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Abstract
A parallel batched data structure is designed to process synchronized batches of operations on
the data structure using a parallel program. In this paper, we propose parallel combining, a
technique that implements a concurrent data structure from a parallel batched one. The idea is
that we explicitly synchronize concurrent operations into batches: one of the processes becomes a
combiner which collects concurrent requests and initiates a parallel batched algorithm involving
the owners (clients) of the collected requests. Intuitively, the cost of synchronizing the concurrent
calls can be compensated by running the parallel batched algorithm.

We validate the intuition via two applications. First, we use parallel combining to design
a concurrent data structure optimized for read-dominated workloads, taking a dynamic graph
data structure as an example. Second, we use a novel parallel batched priority queue to build a
concurrent one. In both cases, we obtain performance gains with respect to the state-of-the-art
algorithms.
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1 Introduction

To ensure correctness of concurrent computations, various synchronization techniques are
employed. Informally, synchronization is used to handle conflicts on shared data, e.g., resolving
data races, or shared resources, e.g., allocating and deallocating memory. Intuitively, the
more sophisticated conflict patterns a concurrent program is subject to – the higher are the
incurred synchronization costs.
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Figure 1 Execution of a parallel program.
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Figure 2 Execution on a concurrent data
structure.

Let us consider a concurrent-software class which we call parallel programs. Provided
an input, a parallel program aims at computing an output that satisfies a specification,
i.e., an input-output relation (Figure 1). To boost performance, the program distributes
the computation across multiple parallel processes. Parallel programs are typically written
for two environments: for static multithreading and dynamic multithreading [11]. In static
multithreading, each process is given its own program and these programs are written
as a composition of supersteps. During a superstep, the processes perform conflict-free
individual computations and, when done, synchronize to accumulate the results. In dynamic
multithreading, the program is written using dynamically called fork-join mechanisms (or
similar ones, e.g., #pragma omp parallel in OpenMP [6]). In both settings, synchronization
only appears in a specific form: memory allocation/deallocation, and aggregating superstep
computations or thread scheduling [17].

General-purpose concurrent data structures, such as stacks, binary search trees and
priority queues, operate in a much less controlled environment. They are programmed
to accept and process asynchronous operation calls, which come from multiple concurrent
processes and may interleave arbitrarily. If we treat operation calls as inputs and their
responses as outputs, we can say that inputs and outputs are distributed across the processes
(Figure 2). It is typically expected that the interleaving operations match the high-level
sequential semantics of the data type [24], which is hard to implement efficiently given diverse
and complicated data-race patterns often observed in this kind of programs. Therefore,
designing efficient and correct concurrent data structures requires a lot of ingenuity from
the programmer. In particular, one should strive to provide the “just right” amount of
synchronization. Lock-based data structures obviate data races by using fine-grained locking
ensuring that contested data is accessed in a mutually exclusive way. Wait-free and lock-free
data structures allow data races but mitigate their effects by additional mechanisms, such as
helping where one process may perform some work on behalf of other processes [23].

As parallel programs are written for a restricted environment with simple synchronization
patterns, they are typically easier to design than concurrent data structures. In this paper,
we suggest benefiting from this complexity gap by building concurrent data structures from
parallel programs. We describe a methodology of designing a concurrent data structure from
its parallel batched counterpart [2]. A parallel batched data structure is a special case of a
parallel program that accepts batches (sets) of operations on a given sequential data type
and executes them in a parallel way. In our approach, we explicitly synchronize concurrent
operations, assemble them into batches, and apply these batches on an emulated parallel
batched data structure.
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More precisely, concurrent processes share a set of active requests using any combining
algorithm [31, 21, 15, 16]. One of the processes with an active request becomes a combiner
and forms a batch from the requests in the set. Under the coordination of the combiner, the
owners of the collected requests, called clients, apply the requests in the batch to the parallel
batched data structure. As we show, this technique becomes handy when the overhead
of explicitly synchronizing operation calls in batches is compensated by the advantages of
involving clients into the computation using the parallel batched data structure.

We discuss two applications of parallel combining and experimentally validate performance
gains. First, we design concurrent implementations optimized for read-dominated workloads
given a sequential data structure. Intuitively, updates are performed sequentially and
read-only operations are performed by the clients in parallel under the coordination of the
combiner. In our performance analysis, we considered a dynamic graph data structure [25]
that can be accessed for adding and removing edges (updates), as well as for checking the
connectivity between pairs of vertices (read-only). Second, we apply parallel combining
to priority queue that is subject to sequential bottlenecks for minimal-element extractions,
while most insertions can be applied concurrently. As a side contribution, we propose a novel
parallel batched priority queue, as no existing batched priority queue we are aware of can be
efficiently used in our context. Our perfomance analysis shows that implementations based
on parallel combining may outperform state-of-the-art algorithms.

Structure. The rest of the paper is organized as follows. In Section 2, we give preliminary
definitions. In Section 3, we outline parallel combining technique. In Sections 4 and 5,
we present applications of our technique. In Section 6, we report on the outcomes of our
performance analysis. In Section 7, we overview the related work. We conclude in Section 8.

2 Background

Data types and data structures. A sequential data type is defined via a set of operations,
a set of responses, a set of states, an initial state and a set of transitions. Each transition
maps a state and an operation to a new state and a response. A sequential implementation
(or sequential data structure) corresponding to a given data type specifies, for each operation,
a sequential read-write algorithm, so that the specification of the data type is respected in
every sequential execution.

We consider a system of n asynchronous processes (processors or threads of computation)
that communicate by performing primitive operations on shared base objects. The primitive
operations can be reads, writes, or conditional operations, such as test&set or compare&swap.
A concurrent implementation (or concurrent data structure) of a given data type assigns,
for each process and each operation of the data type, a state machine that is triggered
whenever the process invokes an operation and specifies the sequence of steps (primitives
on the base objects) the process needs to perform to complete the operation. We require
the implementations to be linearizable with respect to the data type, i.e., we require that
operations take effect instantaneously within their intervals [24].

Batched data structures. A batched implementation (or batched data structure) of a data
type exports one function apply. This operation takes a batch (set) of data type operations
as a parameter and returns responses for these operations that are consistent with some
sequential application of the operations to the current state of the data structure, which is
updated accordingly. We also consider extensions of the definition where we explicitly define
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11:4 Parallel Combining

the “batched” data type via the set [30] or interval [10] linearizations. Such a data type
takes a batch and a state, and returns a new state and a vector of responses.

For example, in the simplest form, a batched implementation may sequentially apply
operations from a batch to the sequential data structure. But batched implementations
may also use parallelism to accelerate the execution of the batch: we call these parallel
batched implementations. We consider two types of parallel batched implementations:
static-multithreading ones and dynamic-multithreading ones [11].

Static multithreading. A parallel batched data structure specifies a distinct (sequential)
code to each process in PRAM-like models (PRAM [27], Bulk synchronous parallel model [37],
Asynchronous PRAM [18], etc.). For example, in this paper, we provide a batched imple-
mentation of a priority queue in the Asynchronous PRAM model. The Asynchronous PRAM
consists of n sequential processes, each with its own private local memory, communicating
through the shared memory. Each process has its own program. Unlike the classical PRAM
model, each process executes its instructions independently of the timing of the other pro-
cessors. Each process performs one of the four types of instructions per tick of its local clock:
global read, global write, local operation, or synchronization step. A synchronization step for
a set S of processes is a logical point where each processor in S waits for all the processes in
S to arrive before continuing its local program.

Dynamic multithreading. Here the parallel batched implementation is written as a sequen-
tial read-write algorithm using concurrency keywords specifiying logical parallelism, such as
fork, join and parallel-for [11]. An execution of a batch can be presented as a directed acyclic
graph (DAG) that unfolds dynamically. In the DAG, nodes represent unit-time sequential
subcomputations, and edges represent control-flow dependencies between nodes. A node
that corresponds to a “fork” has two or more outgoing edges and a node that corresponds
to a “join” has two or more incoming edges. The batch is executed using a scheduler that
chooses which DAG nodes to execute on each process. It can only execute ready nodes: not
yet executed nodes whose predecessors have all been executed. The most commonly used
work-stealing scheduler (e.g., [5]) operates as follows. Each process p is provided with a
deque for ready nodes. When process p completes node u, it traverses successors of u and
collects the ready ones. Then p selects one of the ready successors for execution and adds the
remaining ready successors at the bottom of its deque. When p’s deque is empty, it becomes
a thief : it randomly picks a victim processor and steals from the top of the victim’s deque.

3 Parallel Combining

In this section, we describe the parallel combining technique in a parameterized form: the
parameters are specified depending on the application. We then discuss how to use the
technique in transforming parallel batched programs into concurrent data structures.

3.1 Combining Data Structure
Our technique relies on a combining data structure C (e.g., the one used in [21]) that
maintains a set of requests to a data structure and determines which process is a combiner.
If the set of requests is not empty then exactly one process should be a combiner.

Elements stored in C are of Request type consisting of the following fields: 1) the method
to be called and its input; 2) the response field; 3) the status of the request with a value in an
application-specific STATUS_SET; 4) application-specific auxiliary fields. In our applications,



V. Aksenov, P. Kuznetsov, and A. Shalyto 11:5

Listing 1 Parallel combining: pseudocode
1 Request:
2 method
3 input
4 res
5 status ∈ STATUS_SET
6 ...
7

8 execute(method, input):
9 req ← new Request()

10 req.method ← method
11 req.input ← input
12 req.status ← INITIAL
13 if C.addRequest(req):
14 // combiner
15 A← C.getRequests()
16 COMBINER_CODE
17 C.release()
18 else:
19 while req.status = INITIAL:
20 nop
21 CLIENT_CODE
22 return

STATUS_SET contains, by default, values INITIAL and FINISHED: INITIAL meaning that the
request is in the initial state, and FINISHED meaning that the request is served.

C supports three operations: 1) addRequest(r : Request) inserts request r into the
set, and the response indicates whether the calling process becomes a combiner or a client;
2) getRequests() returns a non-empty set of requests; and 3) release() is issued by the
combiner to make C find another process to be a combiner.

In the following, we use any black-box implementation of C providing this functionality [31,
21, 15, 16].

3.2 Specifying Parameters

To perform an operation, a process executes the following steps (Listing 1): 1) it prepares
a request, inserts the request into C using addRequest(·); 2) if the process becomes the
combiner (i.e., addRequest(·) returned true), it collects requests from C using getRequests(),
then it executes algorithm COMBINER_CODE, and, finally, it calls release() to enable another
active process to become a combiner; 3) if the process is a client (i.e., addRequest(·) returned
false), it waits until the status of the request becomes not INITIAL and, then, executes
algorithm CLIENT_CODE.

To use our technique, one should therefore specify COMBINER_CODE, CLIENT_CODE, and
appropriately modify Request type and STATUS_SET.

Note that sequential combining [31, 21, 16, 14] is a special case of parallel combining in
which all the work is done by the combiner, and the client code is empty.
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3.3 Parallel Batched Algorithms
We discuss how to build a concurrent data structure given a parallel batched one in one of
two forms: for static or dynamic multithreading.

In the static multithreading case, each process is provided with a distinct version of apply
function. We enrich STATUS_SET with STARTED. In COMBINER_CODE, the combiner collects
the requests, sets their status to STARTED, performs the code of apply and waits for the
clients to become FINISHED. In CLIENT_CODE the client waits until its request has STARTED
status, performs the code of apply and sets the status of its request to FINISHED.

Suppose that we are given a parallel batched implementation for dynamic multithreading.
One can turn it into a concurrent one using parallel combining with the work-stealing
scheduler. Again, we enrich STATUS_SET with STARTED. In COMBINER_CODE, the combiner
collects the requests and sets their status to STARTED. Then the combiner creates a working
deque, puts there a new node of computational DAG with apply function and starts the work-
stealing routine on processes-clients. Finally, the combiner waits for the clients to become
FINISHED. In CLIENT_CODE, the client creates a working deque and starts the work-stealing
routine.

In Section 5, we illustrate the use of parallel combining and parallel batched programs on
the example of a priority queue.

4 Read-Optimized Concurrent Data Structures

Before discussing parallel batched algorithms, let us consider a natural application of parallel
combining: data structures optimized for read-dominated workloads.

Suppose that we are given a sequential data structure D that supports read-only (not
modifying the data structure) operations, the remaining operations are called updates. We
assume a scenario where read-only operations dominate over other updates.

Now we explain how to set parameters of parallel combining for this application. At first,
STATUS_SET consists of three elements INITIAL, STARTED and FINISHED. Request type does
not have auxiliary fields.

In COMBINER_CODE (Listing 2 Lines 1-19), the combiner iterates through the set of collected
requests A: if a request contains an update operation then the combiner executes it and
sets its status to FINISHED; otherwise, the combiner adds the request to set R. Then the
combiner sets the status of requests in R to STARTED. After that the combiner checks whether
its own request is read-only. If so, it executes the method and sets the status of its request to
FINISHED. Finally, the combiner waits until the status of the requests in R become FINISHED.

In CLIENT_CODE (Listing 2 Lines 21-24), the client checks whether its method is read-only.
If so, the client executes the method and sets the status of the request to FINISHED.

I Theorem 1. Algorithm in Listing 2 produces a linearizable concurrent data structure from
a sequential one.

Proof. Any execution of the algorithm can be viewed as a series of non-overlapping combining
phases (Listing 2, Lines 2-19). We can group the operations into batches by the combining
phase in which they are applied.

Each update operation is linearized at the point when the combiner applies this operation.
Note that this is a correct linearization since all operations that are linearized before are
already applied: the operations from preceding combining phases were applied during
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Listing 2 Parallel combining in application to read-optimized data structures.
1 COMBINER_CODE:
2 R ← ∅
3

4 for r ∈ A:
5 if isUpdate(r.method):
6 apply(D, r.method, r.input)
7 r.status ← FINISHED
8 else:
9 R ← R ∪ r

10

11 for r ∈ R:
12 r.status ← STARTED
13 if req.status = STARTED:
14 apply(D, req.method, req.input)
15 req.status ← FINISHED
16

17 for r ∈ R:
18 while r.status = STARTED:
19 nop
20

21 CLIENT_CODE:
22 if not isUpdate(req.method):
23 apply(D, req.method, req.input)
24 req.status ← FINISHED

the preceding phases, while the operations from the current combining phase are applied
sequentially by the combiner.

Each read-only operation is linearized at the point when the combiner sets the status of
the corresponding request to STARTED. By the algorithm, a read-only operation observes all
update operations that are applied before and during the current combining phase. Thus,
the chosen linearization is correct. J

To evaluate the approach in practice we implement a concurrent dynamic graph data
structure by Holm et al. and execute it in read-dominated environments [25] (Section 6.1).

5 Priority Queue

Priority queue is an abstract data type that maintains an ordered multiset and supports two
operations:

Insert(v) – inserts value v into the set;
v ← ExtractMin() – extracts the smallest value from the set.

To the best of our knowledge, no prior parallel implementation of a priority-queue [32,
13, 9, 33] can be efficiently used in our context: their complexity inherently depends on the
total number of processes in the system, regardless of the actual batch size. We therefore
introduce a novel heap-based parallel batched priority-queue implementation in a form of
COMBINER_CODE and CLIENT_CODE convenient for parallel combining. The concurrent priority
queue is then derived from the described below parallel batched one using the approach
presented in Section 3.3.

OPODIS 2018



11:8 Parallel Combining

Here we give only the brief overview of our parallel batched algorithm. Please refer to
the full version of the paper [3] for a detailed description.

In Section 6.2, we show that the resulting concurrent priority queue is able to outperform
manually crafted state-of-the-art implementations.

5.1 Sequential Binary Heap
Our batched priority queue is based on the sequential binary heap by Gonnet and Munro [19],
one of the simplest and fastest sequential priority queues. We briefly describe this algorithm
below.

A binary heap of size m is represented as a complete binary tree with nodes indexed
by 1, . . . , m. Each node v has at most two children: 2v and 2v + 1 (to exist, 2v and 2v + 1
should be less than or equal to m). For each node, the heap property should be satified: the
value stored at the node is less than the values stored at its children.

The heap is represented with size m and an array a where a[v] is the value at node v.
Operations ExtractMin and Insert are performed as follows:

ExtractMin records the value a[1] as a response, copies a[m] to a[1], decrements m and
performs the sift down procedure to restore the heap property. Starting from the root,
for each node v on the path, we check whether value a[v] is less than values a[2v] and
a[2v + 1]. If so, then the heap property is satisfied and we stop the operation. Otherwise,
we choose the child c, either 2v or 2v + 1, with the smallest value, swap values a[v] and
a[c], and continue with c.
Insert(x) initializes a variable val to x, increments m and traverses the path from the
root to a new node m. For each node v on the path, if val < a[v], then the two values
are swapped. Then the operation continues with the child of v that lies on the path from
v to node m. Reaching node m the operation sets its value to val.

The complexity is O(log m) steps per operation.

5.2 Setup
The heap is defined by its size m and an array a of Node objects. Node object has two fields:
value val and boolean locked (In the full version [3] it has an additional field).

STATUS_SET consists of three items: INITIAL, SIFT and FINISHED.
A Request object consists of: a method method to be called and its input argument v; a

result res field; a status field and a node identifier start.

5.3 ExtractMin Phase
Combiner: ExtractMin preparation. The combiner withdraws requests A from combining
data structure C. It splits A into sets E and I: the set of ExtractMin requests and Insert
requests. Then it finds |E| nodes v1, . . . , v|E| of heap with the smallest values using the
Dijkstra-like algorithm in O(|E| · log |E|) steps: (i) create a heap of nodes ordered by values,
put there the root 1; (ii) at each of the next |E| steps withdraw the node v with the minimal
value from the heap; (iii) put two children of v, 2v and 2v+1, to the heap. The |E| withdrawn
nodes are the nodes with the |E| minimal values. For each request E[i], the combiner sets
E[i].res to a[vi].val, a[vi].locked to true, and E[i].start to vi.

The combiner proceeds by pairing Insert requests in I with ExtractMin requests in
E using the following procedure. Suppose that ` = min(|E|, |I|). For each i ∈ [1, `], the
combiner sets a[vi].val to I[i].v and I[i].status to FINISHED, i.e., this Insert request becomes
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Figure 3 Split and target nodes.

completed. Then, for each i ∈ [` + 1, |E|], the combiner sets a[vi].val to the value of the last
node a[m] and decrements m, as in the sequential algorithm. Finally, the combiner sets the
status of all requests in E to SIFT.

Clients: ExtractMin phase. Briefly, the clients sift down the values in nodes v1, . . . , v|E|
in parallel using hand-over-hand locking: the locked field of a node is set whenever there is a
sift down operation working on that node.

A client c waits until the status of its request becomes SIFT. c starts sifting down from
req.start. Suppose that c is currently at node v. c waits until the locked fields of the children
become false. If a[v].val, the value of v, is less than the values in its children, then sift down
is finished: c unsets a[v].locked and sets the status of its request to FINISHED. Otherwise, let
w be the child with the smallest value. Then c swaps a[v].val and a[w].val, sets a[w].locked,
unsets a[v].locked and continues with node w.

If the request of the combiner is ExtractMin, it also runs the code above as a client. The
combiner considers the ExtractMin phase completed when all requests in E have status
FINISHED.

5.4 Insert Phase
For simplicity, we describe first the sequential algorithm.

At first, the combiner removes all completed requests from I. Then it initializes new
nodes m + 1, . . . , m + |I| which we call target nodes and increments m by |I|. The nodes for
which the subtrees of both children contain at least one target node are called split nodes.
(See Figure 3 for an example of how target and split nodes can be defined.)

The combiner collects the values of the remaining Insert requests and sorts them:
r1, . . . , r|I|. Then it sets the status of these requests to FINISHED.

Now, we introduce InsertSet class: it consists of two sorted lists A and B. The combiner
starts the following recursive procedure at the root with InsertSet s: s.A contains r1, . . . , r|I|
while s.B is empty. Suppose that the procedure is called on node v and InsertSet s. Let
min be the minimum out of the first element of s.A and the first element of s.B. If v is a
target node then the combiner sets a[v].res to min and withdraws m from the corresponding
list. Otherwise, the combiner compares a[v].res with min: if a[v].res is smaller, then it
does nothing; otherwise, it appends a[v].res to the end of s.B (note that s.B remains sorted
because s.B consists only of values that were ancestors in the heap), withdraws min from
the corresponding list and sets a[v].res to min.
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11:10 Parallel Combining

If v is not the split node the combiner calls the recursive procedure on the child with
target nodes in the subtree and with InsertSet s. Otherwise, the combiner calculates inL and
inR – the number of target nodes in the left and right subtrees of v. Suppose, for simplicity,
that inL is less than inR (the opposite case can be resolved similarly). The combiner splits
s into two parts: create InsertSet sL, move min(inL, |s.A|) first values from s.A to sL.A and
move min(inL− |sL.A|, |s.B|) first values from s.B to sL.B. Finally, it calls the recursive
procedure on the left child with InsertSet sL and on the right child with InsertSet s.

This algorithm works in O(log m + c log c) steps (and can be optimized to O(log m + c)
steps), where m is the size of the queue and c is the number of Insert requests to apply. Note
that this algorithm is almost non-parallelizable due to its small complexity, and our parallel
algorithm is only developed to reduce constant factors.

Now, we construct a parallel algorithm for the Insert phase. We enrich Node object with
the IntegerSet field split. The combiner sets the start field of the first client (i[1].start) to
the root 1, while start fields of other clients to the right children of split nodes (we have
exactly |I| − 1 split nodes). Then it intializes the split field of the root as the IntegerSet s is
initialized at the beginning of the sequential algorithm: list A contains values of requests
while list B is empty.

Each client waits until the split field of the corresponding start node is non-null. Then
it reads this IntegerSet: the values from this set should be inserted in the subtree. Finally,
the client performs the procedure similar to the recursive procedure from the sequential
algorithm except for one difference: when it reaches a split node instead of going recursively
to left and right children, it splits InsertSet to sL and sR of sizes inL and inR, puts sR into
the split field of the right child (in order to wake another client) and continues with the left
child and sL.

For further details about the parallel algorithm we refer to the full version of the paper [3].

6 Experiments

We evaluate Java implementations of our data structures on a 4-processor AMD Opteron
6378 2.4 GHz server with 16 threads per processor (yielding 64 threads in total), 512 Gb of
RAM, running Ubuntu 14.04.5 with Java 1.8.0_111-b14 and HotSpot JVM 25.111-b14.

6.1 Concurrent Dynamic Graph
To illustrate how parallel combining can be used to construct read-optimized concurrent
data structures, we took the sequential dynamic graph implementation by Holm et al. [25].
This data structure supports two update methods: an insertion of an edge and a deletion of
an edge; and one read-only method: a connectivity query that tests whether two vertices are
connected.

We compare our implementation based on parallel combining (PC) with flat combining [21]
as a combining data structure against three others: (1) Lock, based on ReentrantLock from
java.util.concurrent; (2) RW Lock, based on ReentrantReadWriteLock from java.util.concurrent;
and (3) FC, based on flat combining [21]. The code is available at https://github.com/
Aksenov239/concurrent-graph.

We consider workloads parametrized with: 1) the fraction x of connectivity queries (50%,
80% or 100%, as we consider read-dominated workloads); 2) the set of edges E: edges of
a single random tree, or edges of ten random trees; 3) the number of processes P (from 1
to 64). We prepopulate the graph on 105 vertices with edges from E: we insert each edge
with probability 1

2 . Then we start P processes. Each process repeatedly performs operations:

https://github.com/Aksenov239/concurrent-graph
https://github.com/Aksenov239/concurrent-graph
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Figure 4 Dynamic graph implementations.

1) with probability x, it calls a connectivity query on two vertices chosen uniformly at
random; 2) with probability 1− x

2 , it inserts an edge chosen uniformly at random from E;
3) with probability 1− x

2 , it deletes an edge chosen uniformly at random from E.
We denote the workloads with E as a single tree as Tree workloads, and other workloads

as Trees workloads. Tree workloads are interesting because they show the degenerate
case: the dynamic graph behaves as a dynamic tree. In this case, about 50% of update
operations successfully change the spanning fprest, while other update operations only check
the existence of the edge and do not modify the graph. Trees workloads are interesting
because a reasonably small number (approximately, 5-10%) of update operations modify
the maintained set of all edges and the underlying complex data structure that maintains
a spanning forest (giving in total the squared logarithmic complexity), while other update
operations can only modify the set of edges but cannot modify the underlying complex data
structure (giving in total the logarithmic complexity).

For each setting and each algorithm, we run the corresponding workload for 10 seconds
to warmup HotSpot JVM and then we run the workload five more times for 10 seconds. The
average throughput of the last five runs is reported in Figure 4.

From the plots we can infer two general observations: PC exhibits the highest thoughput
over all considered implementations and it is the only one whose throughput scales up with
the number of the processes. On the 100% workload we expect the throughput curve to be
almost linear since all operations are read-only and can run in parallel. The plots almost
confirm our expectation: the curve of the throughput is a linear function with coefficient
1
2 (instead of the ideal coefficient 1). We note that this is almost the best we can achieve:
a combiner typically collects operations of only approximately half the number of working
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processes. In addition, the induced overhead is still perceptible, since each connectivity query
works in just logarithmic time. With the decrease of the fraction of read-only operations we
expect that the throughput curve becomes flatter, as plots for the 50% and 80% workloads
confirm.

It is also interesting to point out several features of other implementations. At first, FC
implementation works slightly worse than Lock and RW Lock. This might be explained
as follows. Lock implementations (ReentrantLock and ReentrantReadWriteLock) behind
Lock and RWLock implementations are based on CLH Lock [12] organized as a queue: every
competing process is appended to the queue and then waits until the previous one releases
the lock. Operations on the dynamic graph take significant amount of time, so under high
load when the process finishes its operation it appends itself to the queue in the lock without
any contention. Indeed, all other processes are likely to be in the queue and, thus, no process
can contend. By that the operations by processes are serialized with almost no overhead.
In contrast, the combining procedure in FC introduces non-negligible overhead related to
gathering the requests and writing them into requests structures.

Second, it is interesting to observe that, against the intuition, RWLock is not so superior
with respect to Lock on read-only workloads. As can be seen, when there are update
operations in the workload RWLock works even worse than Lock. We relate this to the
fact that the overhead hidden inside ReentrantReadWriteLock spent on manipulation with
read and write requests is bigger than the overhead spent by ReentrantLock. With the
increase of the percentage of read-only operations the difference between Lock and RWLock
diminishes and RWLock becomes dominant since read operations become more likely to
be applied concurrently (for example, on 50% it is normal to have an execution without
any parallelization: read operation, write operation, read operation, and so on). However,
on 100% one could expect that RWLock should exhibit ideal throughput. Unfortunately,
in this case, under the hood ReentrantReadWriteLock uses compare&swap on the shared
variable that represents the number of current read operations. Read-only operations take
enough time but not enough to amortize the considerable traffic introduced by concurrent
compare&swaps. Thus, the plot for RWLock is almost flat, getting even slightly worse with
the increase of the number of processes, and we blame the traffic for this.

6.2 Priority Queue
We run our algorithm (PC) with flat combining [21] as a combining data structure against six
state-of-the-art concurrent priority queues: (1) the lock-free skip-list by Linden and Johnson
(Linden SL [28]), (2) the lazy lock-based skip-list (Lazy SL [23]), (3) the non-linearizable
lock-free skip-list by Herlihy and Shavit (SkipQueue [23]) as an adaptation of Lotan and
Shavit’s algorithm [34], (4) the lock-free skip-list from Java library (JavaLib), (5) the binary
heap with flat combining (FC Binary [21]), and (6) the pairing heap with flat combining (FC
Pairing [21]). 2 The code is available at https://github.com/Aksenov239/FC-heap.

We consider workloads parametrized by: 1) the initial size of the queue S (8 · 105 or
8 · 106); and 2) the number P of working processes (from 1 to 64). We prepopulate the
queue with S random integers chosen uniformly from the range [0, 231 − 1]. Then we start P

processes, and each process repeatedly performs operations: with equal probability it either
inserts a random value taken uniformly from [0, 231 − 1] or extracts the minimum value.

2 We are aware of the cache-friendly priority queue by Braginsky et al. [8], but we do not have its Java
implementation.

https://github.com/Aksenov239/FC-heap
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Figure 5 Priority Queue implementations.

For each setting and each algorithm, we run the corresponding workload for 10 seconds
to warmup HotSpot JVM and then we run the workload five more times for 10 seconds. The
average throughput of the last five runs is reported in Figure 5.

On a small number of processes (< 15), PC performs worse than other algorithms. With
respect to Linden SL, Lazy SL, SkipQueue and JavaLib this can be explained by two different
issues:

Synchronization incurred by PC is not compensated by the work done;
Typically, a combiner collects operations of only approximately half the processes, thus,
we “overserialize”, i.e., only n

2 operations can be performed in parallel.
In contrast, on small number of processes, the other four algorithms can perform operations
almost with no contention. With respect to algorithms based on flat combining, FC Binary
and FC Pairing, our algorithm is simply slower on one process than the simplest sequential
binary and pairing heap algorithms.

With the increase of the number of processes the synchronization overhead significantly
increases for all algorithms (in addition to the fact that FC Binary and FC Pairing cannot
scale). As a result, starting from 15 processes, PC outperforms all algorithms except for
Linden SL. Linden SL relaxes the contention during ExtractMin operations, and it helps to
keep the throughput approximately constant. At approximately 40 processes the benefits of
the parallel batched algorithm in PC starts prevailing the costs of explicit synchronization,
and our algorithms overtakes Linden SL.

It is interesting to note that FC Binary performs very well when the number of processes
is small: the overhead on the synchronization is very small, the processes are from the same
core and the simplest binary heap performs operations very fast.

7 Related Work

To the best of our knowledge, Yew et al. [38] were the first to propose combining concurrent
operations. They introduced a combining tree: processes start at distinct leaves, traverse
upwards, and gain exclusive access by reaching the root. If, during the traversal, two
processes access the same tree node, one of them adopts the operations of another and
continues the traversal, while the other waits until its operations are completed. Several
improvements of this technique have been discussed, such as adaptive combining tree [36],
barrier implementations [20, 29] and counting networks [35].
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A different approach was proposed by Oyama et al. [31]. Here the data structure is
protected by a lock. A thread with a new operation to be performed adds it to a list of
submitted requests and then tries to acquire the lock. The winner of the lock performs
the pending requests on behalf of other processes from the list in LIFO order. The main
drawback of this approach is that all processes have to perform CAS on the head of the
list. The flat combining technique presented by Hendler et al. [21] addresses this issue by
replacing the list of requests with a publication list which maintains a distinct publication
record per participating process. A process puts its new operation in its publication record,
and the publication record is only maintained in the list if the process is “active enough”.
This way the processes generally do not contend on the head of the list. Variations of flat
combining were later proposed for various contexts [15, 16, 26, 14].

Hierarchical combining [22] is the first attempt to improve performance of combining
using the computational power of clients. The list of requests is split into blocks, and each
of these blocks has its own combiner. The combiners push the combined requests from the
block into the second layer implemented as the standard flat combining with one combiner.
This approach, however, may be sub-optimal as it does not involve all clients. Moreover,
this approach works only for specific data structures, such as stacks or unfair synchronous
queues, where operations could be combined without accessing the data structure.

In a different context, Agrawal et al. [2] suggested to use a parallel batched data structure
instead of a concurrent one. They provide provable bounds on the running time of a dynamic
multithreaded parallel program using P processes and a specified scheduler. The proposed
scheduler extends the work-stealing scheduler by maintaining separate batch work-stealing
deques that are accessed whenever processes have operations to be performed on the abstract
data type. A process with a task to be performed on the data structure stores it in a request
array and tries to acquire a global lock. If succeeded, the process puts the task to perform
the batch update in its batch deque. Then all the processes with requests in the request
array run the work-stealing routine on the batch deques until there are no tasks left. The
idea of [2] is similar to ours. However, their algorithm is designed for systems with the fixed
set of processes, whereas we allow the processes to join and leave the execution. From a
more formal perspective, our goals are different: we aim at improving the performance of a
concurrent data structure while their goal was to establish bounds on the running time of a
parallel program in dynamic multithreading. Furthemore, implementing a concurrent data
structure from its parallel batched counterpart for dynamic multithreading is only one of the
applications of our technique, as sketched in Section 3.3.

8 Concluding remarks

Besides performance gains, parallel combining can potentially bring other interesting benefits.
First, a parallel batched implementation is typically provided with bounds on the running

time. The use of parallel combining might allow us to derive bounds on the operations
of resulting concurrent data structures. Consider, for example, a binary search tree. To
balance the tree, state-of-the-art concurrent algorithms use the relaxed AVL-scheme [7]. This
scheme guarantees that the height of the tree never exceeds the contention level (the number
of concurrent operations) plus the logarithm of the tree size. Applying parallel combining
to a parallel batched binary search tree (e.g., [4]), we get a concurrent tree with a strict
logarithmic bound on the height.

Second, the technique might enable the first ever concurrent implementation of certain
data types, for example, a dynamic tree [1].
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As shown in Section 6, our concurrent priority queue performs well compared to state-of-
the-art algorithms. A possible explanation is that the underlying parallel batched implement-
ation is designed for static multithreading and, thus, it has little synchronization overhead.
This might not be the case for implementations based on dynamic multithreading, where the
overhead induced by the scheduler can be much higher. We intend to explore this distinction
in the forthcoming work.
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