A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

Ce Jin
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China jinc16@mails.tsinghua.edu.cn
Hongxun Wu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China wuhx18@mails.tsinghua.edu.cn

Abstract

Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in $\tilde{O}(\sqrt{n} t)$ time, where \tilde{O} hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized $\tilde{O}(n+t)$ time algorithm using two-stage color-coding. The $\tilde{O}(n+t)$ running time is believed to be near-optimal.

In this paper, we present a simple and elegant randomized algorithm for SUBSET Sum in $\tilde{O}(n+t)$ time. Our new algorithm actually solves its counting version modulo prime $p>t$, by manipulating generating functions using FFT.

2012 ACM Subject Classification Theory of computation \rightarrow Algorithm design techniques

Keywords and phrases subset sum, formal power series, FFT

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.17

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful comments.

1 Introduction

Given a multiset S of n positive integers and a target integer t, the SUBSET Sum problem asks to determine whether there exists a subset of S that sums up to t. It is one of Karp's original NP-complete problems [9], and is widely taught in undergraduate algorithm classes. In 1957, Bellman gave the well-known dynamic programming algorithm [2] in time $O(n t)$. Pisinger [12] first improved it to $O(n t / \log t)$ on word-RAM models. Recently, Koiliaris and Xu gave a deterministic algorithm $[10,11]$ in time $\tilde{O}(\sqrt{n} t)$, which is the best deterministic algorithm so far. Bringmann [4] later improved the running time to randomized $\tilde{O}(n+t)$ using color-coding and layer splitting techniques. Abboud et al. [1] recently showed that Subset Sum has no $O\left(t^{1-\epsilon} n^{O(1)}\right)$ algorithm for any $\epsilon>0$, unless the Strong Exponential Time Hypothesis (SETH) is false, so the $\tilde{O}(n+t)$ time bound is likely to be near-optimal.

In this paper, we present a new randomized algorithm matching the $\tilde{O}(n+t)$ running time by Bringmann [4]. The basic idea of our approach is quite straightforward. For prime $p>t$, we give an $\tilde{O}(n+t)$ algorithm for $\#_{p}$ SUBSET SUM, the counting version of SUBSET SUM problem modulo p. Then the decision version can be solved with high probability by randomly picking a sufficiently large prime p.

© Ce Jin and Hongxun Wu ;
licensed under Creative Commons License CC-BY

A closely related problem is \#Knapsack, which asks for the number of subsets S such that $\sum_{s \in S} s \leq t$. There are extensive studies on approximation algorithms for the \#Knapsack problem $[6,8,13,7]$. Our algorithm can solve the modulo p version $\#{ }_{p}$ Knapsack in near-linear pseudopolynomial time for prime $p>t$.

Compared to the previous near-linear time algorithm for Subset Sum by Bringmann [4], our algorithm is simpler and more practical. The precise running time of our algorithm is $O\left(n+t \log ^{2} t\right)$ with error probability $O\left((n+t)^{-1}\right)$. If a faster algorithm for manipulating formal power series by Brent [3] is applied, it can be improved to $O(n+t \log t)$ time (see Remark on Lemma 2), which is faster than Bringmann's algorithm by a factor of $\log ^{4} n$.

1.1 Main ideas of our algorithm

The Subset Sum instance can be encoded as a generating function $A(x)=\prod_{i=1}^{n}\left(1+x^{s_{i}}\right)$, where s_{1}, \ldots, s_{n} are the input integers, and our goal is to compute the t-th coefficient of $A(x)$ and see whether it is zero or not.

Instead of directly expanding $A(x)$, we consider its logarithm $B(x)=\ln (A(x))$. Using basic properties of the logarithm function and its power series, it's possible to compute the first $t+1$ coefficients of $B(x)$ in $\tilde{O}(t)$ time. Then we can recover the first $t+1$ coefficients of $A(x)=\exp (B(x))$ in $\tilde{O}(t)$ time using a simple divide and conquer algorithm with FFT (or a slightly faster algorithm by Brent [3]).

The coefficients involved in the algorithm could be exponentially large. To avoid dealing with high-precision numbers, we pick a prime p and perform arithmetic operations efficiently in the finite field \mathbb{F}_{p}, and in the end check whether the result is zero modulo p. By picking random p from a large interval, the algorithm succeeds with high probability.

2 Preliminaries

2.1 Subset sum problem

Given n (not necessarily distinct) positive integers $s_{1}, s_{2}, \ldots, s_{n}$ and a target sum t, the SUBSET SUM problem is to decide whether there exists a subset of indices $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} s_{i}=t$. We also consider the $\#_{p}$ Subset Sum problem, which asks for the number of such subsets I modulo p. We use the word RAM model with word length $w=\Theta(\log t)$ throughout this paper.

2.2 Polynomials and formal power series

Formal power series

Let $R[x]$ denote the ring of polynomials over a ring R, and $R[[x]]$ denote the ring of formal power series over R. A formal power series $f(x)=\sum_{i=0}^{\infty} f_{i} x^{i}$ is a generalization of a polynomial with possibly an infinite number of terms. Polynomial addition and multiplication naturally generalize to $R[[x]]$. Composition $(f \circ g)(x)=f(g(x))=\sum_{i=0}^{\infty} f_{i}\left(\sum_{j=1}^{\infty} g_{j} x^{j}\right)^{i}$ is well-defined for $f(x)=\sum_{i=0}^{\infty} f_{i} x^{i} \in R[[x]]$ and $g(x)=\sum_{j=1}^{\infty} g_{j} x^{j} \in x R[[x]]$. Here $x R[[x]]$ (or $x R[x]$) denotes the set of series in $R[[x]]$ (or polynomials in $R[x]$) with zero constant term.

C. Jin and H. Wu

Exponential and logarithm

We are familiar with the following two series in $\mathbb{Q}[[x]]$,

$$
\begin{align*}
\ln (1+x) & =\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{k}}{k} \tag{1}\\
\exp (x) & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \tag{2}
\end{align*}
$$

satisfying

$$
\begin{equation*}
\exp (\ln (1+f(x)))=1+f(x) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln ((1+f(x))(1+g(x)))=\ln (1+f(x))+\ln (1+g(x)) \tag{4}
\end{equation*}
$$

for any $f(x), g(x) \in x \mathbb{Q}[x]$.

Modulo \boldsymbol{x}^{t+1}

Our algorithm only deals with the first $t+1$ terms of any formal power series. For $f(x), g(x) \in$ $R[[x]]$, we write $f(x) \equiv g(x)\left(\bmod x^{t+1}\right)$ if $\left[x^{i}\right] f(x)=\left[x^{i}\right] g(x)$ for all $0 \leq i \leq t$, where $\left[x^{i}\right] f(x)$ denotes the i-th coefficient of $f(x)$.

As an example, define

$$
\begin{equation*}
\exp _{t}(x)=\sum_{i=0}^{t} \frac{x^{i}}{i!} \tag{5}
\end{equation*}
$$

as a t-th degree polynomial in $\mathbb{Q}[x]$. Then $\exp (f(x)) \equiv \exp _{t}(f(x))\left(\bmod x^{t+1}\right)$ clearly holds for any $f(x) \in x \mathbb{Q}[[x]]$.

2.3 Modulo prime p

To avoid dealing with large fractions or floating-point numbers, we will work in the finite field $\mathbb{F}_{p}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$ of prime order $p=2^{\Theta(\log t)}$. Addition and multiplication in \mathbb{F}_{p} take $O(1)$ time in the word RAM model. Finding the multiplicative inverse of a nonzero element in \mathbb{F}_{p} takes $O(\log p)$ time using extended Euclidean algorithm [5, Section 31.2].

Our algorithm will regard polynomial coefficients as elements from \mathbb{F}_{p}. The coefficients can be rational numbers, but their denominators should not have prime factor p. Formally, let

$$
\begin{equation*}
\mathbb{Z}_{p \mathbb{Z}}=\{r / s \in \mathbb{Q}: r, s \text { are coprime integers, } p \text { does not divide } s\} \tag{6}
\end{equation*}
$$

and apply the canonical homomorphism from $\mathbb{Z}_{p \mathbb{Z}}[x]$ to $\mathbb{F}_{p}[x]$, determined by

$$
\begin{equation*}
r / s \mapsto \bar{s}^{-1} \bar{r}, \quad x \mapsto x \tag{7}
\end{equation*}
$$

We use \bar{A} or $A \bmod p$ to denote A 's image in $\mathbb{F}_{p}[x]$.
From now on we assume $p>t$, so that $\exp _{t}(x) \in \mathbb{Z}_{p \mathbb{Z}}[x]$ (see equation (5)), and let $\overline{\exp _{t}}(x)$ denote its image in $\mathbb{F}_{p}[x]$.

```
procedure \(\operatorname{Compute}(l, r) \triangleright\) after \(\operatorname{Compute}(l, r)\) returns, all values \(g_{1}, \ldots, g_{r}\) are ready
    if \(l<r\) then
        \(m \leftarrow\lfloor(l+r) / 2\rfloor\)
        Compute \((l, m)\)
        for \(i \leftarrow m+1, m+2, \ldots, r\) do
            \(g_{i} \leftarrow g_{i}+i^{-1} \sum_{j=l}^{m}(i-j) f_{i-j} g_{j}\)
        end for
        Compute \((m+1, r)\)
    end if
end procedure
procedure MAIN
    Initialize \(g_{0} \leftarrow 1, g_{i} \leftarrow 0(1 \leq i \leq t)\)
    Compute ( \(0, t\) )
end procedure
```

Figure 1 Algorithm for computing g_{1}, \ldots, g_{t}.

2.4 Computing exponential using FFT

- Lemma 1 (FFT). Given two polynomials $f(x), g(x) \in \mathbb{F}_{p}[x]$ of degree at most t, one can compute their product $f(x) g(x)$ in $O(t \log t)$ time.

Proof. The classic FFT algorithm [5, Chapter 30] can multiply $f(x)$ and $g(x)$, regarded as polynomials in $\mathbb{Z}[x]$, in $O(t \log t)$ time. Then take the remainder of each coefficient modulo p.

Lemma 2 is a classical result on manipulating formal power series, and is the main building block of our algorithm.

- Lemma 2 (Brent [3]). Given a polynomial $f(x) \in x \mathbb{F}_{p}[x]$ of degree at most $t(t<p)$, one can compute a polynomial $g(x) \in \mathbb{F}_{p}[x]$ in $\tilde{O}(t)$ time such that $g(x) \equiv \overline{\exp _{t}}(f(x))\left(\bmod x^{t+1}\right)$.
- Remark. Brent's algorithm [3] uses Newton's iterative method and runs in time $O(t \log t)$ Here we describe a simpler $O\left(t \log ^{2} t\right)$ algorithm by standard divide and conquer. We present the algorithm as over \mathbb{Q} for notational simplicity.

Proof. Let $f(x)=\sum_{i=1}^{t} f_{i} x^{i}$ and $g(x)=\exp (f(x))=\sum_{i=0}^{\infty} g_{i} x^{i}$. Then $g^{\prime}(x)=g(x) f^{\prime}(x)$. Comparing the $(i-1)$-th coefficients on both sides gives a recurrence relation

$$
\begin{equation*}
g_{i}=i^{-1} \sum_{j=0}^{i-1}(i-j) f_{i-j} g_{j} \tag{8}
\end{equation*}
$$

with initial value $g_{0}=1$. The desired coefficients g_{1}, \ldots, g_{t} can be computed using the algorithm in Figure 1, which simply reorganizes the computation of recurrence formula (8) as a recursion.

To speed up this algorithm, define polynomial $F(x)=\sum_{k=0}^{r-l} k f_{k} x^{k}, G(x)=\sum_{j=0}^{m-l} g_{j+l} x^{j}$ and use FFT to compute $H(x)=F(x) G(x)$ in $O((r-l) \log (r-l))$ time after Compute (l, m) returns. Then $\sum_{j=l}^{m}(i-j) f_{i-j} g_{j}=\left[x^{i-l}\right] H(x)$, and hence the for loop runs in $O(r-m)$ time. The total running time is $T(t)=2 T(t / 2)+O(t \log t)=O\left(t \log ^{2} t\right)$.

C. Jin and H. Wu

3 Main algorithm

Recall that we are given n positive integers s_{1}, \ldots, s_{n} and a target sum t. Consider the generating function $A(x)$ defined by

$$
\begin{equation*}
A(x)=\prod_{i=1}^{n}\left(1+x^{s_{i}}\right) \tag{9}
\end{equation*}
$$

The number of subsets that sum up to t is $\left[x^{t}\right] A(x)$. The Subset Sum instance has a solution if and only if $\left[x^{t}\right] A(x) \neq 0$.

- Lemma 3. Suppose $\left[x^{t}\right] A(x) \neq 0$. Let p be a uniform random prime from $\left[t+1,(n+t)^{3}\right]$. With probability $1-O\left((n+t)^{-1}\right)$, p does not divide $\left[x^{t}\right] A(x)$.

Proof. Notice that $\left[x^{t}\right] A(x) \leq 2^{n}$, so it has at most n prime factors. Since there are $\Omega\left((n+t)^{2}\right)$ primes in the interval, the probability that p divides $\left[x^{t}\right] A(x)$ is $O\left((n+t)^{-1}\right)$.

- Lemma 4. Let $B(x)=\ln (A(x)) \in \mathbb{Q}[[x]]$. For prime $p>t$, in $\tilde{O}(t)$ time one can compute $\left(\left[x^{r}\right] B(x)\right) \bmod p$ for all $0 \leq r \leq t$.

Proof. By definition of $B(x)$,

$$
\begin{equation*}
B(x)=\ln \left(\prod_{i=1}^{n}\left(1+x^{s_{i}}\right)\right)=\sum_{i=1}^{n} \ln \left(1+x^{s_{i}}\right)=\sum_{i=1}^{n} \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} x^{s_{i} j} . \tag{10}
\end{equation*}
$$

Let a_{k} be the size of the set $\left\{j: s_{j}=k\right\}$, and define polynomial

$$
\begin{equation*}
B_{t}(x)=\sum_{i=1}^{n} \sum_{j=1}^{\left\lfloor t / s_{i}\right\rfloor} \frac{(-1)^{j-1}}{j} x^{s_{i} j}=\sum_{k=1}^{t} \sum_{j=1}^{\lfloor t / k\rfloor} \frac{a_{k}(-1)^{j-1}}{j} x^{j k} . \tag{11}
\end{equation*}
$$

Then $\left[x^{r}\right] B_{t}(x)=\left[x^{r}\right] B(x)$ for all $0 \leq r \leq t$.
Note that the denominators j in (11) do not have prime factor p. After preparing the multiplicative inverses \bar{j}^{-1} for each $1 \leq j \leq t$, we can compute all $\left(\left[x^{r}\right] B_{t}(x)\right) \bmod p$ by simply iterating over k, j in equation (11), which only takes $\sum_{k=1}^{t}\lfloor t / k\rfloor=O(t \log t)$ time.

Lemma 5. For prime $p>t$, one can compute $\left(\left[x^{r}\right] A(x)\right) \bmod p$ for all $0 \leq r \leq t$ in $\tilde{O}(t)$ time.

Proof. Let $B(x)=\ln (A(x))$. Then $A(x)=\exp (B(x)) \equiv \exp _{t}\left(B_{t}(x)\right)\left(\bmod x^{t+1}\right)$, where $B_{t}(x)=\sum_{i=0}^{t}\left(\left[x^{i}\right] B(x)\right) x^{i}$. We use Lemma 4 to compute $B_{t}(x)$'s image $\overline{B_{t}}(x) \in \mathbb{F}_{p}[x]$, and then use Lemma 2 to compute the first $t+1$ terms of $\overline{\exp }_{t}\left(\overline{B_{t}}(x)\right)$, which give the values of $\left(\left[x^{r}\right] A(x)\right) \bmod p$ for all $0 \leq r \leq t$.

- Theorem 6. The Subset Sum problem can be solved in time $\tilde{O}(n+t)$ by a randomized algorithm with one-sided error probability $O\left((n+t)^{-1}\right)$.

Proof. By sampling and using Miller-Rabin primality test [5, Section 31.8], we can pick a uniform random prime p from interval $\left[t+1,(n+t)^{3}\right]$ in $(\log (n+t))^{O(1)}$ time with $O\left((n+t)^{-1}\right)$ failure probability. Then the theorem immediately follows from Lemma 3 and Lemma 5.

References

1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for subset sum and bicriteria path. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019. To appear. URL: http://arxiv.org/ abs/1704.04546.
2 Richard E. Bellman. Dynamic programming. Princeton University Press, 1957.
3 Richard P. Brent. Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In Analytic Computational Complexity, pages 151-176. Elsevier, 1976. doi:10.1016/B978-0-12-697560-4.50014-9.
4 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073-1084, 2017. doi:10.1137/1.9781611974782.69.
5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 3rd edition, 2009.
6 Martin Dyer. Approximate counting by dynamic programming. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages 693-699, 2003. doi:10.1145/780542.780643.
7 Paweł Gawrychowski, Liran Markin, and Oren Weimann. A Faster FPTAS for \#Knapsack. In Proceedings of the 45 th International Colloquium on Automata, Languages, and Programming (ICALP), pages 64:1-64:13, 2018. doi:10.4230/LIPIcs.ICALP.2018.64.
8 Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh Vempala, and Eric Vigoda. An FPTAS for \#knapsack and related counting problems. In Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 817-826, 2011. doi:10.1109/FOCS.2011.32.
9 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.
10 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset sum. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1062-1072, 2017. doi:10.1137/1.9781611974782.68.
11 Konstantinos Koiliaris and Chao Xu. Subset Sum Made Simple. CoRR, abs/1807.08248, 2018. URL: http://arxiv.org/abs/1807.08248.

12 David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms, 33(1):1-14, 1999. doi:10.1006/jagm.1999.1034.
13 Romeo Rizzi and Alexandru I. Tomescu. Faster FPTASes for counting and random generation of knapsack solutions. In European Symposium on Algorithms (ESA), pages 762-773, 2014. doi:10.1007/978-3-662-44777-2_63.

