
A Simple Near-Linear Pseudopolynomial Time
Randomized Algorithm for Subset Sum

Ce Jin
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
jinc16@mails.tsinghua.edu.cn

Hongxun Wu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
wuhx18@mails.tsinghua.edu.cn

Abstract
Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to
determine whether there exists a subset of S that sums up to t. The current best deterministic
algorithm, by Koiliaris and Xu [SODA’17], runs in Õ(

√
nt) time, where Õ hides poly-logarithm

factors. Bringmann [SODA’17] later gave a randomized Õ(n+ t) time algorithm using two-stage
color-coding. The Õ(n+ t) running time is believed to be near-optimal.

In this paper, we present a simple and elegant randomized algorithm for Subset Sum in
Õ(n + t) time. Our new algorithm actually solves its counting version modulo prime p > t, by
manipulating generating functions using FFT.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases subset sum, formal power series, FFT

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.17

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful
comments.

1 Introduction

Given a multiset S of n positive integers and a target integer t, the Subset Sum problem
asks to determine whether there exists a subset of S that sums up to t. It is one of Karp’s
original NP-complete problems [9], and is widely taught in undergraduate algorithm classes.
In 1957, Bellman gave the well-known dynamic programming algorithm [2] in time O(nt).
Pisinger [12] first improved it to O(nt/ log t) on word-RAM models. Recently, Koiliaris and
Xu gave a deterministic algorithm [10, 11] in time Õ(

√
nt), which is the best deterministic

algorithm so far. Bringmann [4] later improved the running time to randomized Õ(n+ t)
using color-coding and layer splitting techniques. Abboud et al. [1] recently showed that
Subset Sum has no O(t1−εnO(1)) algorithm for any ε > 0, unless the Strong Exponential
Time Hypothesis (SETH) is false, so the Õ(n+ t) time bound is likely to be near-optimal.

In this paper, we present a new randomized algorithm matching the Õ(n+ t) running time
by Bringmann [4]. The basic idea of our approach is quite straightforward. For prime p > t,
we give an Õ(n + t) algorithm for #pSubset Sum, the counting version of Subset Sum
problem modulo p. Then the decision version can be solved with high probability by randomly
picking a sufficiently large prime p.

© Ce Jin and Hongxun Wu;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 17; pp. 17:1–17:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/168410693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jinc16@mails.tsinghua.edu.cn
mailto:wuhx18@mails.tsinghua.edu.cn
https://doi.org/10.4230/OASIcs.SOSA.2019.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

A closely related problem is #Knapsack, which asks for the number of subsets S such that∑
s∈S s ≤ t. There are extensive studies on approximation algorithms for the #Knapsack

problem [6, 8, 13, 7]. Our algorithm can solve the modulo p version #pKnapsack in
near-linear pseudopolynomial time for prime p > t.

Compared to the previous near-linear time algorithm for Subset Sum by Bringmann [4],
our algorithm is simpler and more practical. The precise running time of our algorithm is
O(n+ t log2 t) with error probability O((n+ t)−1). If a faster algorithm for manipulating
formal power series by Brent [3] is applied, it can be improved to O(n + t log t) time (see
Remark on Lemma 2), which is faster than Bringmann’s algorithm by a factor of log4 n.

1.1 Main ideas of our algorithm

The Subset Sum instance can be encoded as a generating function A(x) =
∏n
i=1(1 + xsi),

where s1, . . . , sn are the input integers, and our goal is to compute the t-th coefficient of
A(x) and see whether it is zero or not.

Instead of directly expanding A(x), we consider its logarithm B(x) = ln(A(x)). Using
basic properties of the logarithm function and its power series, it’s possible to compute the
first t+ 1 coefficients of B(x) in Õ(t) time. Then we can recover the first t+ 1 coefficients of
A(x) = exp(B(x)) in Õ(t) time using a simple divide and conquer algorithm with FFT (or a
slightly faster algorithm by Brent [3]).

The coefficients involved in the algorithm could be exponentially large. To avoid dealing
with high-precision numbers, we pick a prime p and perform arithmetic operations efficiently
in the finite field Fp, and in the end check whether the result is zero modulo p. By picking
random p from a large interval, the algorithm succeeds with high probability.

2 Preliminaries

2.1 Subset sum problem

Given n (not necessarily distinct) positive integers s1, s2, . . . , sn and a target sum t, the
Subset Sum problem is to decide whether there exists a subset of indices I ⊆ {1, 2, . . . , n}
such that

∑
i∈I si = t. We also consider the #pSubset Sum problem, which asks for

the number of such subsets I modulo p. We use the word RAM model with word length
w = Θ(log t) throughout this paper.

2.2 Polynomials and formal power series

Formal power series

Let R[x] denote the ring of polynomials over a ring R, and R[[x]] denote the ring of
formal power series over R. A formal power series f(x) =

∑∞
i=0 fix

i is a generalization of a
polynomial with possibly an infinite number of terms. Polynomial addition and multiplication
naturally generalize to R[[x]]. Composition (f ◦ g)(x) = f(g(x)) =

∑∞
i=0 fi

(∑∞
j=1 gjx

j
)i

is
well-defined for f(x) =

∑∞
i=0 fix

i ∈ R[[x]] and g(x) =
∑∞
j=1 gjx

j ∈ xR[[x]]. Here xR[[x]] (or
xR[x]) denotes the set of series in R[[x]] (or polynomials in R[x]) with zero constant term.

C. Jin and H.Wu 17:3

Exponential and logarithm

We are familiar with the following two series in Q[[x]],

ln(1 + x) =
∞∑
k=1

(−1)k−1xk

k
, (1)

exp(x) =
∞∑
k=0

xk

k! , (2)

satisfying

exp
(

ln(1 + f(x))
)

= 1 + f(x), (3)

and

ln
(
(1 + f(x))(1 + g(x))

)
= ln(1 + f(x)) + ln(1 + g(x)) (4)

for any f(x), g(x) ∈ xQ[x].

Modulo xt+1

Our algorithm only deals with the first t+1 terms of any formal power series. For f(x), g(x) ∈
R[[x]], we write f(x) ≡ g(x) (mod xt+1) if [xi]f(x) = [xi]g(x) for all 0 ≤ i ≤ t, where [xi]f(x)
denotes the i-th coefficient of f(x).

As an example, define

expt(x) =
t∑
i=0

xi

i! (5)

as a t-th degree polynomial in Q[x]. Then exp(f(x)) ≡ expt(f(x)) (mod xt+1) clearly holds
for any f(x) ∈ xQ[[x]].

2.3 Modulo prime p

To avoid dealing with large fractions or floating-point numbers, we will work in the finite
field Fp = {0,1, . . . ,p− 1} of prime order p = 2Θ(log t). Addition and multiplication in Fp
take O(1) time in the word RAM model. Finding the multiplicative inverse of a nonzero
element in Fp takes O(log p) time using extended Euclidean algorithm [5, Section 31.2].

Our algorithm will regard polynomial coefficients as elements from Fp. The coefficients
can be rational numbers, but their denominators should not have prime factor p. Formally,
let

ZpZ = {r/s ∈ Q : r, s are coprime integers, p does not divide s} (6)

and apply the canonical homomorphism from ZpZ[x] to Fp[x], determined by

r/s 7→ s̄−1r̄, x 7→ x. (7)

We use Ā or A mod p to denote A’s image in Fp[x].
From now on we assume p > t, so that expt(x) ∈ ZpZ[x] (see equation (5)), and let

expt(x) denote its image in Fp[x].

SOSA 2019

17:4 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

procedure Compute(l, r) . after Compute(l, r) returns, all values g1, . . . , gr are ready
if l < r then

m← b(l + r)/2c
Compute(l,m)
for i← m+ 1,m+ 2, . . . , r do

gi ← gi + i−1∑m
j=l(i− j)fi−jgj

end for
Compute(m+ 1, r)

end if
end procedure

procedure Main
Initialize g0 ← 1, gi ← 0(1 ≤ i ≤ t)
Compute(0, t)

end procedure
Figure 1 Algorithm for computing g1, . . . , gt.

2.4 Computing exponential using FFT
I Lemma 1 (FFT). Given two polynomials f(x), g(x) ∈ Fp[x] of degree at most t, one can
compute their product f(x)g(x) in O(t log t) time.

Proof. The classic FFT algorithm [5, Chapter 30] can multiply f(x) and g(x), regarded as
polynomials in Z[x], in O(t log t) time. Then take the remainder of each coefficient modulo
p. J

Lemma 2 is a classical result on manipulating formal power series, and is the main building
block of our algorithm.

I Lemma 2 (Brent [3]). Given a polynomial f(x) ∈ xFp[x] of degree at most t (t < p), one
can compute a polynomial g(x) ∈ Fp[x] in Õ(t) time such that g(x) ≡ expt(f(x)) (mod xt+1).

I Remark. Brent’s algorithm [3] uses Newton’s iterative method and runs in time O(t log t).
Here we describe a simpler O(t log2 t) algorithm by standard divide and conquer. We present
the algorithm as over Q for notational simplicity.

Proof. Let f(x) =
∑t
i=1 fix

i and g(x) = exp(f(x)) =
∑∞
i=0 gix

i. Then g′(x) = g(x)f ′(x).
Comparing the (i− 1)-th coefficients on both sides gives a recurrence relation

gi = i−1
i−1∑
j=0

(i− j)fi−jgj (8)

with initial value g0 = 1. The desired coefficients g1, . . . , gt can be computed using the
algorithm in Figure 1, which simply reorganizes the computation of recurrence formula (8)
as a recursion.

To speed up this algorithm, define polynomial F (x) =
∑r−l
k=0 kfkx

k, G(x) =
∑m−l
j=0 gj+lx

j

and use FFT to compute H(x) = F (x)G(x) in O((r− l) log(r− l)) time after Compute(l,m)
returns. Then

∑m
j=l(i − j)fi−jgj = [xi−l]H(x), and hence the for loop runs in O(r −m)

time. The total running time is T (t) = 2T (t/2) +O(t log t) = O(t log2 t). J

C. Jin and H.Wu 17:5

3 Main algorithm

Recall that we are given n positive integers s1, . . . , sn and a target sum t. Consider the
generating function A(x) defined by

A(x) =
n∏
i=1

(1 + xsi). (9)

The number of subsets that sum up to t is [xt]A(x). The Subset Sum instance has a solution
if and only if [xt]A(x) 6= 0.

I Lemma 3. Suppose [xt]A(x) 6= 0. Let p be a uniform random prime from [t+ 1, (n+ t)3].
With probability 1−O((n+ t)−1), p does not divide [xt]A(x).

Proof. Notice that [xt]A(x) ≤ 2n, so it has at most n prime factors. Since there are
Ω((n+ t)2) primes in the interval, the probability that p divides [xt]A(x) is O((n+ t)−1). J

I Lemma 4. Let B(x) = ln(A(x)) ∈ Q[[x]]. For prime p > t, in Õ(t) time one can compute
([xr]B(x)) mod p for all 0 ≤ r ≤ t.

Proof. By definition of B(x),

B(x) = ln
(n∏
i=1

(1 + xsi)
)

=
n∑
i=1

ln(1 + xsi) =
n∑
i=1

∞∑
j=1

(−1)j−1

j
xsij . (10)

Let ak be the size of the set {j : sj = k}, and define polynomial

Bt(x) =
n∑
i=1

bt/sic∑
j=1

(−1)j−1

j
xsij =

t∑
k=1

bt/kc∑
j=1

ak(−1)j−1

j
xjk. (11)

Then [xr]Bt(x) = [xr]B(x) for all 0 ≤ r ≤ t.
Note that the denominators j in (11) do not have prime factor p. After preparing the

multiplicative inverses j̄−1 for each 1 ≤ j ≤ t, we can compute all ([xr]Bt(x)) mod p by
simply iterating over k, j in equation (11), which only takes

∑t
k=1bt/kc = O(t log t) time. J

I Lemma 5. For prime p > t, one can compute ([xr]A(x)) mod p for all 0 ≤ r ≤ t in Õ(t)
time.

Proof. Let B(x) = ln(A(x)). Then A(x) = exp(B(x)) ≡ expt(Bt(x)) (mod xt+1), where
Bt(x) =

∑t
i=0([xi]B(x))xi. We use Lemma 4 to compute Bt(x)’s image Bt(x) ∈ Fp[x], and

then use Lemma 2 to compute the first t+ 1 terms of expt(Bt(x)), which give the values of
([xr]A(x)) mod p for all 0 ≤ r ≤ t. J

I Theorem 6. The Subset Sum problem can be solved in time Õ(n+ t) by a randomized
algorithm with one-sided error probability O((n+ t)−1).

Proof. By sampling and using Miller-Rabin primality test [5, Section 31.8], we can pick a
uniform random prime p from interval [t+1, (n+t)3] in (log(n+t))O(1) time with O((n+t)−1)
failure probability. Then the theorem immediately follows from Lemma 3 and Lemma 5. J

SOSA 2019

17:6 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2019. To appear. URL: http://arxiv.org/
abs/1704.04546.

2 Richard E. Bellman. Dynamic programming. Princeton University Press, 1957.
3 Richard P. Brent. Multiple-precision zero-finding methods and the complexity of elementary

function evaluation. In Analytic Computational Complexity, pages 151–176. Elsevier, 1976.
doi:10.1016/B978-0-12-697560-4.50014-9.

4 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1073–1084, 2017. doi:10.1137/1.9781611974782.69.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 3rd edition, 2009.

6 Martin Dyer. Approximate counting by dynamic programming. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC), pages 693–699, 2003.
doi:10.1145/780542.780643.

7 Paweł Gawrychowski, Liran Markin, and Oren Weimann. A Faster FPTAS for #Knap-
sack. In Proceedings of the 45th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 64:1–64:13, 2018. doi:10.4230/LIPIcs.ICALP.2018.64.

8 Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh Vempala, and
Eric Vigoda. An FPTAS for #knapsack and related counting problems. In Proceedings of
the 52nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
817–826, 2011. doi:10.1109/FOCS.2011.32.

9 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.

10 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset
sum. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1062–1072, 2017. doi:10.1137/1.9781611974782.68.

11 Konstantinos Koiliaris and Chao Xu. Subset Sum Made Simple. CoRR, abs/1807.08248,
2018. URL: http://arxiv.org/abs/1807.08248.

12 David Pisinger. Linear time algorithms for knapsack problems with bounded weights.
Journal of Algorithms, 33(1):1–14, 1999. doi:10.1006/jagm.1999.1034.

13 Romeo Rizzi and Alexandru I. Tomescu. Faster FPTASes for counting and random gener-
ation of knapsack solutions. In European Symposium on Algorithms (ESA), pages 762–773,
2014. doi:10.1007/978-3-662-44777-2_63.

http://arxiv.org/abs/1704.04546
http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1016/B978-0-12-697560-4.50014-9
http://dx.doi.org/10.1137/1.9781611974782.69
http://dx.doi.org/10.1145/780542.780643
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.64
http://dx.doi.org/10.1109/FOCS.2011.32
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1137/1.9781611974782.68
http://arxiv.org/abs/1807.08248
http://dx.doi.org/10.1006/jagm.1999.1034
http://dx.doi.org/10.1007/978-3-662-44777-2_63

	Introduction
	Main ideas of our algorithm

	Preliminaries
	Subset sum problem
	Polynomials and formal power series
	Modulo prime p
	Computing exponential using FFT

	Main algorithm

