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Abstract
Spanners are fundamental graph structures that sparsify graphs at the cost of small stretch. In
particular, in recent years, many sequential algorithms constructing additive all-pairs spanners
were designed, providing very sparse small-stretch subgraphs. Remarkably, it was then shown
that the known (+6)-spanner constructions are essentially the sparsest possible, that is, larger
additive stretch cannot guarantee a sparser spanner, which brought the stretch-sparsity trade-
off to its limit. Distributed constructions of spanners are also abundant. However, for additive
spanners, while there were algorithms constructing (+2) and (+4)-all-pairs spanners, the sparsest
case of (+6)-spanners remained elusive.

We remedy this by designing a new sequential algorithm for constructing a (+6)-spanner with
the essentially-optimal sparsity of Õ(n4/3) edges. We then show a distributed implementation of
our algorithm, answering an open problem in [10].

A main ingredient in our distributed algorithm is an efficient construction of multiple weighted
BFS trees. A weighted BFS tree is a BFS tree in a weighted graph, that consists of the lightest
among all shortest paths from the root to each node. We present a distributed algorithm in the
CONGEST model, that constructs multiple weighted BFS trees in |S|+D − 1 rounds, where S
is the set of sources and D is the diameter of the network graph.
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7:2 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

1 Introduction

A spanner of a graph G is a spanning subgraph H of G that approximately preserves distances.
Spanners find many applications in distributed computing [12, 9, 42, 43, 45], and thus their
distributed construction is the center of many research papers. We focus on spanners that
approximately preserve distances between all pairs of nodes, and where the stretch is only by
an additive factor (purely-additive all-pairs spanners).

Out of the abundant research on distributed constructions of spanners, only two papers
discuss the construction of purely additive spanners in the congest model: the construction
of (+2)-spanners is discussed in [35], and the construction of (+4)-spanners and (+8)-
spanners in [10], along with other types of additive spanners and lower bounds. However,
the distributed construction of (+6)-spanners remained elusive, stated explicitly as an open
question in [10]. This is especially important since additive factors greater then 6 cannot
yield essentially sparser spanners [2].

In this paper, we give a distributed algorithm for constructing a (+6)-spanner, with an
optimal number of edges up to sub-polynomial factors; our spanner is even sparser than
the (+8)-spanner presented in [10]. Several sequential algorithms building (+6)-spanners
were presented, but none of them seems to be appropriate for a distributed setting. Thus,
to achieve our result we also present a new, simple sequential algorithm for constructing
(+6)-spanners, a result that could be of independent interest.

As a key ingredient, we provide a distributed construction of multiple weighted BFS
trees. Constructing a breadth-first search (BFS) tree is a central task in many computational
settings. In the classic synchronous distributed setting, constructing a BFS tree from a given
source is straightforward. Due to its importance, this task has received much attention in
additional distributed settings, such as the asynchronous setting (see, e.g., [40] and references
therein). Moreover, at the heart of many distributed applications lies a graph structure that
represents the edges of multiple BFS trees [30, 34], which are rooted at the nodes of a given
subset S ⊆ V , where G = (V,E) is the underlying communication graph. Such a structure
is used in distance computation and estimation [30, 29, 34], routing table construction [34],
spanner construction [10, 35, 34], and more.

When the bandwidth is limited, constructing multiple BFS trees efficiently is a non-trivial
task. Indeed, distributed constructions of multiple BFS trees in the congest model [40],
where in each round of communication every node can send O(logn)-bit messages to each of
its neighbors, have been given in [30, 34], who showed that it is possible to build BFS trees
from a set of sources S in O(|S|+D) rounds, where D is the diameter of the graph G. It is
easy to show that this is asymptotically tight.

In some cases, different edges of the graph may have different attributes, which can be
represented using edge weights. The existence of edge weights has been extensively studied
in various tasks, such as finding or approximating lightest paths [20, 37, 27, 21, 34, 31, 4, 25],
finding a minimum spanning tree (MST) in the graph [5, 23, 13], finding a maximum
matching [36, 13], and more. However, as far as we are aware, no study addresses the
problem of constructing multiple weighted BFS (WBFS) trees, where the goal is not to find
the lightest paths from the sources to the nodes, but rather the lightest shortest paths. That
is, the path in a WBFS tree from the source s to a node v is the lightest among all shortest
paths from s to v in G.

Thus, we provide an algorithm that constructs multiple WBFS trees from a set of source
nodes S in the congest model. Our algorithm completes in |S| + D − 1 rounds, which
implies that no overhead is needed for incorporating the existence of weights.
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1.1 Our contribution
At a high level, our approach for building multiple WBFS trees is to generalize the algorithm
of Lenzen et al. [34] in order to handle weights. In [34], the messages are pairs consisting of
a source node and a distance, which are prioritized by the distance traversed so far. When
incorporating weights into this framework it makes sense to use triplets instead of pairs,
where each triplet also contains the weight of the respective path. However, it may be that a
node v needs to send multiple messages that correspond to the same source and the same
distance but contain different weights, since congestion over edges may cause the respective
messages to arrive at v in different rounds and, in the worst case, in a decreasing order of
weights. The challenge in generalizing this framework therefore lies in guaranteeing that
despite the need to consider weights, we can carefully choose a total order to prioritize
triplets, such that not too many messages need to be sent, allowing us to handle congestion.
Our construction and its proof appear in Section 3, giving the following.

I Theorem 1. Given a weighted graph G = (V,E,w) and a set of nodes S ⊆ V , there exists
an algorithm for the congest model that constructs a WBFS tree rooted at s, for every
s ∈ S, in |S|+D − 1 rounds.

The importance of our multiple WBFS trees construction lies in our ability to use it
for pinning down the question of constructing (+6)-spanners in the congest model. The
construction of additive spanners in the congest model was studied beforehand [35, 10],
but the +6 case remained unresolved, for reasons we describe below. Naturally, the quality
of a spanner is measured by its sparsity, which is the motivation for allowing some stretch in
the distances to begin with, and different spanners present different tradeoffs between stretch
and sparsity. The properties of our (+6)-spanner construction algorithm are summarized in
the following theorem.1

I Theorem 2. There exists an algorithm for the congest model that constructs a (+6)-
spanner with O

(
n4/3 log4/3 n

)
edges in O

(
n2/3

log1/3 n
+D

)
rounds and sucseeds w.h.p.

Previous distributed algorithms for spanners similar to ours, i.e., purely additive all-
pairs spanners, construct a (+2)-spanner with Õ(n3/2) edges in Õ(n1/2 + D) rounds [35],
a (+4)-spanner with Õ(n7/5) edges in Õ(n3/5 + D) rounds [10], and a (+8)-spanner with
Õ(n15/11) edges in Õ(n7/11 + D) rounds [10]. Hence, our algorithm is currently the best
non-trivial spanner construction algorithm in terms of density, sparser even than the previous
(+8)-spanner. The option of getting even sparser spanners by allowing more stretch was
essentially ruled out [2], while the question of improving the running time remains open for
all stretch parameters.

1.2 Other spanner construction algorithms
Previous distributed spanner construction algorithms all build upon known sequential al-
gorithms, and present a distributed implementations of them, or of a slight variant of
them [35, 10]. For example, many sequential algorithms start in a clustering phase, where
stars around high-degree nodes are added to the spanner one by one. Implementing this
directly in the distributed setting will take too long; instead, it is shown that choosing cluster
centers at random yields almost as good results, and can be implemented in a constant

1 We use w.h.p. to indicate a probability that is at least 1 − 1/nc for some constant c ≥ 1 of choice.
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7:4 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

time. Similar methods are used for implementing other parts of the construction. However,
the approach of finding a distributed implementation for a sequential algorithm fails for all
known (+6)-spanner algorithms, as described next. Thus, we introduce a new sequential
algorithm for the problem, and then present its distributed implementation.

There are three known approaches for the design of sequential (+6)-spanner algorithms.
The first, presented by Baswana et al. [6], is based on measuring the quality of paths in
terms of cost and value, and adding to the spanner only paths which are “affordable”. This
approach was later extended by Kavitha [32] to other families of additive spanners. The
second approach, presented by Woodruff [46], uses a subroutine that finds almost-shortest
paths between pairs of nodes, and obtains a faster algorithm at the expense of a slightly worst
sparsity guarantee. The third approach, presented by Knudsen [33], is based on repeatedly
going over pairs of nodes, and adding a shortest path between a pair of nodes to the spanner
if their current distance in the spanner is too large.

Unfortunately, direct implementation in the congest model of the known sequential
algorithms is highly inefficient. We are not aware of fast distributed algorithms that allow
the computation of the cost and value of paths needed for the algorithm of [6]. Similarly,
for [46], the almost-shortest paths subroutine seems too costly for the congest model. The
algorithm of [33] needs repeated updates of the distances in the spanner between pairs of
nodes after every addition of a path to it, which is a sequential process in essence, and thus
we do not find it suitable for an efficient distributed implementation.

A different approach for the distributed construction of (+6)-spanners could be to
adapt a distributed algorithm with different stretch guarantees to construct a (+6)-spanner.
This approach does not seem to work: the distributed algorithms for constructing (+2)-
spanners [35] and (+4)-spanner [10] are both very much tailored for achieving the desired
stretch, and it is not clear how to change them in order to construct sparser spanners
with higher stretch. The (+8)-spanner construction algorithm [10] starts with clustering,
and then constructs a (+4)-pairwise spanner between the cluster centers. Replacing the
(+4)-pairwise spanner by a (+2)-pairwise spanner will indeed yield a (+6)-all-pairs spanner,
as desired. However, even using the sparsest (+2)-pairwise spanners [10, 1], the resulting
(+6)-spanner may have Õ(n5/3) edges, denser than our new (+6)-spanner and than the
known (+8)-spanner [10].

Thus, we start by presenting a new sequential algorithm for the construction of (+6)-
spanners, an algorithm that is more suitable for a distributed implementation, and then
discuss its distributed implementation. Our construction starts with a clustering phase, and
then adds paths that minimize the number of additional edges that need to be added to the
spanner. To implement our construction in the congest model, we assign weights to the
edges and use our WBFS algorithm to find shortest paths with as few edges as possible that
are not yet in the spanner. Note that although the graph and the spanner we construct for
it are both unweighted, the ability of our multiple WBFS algorithm to handle weights is
crucial for our solution.

A (+6)-spanner must contain n4/3/2O(
√

log n) edges [2]. The best sequential algorithms [33,
6] construct a spanner with O(n4/3) edges. Our distributed algorithm constructs a spanner
with O(n4/3 log4/3 n) edges, which is slightly denser than optimal but still sparser than the
O(n4/3 log3 n) edges in the fast sequential construction of [46].

1.3 Related work
Algorithms for the congest model that construct multiple (unweighted) BFS trees, rooted
at a set of sources S, were suggested in [34] and [30], running in O(|S|+D) rounds. Both
algorithms start the construction of all the BFS trees simultaneously, and proceed by
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transferring messages containing the source of a BFS tree and the distance the message has
traversed so far. The algorithms differ in how they order message deliveries when several
messages need to be sent over an edge at the same round. We base our multiple WBFS
construction on the [34] algorithm, in which messages sent by a node are prioritized by the
distance they traversed so far, with a preference to messages that traversed smaller distance.
The [30] algorithm, which we cannot use for our construction [28], prioritizes messages by
the identity of the root, and transmits a message only in one direction of each edge in each
round.

Spanners were first introduced in 1989 by [41, 42], and since then have been a topic for wide
research due to their abundant applications. Prime examples for the need for sparse spanners
can be found in synchronizing distributed networks [42], information dissemination [9],
compact routing schemes [12, 43, 45], and more.

Distributed constructions of various spanners have been widely studied [35, 34, 44, 10,
6, 7, 14, 15, 16, 18, 19, 22, 17, 39, 24, 38, 26, 8]. Lower bounds were given in [44, 10, 3].
However, obtaining an efficient and sparse (+6)-all-pairs spanner has remained an open
question [10].

Several lower bounds for the time complexity of spanner construction in the congest
model where presented in [10], but these are applicable only to pairwise spanners with a
bounded number of pairs, and not to all-pairs spanners. A lower bound from [44] states
that the construction of a spanner with Õ(n4/3) edges, such as the one we build, must take
Ω̃(n3/8) rounds. This lower bound does not take into account the bandwidth restrictions at
all (it is proven for the local model), and so we believe that a higher lower bound for the
congest model should apply, but this is left as an intriguing open question.

2 Preliminaries

All graphs in this work are simple, connected and undirected. A graph can be unweighted,
G = (V,E), or weighted G = (V,E,w) with w : E → {0, . . . ,W}, in which case we assume
W ∈ poly(n). Given a path ρ in a weighted graph G, we use |ρ| to denote the length of
ρ, which is the number of edges in it, and w(ρ) to denote the weight of the path, which is
the sum of its edge-weights. The distance between two nodes u, v in a graph G, denoted
δG(u, v), is the minimum length of a path in G connecting u and v. The diameter of a graph
(weighted or unweighted) is D = maxu,v∈V {δG(u, v)}.

We consider the congest model of computation[40], where the nodes of a graph commu-
nicate synchronously by exchanging O(logn)-bit messages along the edges. The goal is to
distributively solve a problem while minimizing the number of communication rounds.

WBFS trees: We are interested in a weighted BFS tree, which consists of all lightest shortest
paths from the root, formally defined as follows.

I Definition 3. Given a connected, weighted graph G = (V,E,w) and a node s ∈ V , a
weighted BFS tree (WBFS) for G rooted at s is a spanning tree Ts of G satisfying the
following properties:
(i) For each v ∈ V , the path from s to v in T is a shortest path in G between s and v.
(ii) For each v ∈ V , no shortest path from s to v in G is lighter than the path from s to v

in T .

We emphasize that this is different than requiring a subgraph containing all lightest paths
from the root. One may wonder if a WBFS tree always exists, but this is easily evident by
the following refinement of a (sequential) BFS search, returning a WBFS tree: go over the
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7:6 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

nodes in an order of non-decreasing distances from the source s, starting with w(s) = 0;
each node v chooses as a parent a neighbor u that was already processed and minimizes
w(v) = w(u)+w(u, v), and adds the edge {u, v} to the tree. Each node has a single parent, so
this is indeed a tree; the node ordering guarantees that this is indeed a BFS tree, assuring (i);
and the parent choice guarantees the paths are lightest among the shortest, assuring (ii).

Spanners: Given a graph G = (V,E), a subgraph H = (V,E′) of G is called an (α, β)-
spanner if for every u, v ∈ V it holds that δH(u, v) ≤ αδG(u, v) + β. The parameters α and
β are called the stretch parameters.

When α = 1, such a spanner is called a purely additive spanner. In this paper we focus
on purely additive (+6)-spanners, i.e., α = 1 and β = 6.

For completeness, we mention that when β = 0, such a spanner is called a multiplicative
spanner. In addition, while sometimes the stretch parameters need to be guaranteed only
for some subset of all the pairs of nodes of the graph (such as in pairwise spanners), we
emphasize that our construction provides the promise of a +6 stretch for all pairs.

3 Multiple Weighted BFS Trees

In the congest model, the problem of finding a WBFS tree requires each node to know its
parent in the WBFS tree, and the unweighted and weighted distances to the source within
the tree. This allows the node to send messages to the source node through the lightest
among all shortest paths. When there are multiple sources, each node should know the
parent leading to each of the sources in S.

We define data structures for representing multiple WBFS trees. Given a node v ∈ V , the
S-proximity-list (or proximity list for short) of v, noted PL∗v, is an ascending lexicographically
ordered list of triples (d(s, v), s, w(s, v)), where d(s, v) and w(s, v) are the length and weight
of the path from s to v in Ts. Two different triples are ordered such that (d(s, v), s, w(s, v)) <
(d(t, v), s, w(t, v)) if d(s, v) < d(t, v), or d(s, v) = d(t, v) and s < t, where s and t may be
compared by any predefined order on the node identifiers. Note that Ts contains a single
path from s to v, so both d(s, v) = d(t, v) and s = t cannot happen simultaneously without
having w(s, v) = w(t, v).

The S-path-map (or path-map for short) of v is a mapping from each source s ∈ S to the
parent of v in Ts, noted by PM∗v. The list PM∗v is sorted with respect to the order of PL∗v, such
that the first records of PM∗v belong to sources closest to v.

Algorithm 1, which constructs multiple WBFS trees from a set S in the congest model,
is based on carefully extending the distributed Bellman-Ford-based algorithm of Lenzen et
al. [34]. The heart of the algorithm is a loop (Line 7), and each iteration of it takes a single
round in the congest model. We show that |S| + D − 1 iterations of the loop suffice in
order to construct the desired WBSF trees.

The algorithm builds the WBFS trees by gradually updating the proximity list and the
path map of each node. Each round is composed of two phases: updating the neighbors
about changes in the proximity list, and receiving updates from other nodes. The path map
is only used by the current node, and therefore changes to it are not sent.

Ideally, each node would update its neighbors regarding all the changes made to its
proximity list. However, due to bandwidth restrictions, a node cannot send the entire
list in each round. Therefore, at each round each node sends to all of its neighbors the
lexicographically smallest triplet in its proximity list that it has not yet sent, while maintaining
a record noting which triplets have been sent and which are waiting. Each triplet is only
sent once, though a node may send multiple triplets regarding a single source.
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Algorithm 1: Weighted distributed Bellman-Ford algorithm for node v
1 Lv ← ()
2 for s ∈ S do
3 PMv(s)← ⊥
4 if v ∈ S then
5 PLv ← ((0, v, 0))
6 sentv(0, v, 0)← FALSE /* A variable marking sent triplets */

7 for |S|+D − 1 rounds do
8 if ∃(ds, s, ws) ∈ PLv such that sentv(ds, s, ws) = FALSE then
9 (ds, s, ws)← min {(dt, t, wt) ∈ PLv such that sentv(dt, t, wt) = FALSE}

10 send (ds, s, ws) to all neighbors
11 sentv(ds, s, ws)← TRUE

12 for received (ds, s, ws) from u ∈ V do
13 ds ← ds + 1
14 ws ← ws + w(u, v)
15 if @(d′s, s, w′s) ∈ PLv such that (d′s < ds or (d′s = ds and w′s < ws)) then
16 PLv ← PLv \ {(·, s, ·)}
17 PLv ← PLv ∪{(ds, s, ws)}
18 PMv(s)← u

19 sentv(ds, s, ws)← FALSE

A node uses the messages received in the current round in order to update its proximity
list and path map for the next round. A triplet (ds, s, ws) received by a node v from a
neighbor u represents the length ds and weight ws of some path ρ from s to u in the graph.
The node v then considers the extended path ρ′ = ρ ◦ v from s to v, compares it to its
currently known best path from s to v, and updates the proximity list and path map in case
a shorter path has been found, or a lighter path with the same length.

To prove correctness, we generalize the proof of [34] to handle weights, and show that
our algorithm solves the weighted (S, d, k)-detection problem: each node should learn which
are the sources from S closest to it, but at most k of them and only up to distance d. This
is formally defined as follows.

I Definition 4. Given a weighted graph G = (V,E,w), a subset S ⊆ V of source nodes, and
a node v ∈ V , let PL∗v denote the S-proximity-list and let PM∗v denote the path map of the
node v. The weighted (S, d, k)-detection problem requires that each node v ∈ V learns the
first min

{
k, λd

v

}
entries of PL∗v and PM∗v, where λd

v is the number of sources s ∈ S such that
d(s, v) ≤ d.

Given a node v, PLv is a variable in Algorithm 1 holding the proximity list of v, and we
denote by PL(r)

v the state of the list PLv at the beginning of round r of the algorithm, and by
PL(∞)

v the value of PLv at the end of the algorithm. Recall that PL∗v is the true proximity
list, so our goal is proving PL(∞)

v = PL∗v, i.e., proving that the algorithm obtains the correct
values of the proximity list.

We use similar notations for the path map PM∗v. Since the records of PMv are updated
under the same conditions as the records of PLv, the correctness of PMv at the end of the
algorithm with respect to PM∗v immediately follows, and we omit the details.

OPODIS 2018



7:8 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

We start by showing that if there was no bound on the number of rounds, then the values
of PLv would have eventually converged to the true values of PL∗v. The proof of Lemma 5 can
be found at the full version of this paper [11].

I Lemma 5. Given a graph G = (V,E,w) and a set S ⊆ V , if we let the for loop in Line 7
of Algorithm 1 to run forever, then there exists a round r0 ∈ N such that no node v ∈ V sends
messages or modifies PLv after round r0. Moreover, PL(r0)

v = PL∗v, i.e., for every (ds, s, ws) ∈
PL(r0)

v , it holds that ds = d(v, s) and ws = min {w(ρ) | ρ connects v with s, and |ρ| = ds}.

Lemma 5 shows that without the limit on the number of rounds, the algorithm would
compute the right values; however, it does not bound the number of rounds needed for this
to occur. Next, we show that |S|+D − 1 rounds suffice. We cannot apply the claims of [34]
directly, since the existence of weights restricts the number of viable solutions even further,
causing more updates to the proximity list and an increase in the number of messages sent.
However, we do use a similar technique: we bound the number of rounds in which the k
smallest entries of PLv can change.

For an entry (ds, s, ws) ∈ PL(r)
v , let `(r)

v (ds, s, ws) denote the index of the entry in the
lexicographically ordered list PL(r)

v at the beginning of round r. For completeness, we define
`

(r)
v (ds, s, ws) = −∞ if (ds, s, ws) did not appear in PLv at the beginning of round r, and

PLv =∞ if the triplet was removed from PLv before the beginning of this round. Note that
a removed triplet is never returned to the list, since the lexicographical order is transitive.

I Lemma 6. For a triplet (ds, s, ws), the following holds:
(i) `(r)

v (ds, s, ws) is non-decreasing with r.
(ii) If the triplet (ds, s, ws) is sent from a node u to a node v at round r, resulting in the

addition of a new triplet (d′s, s, w′s) to PLv at the end of round r, where d′s = ds + 1 and
w′s = ws + w(u, v), then `(r)

u (ds, s, ws) ≤ `(r+1)
v (d′s, s, w′s).

Part (i) follows from the fact that the number of triplets below (ds, s, ws) cannot decrease.
To prove part (ii), we show that all the triplets below (ds, s, ws) in PLu are sent from u to v
and added to PLv before (ds, s, ws) is sent and added.

Proof. Part (i) is a consequence of the method used by our algorithm for managing the list
PLv. According to our algorithm, triplets are not removed from PLv when they are sent. The
only case in which a triplet (dt, t, wt) is removed from PLv is when a lexicographically smaller
triplet (d′t, t, w′t) is added to the list instead. When this happens in round r, it holds that
`

(r)
v (dt, t, wt) ≥ `(r+1)

v (d′t, t, w′t), since the new triplet is lexicographically smaller. Hence, for
every other triplet (ds, s, ws) ∈ PLv, the number of lexicographically smaller triplets in PLv

cannot decrease throughout the algorithm.
We now turn to prove part (ii) of the lemma. By the fact that the triplet (ds, s, ws) is

sent by the node u in round r, we conclude that the `(r)
u (ds, s, ws)− 1 triplets preceding it

in the list PL(r)
u have already been sent by u in earlier rounds, and arrived at the node v.

For each such triplet (dt, t, wt), either dt ≤ ds, or t < s and dt = ds. Therefore, when added
to PLv as (dt + 1, t, wt + w(u, v)) it is lexicographically smaller than (d′s, s, w′s). At round
r, either (dt + 1, t, wt + w(u, v)) is in PL(r)

v or it was replaced by a lexicographically smaller
triplet containing t. Thus, there are at least `(r)

u (ds, s, ws)− 1 triplets smaller than (d′s, s, w′s)
in PL(r+1)

v , and hence `(r)
u (ds, s, ws) ≤ `(r+1)

v (d′s, s, w′s). J

Lemma 6 implies that as the algorithm progresses, messages at higher indexes of the
proximity list are sent and updated. This can be used to obtain an upper bound on the
round in which a triplet at a certain index of the proximity list can be sent or received, as
formalized by the next lemma.
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I Lemma 7. In round r ∈ N of Algorithm 1, a node v ∈ V can:
(i) send a message (ds, s, ws) only if

ds + `(r)
v (ds, s, ws) ≥ r

(ii) add to PLv a triplet (ds, s, ws) only if

ds + `(r+1)
v (ds, s, ws) > r

Part (i), when put in words, is rather intuitive: while a triplet might need to wait before
being sent, the waiting time is bounded from above by the distance the triplet has traversed
from its source, plus the number of triplets that were to be sent before it. Part (ii) is
complementary to part (i): the time before a triplet is added, is, once more, bounded by the
distance it traversed plus the number of lexicographically smaller triplets.

Proof. We start by showing that, for a given round r, if Lemma 7(i) holds for all nodes
then Lemma 7(ii) holds as well. Consider a triplet (d′s, s, w′s) that is added to PLv as
a result of a message (ds, s, ws) sent from u to v in round r, where d′s = ds + 1 and
w′s = ws + w(u, v). Lemma 7(i) implies that ds + `

(r)
u (ds, s, ws) ≥ r, and by Lemma 6(ii) we

have that `(r+1)
v (d′s, s, w′s) ≥ `(r)

u (ds, s, ws). As d′s > ds, we conclude

d′s + `(r+1)
v (d′s, s, w′s) > ds + `(r)

u (ds, s, ws) ≥ r,

which implies Lemma 7(ii).
Next, we prove by induction that both parts of the lemma hold. In round 1, Lemma 7(i)

holds trivially, since by definition `(1)
v (ds, s, ws) ≥ 1. Assume that Lemma 7 holds at round

r − 1; we show the lemma holds at round r. Since Lemma 7(i) implies Lemma 7(ii), it is
sufficient to show that every message (ds, s, ws) sent by some node v ∈ V in round r satisfies
ds + `

(r)
v (ds, s, ws) ≥ r.

Observe that if (ds, s, ws) is sent by a node v in round r, then the triplet must have been
added to PLv in some round r′ ≤ r − 1. If r′ = r − 1, according to the induction hypothesis,
Lemma 7(ii) holds and ds + `

(r)
v (ds, s, ws) > r − 1, implying ds + `

(r)
v (ds, s, ws) ≥ r, since all

the terms are integers.
Otherwise r′ < r − 1. In this case, in round r − 1 the triplet (ds, s, ws) appeared in PLv

and was not yet sent. Since (ds, s, ws) is sent in round r, a different triplet (dt, t, wt) with
t 6= s must have been sent in round r − 1, implying:

ds + `(r−1)
v (ds, s, ws) > dt + `(r−1)

v (dt, t, wt).

By Lemma 6(i), we have that `(r)
v (ds, s, ws) ≥ `

(r−1)
v (ds, s, ws), and combined with the

induction hypothesis for Lemma 7(i) in round r − 1 we conclude:

ds + `(r)
v (ds, s, ws) ≥ ds + `(r−1)

v (ds, s, ws) > dt + `(r−1)
v (dt, t, wt) ≥ r − 1.

This gives that ds + `
(r)
v (ds, s, ws) ≥ r, since all the terms are integers. J

Lemma 5 implies that eventually, the lists PLv converge to contain the correct values, and
Lemma 7 restricts the number of rounds in which specific list entries may change. From this,
we conclude that the algorithm solves the weighted (S, d, k)-detection problem.

I Lemma 8. Given an instance of the weighted (S, d, k)-detection problem, for every v ∈ V
and round r of an execution of Algorithm 1 with

r ≥ min {d,D}+ min {k, |S|} ,
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the truncation of PL(r)
v to the first min

{
k, λd

v

}
entries, where λd

v is the number sources s ∈ S
such that d(s, v) ≤ d, solves weighted (S, d, k)-detection problem.

This lemma says that the truncated list is correct at the beginning of the relevant round.
To prove it, we use Lemma 7(ii) to show that the values in the truncated list cannot change
at round r or later, and Lemma 5 to deduce they are correct.

Proof. Assume w.l.o.g that d ≤ D, as D bounds the distance to any source, and k ≤ |S|, as
otherwise v needs to learn about all sources.

By Lemma 5, there is a round r0 when all entries of PL(r0)
v are correct, and let (ds, s, ws)

be a triplet in one of the first min
{
k, λd

v

}
entries of PL(r0)

v . Since (ds, s, ws) is one of the first
λd

v entries and PL(r0)
v = PL∗v, we have ds ≤ d.

Let r be the round when (ds, s, ws) is inserted to the list PLv. By Lemma 7(ii), r <
ds + `

(r+1)
v (ds, s, ws). By Lemma 6(i), when the triplet is inserted to the list, it is already

placed in one of the first min
{
k, λd

v

}
entries, i.e., `(r+1)

v (ds, s, ws) ≤ min
{
k, λd

v

}
≤ k. Hence,

r < ds + `(r+1)
v (ds, s, ws) ≤ d+ k.

Since this claim holds for any of the first min
{
k, λd

v

}
entries, these were all correct at the

beginning of round d+ k, and in all the succeeding rounds. J

The construction of multiple WBFS trees is an instance of the (S,D, |S|)-detection
problem. Lemma 8 shows that after |S|+D − 1 rounds of Algorithm 1 on such an instance,
all the entries of the list PL(|S|+D)

v are correct, yielding the main result of this section.

Theorem 1 (restated). Given a weighted graph G = (V,E,w) and a set of nodes S ⊆ V ,
there exists an algorithm for the congest model that constructs a WBFS tree rooted at s,
for every s ∈ S, in |S|+D − 1 rounds.

4 A (+6)-Spanner Construction

In this section we discuss the distributed construction of (+6)-spanners. First, we present
a template for constructing a (+6)-spanner and analyze the stretch and sparsity of the
constructed spanner. Then, we provide an implementation of our template in the congest
model and analyze its running time.

A cluster Ci around a cluster center ci ∈ V is a subset of the set of neighbors of ci in G.
A node belonging to a cluster is clustered, while the other nodes are unclustered.

Our algorithm starts by randomly choosing cluster centers, and adding edges between
them to their neighbors, where each neighbor arbitrarily chooses a single center to connect to.
Then, additional edges are added, to connect each unclustered node to all its neighbors. Next,
shortest paths between clusters are added to the spanner. In order to find these shortest
paths in the congest model, we use the WBFS construction algorithm to build WBFS trees
from random sources. At the heart of our algorithm stands the path-hitting framework of
Woodruff [46]: a shortest path in the graph which has many edges between clustered nodes,
must go through many clusters. This fact is used in order to show that a path with many
missing edges (edges not in H) is more likely to have an adjacent source of a WBFS tree,
and thus it is well approximated by a path within the spanner.

Woodruff’s algorithm starts with a similar clustering step. However, in order to add
paths between clusters, it uses an involved subroutine that finds light almost-shortest paths
between pairs of nodes. This subroutine seems too global to be implemented efficiently in a
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distributed setting, so in our construction it is replaced by only considering lightest shortest
paths, which we do using the WBFS trees defined earlier.

Our algorithm constructs a (+6)-spanner with O(n4/3 log4/3 n) edges in Õ(n2/3 + D)
rounds, as stated next.

Theorem 2 (restated). There exists an algorithm for the congest model that constructs a
(+6)-spanner with O

(
n4/3 log4/3 n

)
edges in O

(
n2/3

log1/3 n
+D

)
rounds and sucseeds w.h.p.

Lemmas 9 and 10 analyze the size and stretch of Algorithm 6AP given below. The number
of rounds of its distributed implementation is analyzed in Lemma 11, giving Theorem 2. We
use c > 2 to denote a constant that can be chosen according to the desired exponent of 1/n
in the failure probability.

Algorithm 6AP
Input: a graph G = (V,E), a constant c > 2;
Output: a subgraph H of G;
Initialization: n← |V |; H ← (V, ∅); k ← 1

Clustering. Pick each node as a cluster center w.p. c
n1/3 log1/3 n

, and denote the set of
selected nodes by C = {c1, c2, . . .}. For each ci, initialize a cluster Ci ← ∅.

For each node v ∈ V , choose a neighbor ci of v which is a cluster center, if such a neighbor
exists, add the edge (v, ci) to H, and add v to Ci. If none of the neighbors of v is a cluster
center, add to H all the edges adjacent to v. Let H0 ← H.

Path Buying.
While k ≤ 8cn2/3

log1/3 n
do:

1. Sk ← ∅
2. Add each cluster center ci ∈ C to Sk w.p. 8c2 log n

k , independently of the other centers
3. For each pair (ci, cj) ∈ C × Sk:

a. A← ∅ /* A is a set of paths */
b. For each v ∈ Cj :

i. Among all the shortest paths from ci to v, let Pv be a path with minimum |Pv \H0|
ii. If |Pv \H0| < 2k, add Pv to A

c. If A 6= ∅, add to H one of the shortest among the paths of A
4. k ← 2k

I Lemma 9. Algorithm 6AP outputs a subgraph H of G with O(n4/3 log4/3 n) edges, with
probability at least 1−O(n−c+1).

Proof. The algorithm starts with H = (V, ∅) and only adds edges from G, so H is indeed a
subgraph of G over the same node set.

In the first part of the clustering phase, each node adds to H at most one edge, connecting
it to a single cluster center, for a total of O(n) edges. Then, the probability that a node of

degree at least n1/3 log4/3 n is left unclustered is at most
(

1− c
n1/3 log1/3 n

)n1/3 log4/3 n

, which
is O(n−c). A union bound implies that all nodes of degree at least n1/3 log4/3 n are clustered
w.p. 1−O(n−c+1), and thus the total number of edges added to H by unclustered nodes in
the second part of the clustering phase is O(n4/3 log4/3 n), w.p. 1−O(n−c+1).
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σ

ρ

Figure 1 Illustration of the proof of Lemma 10

We start the analysis of the path buying phase by bounding the size of C. A node v ∈ V
is added to C w.p. c

n1/3 log1/3 n
, so E[|C|] = cn2/3

log1/3 n
. A Chernoff bound implies that

Pr
[
|C| > 4cn2/3

log1/3 n

]
≤ exp

(
− cn2/3

log1/3 n

)
= o(n−c).

Similarly, for each value of k, we have E[|Sk|] = 8c2n2/3 log2/3 n
k , and

Pr
[
|Sk| >

32c2n2/3 log2/3 n

k

]
≤ exp

(
−8c2n2/3 log2/3 n

k

)
= O(n−c),

where the last equality follows since k ≤ n2/3

log1/3 n
. A union bound implies that |C| =

O
(

n2/3

log1/3 n

)
and |Sk| = O

(
n2/3 log2/3 n

k

)
for all k, w.p. at least 1−O(n−c+1).

Finally, for each k, for each (ci, cj) ∈ C × Sk we add at most one path with less than 2k
missing edges to H. Thus, for each value of k we add less than |C| · |Sk| ·2k = O(n4/3 log1/3 n)
edges to H, w.p. at least 1−O(n−c+1). Summing over all O(logn) values of k, and adding
the number of edges contributed by the clustering phase, we conclude that H has at most
O(n4/3 log4/3 n) edges, w.p. at least 1−O(n−c+1). J

I Lemma 10. The graph H constructed by Algorithm 6AP satisfies δH(x, y) ≤ δG(x, y) + 6
for each pair (x, y) ∈ V × V , with probability at least 1−O

(
n−c+2).

Proof. Consider a shortest path ρ in G between two nodes x, y ∈ V (see Figure 1). Let x′
and y′ be the first and last clustered nodes on ρ, respectively. If all nodes of ρ are unclustered,
then ρ is fully contained in H0 and we are done.

Let c1 and c3 be the centers of the clusters containing x′ and y′, respectively. Let σ be a
shortest path in G between c1 and c3, and denote by k′ the number of edges of σ \H0. Let
k be the largest power of 2 such that k ≤ k′.

An edge can be in σ \H0 only if it connects two clustered nodes. Hence, k′, the number
of edges in σ \H0, is smaller than the number of clustered nodes in σ. On the other hand,
σ cannot contain more than three nodes of the same cluster: the distance between every
two nodes in a cluster is at most two, so a shortest path cannot traverse more than three
nodes of the same cluster. Thus, the number of clusters intersecting σ is at least k′/3. As
k′/3 ≥ k/3, the probability that none of the centers of these clusters is chosen to Sk is at

most
(

1− 8c2 log n
k

)k/3
= O

(
n−c2

)
. For each pair of nodes, a cluster center on a shortest

path between them is chosen to Sk, for the appropriate value of k, with similar probability. A
union bound implies that this claim holds for all pairs in V × V w.p. at least 1−O(n−c2+2).
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Let w be a node on σ in a cluster C2 such that c2 ∈ Sk, if such a cluster exists. Denote
by σ[c1, w] the sub-path of σ from c1 to w. As there are k′ < 2k edges in σ \H0, there are
also less than 2k edges in σ[c1, w] \H0. Thus, in step 3(b) of the path-buying phase for k,
either the path σ[c1, w] or some other path between c1 and w of length at most δG(c1, w) is
added to A. In step 3(c), a path from c1 to some node w1 ∈ C2 is added to H, and this is
a shortest path in A, so δH(c1, w1) ≤ δG(c1, w). Similarly, a shortest path from c3 to some
w3 ∈ C2 is added to H, and δH(c3, w3) ≤ δG(c3, w).

The path σ is a shortest path from c1 to c3 in G, so |σ| ≤ δG(x′, y′) + 2. As δG(c1, w) +
δG(c3, w) = |σ|, we conclude δH(c1, w1) + δH(c3, w3) ≤ |σ| ≤ δG(x′, y′) + 2.

Consider the path from x to y in H composed of the sub-path of ρ from x to x′, the edge
(x′, c1), the path from c1 to w1, the edges (w1, c2) and (c2, w3), the path from w3 to c3, the
edge (c3, y

′), and finally, the sub-path of ρ from y′ to y. This is a path from x to y in H,
implying

δH(x, y) ≤ δH(x, x′) + 1 + δH(c1, w1) + 2 + δH(w3, c3) + 1 + δH(y′, y)
≤ δG(x, x′) + 4 + δG(x′, y′) + 2 + δG(y′, y) = δG(x, y) + 6,

as desired. J

We now discuss the implementation of Algorithm 6AP in the congest model.

I Lemma 11. Algorithm 6AP can be implemented in O
(

n2/3

log1/3 n
+D

)
rounds in the congest

model, with probability at least 1− o(n−c).

Proof. For the clustering phase, each node decides locally w.p. c
n1/3 log1/3 n

to become a
cluster center, and notifies its neighbors. Each node with a neighbor that is a cluster center
now joins a cluster by sending a message to such a neighbor and adding the appropreate
edge to the spanner. A node with no neighboring cluster centers notifies all its neighbors
and adds all its edges to the spanner. This is done in a constant number of rounds.

Before the path buying phase, the nodes construct a single BFS tree, along which they
compute an upper bound D′ on D, satisfying D ≤ D′ < 2D, and count the number of cluster
centers, |C|. The nodes mark the edges of H0 with weight 0 and the other edges with weight
1. Then, they construct a WBFS tree rooted at each cluster center by executing Algorithm 1
for |C| + D′ many rounds. By the proof of Lemma 9, we have |C| ∈ O

(
n2/3

log1/3 n

)
w.p. at

least 1− o(n−c), and thus the construction of the WBFS trees takes O
(

n2/3

log1/3 n
+D

)
rounds

with the same probability.
Each node v now knows about a “good” path to each cluster center ci, i.e., a shortest

path from ci to v, with a minimal number of edges not in H after the clustering phase. A
node v in a cluster Cj notifies its neighbor cj about all the distances to other cluster centers
in C and the number of missing edges in each such path. That is, each v ∈ Cj sends |C|
messages to cj , which takes O

(
n2/3

log1/3 n

)
rounds.

Each cluster center cj decides locally to join each set Sk w.p. 8c2 log n
k . For each other

center ci ∈ C, cj locally constructs the list A: for each v ∈ Cj , A contains the shortest path
from ci to v ∈ Cj found by the WBFS algorithm, and the number of missing edges in it.
Then, cj chooses from A a path from ci to some v ∈ Cj with a minimal number of missing
edges, and if it has at most 2k missing edges, cj sends a “buy ci” message to v.

Finally, all nodes simultaneously execute a “buy” phase, where “buy ci” messages are sent
up the WBFS tree. To avoid congestion, we assume that during the execution of Algorithm 1,
each node keeps a record of the messages it got in each round and the WBFS source each
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message referred to. Each node v then sends messages in reversed order: if v has a message
“buy ci”, and it got a message from u regarding ci in the r-before-last round of Algorithm 1,
then it sends the message “buy ci” to u in round r of the “buy” phase. Then, u adds
“buy ci” to its list of messages, and adds the edge (u, v) to the spanner. This parts takes
O
(

n2/3

log1/3 n
+D

)
rounds, just like the execution of Algorithm 1. J

5 Discussion and Open Questions

While we present an application of WBFS trees, our algorithm also solves the weighted
(S, d, k)-detection problem, a result the could be of independent interest.

The question of finding the lightest paths between all pairs of nodes in a graph is a
fundamental question in many computational models. In the congest model, no exact
algorithm for the problem running in O(n) rounds is known. This major question is still left
open here, but we hope our study of lightest shortest paths could facilitate future research
on the question of finding lightest paths.

While this paper settles the question of constructing sparse (+6)-spanners fast, the study
of spanner construction in distributed environments still lags behind the study of sequential
spanner construction algorithms. In the field of purely additive spanners, we still do not have
fast algorithms, e.g., for the construction of sparse (+0)-pairwise spanners (a.k.a. pairwise
preservers) and (+6)-pairwise spanners.

A more intriguing question is proving time lower bounds for the construction of spanners
in the congest model: while Ω(D) rounds are known to be necessary [44], lower bounds that
depend on other parameters of the graph or the spanners exist only for pairwise spanners [10].
Finding a lower bound for the construction of all-pairs spanners in the congest model is
still an open question. Such a lower bound could show that the n3/2 term in the time bound
of our construction is inevitable, or motivate a design of faster algorithms for the problem.
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