
r <r; <71+ a-+ 1. Moreover, if p; proposed the value B along with a LLR > r, since
the processes in X" are already locked on B, they do not unlock and prevote B (lines 17
- 21). The proof then follows as in the Initialization case.

Therefore all processes in X" will stay locked on B at each round after round r. Since
f + 1 processes will stay locked on the value B on rounds 1’ > r, they will only prevote
on B (lines 17 - 21) for each new round. Let B’ be a value, we have that V' > r if
B’ :is23Maj(B’, prevotesReceivede’T/) = true then B’ = B. <

» Lemma 4 (One-Shot Agreement). In an eventual synchronous system, Tendermint One-
Shot Consensus Algorithm verifies the following property: If there is a correct process that
decides a value B, then eventually all the correct processes decide B.

Proof. Let p; be a correct process. Without loss of generality, we assume that p; is
the first correct process to decide, and it decides B at round r. If p; decides B, then
is23Maj(B, precommitsReceivede’r) = true (line 62), since the signature of the messages are
unforgeable by hypothesis and f < n/3, then p; delivers more than n/3 of those precommits
for round r from correct processes, and those correct process are locked on B at round r (line
31). p; broadcasts all the precommits it delivers (line 56), so eventually all correct processes
will deliver those precommits, because of the best effort broadcast guarantees.

We now show that before delivering the precommits from p;, the other correct processes
cannot decide a different value than B. f < n/3 by hypothesis, so we have that at least
f + 1 correct processes are locked on B for the round 7. By Lemma 3 no correct process can
lock on a value different than B. Let B’ # B, since correct processes lock only when they
precommit (lines 30 - 32), no correct process will precommit on B’ for a round bigger than
r, so is23Maj(B’, precommitsReceivede’r/) = false for all 7/ > r since no correct process will
precommit on B’. No correct process cannot decide a value B’ # B (line 62) once p; decided.
Eventually, all the correct processes will deliver the 2n/3 signed precommits p; delivered and
broadcasted, thanks to the best effort broadcast guarantees and then will decide B. |

» Lemma 5. In an eventual synchronous system, and under the assumption that during
the synchronous period eventually there is a correct proposer py such that |{p; : LLR) <
LLR; and p; is correct}| < n/3 — f, Tendermint One-Shot Consensus Algorithm verifies the
following property: Eventually a correct process decides.

Proof. Let r be the round where the communication becomes synchronous and when all the
messages broadcasted by correct processes are delivered by the correct processes within their
respective step. The round r exists, since the system is eventually synchronous and correct
processes increase their time-outs when they did not deliver enough messages (lines 13 - 15,

16:11

OPODIS 2018

16:12

Correctness of Tendermint-Core Blockchains

26 - 29 and 40). If a correct process decides before r, that ends the proof. Otherwise no
correct process decided yet. Let p; be the proposer for the round r. We assume that p; is
correct. Let B be the value such that p; proposes (B, LLR;), we have three cases:
Case 1: No correct process is locked on a value before r. Vp; € II, such that p; is correct,
LLR; = —-1.
Correct processes delivered the proposal (B, LLR;) before the Prevote step (lines 12,
42 - 44). Since the proposal is valid, then all correct processes will prevote on that
value (line 22), and they deliver the others’ prevotes and broadcast them before en-
tering the Precommit step (lines 25 - 29 and 48). Then for all correct process p;, we
have is23Maj(B, precommz'tsReceivedf’T) = true. The correct processes will lock on B,
precommit on B (lines 30 - 32) and will broadcast all precommits delivered (line 56).
Eventually a correct process p; will have is23Maj(B, preCOmmz'tsReceivedf’T) = true then
p; will decide (line 62).
Case 2: Some correct processes are locked and if p; is a correct process, LLR; < LLR;.
Since LLR; < LLR; for all correct processes p;, then the correct processes that are locked
will unlock (line 19) and the proof follows as in the Case 1.
Case 3: Some correct processes are locked on a value, and there exist a correct process p;
such that LLR; < LLR;.
(i) If |{p; : LLR; < LLR; and p; is correct}| < n/3 — f (which means that even
without the correct processes that are locked in a higher round than the proposer p;,
there are more than 2n/3 other correct processes unlock or locked in a smaller round
than LLR;), then as in the case 2, a correct process will decide.
(ii) If |{p; : LLR; < LLR; and p; is correct}| > n/3 — f, then during the round
r, 3B : i523Maj(B’,precommitsReceivedf’T) = true, in fact correct processes only
precommit once in a round (lines 30 - 40). Eventually, thanks to the additional
assumption, there exists a round r; where the proposer py is correct and at round
r1, {pj : LLRy < LLR; and p; is correct}| < n/3 — f. The proof then follows as case
(3.1).
If p; is Byzantine and more than n/3 correct processes delivered the same message during
the proposal step, and the proposal is valid, the situation is like p; was correct. Otherwise,
there are not enough correct processes that delivered the proposal, or if the proposal is not
valid, then there will be less than n/3 processes that will prevote that value. No value will
be committed. Since the proposer is selected in a round robin fashion, a correct process will
eventually be the proposer, and a correct process will decide. <

» Lemma 6 (One-Shot Termination). In an eventual synchronous system, and under the
assumption that during the synchronous period eventually there is a correct proposer py such
that |{p; : LLRy < LLR; and p; is correct}| < n/3 — f, Tendermint One-Shot Consensus
Algorithm verifies the following property: Fvery correct process eventually decides some value.

Proof. By construction, if a correct process does not deliver a proposal during the proposal
step or enough prevotes during the Prevote step, then that process increases its time-outs
(lines 13 - 15 and 26 - 29), so eventually, during the synchrony period of the system, all the
correct processes will deliver the proposal and the prevotes from correct processes respectively
during the Propose and the Prevote step. By Lemma 5, a correct process decides a value,
and then by the Lemma 4, every correct process eventually decides. <

» Theorem 7. In an eventual synchronous system, and under the assumption that during
the synchronous period eventually there is a correct proposer py such that |{p; : LLR) <
LLR; and p; is correct}| < n/3 — f: Tendermint One-Shot Algorithm implements the One-
Shot Consensus.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

Function repeatedConsensus(I1,); %Repeated Consensus for the set II, of processes%

Init:
(1) H + 1 %Height%; B < L; V + L %Set of validators%;
(2) commitsReceivediH «— 0; toRewarde «— 0; TimeOutCommit < AcCommit;

while (true) do

(3) B+ 1;

(4) V <« validatorSet(H); %Application and blockchain dependant%
(5) if (p; € V) then

(6) B < consensus(H, V, toRewardffl); %Consensus function for the height H%
(7) trigger broadcast (COMMIT, (B, H););

(8) else

9) wait until (3B’ : |atLeastOneThird(B’, commitsReceived)|);
(10) B+ B’;

(11) endif

(12) set timerCommit to TimeOutCommit;

(13) wait until(timerCommit expired);

(14) trigger decide(B);

(15)H « H + 1;

endwhile

upon event delivery (COMMIT, (B’, H');):

(16)if (((B',H'); ¢ commitsReceivediH/) A (p; € validatorSet(H'))) then
17 commitSReceivedf' — commitsRecei?;elel U (B, H");;

(18) toRewarlel “— toRewa'rdf{/ Upj;

(19) trigger broadcast (COMMIT, (B’, H'););

(20) endif

Figure 4 Tendermint Repeated Consensus algorithm at correct process p;.

Proof. The proof follows directly from Lemmas 1, 2, 4 and 6. <

4.3 Tendermint Repeated Consensus algorithm

For a given height, the set V of validators does not change. Note that each height corresponds
to a block. Therefore, in the following we refer this set as the set of validators for a block.

Data structures. The integer H is the height where is called a One-Shot Consensus instance.

V is the current set of validators. B is the block to be appended. commitsReceivedZH is the set
containing all the commits p; delivered for the height H. toRewardf is the set containing the
validators from which p; delivered commits for the height H. TimeOutCommit represents the
time a process has for collecting commits after an instance of consensus. TimeQutCommit is
set to Acommit -

Functions.
validatorSet : 11, x Height — 2, is an application dependent and deterministic selection
function which gives the set of validators for a given height w.r.t the blockchain history,
and VH € Height, |validatorSet(H)| = n.
consensus : Height x 2% x commitsReceived — Block is the One-Shot Consensus instance
presented in 4.2.
atLeastOneThird : Block x commitsReceived — Bool is a predicate which checks if there
is at least n/3 of commits of the given block in the given set.

Detailed description of the algorithm. In Fig. 4 we describe the algorithm to solve the
Repeated Consensus as defined in Section 3. The algorithm proceeds as follows:
p; computes the set of validators for the current height;
If p; is a validator, then it calls the consensus function solving the consensus for the
current height, then broadcasts the decision, and sets B to that decision;

16:13

OPODIS 2018

16:14

Correctness of Tendermint-Core Blockchains

Otherwise, if p; is not a validator, it waits for at least n/3 commits from the same block
and sets B to that block;
In any case, it sets the timer to TimeOutCommit to receive more commits and lets it
expire. Then p; decides B and goes to the next height. We note that this timer is
not adjustable, so processes might miss commits from correct processes even during the
synchronous period (see fairness study [2] for further details).
Whenever p; delivers a commit, it broadcasts it (lines 16 - 20). Note that the reward for the
height H is given during the height H + 1, and to a subset of validators who committed the
block for H (line 6).

» Theorem 8. In an eventual synchronous system, Tendermint Repeated Consensus algorithm
implements the Repeated Consensus.

5 Conclusion & Discussion

The contribution of this paper is the improvement and the formal analysis of the original
Tendermint protocol, a PBFT-based repeated consensus protocol where the set of validators
is dynamic. Each improvement we introduced is motivated by bugs we discovered in the
original protocol. A preliminary version of this paper has been reported in [2]. Very recently
a new version of Tendermint has been advertised in [6] by Tendermint foundation without
an operational release. The authors argue that their solution works if the two hypothesis
below are verified: Hypothesis 1: if a correct process receives some message m at time ¢, all
correct processes will receive m before max(t, global stabilization time) + A. Note that this
property called by the authors gossip communication should be verified even though m has
been sent by a Byzantine process. Hypothesis 2: there exists eventually a proposer such that
its proposed value will be accepted by all the other correct processes. Moreover, the formal
and complete correctness proof of this new protocol is still an open issue (several not trivial
bugs have been reported recently e.g. [34]).

We are further interested in the fairness of Tendermint-core blockchains since without
a glimpse of fairness in the way rewards are distributed, these blockchains may collapse.
It is common knowledge that in permisionless blockchain systems the main threat is the
tragedy of commons that may yield the system to collapse if the rewarding mechanism
is not adequate. Ad minimum the rewarding mechanism must be fair, i.e. distributing
the rewards in proportion to the merit of participants. Our fairness preliminary study,
reported in [2], is in line with Francez definition of fairness [18], generally defines the fairness
of protocols based on voting committees (e.g. Byzcoin[24], PeerCensus[11], RedBelly [9],
SBFT [21] and Hyperledger Fabric [3] etc), by the fairness of their selection mechanism and
the fairness of their reward mechanism. The selection mechanism is in charge of selecting
the subset of processes that will participate to the agreement on the next block to be
appended to the blockchain, while the reward mechanism defines the way the rewards are
distributed among processes that participate in the agreement. Our preliminary analysis of
the reward mechanism allowed to establish the following result with respect to the fairness
of repeated-consensus blockchains as follows:

There exists a(n) (eventual) fair reward mechanism for repeated-consensus blockchains if
and only if the system is (eventual) synchronous (see [2]).

It follows that in our fairness model the original Tendermint protocol is not eventually
fair, however with a small twist in the way delays are handled its reward mechanism becomes
eventually fair. More details can be found in [2]. Our study opens an interesting future
research direction related to the fairness of the selection mechanism in repeated-consensus
based blockchains.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni

—— References

1

10

11

12

13

14

15

16

17

18

Marcos K Aguilera. A pleasant stroll through the land of infinitely many creatures. ACM
Sigact News, 35(2):36-59, 2004.

Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci Piergiovanni. Correctness and Fairness of Tendermint-core Blockchains. CoRR,
abs/1805.08429, 2018.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permis-
sioned Blockchains. In Proceedings of the Thirteenth FuroSys Conference, FuroSys 2018,
Porto, Portugal, April 23-26, 2018, pages 30:1-30:15, 2018.

Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci-Piergiovanni. Looking
for a definition of dynamic distributed systems. In International Conference on Parallel
Computing Technologies, pages 1-14. Springer, 2007.

Amotz Bar-Noy, Xiaotie Deng, Juan A. Garay, and Tiko Kameda. Optimal Amortized
Distributed Consensus. Inf. Comput., 120(1):93-100, 1995.

E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938v1, July 2018. URL: https://arxiv.org/abs/1807.04938v1.

Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.
Thesis, University of Guelph, June 2016. URL: https://atrium.lib.uoguelph.ca/
xmlui/handle/10214/9769.

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proactive
Recovery. ACM Trans. Comput. Syst., 20(4):398-461, November 2002.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient Byzantine
Consensus with a Weak Coordinator and its Application to Consortium Blockchains, 2017.
Daian, Rafael Pass, and Elaine Shi. Snow White: Provably Secure Proofs of Stake. TACR
Cryptology ePrint Archive, 2016:919, 2016.

Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consist-
ency. In Proceedings of the 17th International Conference on Distributed Computing and
Networking, Singapore, January 4-7, 2016, pages 13:1-13:10, 2016.

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Franck Petit, and Sam
Toueg. With Finite Memory Consensus Is Easier Than Reliable Broadcast. In Principles of
Distributed Systems, 12th International Conference, OPODIS 2008, Luxor, Eqypt, Decem-
ber 15-18, 2008. Proceedings, pages 41-57, 2008.

Shlomi Dolev and Sergio Rajsbaum. Stability of long-lived consensus. J. Comput. Syst.
Sei., 67(1):26-45, 2003.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288-323, 1988.

Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail. In
Advances in Cryptology - CRYPTO °92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pages 139-147, 1992.
Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert van Renesse. Bitcoin-NG: A
Scalable Blockchain Protocol. In 13th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016, 2016.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32(2), April 1985.

Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.

16:15

OPODIS 2018

https://arxiv.org/abs/1807.04938v1
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769

16:16

Correctness of Tendermint-Core Blockchains

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Analysis and
Applications. In Proc. of the EUROCRYPT International Conference, 2015.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages
51-68, 2017.

Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Mi-
chael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scal-
able decentralized trust infrastructure for blockchains. CoRR, abs/1804.01626, 2018.
Maurice Herlihy and Mark Moir. Enhancing Accountability and Trust in Distributed
Ledgers. CoRR, abs/1606.07490, 2016.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol. In Advances in Cryptology - CRYPTO
2017 - 87th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 357-388, 2017.

E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhan-
cing Bitcoin Security and Performance with Strong Consistency via Collective Signing. In
Proceedings of the 25th USENIX Security Symposium, 2016.

Jae Kwon. Tendermint: Consensus without mining. Technical report, Tendermint, 2014.
Jae Kwon and Ethan Buchman. Cosmos: A Network of Distributed Ledgers. https:
//cosmos.network/resources/whitepaper (visited on 2018-05-22).

Jae Kwon and Ethan Buchman. Tendermint. https://tendermint.readthedocs.io/
projects/tools/en/v0.19.3/specification.html (visited on 2018-05-22).

Dahlia Malkhi. The BFT Lens: Tendermint. https://dahliamalkhi.wordpress.com/
2018/04/03/tendermint-in-the-lens-of-bft/ (visited on 2018-05-22), April 2018.
Francesc D. Munoz-Escof and Rubén de Juan-Marin. On synchrony in dynamic distributed
systems. Open Computer Science, 8(1):154-164, 2018. doi:10.1515/comp-2018-0014.

S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/
bitcoin.pdf (visited on 2018-05-22), 2008.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the Blockchain Protocol in Asyn-
chronous Networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, pages 643—673, 2017.

Rafael Pass and Elaine Shi. The Sleepy Model of Consensus. In Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II, pages 380-409, 2017.

M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
Journal of the ACM, 27(2):228-234, April 1980.

Tendermint. Tendermint: correctness issues. https://github.com/tendermint/spec/
issues (see issues 36-37 visited on 2018-09-05).

Tendermint. Tendermint: Tendermint Core (BFT Consensus) in Go. https://github.
com/tendermint/tendermint/blob/e88f74bb9bb9edb9c311£256037fcca217b45ab6/
consensus/state.go (visited on 2018-05-22).

G. Wood. Ethereum: A secure decentralised generalised transaction ledger. http:
//gavwood. com/Paper.pdf (visited on 2018-05-22).

https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper
https://tendermint.readthedocs.io/projects/tools/en/v0.19.3/specification.html
https://tendermint.readthedocs.io/projects/tools/en/v0.19.3/specification.html
https://dahliamalkhi.wordpress.com/2018/04/03/tendermint-in-the-lens-of-bft/
https://dahliamalkhi.wordpress.com/2018/04/03/tendermint-in-the-lens-of-bft/
http://dx.doi.org/10.1515/comp-2018-0014
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/tendermint/spec/issues
https://github.com/tendermint/spec/issues
https://github.com/tendermint/tendermint/blob/e88f74bb9bb9edb9c311f256037fcca217b45ab6/consensus/state.go
https://github.com/tendermint/tendermint/blob/e88f74bb9bb9edb9c311f256037fcca217b45ab6/consensus/state.go
https://github.com/tendermint/tendermint/blob/e88f74bb9bb9edb9c311f256037fcca217b45ab6/consensus/state.go
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

	Introduction
	Related Work
	System model and Problem Definition
	Tendermint Formalization
	Informal description of Tendermint and its blockchain
	Tendermint One-Shot Consensus algorithm
	Correctness of Tendermint One-Shot Consensus

	Tendermint Repeated Consensus algorithm

	Conclusion & Discussion

