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Abstract
We show how to multiply two n×n matrices S and T over semirings in the Congested Clique
model, where n nodes communicate in a fully connected synchronous network using O(logn)-
bit messages, within O(nz(S)1/3nz(T )1/3/n + 1) rounds of communication, where nz(S) and
nz(T ) denote the number of non-zero elements in S and T , respectively. By leveraging the
sparsity of the input matrices, our algorithm greatly reduces communication costs compared
with general multiplication algorithms [Censor-Hillel et al., PODC 2015], and thus improves
upon the state-of-the-art for matrices with o(n2) non-zero elements. Moreover, our algorithm
exhibits the additional strength of surpassing previous solutions also in the case where only one
of the two matrices is such. Particularly, this allows to efficiently raise a sparse matrix to a power
greater than 2. As applications, we show how to speed up the computation on non-dense graphs
of 4-cycle counting and all-pairs-shortest-paths.

Our algorithmic contribution is a new deterministic method of restructuring the input matri-
ces in a sparsity-aware manner, which assigns each node with element-wise multiplication tasks
that are not necessarily consecutive but guarantee a balanced element distribution, providing for
communication-efficient multiplication.

Moreover, this new deterministic method for restructuring matrices may be used to restruc-
ture the adjacency matrix of input graphs, enabling faster deterministic solutions for graph related
problems. As an example, we present a new sparsity aware, deterministic algorithm which solves
the triangle listing problem in O(m/n5/3 + 1) rounds, a complexity that was previously obtained
by a randomized algorithm [Pandurangan et al., SPAA 2018], and that matches the known lower
bound of Ω̃(n1/3) when m = n2 of [Izumi and Le Gall, PODC 2017, Pandurangan et al., SPAA
2018]. Naturally, our triangle listing algorithm also implies triangle counting within the same
complexity of O(m/n5/3 + 1) rounds, which is (possibly more than) a cubic improvement over
the previously known deterministic O(m2/n3)-round algorithm [Dolev et al., DISC 2012].
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1 Introduction

Matrix multiplication is a fundamental algebraic task, with abundant applications to various
computations. The value of the exponent ω of matrix multiplication, that is, the value ω for
which Θ(nω) is the complexity of matrix multiplication, is a central question in algebraic
algorithms [25, 9, 26], and is currently known to be bounded by 2.3728639 [13].

The work of Censor-Hillel et al. [7] recently showed that known matrix multiplication
algorithms for the parallel setting can be adapted to the distributed Congested Clique
model, which consists of n nodes in a fully connected synchronous network, limited by a
bandwidth of O(logn) bits per message. Subsequently, this significantly improved the state-
of-the-art for a variety of tasks, including triangle and 4-cycle counting, girth computations,
and (un)weighted/(un)directed all-pairs-shortest-paths (APSP). This was followed by the
beautiful work of Le Gall [14], who showed how to efficiently multiply rectangular matrices,
as well as multiple independent multiplication instances. These led to even faster algorithms
for some of the tasks, such as weighted or directed APSP, as well as fast algorithms for new
tasks, such as computing the size of the maximum matching.

In many cases, multiplication is required to be carried out for sparse matrices, and this
need has been generating much effort in designing algorithms that are faster given sparse
inputs, both in sequential (e.g., [27, 12, 17, 1, 15]) and parallel (e.g., [3, 5, 6, 2, 4, 20, 19, 24])
settings.

In this paper we focus our attention on the task of multiplying sparse matrices in
the Congested Clique model, providing a novel deterministic algorithm with a round
complexity which depends on the sparsity of the input matrices.

An immediate application of our algorithm is faster counting of 4-cycles. Moreover, a
prime feature of our algorithm is that it speeds up matrix multiplication even if only one of
the input matrices is sparse. The significance of this ability stems from the fact that the
product of sparse matrices may be non-sparse, which in general may stand in the way of
fast multiplication of more than two sparse matrices, such as raising a sparse matrix to a
power that is larger than 2. Therefore, this property of our algorithm enables, for instance,
a fast algorithm for computing APSP in the Congested Clique model. We emphasize
that, unlike the matrix multiplication algorithms of [7], we are not aware of a similar sparse
matrix multiplication algorithm existing in the literature of parallel settings.

Furthermore, we leverage our techniques to obtain a deterministic algorithm for sparsity-
aware triangle listing in the Congested Clique model, in which each triangle needs to
be known to some node. This problem has been tackled (implicitly) in the Congested
Clique model for the first time by Dolev et al. [10], providing two deterministic algorithms.
Later, [23, 16] showed a Ω̃(n1/3) lower bound in general graphs. Pandurangan et al. [23]
showed a randomized triangle listing algorithm, with the same round complexity as we obtain.
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1.1 Our contribution
For a matrix A, let nz(A) be its number of nonzero elements. Our main contribution is an
algorithm called SMM (Sparse Matrix Multiplication), for which we prove the following.

I Theorem 1. Given two n×n matrices S and T , Algorithm SMM deterministically computes
the product P = S · T over a semiring in the Congested Clique model, completing in
O(nz(S)1/3nz(T )1/3/n+ 1) rounds.1

An important case of Theorem 1, especially when squaring the adjacency matrix of a
graph in order to solve graph problems, is when the sparsities of the input matrices are
roughly the same. In such a case, Theorem 1 gives the following.

I Corollary 2. Given two n × n matrices S and T , where O(nz(S)) = O(nz(T )) = m,
Algorithm SMM deterministically computes the product P = S · T over a semiring in the
Congested Clique model, within O(m2/3/n+ 1) rounds.

Notice that for m = O(n2), Corollary 2 gives the same complexity of O(n1/3) rounds as
given by the semiring multiplication of [7].

We apply Algorithm SMM to 4-cycle counting, obtaining the following.

I Theorem 3. There is a deterministic algorithm that computes the number of 4-cycles in
an n-node graph G in O(m2/3/n+ 1) rounds in the Congested Clique model, where m is
the number of edges of G.

Notice that for m = O(n3/2) this establishes 4-cycle counting in a constant number of rounds.
As described earlier, our algorithm is fast also in the case where only one of the input

matrices is sparse, as stated in the following corollary of Theorem 1.

I Corollary 4. Given two n× n matrices S and T , where min{O(nz(S)), O(nz(T ))} = m,
Algorithm SMM deterministically computes the product P = S · T over a semiring in the
Congested Clique model, within O((m/n)1/3 + 1) rounds.

This allows us to compute powers that are larger than 2 of a sparse input matrix. Although
we cannot enjoy the guarantees of our algorithm when repeatedly squaring a matrix, because
this may require multiplying dense matrices, we can still repeatedly increase its power by
1. This gives the following for computing APSP, whose comparison to the state-of-the-art
depends on trade-off between the number of edges in the graph and its diameter.

I Theorem 5. There is a deterministic algorithm that computes unweighted undirected APSP
in an n-node graph G in O(D((m/n)1/3 + 1)) rounds in the Congested Clique model,
where m is the number of edges of G and D is its diameter.

For comparison, the previously known best complexity of unweighted undirected APSP is
O(n1−2/ω), given by[7, 14], which is currently known to be bounded by O(n0.158). For a
graph with a number of edges that is m = o(n4−6/ω/D3), which is currently o(n1.474/D3),
our algorithm improves upon the latter.

Lastly, we leverage the routing techniques developed in our sparse matrix multiplication
algorithm in order to introduce an algorithm for the triangle listing problem in the Congested
Clique model.

1 Since we minimize communication rather than element-wise multiplications, the zero element does not
have to be the zero element of the semiring - any single element may be chosen to not be explicitly
communicated.
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4:4 Sparse Algorithms in the Congested Clique Model

I Theorem 6. There is a deterministic algorithm for triangle listing in an n-node, m-edge
graph G in O(m/n5/3 + 1) rounds in the Congested Clique model.

For comparison, two deterministic algorithms by Dolev et al. [10] take Õ(n1/3) and
O(d∆2/ne) rounds, while the sparsity-aware randomized algorithm of Pandurangan et al. [23]
completes in Õ(m/n5/3), w.h.p. Notice that for general graphs, our algorithm matches the
lower bound of Ω̃(n1/3) by[23, 16]. Additionally, our algorithm for triangle listing implies a
triangle counting algorithm. A triangle counting algorithm whose complexity depends on the
arboricity A of the graph is given in [10]. Their algorithm completes in O(A2/n+log2+n/A2 n)
rounds. Since A ≥ m/n, this gives a complexity of Ω(m2/n3), upon which our algorithm
provides more than a cubic improvement. The previously known best complexity of triangle
and 4-cycle counting in general graphs is O(n1−2/ω), given by[7], which is currently known
to be bounded by O(n0.158). For a graph with a number of edges that is m = o(n8/3−2/ω),
which is currently o(n1.824), our algorithm improves upon the latter.

The sections containing triangle listing, APSP, and 4-cycle counting are in the full
paper [8].

1.2 Challenges and Our Techniques
Given two n× n matrices S and T , denote their product by P = S · T , for which P [i][j] =∑n
k=1 S[i][k]T [k][j]. A common way of illustrating the multiplication is by a 3-dimensional

cube of size n× n× n, in which the entry (i, j, k) corresponds to the element-wise product
S[i][k]T [k][j]. In other words, two dimensions of the cube correspond to the matrices S and
T , and the third dimension corresponds to element-wise products. Each index of the third
dimension is a page, and P corresponds to the element-wise summation of all n pages.

In essence, the task of distributed matrix multiplication is to assign each of the n3 element-
wise multiplications to the nodes of the network, in a way which minimizes the amount
of communication that is required.2 This motivates the goal of assigning the element-wise
products to the nodes in a way that balances the number of non-zero elements in S and T that
need to be communicated among the nodes, as this is the key ingredient towards minimizing
the number of communication rounds. The main obstacle is that a sparse input matrix
may be unbalanced, leading to the existence of nodes whose element-wise multiplication
operation assignment requires them to obtain many nonzero elements of the input matrices
that originally reside in other nodes, and thus necessitating much communication.

As we elaborate upon in Section 1.3, algorithms for the parallel settings, which encounter
the same hurdle, typically first permute the rows and columns of the input matrices in an
attempt to balance the structure of the non-zero entries. Ballard et al. [3] write: “While
a priori knowledge of sparsity structure can certainly reduce communication for many
important classes of inputs, we are not aware of any algorithms that dynamically determine
and efficiently exploit the structure of general input matrices. In fact, a common technique
of current library implementations is to randomly permute rows and columns of the input
matrices in an attempt to destroy their structure and improve computational load balance."

Our high-level approach, which is deterministic, is threefold. The first ingredient is
splitting the n× n× n cube into n equally sized sub-cubes whose dimensions are determined
dynamically, based on the sparsity of the input matrices. The second is indeed permuting
the input matrices S and T into two matrices S′ and T ′, respectively. We do so in a subtle

2 We consider all n3 element-wise multiplications rather than Strassen-like algorithms since we work over
a semiring and not a ring.
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Figure 1 An illustration of the multiplication cube for P ′ = S′T ′. Each sub-matrix is assigned
to n/ab nodes, with a not necessarily consecutive page assignment that is computed on-the-fly to
minimize communication.

manner, for which the resulting matrices exhibit some nice balancing property.3 The third
ingredient is the innovative part of our algorithm, which assigns the computation of pages of
different sub-matrices across the nodes in a non-consecutive manner. We elaborate below
about these key ingredients, with the aid of Figure 1.

Permuting the input matrices: We employ standard parallelization of the task of computing
the product matrix P , by partitioning P into ab equal sized n/a× n/b sub-matrices denoted
by Pi,j for i ∈ [a], j ∈ [b], and assigning n/ab nodes for computing each sub-matrix.

To this end, we leverage the simple observation that the multiplication of permutations
of the rows of S and the columns of T results in a permutation of the product of S and
T , which can be easily inverted. This observation underlies the first part of our algorithm,
in which the nodes permute the input matrices, such that the number of non-zero entries
from S and T that are required for computing each n/a× n/b sub-matrix are roughly the
same across the a · b sub-matrices. We call the two matrices, S′ and T ′, that result from
the permutations, sparsity-balanced matrices with respect to (a, b). The rest of our algorithm
deals with computing the product of two such matrices. This part inherently includes a
computation of the best choice for a and b for minimizing the communication.

Assigning pages to nodes: To obtain each sub-matrix Pi,j , there are n sub-pages Pi,j,`
which need to be computed and summed. For each Pi,j , this task is assigned to distinct n/ab
nodes, each of which computes some of the n sub-pages Pi,j,` and sums them locally. The
local sums are then aggregated and summed, for obtaining Pi,j . We utilize the commutativity
and associativity properties of summation over the semiring in order to assign sub-pages to
nodes in a non-consecutive manner, such that the nodes require receiving a roughly equal
number of non-zero entries in order to compute their assigned sub-pages.

3 Note, we do not assume that balancing the distribution of non-zero elements gives a balanced local
computation. Our balancing is done for the amount of communication: we assign the amount and
identity of matrix entries that should be sent and received by each node in a way that will balance the
communication, not necessarily the local computation.

OPODIS 2018
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Assigning non-zero matrix entries to nodes: For fast communication in the Congested
Clique model using Lenzen’s routing scheme (see Section 1.4), it is moreover paramount
that the nodes also send a roughly equal amount of non-zero matrix entries. However, it
may be the case that a certain row, held by a node v, contains a significantly larger number
of non-zero entries as compared with other rows. Therefore, we rearrange the entries held
by each node such that every node holds a roughly equal amount of non-zero entries that
need to be sent to other nodes for computing the n3 products. Notice that in this step we do
not rearrange the rows or columns of S or T , rather, we redistribute the entries of S and T .
Thus, a node may hold values which originate from different rows.

Routing non-zero elements: Crucially, the assignments made above, for addressing the
need to balance sending and receiving, are not global knowledge. That is, for every Pi,j , the
corresponding n/ab nodes decide which matrix entries are received by which node, but this is
unknown to the other nodes, who need to send this information. Likewise, the redistribution
of entries of S and T across the nodes is not known to all nodes. Nonetheless, clearly, a
node must know the destination of each message it needs to send. As a consequence, we
ultimately face the challenge of communicating some of this local knowledge. In our solution,
a node that needs to receive information from a certain column of S (or row of T ) sends a
request to the nodes holding subsequences of that column (or row) without knowing the
exact partition into subsequences. The nodes then deliver the non-zero entries of this column
(or row), which allow computing the required element-wise multiplications.
Our solutions to the three challenges described above, for sending and receiving as small
as possible amounts of information and for resolving a corresponding routing, and their
combination, are the main innovation of our algorithm.

1.3 Related work
Matrix multiplication in the Congested Clique model: A randomized Boolean matrix
multiplication algorithm was given by Drucker et al. [11], completing in O(nω−2) rounds,
where ω is the exponent of sequential matrix multiplication. The best currently known upper
bound is ω < 2.3728639 [13], implying O(n0.372) rounds for the above.

Later, Censor-Hillel et al. [7] gave a deterministic algorithm for (general) matrix mul-
tiplication over semirings, completing in O(n1/3) rounds, and a deterministic algorithm
for (general) matrix multiplication over rings, completing in O(n1−2/ω) rounds, which by
the current known upper bound on ω is O(n0.158). The latter is a Strassen-like algorithm,
exploiting known schemes for computing the product of two matrices over a ring without
directly computing all n3 element-wise multiplications. Then, Le Gall [14] provided fast
algorithms for multiplying rectangular matrices and algorithms for computing multiple
instances of products of independent matrices.

Related graph computations in the Congested Clique model: Triangle counting in the
Congested Clique model was addressed by Dolev et al. [10], who provided a deterministic
Õ(nd−2/d)-round algorithm for counting the number of appearances of any d-node subgraph,
giving triangle counting in Õ(n1/3) rounds. To speed up the computation for sparse instances,
[10] show that every node in a graph with a maximum degree of ∆ can learn its 2-hop
neighborhood within O(∆2/n) rounds, implying the same round complexity for triangle
counting. They also showed a deterministic triangle counting algorithm completing in
Õ(A2/n+ log2+n/A2 n) rounds, where A is the arboricity of the input graph, i.e., the minimal
number of forests into which the set of edges can be decomposed. Note that a graph with
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arboricity A has at most An edges, but there are graphs with arboricity A and a significantly
smaller number of edges. Since it holds that A ≥ m/n, this implies a complexity of Ω(m2/n3)
for their triangle counting algorithm, upon which our O(m2/3/n+1)-round algorithm provides
a cubic improvement. The deterministic matrix multiplication algorithm over rings of [7]
directly gives a triangle counting algorithm with O(n1−2/ω) rounds.

For 4-cycle counting, the algorithm of [10] completes in Õ(n1/2) rounds, and the matrix
multiplication algorithm of [7] implies a solution in O(n1−2/ω) rounds.

For APSP, the matrix multiplication algorithms of [7] give O(n1−2/ω) for the unweighted
undirected case. For weighted directed APSP, Õ(n1/3) rounds are given in [7], and improved
algorithms for weighted (directed and undirected) APSP are given in [14]. We mention that
our technique could allow for computing weighted APSP, but the cost would be too large
due to our iterative multiplication (as opposed to the previous algorithms that can afford
iterative squaring). Algorithms for approximations of APSP are given in [22, 7, 14].

Note that for all graph problems, Lenzen’s routing scheme [21] (see Section 1.4) implies
that every node can learn the entire structure of G within O(m/n) rounds, where m is the
number of edges (this can also be obtained by a simpler scheme).

Sequential/Parallel matrix multiplication: Additional related work on sequential and par-
allel matrix multiplication can be found in the full paper [8].

1.4 Preliminaries
Model: The Congested Clique model consists of a set [n] = {1, . . . , n} of nodes in a
fully connected synchronous network, limited by a bandwidth of O(logn) bits per message.

In an instance of multiplication of two matrices S and T , the input to each node v is row
v of each matrix and its output should be row v of P = S · T . For a graph problem over a
graph G of n nodes, we identify the nodes of the Congested Clique model with the nodes
of G, and the input to node v in the Congested Clique model is its input in G.

As defined earlier, for a matrix A we denote by nz(A) the number of non-zero elements
of A. Throughout the paper, we also need to refer to the number of non-zero elements in
certain sub-matrices or sequences. We will therefore overload this notation, and use nz(X)
to denote the number of non-zero elements in any object X.

A pair of integers (a, b) is n-split if a, b ∈ [n], both a and b divide n, and n/ab ≥ 1. The
requirement that a and b divide n is for simplification only and could be omitted. Eventually,
the n-split pair that will be chosen is a = n·nz(S)1/3/nz(T )2/3 and b = n·nz(T )1/3/nz(S)2/3.

For a given n-split pair (a, b), it will be helpful to associate each node v ∈ [n] with
three indices, two indicating the Pi,j sub-matrix to which the node is assigned, and one
distinguishing it from the other nodes assigned to Pi,j . Hence, we denote each node v also as
vi,j,k, where i ∈ [a], j ∈ [b], and k ∈ [n/ab]. The assignment of indices to the nodes can be
any arbitrary one-to-one function from [n] to [a]× [b]× [n/ab].

Throughout our algorithms, we implicitly comply with the following: (I) no information
is sent for matrix entries whose value is zero, and (II) when the value of a non-zero entry
is sent, it is sent alongside its location in the matrix. Since sending the location within an
n× n matrix requires O(logn) bits, the overhead in the complexity is constant.

Lenzen’s routing scheme: A useful tool in designing algorithms for the Congested
Clique model is Lenzen’s routing scheme [21]. In this scheme, each of the n nodes can send
and receive n−1 messages (of O(logn) bits each) in a constant number of rounds. While this
is simple to see for the simplest case where each node sends a single message to every other
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node, the power of Lenzen’s scheme is that it applies to any (multi)set of source-destination
pairs, as long as each node is source of at most n− 1 messages and destination of at most
n− 1 messages. Moreover, the multiset of pairs does not need to be known to all nodes in
advance, rather each sender only needs to know the recipient of its messages. Employing
this scheme is what underlies our incentive for balancing the number of messages that need
to be sent and received by all the nodes.

Useful combinatorial claims: The following are simple combinatorial claims that we use
for routing messages in a load-balanced manner.
I Claim 1. Let A = (a1, . . . , at) be a finite set and let 1 ≤ c ≤ t be an integer. There exists
a partition of A into dt/ce subsets of size at most c+ 1 each.
I Claim 2. Given any n finite sets, Ai = (ai1, . . . , aiti) for 1 ≤ i ≤ n. Let avg = (

∑
1≤i≤n ti)/n.

There exists a partition of each Ai into dti/avge subsets of size at most avg + 1 each, such
that the total number of subsets is at most 2n.
I Claim 3. Given a sorted finite multiset A = (a1, . . . , an) of natural numbers, an integer
x ∈ N such that for all i ∈ [n] it holds that ai ≤ x, and an integer k that divides n, there
exists a partition A = ∪ki=jAj into k multisets Aj , 1 ≤ j ≤ k, of equal size n/k, such that
for all 1 ≤ j ≤ k it holds that sum(Aj) ≤ sum(A)/k + x.

2 Fast Sparse Matrix Multiplication

Our main result is Theorem 1, stating the guarantees of our principal algorithm SMM
(Sparse Matrix Multiplication) for fast multiplication of sparse matrices. Algorithm SMM
first manipulates the structure of its input matrices and then calls algorithm SBMM (Sparse
Balanced Matrix Multiplication), which solves the problem of fast sparse matrix multiplication
under additional assumptions on the distributions of non-zero elements in the input matrices,
which are defined next. In Section 2.1, we show how SMM computes general matrix
multiplication P = ST , given Algorithm SBMM and Theorem 8. Algorithm SBMM, and
Theorem 8 which states its guarantees, are deferred to Section 2.2.

Theorem 1 (restated). Given two n×n matrices S and T , Algorithm SMM deterministically
computes the product P = S ·T over a semiring in the Congested Clique model, completing
in O(nz(S)1/3nz(T )1/3/n+ 1) rounds.

We proceed to presenting Theorem 8 which discusses SBMM. SBMM multiplies matrices
S′ and T ′ in which the non-zero elements are roughly balanced between portions of the rows
of S′ and columns of T ′. In what follows, for a matrix A, the notation A[x : y][∗] refers to
rows x through y of A and the notation A[∗][x : y] refers to columns x through y of A. In
the following definition we capture the needed properties of well-balanced matrices.

IDefinition 7. Let S and T be n×nmatrices and let (a, b) be an n-split pair. For every i ∈ [a]
and j ∈ [b], denote Si = S[(i−1)(n/a)+1 : i(n/a)][∗] and Tj = T [∗][(j−1)(n/b)+1 : j(n/b)].
We say that S and T are a sparsity-balanced pair of matrices with respect to (a, b), if:

S-condition: For every i ∈ [a], nz(Si) ≤ nz(S)/a+ n.
T -condition: For every j ∈ [b], nz(Tj) ≤ nz(T )/b+ n.

These conditions ensure that bands of adjacent rows of S and columns of T contain
roughly the same number of non-zero elements. We can now state our theorem for multiplying
sparsity-balanced matrices, which summarizes our algorithm SBMM.
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I Theorem 8. Given two n × n matrices S and T and an n-split pair (a, b), if S and T
are a sparsity-balanced pair with respect to (a, b), then Algorithm SBMM deterministically
computes the product P = S ·T over a semiring in the Congested Clique model, completing
in O(nz(S) · b/n2 + nz(T ) · a/n2 + n/ab) rounds.

We show that O(1) rounds are sufficient in the Congested Clique for transforming
any two general matrices S and T to sparsity-balanced matrices S′ and T ′ by invoking
standard matrix permutation operations. Therefore, in essence, Algorithm SMM performs
permutation operations on S and T , generating the matrices S′ and T ′, respectively, invokes
SBMM on S′ and T ′ to compute P ′ = S′T ′, and finally recovers P from P ′.

2.1 Fast General Sparse Matrix Multiplication - Algorithm SMM
Algorithm Description: First, each node distributes the entries in its row of T to other
nodes in order for each node to obtain its column in T . Then, the nodes broadcast the
number of non-zero elements in their respective row of S and column of T , in order for all
nodes to compute nz(S) and nz(T ). Having this information, the nodes locally compute the
n-split pair (a, b) that minimizes the expression nz(S) · b/n2 + nz(T ) · a/n2 + n/ab, which
describes the round complexities of each of the three parts of Algorithm SBMM. It can be
shown that the pair (n ·nz(S)1/3/nz(T )2/3, n ·nz(T )1/3/nz(S)2/3) minimizes this expression.
Then, the nodes permute the rows of S and columns of T so as to produce matrices S′ and
T ′ which have the required balance. Subsequently, Algorithm SBMM is executed on the
permuted matrices S′ and T ′, followed by invoking the inverse permutations on the product
P ′ = S′T ′ in order to obtain the product P = S · T of the original matrices. A pseudocode
of SMM is given in Algorithm 1.

Proof of Theorem 1. To prove correctness, we need to show that the matrices S′ and T ′
computed in Line 10 are a sparsity-balanced pair of matrices with respect to the n-split pair
(a, b) that is determined in Line 8. Once this is proven, the correctness of the algorithm is
as follows. In Lines 1-12 the matrices S′ and T ′ are computed and are distributed among
the nodes such that each node v ∈ [n] holds row v of S and column v of T . The loop of
Line 13 is only for consistency, having the input to SBMM be the respective rows of both S′
and T ′. Assuming the correctness of algorithm SBMM given in Theorem 8, the matrix P ′
computed in Line 15 is the product P ′ = S′T ′. Finally, in the last loop, node v receives row
v of P = A−1

σ P ′A−1
τ , completing the correctness of the Algorithm SMM.

We now show that S′ and T ′ are indeed a sparsity-balanced pair of matrices with respect
to (a, b). To this end, we first need to show that for all i ∈ [a], the number of non-zero
elements in S′i is at most nz(S′)/a+ n. By construction, the number of non-zero elements in
S′i = S′[(i− 1)(n/a) + 1 : i(n/a)][∗] is exactly sum(ASi ) of the partition computed in Line 9.
By Claim 3 this is bounded by sum(A)/k+x, which in our case is nz(S)/a+n = nz(S′)/a+n.
Thus, S′ satisfies the S-condition of Definition 7. A similar argument shows that T ′ satisfies
the T -condition of Definition 7.

For the complexity, we sum the number of rounds as follows. The first loop allows every
node v to obtain column v of T , while in the second loop the nodes exchange the sums of
non-zero elements in rows and columns of S and T , respectively. Even without the need to
resort to Lenzen’s routing scheme, both of these loops can be completed within O(1) rounds.
A similar argument shows that O(1) rounds suffice for permuting S and T into S′ and T ′, and
for permuting P ′ back into P . Thus, all lines of the pseudocode excluding Line 15 complete in
O(1) rounds. This implies that the complexity of Algorithm SMM equals that of Algorithm
SBMM when given S′, T ′, a, and b as input. By Theorem 8 and due to the choice of a and
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Algorithm 1: SMM (S, T ): Computing the product P = S · T . Code for node
v ∈ {1, . . . , n}.

1 foreach u ∈ [n], u 6= v do
2 send T [v][u] to node u
3 foreach u ∈ [n], u 6= v do
4 send nz(S[v][∗]) to node u
5 send nz(T [∗][v]) to node u
6 nz(S)←

∑
u∈[n] nz(S[u][∗])

7 nz(T )←
∑
u∈[n] nz(T [∗][u])

8 (a, b)← argminn-split pairs (a,b){nz(S) · b/n2 + nz(T ) · a/n2 + n/ab}
9 Let AS1 , . . . , ASa be the partition of the sorted multiset of {nz(S[u][∗])|u ∈ [n]} into a

multisets, and AT1 , . . . , ATb be the partition of the sorted multiset of
{nz(T [∗][u])|u ∈ [n]} into b multisets, both proven to exist in Claim 3 (with x = n).

10 Let σ be a permutation for which its n× n permutation matrix Aσ is such that the
rows of the matrix S′ = AσS that correspond to any single ASu are adjacent, and let
τ be a permutation for which its n× n permutation matrix Aτ is such that the
columns of the matrix T ′ = TAτ that correspond to any single ATu are adjacent.

11 send S[v][∗] to node σ(v)
12 send T [∗][v] to node τ(v)
13 foreach u ∈ [n], u 6= v do
14 send T ′[u][v] to node u
15 P ′ ← SBMM(S′, T ′, a, b)
16 foreach u ∈ [n], u 6= v do
17 send P ′[σ−1(v)][τ−1(u)] to node u

b in Line 8, this complexity is O(minn-split pairs (a,b){nz(S) · b/n2 + nz(T ) · a/n2 + n/ab}).
Choosing a = n · nz(S)1/3/nz(T )2/3 and b = n · nz(T )1/3/nz(S)2/3 gives a complexity of
O(nz(S)1/3nz(T )1/3/n+ 1) rounds, which can be shown to be optimal. J

2.2 Fast Sparse Balanced Matrix Multiplication - Algorithm SBMM
Here we present SBMM and prove Theorem 8. We begin with a short overview of the algebraic
computations and node allocation in SBMM. We then proceed to presenting a communication
scheme detailing how to perform the computations of SBMM in the Congested Clique
model in O(MS · b/n2 +MT · a/n2 + n/ab) rounds of communication.

Algorithm Description: Consider the partition of P into ab rectangles, such that ∀(i, j) ∈
[a] × [b], sub-matrix Pi,j = P [(i − 1)(n/a) + 1 : i(n/a)][(j − 1)(n/b) + 1 : j(n/b)]. Each
sub-matrix Pi,j is an n/a×n/b matrix, i.e., has n2/ab entries. Notice that Pi,j = Si ·Tj . We
assign the computation of Pi,j to a unique set of n/ab nodes Ni,j = {vi,j,k|k ∈ [n/ab]}.

In the initial phase of algorithm SBMM, for every (i, j) ∈ [a]× [b], each non-zero element
of Si and Tj is sent to some node in Ni,j . Due to the sparsity-balanced property of S and T ,
all Si’s have roughly the same amount of non-zero elements, and likewise all Tj ’s. Therefore,
each set of nodes Ni,j receives roughly the same amount of non-zero elements from S and T .

Within each Ni,j , the computation of Pi,j is carried out according to the following
framework. For ` ∈ [n], denote each page of Pi,j by Pi,j,` = Si[∗][`] ·Tj [`][∗]. The computation
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Algorithm 2: SBMM (S,T,a,b): Computing the product P = ST , for S and T
that are sparsity-balanced w.r.t. (a, b). Code for node vi,j,k.

1 ExchangeInfo (S, T, a, b)
2 Locally compute Pi,j,` for every ` ∈ Ai,j,k
3 Locally compute P ki,j =

∑
`∈Ai,j,k

Pi,j,`

4 foreach t ∈ [n/a] do
5 send P ki,j [t][∗] to node of respective row
6 foreach ` ∈ [n] do
7 P [v][`]← sum of n/ab respective elements received for this entry

of the n different Pi,j,` sub-matrices is split among the nodes in Ni,j as follows: The set
[n] is partitioned into Ai,j,1, . . . , Ai,j,n/ab such that for each k ∈ [n/ab], node vi,j,k ∈ Ni,j
is required to compute the entries of the matrices in the set {Pi,j,`|` ∈ Ai,j,k}. Then,
node vi,j,k ∈ Ni,j locally sums its computed sub-matrices to produce P ki,j =

∑
`∈Ai,j,k

Pi,j,`.
Clearly, due to the associativity and commutativity of the addition operation in the semiring,
it holds that Pi,j =

∑
`∈[n] Pi,j,` =

∑
k∈[n/ab] P

k
i,j . Therefore, once every node vi,j,k has P ki,j ,

the nodes can collectively compute P , and redistribute its entries in a straightforward manner
such that each node obtains a distinct row of P .

Implementing SBMM: A pseudocode for Algorithm SBMM is given in Algorithm 2, which
consists of three components: exchanging information between the nodes such that every node
vi,j,k has the required information for computing Pi,j,` for every ` ∈ Ai,j,k, local computation
of P ki,j for each (i, j, k) ∈ [a]× [b]× [n/ab] and, finally, the communication of the P ki,j matrices
and assembling of the rows of P .

The technical challenge is in Line 1, upon which we elaborate below. In Lines 2-3, only
local computations are performed, resulting in each node vi,j,k holding P ki,j . In Line 4, each
node sends each row of its sub-matrix P ki,j to the appropriate node, so that in Line 6 each
node can sum this information to produce its row in P . In the full version [8], we prove
Lemma 9.

I Lemma 9. Lines 2-6 of Algorithm 2 complete in O(n/ab) rounds, producing a row of
P = ST for every node.

The remainder of this section is dedicated to presenting and analyzing Line 1. During
this part of the algorithm, for every (i, j) ∈ [a] × [b], each entry in Si and Tj needs to be
sent to a node in Ni,j . As per our motivation throughout the entire algorithm, we strive to
achieve this goal in a way which ensures that all nodes send and receive roughly the same
number of messages. This leads to the following three challenges which we need to overcome.

Sending Challenge: Initially, node v holds row v of S and row v of T . Every column v
of S needs to be sent to b nodes - one node in each Ni,j for an appropriate i ∈ [a] and
every j ∈ [b]. Similarly, every row of T needs to be sent to a nodes - one in each Ni,j for an
appropriate j ∈ [b] and every i ∈ [a]. If we were to trivially choose node v to send all these
messages, then node v would need to send nz(S[∗][v]) · b+ nz(T [v][∗]) · a messages. Since
nz(S[∗][v]) and nz(T [v][∗]) may widely vary for different values of v, it may be the case that
some nodes send a significant amount of messages while others are relatively silent.
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Algorithm 3: ExchangeInfo (S,T,a,b): Sending each entry of Si, Tj to a node
in Ni,j , for every (i, j) ∈ [a]× [b].

1 Compute-Sending
2 Compute-Receiving
3 Resolve-Routing

Receiving Challenge: Since S and T are sparsity-balanced w.r.t. (a, b), for every (i, j) ∈
[a]× [b] it holds that the number of messages to be received by each set of nodes Ni,j is at
most nz(S)/a + nz(T )/b + 2n. This ensures that each node set Ni,j receives roughly the
same amount of messages as every other node set. The challenge remains to ensure that
within any given node set Ni,j , every node receives roughly the same number of messages.

Routing Challenge: When overcoming the above mentioned challenges in a non-trivial
manner, all nodes locally determine that they are senders and recipients of certain messages
with the guarantee that each node sends and receives roughly the same number of messages.
However, these partitions of sending and receiving messages are obtained independently and
thus are not global knowledge; a sender of a message does not necessarily know who the
recipient is. The routing challenge is thus to ensure that each node associates the correct
recipient with every message that it sends.

2.2.1 ExchangeInfo (S, T, a, b)
We next present our implementation of ExchangeInfo (S, T, a, b) which solves the above
challenges in an on-the-fly manner. To simplify the presentation, we split ExchangeInfo
(S, T, a, b) into its three components, as given in the pseudocode of Algorithm 3.

Compute-Sending: In Compute-Sending, whose pseudocode is given in Algorithm 4, we
overcome the sending challenge. The nodes communicate the distribution of non-zero elements
across the columns of S and the rows of T and reorganize the entries held by each node such
that all nodes hold roughly the same amount of non-zero elements of S and T .

Notably, in order to enable fast communication in Resolve-Routing, Algorithm 4 must
guarantee no node holds entries of more than two columns of S and two rows of T .

I Lemma 10. Algorithm 4 completes in O(1) rounds, after which the entries of S and T
are evenly redistributed across the nodes such that every node holds elements from at most 2
columns of S and 2 rows of T and such that every node v knows for every node u the indices
of the two columns of S and two rows of T from which the elements which u holds are taken.

Proof. In Lines 2, 4, 5 the nodes exchange entries of S such that each node holds a distinct
column of S, and knows the number of non-zero entries in each column of S and in each row
of T . This allows local computation of the average number of non-zeros in the following two
lines, as well as locally computing the (same) partition into subsequences.

By Claim 2, in total across all n columns there are at most 2n subsequences of entries
from S, and similarly there are at most 2n subsequences from T . Since ∀u ∈ [n], all nodes
know nz(S[∗][u]) and nz(T [u][∗]), then all nodes know how many subsequences are created
for each u. Thus, all nodes can agree in Line 9 on the assignment of the subsequences, with
each node assigned at most 2 subsequences of entries of S and 2 of entries of T . Crucially
for what follows, all the nodes know the column ` in S or the row ` in T to which the
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Algorithm 4: Compute-Sending: Code for node vi,j,k.

1 foreach u ∈ [n], u 6= v do
2 send S[u][v] to node u
3 foreach u ∈ [n], u 6= v do
4 send nz(S[∗][v]) to node u
5 send nz(T [v][∗]) to node u
6 avg(S)← (

∑
u∈[n] nz(S[∗][u]))/n

7 avg(T )← (
∑
u∈[n] nz(T [u][∗]))/n

8 Let Sv1 , . . . , Svdnz(S[∗][v])/avg(S)e be a partition of the non-zero elements of S[∗][v] into
sets of size at most avg(S) + 1 and let T v1 , . . . , T vdnz(T [v][∗])/avg(T )e be a partition of
the non-zero elements of T [v][∗] into sets of size at most avg(T ) + 1, both proven to
exist in Claim 1. We refer to these sets as subsequences.

9 Assign two subsequences of S, denote by BS(v), and two subsequences of T , denote
by BT (v) to each node v. For each subsequence B, denote by v(B) the node to
which B is assigned.

10 foreach B ∈ {Sv1 , . . . , Svdnz(S[∗][v])/avg(S)e, T
v
1 , . . . , T

v
dnz(T [v][∗])/avg(T )e} do

11 send B to node v(B)

subsequence B belongs. We denote this index `(B). The entries of each subsequence B are
then sent to its node v(B) in the following loop.

For the round complexity, note that a node v sends a single message to every other
node in each of Lines 2, 4, and 5. The rest of the computation until Line 9 is done locally.
Therefore, these lines complete within 3 rounds.

In the last loop of Algorithm 4, node v potentially sends all subsequences with entries
from column v of S and row v of T . Due to the facts that each subsequence is sent only once,
no subsequences overlap, and all the subsequences which v send are parts of a single column
of S and a single row of T , node v sends at most 2n messages during this loop. Additionally,
since every node receives at most 4 subsequences and each subsequence consists of most n
entries, each node receives at most 4n messages. Thus, by using Lenzen’s routing scheme,
this completes in O(1) rounds as well. J

Compute-Receiving: The pseudocode for Compute-Receiving is given in Algorithm 5. This
algorithm assigns the Pi,j,` matrices to different nodes in Ni,j . Specifically, each node vi,j,k
in Ni,j is assigned ab such matrices, while verifying that all nodes in Ni,j require roughly
the same amount of non-zero entries from S and T in order to compute all their assigned
Pi,j,` matrices. Since each sub-matrix Pi,j,` is defined as Pi,j,` = Si[∗][`] · Tj [`][∗], we define
the communication cost of computing Pi,j,` to be w(Pi,j,`) = nz(Si[∗][`]) + nz(Tj [`][∗]). By
this definition, in order to obtain that each node in Ni,j requires roughly the same amount
of messages in order to compute all of its assigned Pi,j,`, we assign the Pi,j,` matrices to the
nodes of Ni,j such that the total communication cost, as measured by w, of all matrices
assigned to a given node is roughly the same for all nodes.

I Lemma 11. Algorithm 5 completes in O(1) rounds, after which each node vi,j,k is assigned a
subset Ai,j,k ⊆ [n], s.t. ∀k ∈ [n/ab] it holds that

∑
`∈Ai,j,k

w(Pi,j,`) ≤ n
ab

∑
`∈[n] w(Pi,j,`)+2n.

Proof. The loop of Line 1 provides each node of Ni′,j′ with the number of non-zero elements
in each column of Si′ and each row of Tj′ . This allows the nodes to compute the required
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Algorithm 5: Compute-Receiving: Code for node vi,j,k.

1 foreach Ni′,j′ , i′, j′ ∈ [a]× [b] do
2 foreach u ∈ Ni′,j′ do
3 foreach B ∈ BS(v) do
4 send nz(Si′ ∩B) to node u
5 foreach B ∈ BT (v) do
6 send nz(Tj′ ∩B) to node u

7 foreach ` ∈ [n] do
8 w(Pi,j,`)← nz(Si[∗][`]) + nz(Tj [`][∗])
9 Let A′

i,j,1, . . . , A
′

i,j,n/ab be a partition of the sorted multiset {w(Pi,j,`)|` ∈ [n]} into
n/ab multisets with a bound x = 2n on its elements, proven to exist in Claim 3.

10 Let Ai,j,1, . . . , Ai,j,n/ab be a partition of [n] such that for every k ∈ [n/ab],
A

′

i,j,k = {w(Pi,j,`)|` ∈ Ai,j,k}. .

communication costs in Line 7. Claim 3 implies that after executing Line 10, each node vi,j,k is
assigned a subset Ai,j,k ⊆ [n], such that for every k ∈ [n/ab] it holds that

∑
`∈Ai,j,k

w(Pi,j,`) ≤
n
ab

∑
`∈[n] w(Pi,j,`) + 2n.

Every node sends every other node exactly 4 messages throughout the loop in Line 1,
while the remaining lines are executed locally for each node, without communication. As
such, this completes in O(1) rounds in total. J

Resolve-Routing: Roughly speaking, we solve this challenge by having the recipient of
each possibly non-zero entry deduce which node is the sender of this entry, and inform the
sender that it is its recipient, as follows. At the end of the execution of Compute-Sending
in Algorithm 4, every node v has at most two subsequences in BS(v) and at most two
subsequences in BT (v). Moreover, the subsequence assignment is known to all nodes due to
performing the same local computation in Line 9. On the other hand, upon completion of
Algorithm 5, node vi,j,k is assigned the task of computing Pi,j,` for every ` ∈ Ai,j,k. For this,
it suffices for vi,j,k to know the non-zero entries of column ` of Si and of row ` of Tj .

Hence, in Resolve-Routing, given in Algorithm 6, node vi,j,k sends every index ` ∈ Ai,j,k
to the nodes that hold subsequences of column ` in S and row ` in T . Notice that vi,j,k does
not know which indices inside these columns and rows are non-zero. However, the nodes
which hold these subsequences have this information, and respond with the non-zero entries
of the respective columns and rows that are part of Si or Tj . The proof of the following
Lemma 12 appears in the full version [8].

I Lemma 12. Algorithm 6 completes in O(nz(S) · b/n2 + nz(T ) · a/n2 + 1) rounds, after
which each node vi,j,k has S[(i− 1)(n/a) + 1 : i(n/a)][`] and T [`][(j − 1)(n/b) + 1 : j(n/b)],
for every ` ∈ Ai,j,k.

Proof of Theorem 8. Lemma 12 implies that each node vi,j,k has the required entries of S
and T in order to compute Pi,j,` for every ` ∈ Ai,j,k. Lemma 9 then gives that Algorithm
SBMM correctly produces a row of P = ST for each node.

Lemmas 10 and 11 show that Compute-Sending and Compute-Receiving complete in O(1)
rounds. Lemma 12 gives the claimed round complexity of O(nz(S) · b/n2 + nz(T ) · a/n2 + 1)
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Algorithm 6: Resolve-Routing: Code for node vi,j,k.

1 foreach ` ∈ Ai,j,k do
2 foreach node u for which there exists B ∈ BS(u) such that `(B) = ` do
3 send ` to node u
4 foreach node u for which there exists B ∈ BT (u) such that `(B) = ` do
5 send ` to node u

6 foreach message ` received from node vi′,j′,k′ in Line 3 do
7 foreach B ∈ BS(v) do
8 send S[(i′ − 1)(n/a) + 1 : i′(n/a)][`] ∩B to node vi′,j′,k′

9 foreach message ` received from node vi′,j′,k′ in Line 5 do
10 foreach B ∈ BT (v) do
11 send T [`][(j′ − 1)(n/b) + 1 : j′(n/b)] ∩B to node vi′,j′,k′

for Resolve-Routing, giving the same total number of rounds for ExchangeInfo. By Lemma 9,
the remainder of Algorithm SBMM completes in O(n/ab) rounds, completing the proof. J

3 Discussion

This work significantly improves upon the round complexity of multiplying two matrices in the
distributed Congested Clique model, for input matrices which are sparse. As mentioned,
we are unaware of a similar algorithmic technique being utilized in the literature of parallel
computing, which suggests that our approach may be of interest in a more general setting.
The central ensuing open question left for future reserach is whether the round complexity of
sparse matrix multiplication in the Congested Clique can be further improved.

Finally, an intriguing question is the complexity of various problems in the more general
k-machine model [18, 23], where the size of the computation clique is k << n. The way
of partitioning the data to the nodes is of importance. One may assume that the input to
each node consists of n/k unique consecutive rows of S and T , and its output should be the
corresponding n/k rows of the product P = S ·T . Applying our algorithm in this setting gives
a round complexity of O(minn-split pairs (a,b) n

2/k2 +nz(S) · b/k2 +nz(T ) ·a/k2 +n2/kab+ 1)
rounds, which is O(n2/3 · nz(S)1/3nz(T )1/3/k5/3 + 1) rounds with the assignment a =
n2/3k1/3 · nz(S)1/3/nz(T )2/3 and b = n2/3k1/3 · nz(T )1/3/nz(S)2/3. To see why, consider
each node as simulating the behavior of n/k virtual nodes of the Congested Clique model
that belong to the same Ni,j set. The round complexity of all steps of the algorithm grows
by a multiplicative factor of n2/k2, apart from the steps in Algorithm 2 which grow only by a
multiplicative factor of n/k, since part of the simulated communication consists of messages
sent between virtual nodes that are simulated by the same actual node, and as such do not
require actual communication. We ask whether this complexity can be improved for k << n.
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