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Abstract
We consider the classic contention resolution problem, in which devices conspire to share some
common resource, for which they each need temporary and exclusive access. To ground the
discussion, suppose (identical) devices wake up at various times, and must send a single packet
over a shared multiple-access channel. In each time step they may attempt to send their packet;
they receive ternary feedback {0, 1, 2+} from the channel, 0 indicating silence (no one attempted
transmission), 1 indicating success (one device successfully transmitted), and 2+ indicating noise.
We prove that a simple strategy suffices to achieve a channel utilization rate of 1/e − O(ε), for
any ε > 0. In each step, device i attempts to send its packet with probability pi, then applies a
rudimentary multiplicative weight-type update to pi.

pi ←


pi · eε upon hearing silence (0)
pi upon hearing success (1)
pi · e−ε/(e−2) upon hearing noise (2+)

This scheme works well even if the introduction of devices/packets is adversarial, and even if
the adversary can jam time slots (make noise) at will. We prove that if the adversary jams J
time slots, then this scheme will achieve channel utilization 1/e− ε, excluding O(J) wasted slots.
Results similar to these (Bender, Fineman, Gilbert, Young, SODA 2016) were already achieved,
but with a lower constant efficiency (less than 0.05) and a more complex algorithm.
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1 Introduction

Suppose n identical devices have packets that they wish to transmit over a shared multiple
access channel. For simplicity we assume that time is divided into discrete time slots and
that the devices are synchronized. In each time slot they decide whether to attempt to
transmit their packet or remain idle. In order to succeed the devices must monopolize the
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16:2 Simple Contention Resolution via Multiplicative Weight Updates

channel for one time slot: if two or more devices transmit there is noise and if zero devices
transmit there is silence. We assume that after each time step, all devices receive ternary
feedback {0, 1, 2+} from the channel indicating how many devices attempted to transmit
their packets. The reader should remember that the problem we are considering here is
abstract contention resolution. The terms packet, channel, noise, etc. are merely meant to
keep an easily visualized instance of the problem in mind.

The traditional way to solve this contention resolution problem is via exponential back-
off [22]. Each device i holds a parameter pi, initialized to some constant, say 1/2. In each
time step it executes the following protocol.2

Binary Exponential Backoff:

Device i
{

remains silent with probability 1− pi
transmits with probability pi; if unsuccessful, set pi ← pi/2.

Although binary exponential backoff is empirically useful in many applications [22, 20,
18, 27, 19, 24], it has numerous shortcomings. Even if packets are injected into the system
according to a Poisson distribution with some low expectation λ > 0 (i.e., a plausible
and non-adversarial input distribution), binary exponential backoff will eventually become
deadlocked and no more packets will ever be successfully sent [1, 4]. When all n packets are
injected simultaneously, binary exponential backoff requires n logn steps to transmit all of
them, and each device attempts to transmit its packet Θ(logn) times [4], whereas O(n) and
O(1) are optimal in this situation.

Recent research has tried to fix all the deficiencies of exponential backoff, and along
many metrics this research has been quite successful. Bender et al. [4] studied the behav-
ior of backoff-type protocols when all n packets arrive simultaneously, and proved that
O(n log logn/ log log logn) time is necessary and sufficient for monotone protocols (pi de-
creases over time) whereas O(n) time is possible with a non-monotone protocol. In the case
that a jammer can jam slots at will, it is possible to achieve a (small) constant throughput
on the unjammed slots [6, 3], even when the adversary controls the injection rate of new
packets. In the [6] protocol each device makes O(log2(n + J)) transmissions, on average,
where J is the number of jammed slots.

Bender, Kopelowitz, Pettie, and Young [7] considered a model motivated by battery-
powered devices in which both transmitting and listening to the channel cost one unit of
energy. They proved that constant channel utilization could be achieved with O(log(log∗ n))
energy per device when an adversary controls the packet insertions (but cannot jam). The
bound O(log(log∗ n)) was later proved to be optimal [10].

Unfortunately, these recent advances come nowhere close to the minimalism and elegance
of binary exponential backoff. In this work we design a contention resolution protocol that
matches and substantially improves the main result of [6], while at the same time achieving
something close to the simplicity of binary exponential backoff. Like backoff, our algorithm
keeps a single numerical parameter (pi) and is otherwise stateless: it keeps no information
on its previous actions or the history of the channel.

2 Exponential backoff comes in several more-or-less equivalent varieties. In the windowed version each
device partitions its time in the system into consecutive windows W1,W2,W3, . . ., |Wj | = 2j , and
attempts to transmit at a uniformly chosen time slot in each window, until successful. In the homogeneous
version, any device i in the system for t steps transmits with probability pi = 1/t. The version of
exponential backoff presented here requires the devices to keep track of less information.
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Organization

In Section 2 we introduce our contention resolution protocol and analyze some parts of it.
In Section 3 we design an unusual (continuous, real valued) potential function, and use it
to to argue that the channel utilization of our protocol can get arbitrarily close to 1/e. In
Section 4 we give a more thorough literature survey on contention resolution and multiple
access channels. We conclude in Section 5 with some observations and open problems.

2 Contention Resolution

If the devices have no distinguishing features to break symmetry, but they know what ‘n’ is,
then a reasonable strategy is for everyone to transmit with probability p = 1/n, decrementing
‘n’ every time a packet is transmitted successfully. Observe that they succeed with probability
psuc =

(
n
1
)
p(1− p)n−1 > e−1, and that limn→∞ psuc = 1/e. More generally, the number of

devices that transmit is, in the limit, a Poisson-distributed random variable:

lim
n→∞

Pr(t devices transmit) =
(
n

t

)
pt(1− p)n−t = e−1/t!

Of course, for any finite n the distribution is merely almost-Poisson. In order to simplify
things, we begin by considering an algorithm that creates channel feedback consistent with a
number of transmitters that is Poisson-distributed. Each device i holds a variable pi which
it uses to determine its behavior according to the Transmission Rule.

Transmission Rule:

Device i


remains silent with probability e−pi
transmits its packet with probability pie−pi
makes noise with probability 1− (1 + pi)e−pi

If device i successfully transmits its packet, it halts.

We will later argue that “making noise” (even if the devices were capable of this) is
unnecessary, and that the algorithm is improved if we simply transmit with probability
1− e−pi .

If the number of devices in the system is n, the probability of the three channel feedbacks
(silence, success, and noise) is exactly:

psil =
∏
i∈[n]

e−pi = e−c

psuc =
∑
i∈[n]

pie
−pi ·

∏
j∈[n]\{i}

e−pj = ce−c

pnoi = 1− (1 + c)e−c

where c measures the aggregate contention in the system

c =
∑
i∈[n]

pi

The probability of success is maximized when c = 1. We would like to design an update
rule such that c tends to move toward 1 whenever it is too small or too large. Observe that

SOSA 2019



16:4 Simple Contention Resolution via Multiplicative Weight Updates

when c = 1, the probability of hearing silence and noise are 1/e and (e− 2)/e, respectively.
In order for the update rule to be unbiased at c = 1, we must respond to noise and silence
proportionately. Assuming device i has not successfully transmitted its packet, it applies the
Update Rule to change pi.

Update Rule:

pi ←


pi · eε upon hearing silence
pi upon hearing success
pi · e−ε/(e−2) upon hearing noise

Here the step size ε > 0 is the only parameter of the algorithm. Since probabilities are
updated multiplicatively, it is natural to measure the contention c on a logarithmic scale, so
we define

γ = ln(c)

In the absence of packet arrivals/departures, γ evolves according to a random walk on the
reals that has a certain positive attraction towards the origin.3 Observe that if γ and γ′ are
the values before and after an update, γ′ ∈ {γ − ε

e−2 , γ, γ + ε}.4 We define the attraction at
γ to be the expectation of γ′ − γ, expressed in units of the step size ε.

attr(γ) = psil(γ)− 1
e−2 · pnoi(γ) = e−e

γ

− 1
e−2 · (1− (1 + eγ)e−e

γ

).

In other words, E[γ′] = γ+ ε ·attr(γ). Observe that because of the different step sizes, attr(γ)
is asymptotic to 1 as γ → −∞ and asymptotic to −1/(e−2) as γ →∞. We do not deal with
the actual expression for attr(γ), but with a piecewise-linear approximation. See Figure 1.

I Approximation 1. Define ãttr(γ) as follows.

ãttr(γ) =


3/5 γ < −1
−(3/5)γ γ ∈ [−1, 1]
−3/5 γ > 1

Then attr(0) = ãttr(0) = 0 and attr(γ)/ãttr(γ) ≥ 1 when γ 6= 0.

2.1 Interlude: Homesick Random Walks
In order to build some intuition for how γ evolves, it is useful to think about what the
stationary distribution of a simplified random walk looks like when the walk exhibits an
attraction towards the origin. Consider a random walk on the integers [−δ−1, . . . , δ−1], δ > 0,
with the following transition probabilities. If the token is at ±i at step t, at step t+1 it moves
toward 0 (i.e., to ±(i− 1)) with probability (1 + iδ)/2 and away from 0 (i.e., to ±(i+ 1))
with probability (1− iδ)/2. When it is at 0 it moves to −1 and 1 with equal probability. Let

3 Interestingly, this attraction is qualitatively different in the positive and negative halves of the γ-axis,
though it is numerically similar. Observe that when γ > 0 is large, the probability of hearing silence
psil = e−c is exponentially small in c, but when γ < 0 is small, the probability of hearing noise
pnoi = 1− (1 + c)e−c ≈ c2 is quadratic in c.

4 Actually, in the event of a successful transmission, γ will be reduced by some amount after one device
withdraws from the system; we do not take that effect into account when calculating attraction.
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Figure 1 (A) The attraction function attr(γ) is monotone decreasing in γ. (B) In the interval
[−1, 1], ãttr(γ) = − 3

5γ is a conservative approximation in the sense that attr(γ)/ãttr(γ) > 1.
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π(i) be the probability of being at either i or −i under the stationary distribution. Then π
satisfies the following equations.

π(0) = π(1) · 1 + δ

2

π(i− 1) · 1− (i− 1)δ
2 = π(i) · 1 + iδ

2
and hence

π(i) = 2π(0) ·
i∏

j=1

1− (j − 1)δ
1 + jδ

= 2π(0) ·
i−1∏
j=0

1− jδ
1 + (i− j)δ > 2π(0)(1− iδ)i ≈ 2π(0)e−i

2δ.

In other words, a constant fraction of the mass of π is in the interval [−
√
δ−1,

√
δ−1].

2.2 The Efficiency Curve
The back-of-the-envelope calculations above suggest that in its stationary distribution, the
random walk generated by our contention resolution protocol puts a constant fraction of the
probability mass in the real interval [−

√
ε,
√
ε]. Given that the efficiency of the algorithm is

1/e at γ = 0, it is natural to ask how the efficiency degrades as γ deviates from optimum.
The overall efficiency of the algorithm will be determined by its behavior at the extremes of
γ ∈ [−

√
ε,
√
ε].

Recall that psuc(γ) = eγe−e
γ is the probability of success as a function of γ = ln(c). By

taking the first few terms of the Taylor expansion of psuc at γ = 0, we have the following
approximation. See Figure 2.

I Approximation 2.

psuc(γ) = 1
e
− γ2

2e −
γ3

6e +O(γ4) > 1
e
− γ2

(
1
2e + 1

6e

)
> 1/e− γ2/4.

To recap, we expect that γ will spend a constant fraction of its time in [−
√
ε,
√
ε], and in

this interval the expected channel utilization of the algorithm is at least 1/e− ε/4.

3 Amortized Analysis

Our goal is to show that the channel utilization of the algorithm is 1/e−O(ε) by analyzing
the expected change in a certain potential function Φ. Let Φt be the potential after time slot
t and nt ≥ 0 be the number of packets inserted into the system just before time slot t begins.
We intend to show that

E[Φt − Φt−1] ≤ −(1−O(ε)) + (e+O(ε)) · nt.

In other words, each new packet carries with it e+O(ε) units of potential, and the combined
effect of the Transmission & Update Rules reduces the potential by 1−O(ε) in expectation,
thereby “paying for” this slot in a probabilistic sense. As a consequence, the channel
utilization is (1−O(ε))/(e+O(ε)) = 1/e−O(ε); the formal definition of channel utilization
and its analysis will be presented in Section 3.4. For this analysis to work, it is important
that newly injected devices initialize pi properly.

Initialization Rule:

Upon activation, device i sets pi ← ε2.
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Figure 2 Top curve: the probability of successful transmission, as a function of γ, is eγe−eγ .
Bottom curve: it is lower bounded by 1/e− γ2/4.

3.1 The Potential Function
The potential function Φ has three components.

Φ = A(n) +B(γ) + C.

A depends only on n, the number of active devices still in the system, B depends on the
contention γ, and C depends on the relative magnitude of the variables (pi). The main term
is

A(n) = en.

If γ is in the “efficient” range [−
√
ε,
√
ε], then by Approximation 2 the expected change

in A is psuc(γ) · (−e) = −(1−O(ε)), which pays for the time slot.
When γ ∈ (−∞,−

√
ε) ∪ (

√
ε,∞) we make up for the loss in efficiency by showing the

expected contention becomes closer to optimum in the next time step; this is where the B(γ)
term comes into play. We define B to be the unique continuous function with B(0) = 0 and
derivative

B′(γ) =



− 5
3ε when γ < −1

5
3εγ when γ ∈ [−1, 1]

5
3ε when γ > 1

In other words, when γ ∈ [−1, 1], B(γ) = 5
6εγ

2; see Figure 3.
Recall that E[γ′] = γ + ε · attr(γ), and by Approximation 1, attr(γ)/ãttr(γ) ≥ 1 when

γ 6= 0. Therefore, whenever γ, γ′ are in the “far off” range (−∞,−1] ∪ [1,∞), the expected
change in B is smaller than B′(γ) · ε · ãttr(γ) ≤ −1. When γ ∈ [−1, 1] is close to the origin,
it is also possible to show that the combined change in A+ B is less than −(1− O(ε)) in
expectation. The formal analysis is in Section 3.2.

SOSA 2019
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-1 0 1

Figure 3 A schematic depiction of B. It is linear in the ranges (−∞, 1] and [1,∞), and quadratic
in [−1, 1].

In view of the above, under most of the circumstances, the expected change in A and B
suffices to pay for each time slot. Occasionally, one packet pi contributes the lion’s share
of the aggregate contention c, and when packet i is transmitted, γ = ln(c) drops sharply,
increasing B(γ). The third component C of Φ compensates for this effect:

C = 5
3ε (γ − ln pmin), where pmin = mini pi

Observe that C remains unchanged by the Update Rule since γ and ln pmin are increased/de-
creased by the same amount; but the value of C might change when the packet of the smallest
transmission probability is successfully transmitted.

3.2 Analysis

We analyze the effect of one time slot on Φ by considering three actions sequentially (i)
the increase in Φ = A + B + C caused by the insertion of new packets, (ii) the expected
increase in A+ B caused by executing the Transmission & Update Rules, and (iii) in the
event of a successful transmission from device i, the increase in B +C caused by subtracting
pi from the aggregate contention. Part (i) is considered in Lemma 1; parts (ii) and (iii) are
considered in Lemma 2.

In the analysis below, we work under the following assumption (*).

pmin ≤ ε2 (*)

Assumption (*) often fails to hold when the number of active devices in the system is less
than ε−2. Section 3.4 justifies Assumption (*) by showing that it suffices to bound the long
term channel utilization of our contention resolution protocol.

I Lemma 1. Suppose all new packets follow the Initialization Rule and that Assumption (*)
holds. Inserting m packets increases Φ by (e+O(ε))m.



Y.-J. Chang, W. Jin, and S. Pettie 16:9

Proof. We consider the contribution of each packet insertion individually. A(n) = en clearly
increases by e. If γ ∈ [−1,∞), C increases by 5

3ε ln( e
γ+ε2

eγ ) < 5
3ε (ε

2/eγ) = O(ε) and B

also increases by O(ε). (If γ ∈ [−1, 0] then B is actually reduced; this only helps us.) If
γ ∈ (−∞,−1], B is reduced by 5

3ε (ln( e
γ+ε2

eγ )) and C is increased by precisely the same
amount. (Note that when γ � −1, the positive and negative changes to C and B can be
very large.) J

I Lemma 2. In each time step, the expected change in A+B is −1 +O(ε). In the event of
a successful transmission, the worst case change to B + C is at most zero.

Proof. Let γ and γ′ be the values before and after applying the Update Rule in this time
step. We consider three cases. Case 1 is when B(γ) and B(γ′) are both on the linear parts,
when γ, γ′ ∈ (−∞,−1] ∪ [1,∞). Case 2 is when B(γ) is on the quadratic part of B. Case 3
is when B(γ) is on the linear parts of B but B(γ′) has a chance to be on the quadratic part
of B.

Case 1: γ ∈ (−∞,−(1 + ε)] ∪ [(1 + ε
e−2 ,∞). B(γ) and B(γ′) are both guaranteed to

be on the linear parts of B. The expected change5 in B is therefore at most

B′(γ) · (E[γ′]− γ) = B′(γ) · (ε · attr(γ))

≤
(

sign(γ) 5
3ε

)
·
(
ε · ãttr(γ)

)
≤ sign(γ) · 5

3 ·
(
− sign(γ)3

5

)
≤ −1.

In this range we do not count on successful transmissions; if they do occur, this reduces
A even further.

Case 2: γ ∈ [−1, 1]. Here B(γ) = 5
6εγ

2 behaves as a quadratic function. The expected
change in A+B is at most

psuc(γ)(−e) + 5
6ε

[
psil(γ)

(
−γ2 + (γ + ε)2)+ pnoi(γ)

(
−γ2 +

(
γ − ε

e− 2

)2
)]

Cancelling the γ2 terms, we have

= psuc(γ)(−e)+ 5
6ε

[
2γε

(
psil(γ)− 1

e− 2 · pnoi(γ)
)

+ ε2
(
psil(γ) + 1

(e− 2)2 · pnoi(γ)
)]

Observe that the term following 2γε is exactly the definition of the attraction at γ, i.e.,
attr(γ). Because e − 2 < 1, the term following ε2 is maximized over γ ∈ [−1, 1] when
pnoi(γ) is maximized. At γ = 1, psil(γ) + (e− 2)−2pnoi(γ) < 1.53 < 8/5. Simplifying, we
have

< psuc(γ)(−e) + 5
6ε

[
2γε · attr(γ) + 8

5ε
2
]

5 Here we are only considering the effect of the Update Rule on γ; decreases in γ due to successful
transmission are considered when we analyze the effect on B + C.
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Applying Approximations 1 and 2 (which state psuc(γ) > 1
e −

γ2

4 and γ · attr(γ) ≤ − 3
5γ

2)
and cancelling an ε factor, we have

<

(
1
e
− γ2

4

)
(−e) + 5

6

[
−2 · 3

5γ
2 + 8

5ε
]

= −1 + γ2
[e

4 − 1
]

+ 4
3ε

≤ −1 + 4
3ε

In other words, in each time step we lose at least 1−O(ε) units of potential in expectation,
independent of γ.

Case 3: The remaining case covers the transition between the linear and quadratic parts,
when γ ∈ (−(1 + ε),−1) ∪ (1, 1 + ε

e−2 ). The case 1 analysis applies here, up to a
(1−O(ε))-factor since the slope of B between γ and γ′ is either in the narrow interval
[− 5

3ε ,−
5
3ε (1− ε)) or ( 5

3ε (1−
ε

e−2 ), 5
3ε ]. This O(ε) loss is more than compensated for by

the expected change in A, which is at most

psuc(γ)(−e) ≤
(

1− (1 + ε/(e− 2))2

4

)
(−e) = −e4 +O(ε)� −Θ(ε).

This concludes our analysis of the change in A+B caused by the Update Rule.

If device i successfully transmits its packet, the new γ is γ′′ = ln(eγ − pi). The term
C decreases by at least 5

3ε (γ − γ′′). Note that C decreases even more if the successful
transmission causes pmin to increase. Because the derivative of B is always at least − 5

3ε , B
increases by at most 5

3ε (γ − γ
′′). Thus, the change in B + C due to successful transmission

is always at most zero. J

3.3 Variants and Extensions

Jamming

Our analysis easily extends to handle an adversarial jammer. In any time step, the jammer
can make noise during the time slot; no packets are sent successfully and all active devices
receive channel feedback 2+ (noise). If they are following the Update Rule, then γ is reduced
by ε/(e − 2), and the increase in B(γ) is at most 5

3ε ·
ε

e−2 < 2.33. We charge the jammer
3.33 · J for jamming a total of J slots: 1 · J pays for the jammed slots and 2.33 · J pays for
the increase in potential. In other words, we expect the efficiency of our algorithm to be
completely unchanged, if we ignore 3.33 · J wasted time slots.

A Simpler Transmission Rule

Recall that in order to effect channel feedback consistent with a precisely Poisson distribution,
the Transmission Rule allowed device i to “make noise” in a time slot (as if ≥ 2 devices were
transmitting) with small probability 1 − (1 + pi)e−pi . Intuitively this is unwise. From a
device’s perspective, it is always better to attempt to transmit its packet rather than make
noise. We show that from a system-wide perspective, the efficiency of Transmission Rule? is
better than Transmission Rule.
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Transmission Rule?:

Device i
{

remains silent with probability e−pi ≈ 1− pi
transmits its packet with probability 1− e−pi ≈ pi

If device i successfully transmits its packet, it halts.

I Lemma 3. Let Φ be the current potential at the beginning of a time step. Let Φ′ (resp.,
Φ?) be the potential after applying Update Rule and Transmission Rule (resp., Transmission
Rule?) in this time step. Then Φ′ ≥ Φ?.

Proof. The only situation the two protocols differ in their behavior is when all devices
remain silent, except for one, which chooses to make noise (Transmission Rule) or transmit
its packet (Transmission Rule?). Observe that in this situation, following Transmission Rule?
decreases Φ by at least e.6 On the other hand, following Transmission Rule reduces Φ by at
most 5

3(e−2) (when γ > 1), which is smaller than e. Thus, we must have Φ′ ≥ Φ?. J

3.4 Channel Utilization
One unfortunate aspect of our potential function is that it does not perform very well when
the number of packets in the system is very small. For example, if there are a constant
number of packets and γ is close to 0, then inserting a new packet with pi = ε2 will likely
increase C by Ω(ε−1 ln ε−1), not O(ε) like we would hope. It turns out that in order to
guarantee channel utilization of 1/e−O(ε) over the long term, it is not necessary that the
system be this efficient when number of active packets drops below a certain threshold,
e.g., O(poly(ε−1)). Indeed, if the number of active packets is small, this is proof that the
protocol is already functioning at the maximum possible efficiency (successful transmission
rate = packet injection rate). Theorem 5 captures this intuition more formally. We first
define a class of adversaries that strikes a nice balance between allowing essentially arbitrary
adversarial behavior and adhering to some long-term average injection rate. This definition
is more permissive than (λ, T )-adversaries [4].

I Definition 4. A λ-adversary injects packets and jams time slots indefinitely, under the
constraint that Nt < λ(t−αJt), for infinitely many values of t, where Nt and Jt are the total
number of packets inserted and slots jammed by time t. Note that in our case, α = 3.33.

In other words, if we delete αJt wasted slots from consideration, the adversary inserts λ
packets per slot, on average, over the time period [1, t]. This condition is only required to
hold infinitely often, which means the adversary is nearly always unconstrained.

Let us normalize the constants implicit in Lemmas 1, 2, and 3 so that whenever Assumption
(*) holds, every packet insertion increases Φ by at most e, and every time step reduces Φ by
at least 1− ε̂ in expectation, where ε̂ = Θ(ε) depends on ε.

I Theorem 5. Suppose the packet-injection and channel jamming is controlled by a λ-
adversary, with λ+ ε < 1−ε̂

e . If the devices adhere to the Initialization, Transmission?, and
Update Rules, then for infinitely many time slots, the number of active devices in the system
will be less than ε−3.

6 A decreases by e; B is unchanged by Update Rule, and the effect on B + C caused by reducing γ is
non-positive.
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16:12 Simple Contention Resolution via Multiplicative Weight Updates

In other words, for infinitely many time slots, the channel utilization is optimal (up to an
additive ε−3).

Proof. We partition time into consecutive epochs, alternating between periods when there
are at most ε−3 active devices and periods when there are greater than ε−3 active devices.
We are not concerned with epochs of the first type. Suppose an epoch of the second type
begins at time slot t0. At this moment we evaluate the potential Φ of the system, with one
minor change. In the definition of C, let

pmin = min{ε2, min
i
pi}.

We argue that our previous analysis also applies when pmin is redefined in this way. We
only need to consider the situation where we hear silence, which would ordinarily make
pmin greater than ε2, but it is forced to remain at ε2. Since the epoch has not ended, the
contention is c ≥ nε2 ≥ ε−1. The probability of hearing silence is e−c ≤ e−1/ε and this
causes an extra increase in C-potential of 5/3. On the other hand, the probability of seeing a
successful transmission is ce−c, and if this occurs, we see a reduction in potential of e > 5/3.
The net expected effect of these two phenomena is negative. (Recall that our previous
analysis did not take successful transmission into account when c was this large, so we are
not double-counting this effect.)

Let Φ0 be the initial potential endowment at time t0.7 Let t1 be a time sufficiently far in
the future when the adversary hits average insertion rate at most λ = 1−ε̂

e − ε. The number
of packets inserted during the interval [t0, t1] is at most the number of packets inserted by
t1, which is at most λt1, and so the increase in potential due to packet insertion during the
interval [t0, t1] is always at most eλt1 (Lemma 1). In the interval [t0, t1], the expected drop
in potential is (1− ε̂)(t1 − t0 + 1) (Lemma 2).

We choose t1 to be sufficiently large so that the expected net change in potential is
eλt1 − (1 − ε̂)(t1 − t0) < −εt1, and −εt1 + Φ0 < −εt1/2. Of course, if Φ ever reaches zero
the epoch surely has ended. Seeing such a large deviation from the expectation is unlikely.

Let Xi be the potential drop at time step ti (without taking into account the potential
increase due to packet insertion), and let X =

∑t1
i=t0 Xi. The probability that the epoch has

not ended by time t1 is at most Pr[X ≥ −(Φ0 +eλt1)]. Note that −(Φ0 +eλt1) ≥ E[X]+εt1/2
by our choice of t1. By Azuma’s inequality, this occurs with probability exp

(
−Ω( (εt1/2)2

t1−t0+1 )
)

=
exp(−Ω(ε2t1)).8

In the unlikely event that the epoch has not ended by time t1, we can do the analysis
with a sufficiently distant point t2 > t1 in the future. Thus, with probability 1 every epoch
with n > ε−3 eventually ends. J

Theorem 5 establishes the main result of [6] but in a stronger form. In their protocol
the efficiency is some constant much smaller than 1/e. If there are n device injections, the
protocol of [6] guarantees that the devices make O(log2(n+ J)) transmission attempts each,
on average. Our protocol also improves this aspect of [6], by showing that the number of
transmission attempts is independent of n and J .

7 Typically Φ0 will be Θ(ε−3) but we do not require this.
8 Note that |Xi| can be upper bounded by a universal Lipchitz constant. In each time step, the term A
can only be decreased by at most e; the absolute change of B is at most 5

3(e−2) ; the extra increase in
the component C in the modified potential is at most 5

3 .
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I Theorem 6. If the devices adhere to the Initialization, Transmission?, and Update Rules,
the average number of transmission attempts per device is e+O(ε), under any adversarial
strategy.

Proof. The analysis is similar, except that the expected cost of a slot is now less than c = eγ

rather than 1.9 We redefine the potential Φ to be

Φ = en+ 5
3ε ·max{c, 1}

An insertion increases n by 1 and c by ε2, so the cost per insertion is at most e+O(ε). When
γ ∈ [0,∞), the expected change in Φ caused by applying the Update Rule is

psuc(γ)(−e) + 5
3ε

[
psil(γ)(−c+ ceε) + pnoi(γ)(−c+ ce−ε/(e−2))

]
= psuc(γ)(−e) + 5c

3ε

[
psil(γ)(eε − 1) + pnoi(γ)(e−ε/(e−2) − 1)

]
We apply the approximation eε ≤ 1 + ε + ε2 obtained from the Taylor expansion of ex,
yielding:

≤ psuc(γ)(−e) + 5c
3ε

[
ε · psil(γ)− ε

e− 2pnoi(γ) + 2ε2
]

= psuc(γ)(−e) + 5c
3

[
attr(γ) + 2ε

]
(∗∗)

We bound (**) depending on γ. When γ ∈ [1,∞), attr(γ) + 2ε < −3/5, in which case (**) is

<
5c
3

(
−3

5

)
= −c

and the slot is paid for, in a probabilistic sense. If γ ∈ [0, 1], we bound (**) as

< cec(−e) + 5c
3 (−(3/5) ln c+ 2ε)

= −c
(
e1−c + 5

3 ln c
)

+O(ε)

≤ −c+O(ε)

When γ ∈ (−∞, 0], the Update Rule (alone) has no effect on Φ; only a successful packet
transmission can decrease Φ. Let s be the number of transmitters in a given time slot. When
s = 0 the cost is zero, so we can consider what the distribution on s looks like, normalized
by the event that s ≥ 1. The event s = 1 is good (it costs 1 and decreases Φ by e) and the
events when s ≥ 2 are bad (they cost s and leave Φ unchanged). Within the range (−∞, 0],
the worst distribution on s occurs when γ = 0, simultaneously minimizing Pr(s = 1|s ≥ 1)
and maximizing Pr(s = r|s ≥ 1) for all r ≥ 2. The efficiency at γ = 0 was already handled
in the case γ ∈ [0, 1] above. J

9 c = eγ is an upper bound on the expected number of packets that transmit in this time step.
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4 Related Work

The “new” idea in this work is to create a protocol that is optimal, in a sense, in its
lowest energy configuration, by taking inspiration from the multiplicative weight update
meta-algorithm [2]. Of course, there is nothing new under the sun, and even in the area of
backoff-type protocols, updating parameters in response to channel feedback is quite common.
Coming from a systems perspective, researches have evaluated variants of exponential
backoff that use exponential increase/exponential decrease heuristics [28], multiplicative-
increase/linear-decrease [8, 16], additive-increase/multiplicative-decrease [21], and a mixture
of linear or multiplicative increase/linear decrease [11].10 In the theoretical literature,
Awerbuch et al. [3] used a multiplicative-weight-type update rule to achieve a (very small)
constant rate of efficiency, in a model in which a jammer can jam up to a (1− ε)-fraction of
the slots. To our knowledge, no prior work has analyzed MWU-type contention resolution
protocols in both a rigorous and numerically precise fashion.

We have shown that our protocol is stable for long-term injection rates approaching 1/e.
The stability of binary exponential backoff (BEB) and its variants has been studied extensively.
Aldous [1] showed that for any constant Poisson injection rate λ > 0, BEB is unstable.
Improving this, Bender et al. [4] proved that BEB is unstable at rate Ω(log logn/ logn)11 and
stable at rate O(1/ logn). See [15, 17] for other results on the stability of BEB. The failure
of BEB to achieve stability even under constant injection rates motivated the development
of more complex stable protocols [6, 3, 7]. Unlike BEB, these protocols (like ours) require
that the channel feedback differentiate silence and noise.

Although the “1/e” threshold of our algorithm is optimal for stateless algorithms,12, it is
known that 1/e can be beaten, assuming the arrival times of packets are Poisson-distributed.
The most efficient algorithms of Mosely and Humblet [25] and Tsybakov and Mikhailov [29]
(slightly improving [9, 12]) are stable under arrival rates up to ≈ 0.48776. The best known
upper bound on contention resolution (in Poisson-distributed injections, which also applies to
adversarial injections) is 0.5874 [23]. The assumption of ternary feedback is essential here for
both the upper and lower bounds. Goldberg et al. [13] have shown that if only transmitters
receive feedback from the channel, then no protocol is stable at injections rates above 0.42.
Pippenger [26] showed that if the channel reports the exact number of transmitters, that a
batch of n synchronized devices can solve contention resolution in n+ o(n) time slots, i.e.,
achieving efficiency 1− o(1).

Bender et al. [5] considered variants of BEB that are efficient with heterogeneous packet
sizes (as opposed to unit-size packets). Goldberg et al. [14] designed a protocol in which the
expected delay per packet is O(1), assuming Poisson-injection at rates less than 1/e.

5 Conclusions

In this work we proved that a simple and natural contention resolution protocol achieves
channel utilization arbitrarily close to 1/e, which is also resilient to a jammer that can jam
a constant fraction of the slots. The “1/e” threshold of our algorithm cannot be improved
by a stateless algorithm, and so in this sense its efficiency cannot be improved without a
measurable increase in algorithmic complexity. We are confident that the protocols [25, 29]

10 In these works, ‘multiplicative’ and ‘exponential’ are used interchangeably; ‘additive’ and ‘linear’ are
used interchangeably.

11 I.e., the number of packets that arrive at slot n is Poisson-distributed with expectation Ω(log logn/ logn).
12 (meaning every device executes the same algorithm in each time step)
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with efficiency 0.48776 for Poisson injections can be successfully adapted to adversarial
injections using the same multiplicative weight update machinery developed here.

Although our protocol is very efficient in terms of transmission attempts (e+ O(ε) vs.
the O(log2(n + J)) of [6]) it does require that the devices listen for channel feedback in
every step. In [7], “energy” is defined to be the number of slots spent accessing/listening
to the channel. Is it possible to simultaeneously achieve energy cost poly(ε−1, log T )13 and
1/e−O(ε) channel utilization?
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