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Abstract
In this paper, we present a construction of a “matching sparsifier”, that is, a sparse subgraph
of the given graph that preserves large matchings approximately and is robust to modifications
of the graph. We use this matching sparsifier to obtain several new algorithmic results for the
maximum matching problem:

An almost (3/2)-approximation one-way communication protocol for the maximum matching
problem, significantly simplifying the (3/2)-approximation protocol of Goel, Kapralov, and
Khanna (SODA 2012) and extending it from bipartite graphs to general graphs.
An almost (3/2)-approximation algorithm for the stochastic matching problem, improving
upon and significantly simplifying the previous 1.999-approximation algorithm of Assadi,
Khanna, and Li (EC 2017).
An almost (3/2)-approximation algorithm for the fault-tolerant matching problem, which, to
our knowledge, is the first non-trivial algorithm for this problem.

Our matching sparsifier is obtained by proving new properties of the edge-degree constrained
subgraph (EDCS) of Bernstein and Stein (ICALP 2015; SODA 2016) – designed in the context
of maintaining matchings in dynamic graphs – that identifies EDCS as an excellent choice for
a matching sparsifier. This leads to surprisingly simple and non-technical proofs of the above
results in a unified way. Along the way, we also provide a much simpler proof of the fact that an
EDCS is guaranteed to contain a large matching, which may be of independent interest.
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11:2 Towards a Unified Theory of Sparsification for Matching Problems

1 Introduction

A common tool for dealing with massive graphs is sparsification. Roughly speaking, a
sparsifier of a graph G is a subgraph H that (approximately) preserves certain properties of
G while having a smaller number of edges. Such sparsifiers have been studied in great detail
for various properties: for example, a spanner [6, 29] or a distance preserver [18, 20] preserves
pairwise distances, a cut sparsifier [26, 11, 22] preserves cut information, and a spectral
sparsifier [32, 8] preserves spectral properties of the graph. An additional property that we
often require of a graph sparsifier is robustness: it should continue to be a good sparsifier
even as the graph changes. Some sparsifiers are robust by nature (e.g cut sparsifiers), but
others (e.g spanners) are not, and for this reason there is an extensive literature on designing
sparsifiers that can provide additional robustness guarantees.

In this paper, we study the problem of designing robust sparsifiers for the prominent
problem of maximum matching. Multiple notions of sparsification for the matching problem
have already been identified in the literature. One example is a subgraph that preserves the
largest matching inside any given subset of vertices in G approximately. This notion is also
known as a matching cover or a matching skeleton [23, 27] in the literature and is closely
related to the communication and streaming complexity of the matching problem. Another
example of a sparsifier is a subgraph that can preserve the largest matching on random
subsets of edges of G, a notion closely related to the stochastic matching problem [15, 5]. An
example of a robust sparsifier for matching is a fault-tolerant subgraph, namely a subgraph
G that continue to preserve large matchings in G even after a fraction of the edges is deleted
by an adversary. As far as we know, the fault-tolerant matching problem has not previously
been studied, but it is a natural model to consider as it has received lots of attention in the
context of spanners and distance preservers (see e.g. [19, 28, 7, 17, 16]).

Our first contribution is a subgraph H that we show is a robust matching sparsifier in
all of the senses above. Our result is thus the first to unify these notions of sparsification for
the maximum matching problem. In addition to unifying, our construction yields improved
results for each individual notion of sparsification and the corresponding problems, namely,
the one-way communication complexity of matching, stochastic matching, and fault-tolerant
matching problems. Interestingly, our unified approach allows us to also provide much simpler
proofs than all previously existing work for these problems. The subgraph we use as our
sparsifier comes from a pair of papers by Bernstein and Stein on dynamic matching [13, 14] –
they refer to this subgraph as an edge-degree constrained subgraph (EDCS for short). The
EDCS was also very recently used in [2] to design sublinear algorithms for matching across
several different models for massive graphs. Our applications of the EDCS in the current
paper, as well as the new properties we prove for the EDCS, are quite different from those in
[13, 14, 2]. Our first contribution thus takes an existing subgraph, and then provides the
first proofs that it satisfies the three notions of sparsification described above.

Our second contribution is a much simpler (and even slightly improved) proof of the main
property of an EDCS in previous work proved in [13, 14], namely that an EDCS contains a
large matching of the original graph. Our new proof significantly simplifies the analysis of
[14] and allows for simple and self-contained proofs of the results in this paper.

Definition of the EDCS. Before stating our results, we give a definition of the EDCS
from [13, 14], as this is the subgraph we use for all of our results (see Section 2 for more
details).
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I Definition 1 ([13]). For any graph G(V,E) and integers β ≥ β− ≥ 0, an edge-degree
constrained subgraph (EDCS) (G, β, β−) is a subgraph H := (V,EH) of G with the following
two properties:
(P1) For any edge (u, v) ∈ EH : degH(u) + degH(v) ≤ β.
(P2) For any edge (u, v) ∈ E \ EH : degH(u) + degH(v) ≥ β−.

It is not hard to show that an EDCS of a graph G always exists for any parameters
β > β− and that it is sparse, i.e., only has O(nβ) edges. A key property of EDCS proven
previously [13, 14] (and simplified in our paper) is that for any reasonable setting of the
parameters (e.g. β− being sufficiently close to β), any EDCS H of G contains an (almost)
3/2 approximate matching of G.

1.1 Our Results and Techniques
We now give detailed definitions of the notions of sparsification and the corresponding
problems addressed in this paper, as well as our results for each one. Our second contribution
– a significantly simpler proof that an EDCS contains an almost (3/2)-approximate matching
– is left for Section 3.

One-Way Communication Complexity of Matching. Consider the following two-player
communication problem: Alice is given a graph GA(V,EA) and Bob holds a graph GB(V,EB).
The goal for Alice is to send a single message to Bob such that Bob outputs an approximate
maximum matching in EA ∪ EB. What is the minimum length of the message, i.e., the
one-way communication complexity, for achieving a certain fixed approximation ratio on all
graphs? One can show that the message communicated by Alice to Bob is indeed a matching
skeleton, namely a data structure (but not necessarily a subgraph), that allows Bob to find a
large matching in a given subset of vertices in Alice’s input (see [23] for more details).

This problem was first studied by Goel, Kapralov, and Khanna [23] (see also the subsequent
paper of Kapralov [25]), owing to its close connection to one-pass streaming algorithms for
matching. Goel et al. [23] designed an algorithm that achieves a (3/2)-approximation in
bipartite graphs using only O(n) communication and proved that any better than (3/2)-
approximation protocol requires n1+Ω( 1

log log n ) communication even on bipartite graphs (see,
e.g. [23, 4] for further details on this lower bound). A follow-up work by Lee and Singla [27]
further generalized the algorithm of [23] to general graphs, albeit with a slightly worse
approximation ratio of 5/3 (compared to 3/2 of [23]).

We extends the results in [23] to general graphs with almost no loss in approximation.

I Result 1. For any constant ε > 0, the protocol where Alice computes an EDCS of her
graph with β = O(1) and β− = β − 1 and sends it to Bob is a (3/2 + ε)-approximation
one-way communication protocol for the maximum matching problem with uses O(n)
communication.

We remark that both the previous algorithm of [23] as well as its extension in [27] are
quite involved and rely on a fairly complicated graph decomposition as well as an intricate
primal-dual analysis. As such, we believe that the main contribution in Result 1 is in fact in
providing a simple and self-contained proof of this result.

Stochastic Matching. In the stochastic matching problem, we are given a graph G(V,E)
and a probability parameter p ∈ (0, 1). A realization of G is a subgraph Gp(V,Ep) obtained
by picking each edge in G independently with probability p to include in Ep. The goal in
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11:4 Towards a Unified Theory of Sparsification for Matching Problems

this problem is to find a subgraph H of G with max-degree bounded by a function of p
(independent of number of vertices), such that the size of maximum matching in realizations
of H is close to size of maximum matching in realizations of G. It is immediate to see that
H in this problem is simply a sparsifier of G which preserves large matchings on random
subsets of edges.

This problem was first introduced by Blum et al. [15] primarily to model the kidney
exchange setting and has since been studied extensively in the literature [3, 5, 10, 34]. Early
algorithms for this problem in [15, 3] (and the later ones for the weighted variant of the
problem [10, 34]) all had approximation ratio at least 2, naturally raising the question that
whether 2 is the best approximation ratio achievable for this problem. Assadi, Khanna, and
Li [5] ruled out this perplexing possibility by obtaining a slightly better than 2-approximation
algorithm for this problem, namely an algorithm with approximation ratio close to 1.999
(which improves to 1.923 for small p).

We prove that an EDCS results in a significantly improved algorithm for this problem.

I Result 2. For any constant ε > 0, an EDCS of G with β = O( log (1/p)
p ) and β− = β−1

achieves a (3/2 + ε)-approximation algorithm for the stochastic matching problem with
a subgraph of maximum degree O( log (1/p)

p ).

We remark that our bound on the maximum degree in Result 2 is optimal (up to an
O(log (1/p)) factor) for any constant-factor approximation algorithm (see [5]). In addition to
significantly improving upon the previous best algorithm of [5], our Result 2 is much simpler
than that of [5], in terms of the both the algorithm and (especially) the analysis.

Remark. Independently and concurrently, Behnezhad et al. [9] also presented an al-
gorithm for stochastic matching with a subgraph of max-degree O( log (1/p)

p ) that achieves
an approximation of almost (4

√
2 − 5) (≈ 0.6568 compared to 0.6666 in Result 2). They

also provided an algorithm with approximation ratio strictly better than half for weighted
stochastic matching (our result does not work for weighted graphs). In terms of techniques,
our paper and [9] are entirely disjoint.

Fault-Tolerant Matching. Let f ≥ 0 be an integer, G(V,E) be a graph, and H be any
subgraph of G. We say that H is an α-approximation f -tolerant subgraph of G iff for
any subset F ⊆ E of size ≤ f , the maximum matching in H \ F is an α-approximation
to maximum matching in G \ F – that is, H is a robust sparsifier of G. This definition
is a natural analogy of other fault-tolerant subgraphs, such as fault-tolerant spanners and
fault-tolerant distance preservers (see, e.g. [19, 28, 7, 17, 16]), to the maximum matching
problem. Despite being such fundamental objects, quite surprisingly fault-tolerant subgraphs
have not previously been studied for the matching problem.

We complete our discussion of applications of EDCS as a robust sparsifier by showing
that it achieves an optimal size fault-tolerant subgraph for the matching problem.

I Result 3. For any constant ε > 0 and any f ≥ 0, there exists a (3/2+ε)-approximation
f -tolerant subgraph H of any given graph G with O(f + n) edges in total.

The number of edges used in our fault-tolerant subgraph in Result 3 is clearly optimal (up
to constant factors). In Appendix A.2, we show that by modifying the lower bound of [23] in
the communication model, we can also prove that the approximation ratio of (3/2) is optimal
for any f -tolerant subgraph with O(f) edges, hence proving that Result 3 is optimal in a
strong sense. We also show that several natural strategies for this problem cannot achieve
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better than 2-approximation, hence motivating our more sophisticated approach toward this
problem (see Appendix A.3).

The qualitative message of our work is clear: An EDCS is a robust matching sparsifier
under all three notions of sparsification described earlier, which leads to simpler and improved
algorithms for a wide range of problems involving sparsification for matching problems in a
unified way.

Overall Proof Strategy
Recall that our algorithm in all of the results above is simply to compute an EDCS H of the
input graph G (or GA in the communication problem). The analysis then depends on the
specific notion of sparsification at hand, but the same high- level idea applies to all three
cases. In each case, we have an original graph G, and then a modified graph G∗ produced
by changes to G: G∗ is GA ∪GB in the communication model, the realized subgraph Gp in
the stochastic matching, and the graph G \ F after adversarially removing edges F in the
fault-tolerant matching problem. Let H be the EDCS that our algorithm computes in G,
and let H∗ be the graph that results from H due to the modifications made to G. If we
could show that H∗ is an EDCS of G∗ then the proof would be complete, since we know that
an EDCS is guaranteed to contain an almost (3/2)-approximate matching. Unfortunately, in
all the three problems that we study it might not be the case that H∗ is an EDCS of G∗.
Instead in each case we are able to exhibit subgraphs H̃ ⊆ H∗ and G̃ ⊆ G∗ such that H̃
is an EDCS of G̃, and size of maximum matching of G̃ and G∗ differ by at most a (1 + ε)
factor. This guarantees an approximation ratio of almost (3/2)(1 + ε) (precisely what we
achieve in all three results above), since the EDCS H̃ preserves the maximum matching in G̃
to within an almost (3/2)-approximation and H̃ is a subgraph of H.

Organization. The rest of the paper is organized as follows. Section 2 includes notation,
simple preliminaries, and existing work on the EDCS. In Section 3, we present a significantly
simpler proof of the fact that an EDCS contains an almost (3/2)-approximation matching
(originally proved in [14]). Sections 4, 5, and 6 prove the sparsification properties of the
EDCS in, respectively, the one-way communication complexity of matching (Result 1), the
stochastic matching problem (Result 2), and the fault-tolerant matching problem (Result 3).
These three sections are designed to be self-contained (beside assuming the background in
Section 2) to allow the reader to directly consider the part of most interest. The appendix
contains some secondary observations.

2 Preliminaries and Notation

Notation. For any integer t ≥ 1, [t] := {1, . . . , t}. For a graph G(V,E) and a set of vertices
U ⊆ V , NG(U) denotes the neighbors of vertices in U in G and EG(U) denotes the set of
edges incident on U . Similarly, for a set of edges F ⊆ E, V (F ) denotes the set of vertices
incident on these edges. For any vertex v ∈ V , we use degG(v) to denote the degree of v ∈ V
in G (we may drop the subscript G in these definitions if it is clear from the context). We
use µ(G) to denote the size of the maximum matching in the graph G.

Throughout the paper, we use the following two standard variants of the Chernoff bound.

I Proposition 2 (Chernoff Bound). Suppose X1, . . . , Xt are t independent random variables
that take values in [0, 1]. Let X :=

∑t
i=1Xi and assume E [X] ≤ λ. For any δ > 0 and

SOSA 2019
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integer k ≥ 1,

Pr
(
|X − E [X]| ≥ δ · λ

)
≤ 2 · exp

(
− δ2 · λ

3

)
,

Pr
(
|X − E [X]| ≥ k

)
≤ 2 · exp

(
− 2k2

t

)
.

We also need the following basic variant of Lovasz Local Lemma (LLL).

I Proposition 3 (Lovasz Local Lemma; cf. [21, 1]). Let p ∈ (0, 1) and d ≥ 1. Suppose
E1, . . . , Et are t events such that Pr (Ei) ≤ p for all i ∈ [t] and each Ei is mutually independent
of all but (at most) d other events Ej. If p · (d+ 1) < 1/e then Pr

(
∩ni=1Ei

)
> 0.

Hall’s Theorem. We use the following standard extension of the Hall’s marriage theorem
for characterizing maximum matching size in bipartite graphs.

I Proposition 4 (Extended Hall’s marriage theorem; cf. [24]). Let G(L,R,E) be any bipartite
graph with |L| = |R| = n. Then, max

(
|A| − |N(A)|

)
= n− µ(G), where A ranges over L

or R. We refer to such set A as a witness set.

Proposition 4 follows from Tutte-Berge formula for matching size in general graphs [33, 12]
or a simple extension of the proof of Hall’s marriage theorem itself

Previously Known Properties of the EDCS

Recall the definition of an EDCS in Definition 1. It is not hard to show that an EDCS
always exists as long as β > β− (see, e.g. [2]). For completeness, we repeat the proof in the
Appendix A.1.

I Proposition 5 (cf. [13, 14, 2]). Any graph G contains an EDCS(G, β, β−) for any param-
eters β > β−, which can be found in polynomial time.

The key property of an EDCS, originally proved in [13, 14], is that it contains an almost
(3/2)-approximate matching.

I Lemma 6 ([13, 14]). Let G(V,E) be any graph and ε < 1/2 be a parameter. For parameters
λ ≤ ε

100 , β ≥ 32λ−3, and β− ≥ (1 − λ) · β, in any subgraph H := EDCS(G, β, β−),
µ(G) ≤

( 3
2 + ε

)
· µ(H).

Another particularly useful (technical) property of an EDCS is that it “balances” the
degree of vertices and their neighbors in the EDCS; this property is implicit in [13] but we
explicitly state and prove it here as it shows a main distinction in the properties of EDCS
compared to more standard (and less robust) subgraphs in this context such as b-matchings.

I Proposition 7. Let H := EDCS(G, β, β−) and U be any subset of vertices. If average
degree of U in H is d̄ then average degree of NH(U) from edges incident on U is ≤ β − d̄.

Proof. Let H ′ be a subgraph of H containing the edges incident on U . Let W := NH′(U) =
NH(U) and E′ = EH(U,W ) = EH′(U,W ). We are interested in upper bounding the quantity
|E′| / |W |. Firstly, by Property (P1) of EDCS, we have that

∑
(u,v)∈E′ degH′(u)+degH′(v) ≤
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β · |E′| . We write the LHS in this equation as:∑
(u,v)∈E′

degH′(u) + degH′(v) =
∑
u∈U

(degH′(u))2 +
∑
w∈W

(degH′(w))2

≥
∑
u∈U

( |E
′|
|U |

)2 +
∑
w∈W

( |E
′|

|W |
)2

(as
∑

u
degH′(u) =

∑
w

degH′(w) =
∣∣E′∣∣ and each is minimized when the summands are equal.)

= |E′| ·
(
d̄+ |E′| / |W |

)
.

By plugging in this bound in LHS above, we obtain |E′| / |W | ≤ β−d̄, finalizing the proof. J

3 A Simpler Proof of the Key Property of an EDCS

In this section we provide a much simpler proof of the key property that an EDCS contains
an almost (3/2)-approximate matching. This lemma was previously used in [13, 14, 2]. Our
proof is self-contained to this section, and for general graphs, our new proof even improves
the dependence of β on parameter λ from 1/λ3 to (roughly) 1/λ2, thus allowing for an even
sparser EDCS.

The proof contains two steps. We first give a simple and streamlined proof that an EDCS
contains a (3/2)-approximate matching in bipartite graphs. Our proof in this part is similar
to [13] but instead of modeling matchings as flows and using cut-flow duality, we directly
work with matchings by using Hall’s theorem. The main part of the proof however is to
extend this result to general graphs. For this, we give a simple reduction that extends the
result on bipartite graphs to general graphs by taking advantage of the “robust” nature of
EDCS. This allows us to bypass the complicated arguments in [14] specific to non-bipartite
graphs and to obtain the result directly from the one for bipartite graphs (the paper of [14]
explicitly acknowledges the complexity of the proof and asks for a more “natural" approach).

A Slightly Simpler Proof for Bipartite Graphs
Our new proof should be compared to Lemma 2 in Section 4.1 of the Arxiv version of [13].

I Lemma 8. Let G(L,R,E) be any bipartite graph and ε < 1/2 be a parameter. For λ ≤ ε
4 ,

β ≥ 2λ−1, and β− ≥ (1−λ)·β, in any subgraph H := EDCS(G, β, β−), µ(G) ≤
( 3

2 + ε
)
·µ(H).

Proof. Fix any H := EDCS(G, β, β−) and let A be any of its witness sets in extended Hall’s
marriage theorem of Proposition 4 and B := NH(A). Without loss of generality, let us
assume A is a subset of L. Define A := L \A, B := R \B (see Figure 1). By Proposition 4,∣∣A∣∣+ |B| = n− (|A| − |B|) ≤ n− (n− µ(H)) = µ(H). (1)

On the other hand, since G has a matching of size µ(G), we need to have a matching M of
size (µ(G)− µ(H)) between A and B as otherwise by Proposition 4, A would be a witness
set in G that implies the maximum matching of G is smaller than µ(G) (to see why the
set of edges between A and B is a matching simply apply Proposition 4 to a subgraph of
G containing only a maximum matching of G). Let S ⊆ A ∪ B be the end points of this
matching (see Figure 1). As edges in M are all missing from H, by Property (P2) of EDCS
H, we have that,∑

v∈S
degH(v) =

∑
(u,v)∈M

(degH(u) + degH(v)) ≥ (µ(G)− µ(H)) · β−. (2)

SOSA 2019
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A

A

B

B

A

A

B

B

(a) A and B := NH(A) form a Hall’s theorem
witness set in EDCS H and

∣∣A ∪B∣∣ ≤ µ(H).

A

A

B

B

A

A

B

B

S

S

S

S

(b) There is a matching of size µ(G) − µ(H)
between A and B (i.e., the set S) in G \H.

Figure 1 The partitioning of vertices used in the proof of Lemma 8.

Consequently, as |S| = 2(µ(G) − µ(H)), the average degree of S is ≥ β−/2. As such, by
Proposition 7, the average degree of of NH(S) (from S) is at most β − β−/2 ≤ (1 + λ)β/2.
Finally, note that NH(S) ⊆ A ∪B as there are no edges between A and B in H, and hence
by Eq (1), |NH(S)| ≤ µ(H). By double counting the number of edges between S and NH(S),
i.e., EH(S):

|EH(S)| ≥ |S| · β−/2 ≥ 2(µ(G)− µ(H)) · β−/2,
|EH(S)| ≤ |NH(S)| (1 + λ)β/2 ≤ µ(H) · (1 + λ)β/2.

This implies that,

2µ(G) ≤ 2µ(H) + µ(H) · (1 + λ)(β/2) · (2/β−) ≤ 3µ(H) · 1 + λ

1− λ ≤ 3µ(H)(1 + ε).

Reorganizing the terms above finalizes the proof. J

A Much Simpler Proof for Non-bipartite Graphs
Our new proof in this part should be compared to Lemma 5.1 on page 699 in [14]: see
Appendix B of their paper for the full proof, as well Section 4 for an additional auxiliary
claim needed.

I Lemma 9. Let G(V,E) be any graph and ε < 1/2 be a parameter. For λ ≤ ε
32 , β ≥

8λ−2 log (1/λ), and β− ≥ (1 − λ) · β, in any subgraph H := EDCS(G, β, β−), µ(G) ≤( 3
2 + ε

)
· µ(H).

Proof. The proof is based on the probabilistic method and Lovasz Local Lemma. Let M? be
a maximum matching of size µ(G) in G. Consider the following randomly chosen bipartite
subgraph G̃(L,R, Ẽ) of G with respect to M?, where L ∪R = V :

For any edge (u, v) ∈ M?, with probability 1/2, u belongs to L and v belongs to R,
and with probability 1/2, the opposite (the choices between different edges of M? are
independent).
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For any vertex v ∈ V not matched by M?, we assign v to L or R uniformly at random
(again, the choices are independent across vertices).
The set of edges in Ẽ are all edges in E with one end point in L and the other one in R.

Define H̃ := H ∩ G̃. We argue that as H is an EDCS for G, H̃ also remains an EDCS for
G̃ with non-zero probability. Formally,

I Claim 10. H̃ is an EDCS(G̃, β̃, β̃−) for β̃ = (1 + 4λ)β/2 and β̃− = (1 − 5λ)β−/2 with
probability strictly larger than zero (over the randomness of G̃).

Before we prove Claim 10, we argue why it implies Lemma 9. Let G̃ be chosen such that
H̃ is an EDCS(G̃, β̃, β̃−) for parameters in Claim 10 (by Claim 10, such a choice of G̃ always
exist). By construction of G̃, M? ⊆ Ẽ and hence µ(G̃) = µ(G). On the other hand, G̃ is
now a bipartite graph and H̃ is its EDCS with appropriate parameters. We can hence apply
Lemma 8 and obtain that µ(G̃) ≤ (3/2 + ε)µ(H̃). As H̃ ⊆ H, µ(H̃) ≤ µ(H), and hence
(µ(G̃) =)µ(G) ≤ (3/2 + ε)µ(H), proving the assertion in the lemma statement. It thus only
remains to prove Claim 10.

Proof of Claim 10. Fix any vertex v ∈ V , let dv := degH(v) and NH(v) := {u1, . . . , udv} be
the neighbors of v in H. Let us assume v is chosen in L in G̃ (the other case is symmetric).
Hence, degree of v in H̃ is exactly equal to the number of vertices in NH(v) that are chosen
in R. As such, by construction of G̃, E

[
deg

H̃
(v)
]

= dv/2 (+1 iff v is incident on M? ∩H).
Moreover, if two vertices ui, uj in NH(v) are matched by M?, then exactly one of them
appears as a neighbor to v in H̃ and otherwise the choices are independent. Hence, by
Chernoff bound (Proposition 2),

Pr
(∣∣∣deg

H̃
(v)− dv/2

∣∣∣ ≥ λ · β) ≤ exp
(
−2λ2 · β2

β

)
≤ exp (−4 log β) ≤ 1

β4 .

(as β ≥ 8λ−2 log (1/λ) and hence β ≥ 2λ−2 · log β)

Define Ev as the event that
∣∣∣deg

H̃
(v)− dv/2

∣∣∣ ≥ λ · β. Note that Ev depends only on
the choice of vertices in NH(v) and hence can depend on at most β2 other events Eu for
vertices u which are neighbors to NH(v) (recall that for all u ∈ V , degH(u) ≤ β in H by
Property (P1) of EDCS). As such, we can apply Lovasz Local Lemma (Proposition 3) to
argue that with probability strictly more than zero, ∩v∈V Ev happens. In the following, we
condition on this event and argue that in this case, H̃ is an EDCS of G̃ with appropriate
parameters. To do this, we only need to prove that both Property (P1) and Property (P2)
hold for the EDCS H̃ (with the choice of β̃ and β̃−).

We first prove Property (P1) of EDCS H̃. Let (u, v) be any edge in H̃. By events Ev and
Eu,

deg
H̃

(u) + deg
H̃

(v) ≤ 1
2 · (degH(u) + degH(v)) + 2λβ ≤ β/2 + 2λβ = (1 + 4λ) · β/2,

where the second inequality is by Property (P1) of EDCS H as (u, v) belongs to H as well.
We now prove Property (P2) of EDCS H̃. Let (u, v) be any edge in G̃ \ H̃. Again, by Ev
and Eu,

deg
H̃

(u) + deg
H̃

(v) ≥ 1
2 · (degH(u) + degH(v))− 2λβ

≥ β−/2− 2λ(1− λ)β−

≥ (1− 5λ) · β/2,
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where the second inequality is by Property (P2) of EDCS H as (u, v) ∈ G \H. J Claim 10
J

Lemma 9 now follows immediately from Claim 10 as argued above. J Lemma 9 J

4 One-Way Communication Complexity of Matching

In the one-way communication model, Alice and Bob are given graphs GA(V,EA) and
GB(V,EB), respectively, and the goal is for Alice to send a small message to Bob such that
Bob can output a large approximate matching in EA ∪ EB. In this section, we show that
if Alice communicates an appropriate EDCS of GA, then Bob is able to output an almost
(3/2)-approximate matching.

I Theorem 11 (Formalizing Result 1). There exists a deterministic poly-time one-way
communication protocol that given any ε > 0, computes a (3/2 + ε)-approximation to
maximum matching using O(n·log (1/ε)

ε2 ) communication from Alice to Bob.

Theorem 11 is based on the following protocol:

A one-way communication protocol for maximum matching.

1. Alice sends H := EDCS(GA, β, β − 1) for β := 32 · ε−2 · log (1/ε) to Bob.
2. Bob computes a maximum matching in H ∪GB and outputs it as the solution.

By Proposition 5, the EDCS H computed by Alice always exists and can be found in
polynomial time. Moreover, by Property (P1) of EDCS H, the total number of edges (and
hence the message size) sent by Alice is O(nβ). We now prove the correctness of the protocol
which concludes the proof of Theorem 11.

I Lemma 12. µ(GA ∪GB) ≤ (3/2 + ε) · µ(H ∪GB).

Proof. Let M? be a maximum matching in GA ∪GB and M?
A and M?

B be its edges in GA
and GB, respectively. Let G̃ := GA ∪M?

B and note that µ(G̃) = µ(G) simply because M?

belongs to G̃. Define the following subgraph H̃ ⊆ H ∪M?
B (and hence ⊆ H ∪ GB): H̃

contains all edges in H and any edge (u, v) ∈ M?
B such that degH(u) + degH(v) ≤ β. In

the following, we prove that (µ(G) =)µ(G̃) ≤ (3/2 + ε) · µ(H̃), which finalizes the proof as
µ(H̃) ≤ µ(H ∪GB).

We show that H̃ is an EDCS(G̃, β + 2, β − 1) and apply Lemma 9 to argue that H̃
contains a (3/2)-approximate matching of G̃. We prove the EDCS properties of H̃ using
the fact that for v ∈ V , deg

H̃
(v) ∈ {degH(v), degH(v) + 1} as H̃ is obtained by adding a

matching (⊆M?
B) to H.

Property (P1) of EDCS H̃: For an edge (u, v) ∈ H̃,

if (u, v) ∈ H then: deg
H̃

(u) + deg
H̃

(v) ≤ degH(u) + degH(v) + 2 ≤ β + 2,
(by Property (P1) of EDCS H of GA)

if (u, v) ∈M?
B then: deg

H̃
(u) + deg

H̃
(v) ≤ degH(u) + degH(v) + 2 ≤ β + 2.

(as (u, v) ∈M?
B is inserted to H̃ iff degH(u) + degH(v) ≤ β)
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Property (P2) of EDCS H̃: For an edge (u, v) ∈ G̃ \ H̃,

if (u, v) ∈ GA \H then: deg
H̃

(u) + deg
H̃

(v) ≥ degH(u) + degH(v) ≥ β − 1,
(by Property (P2) of EDCS H of GA)

if (u, v) ∈M?
B \ H̃ then: deg

H̃
(u) + deg

H̃
(v) ≥ degH(u) + degH(v) > β.

(as (u, v) ∈M?
B is not inserted to H̃ iff degH(u) + degH(v) > β)

As such, H̃ is an EDCS(G̃, β + 2, β − 1). By Lemma 9 and the choice of parameter β,
we obtain that µ(G̃) ≤ (3/2 + ε) · µ(H̃), finalizing the proof. J

5 The Stochastic Matching Problem

Recall that in the stochastic matching problem, the goal is to compute a bounded-degree
subgraph H of a given graph G, such that E [µ(Hp)] is a good approximation of E [µ(Gp)],
where Gp is a realization of G (i.e a subgraph where every edge is sampled with probability p),
and Hp = H ∩Gp. In this section, we formalize Result 2 by proving the following theorem.

I Theorem 13 (Formalizing Result 2). There exists a deterministic poly-time algorithm
that given a graph G(V,E) and parameters ε, p > 0 with ε < 1/4, computes a subgraph
H(V,EH) of G with maximum degree O( log (1/εp)

ε2·p ) such that the ratio of the expected size
of a maximum matching in realizations of G to realizations of H is at most (3/2 + ε), i.e.,
E [µ(Gp)] ≤ (3/2 + ε) · E [µ(Hp)].

We note that while in Theorem 13, we state the bound in expectation, the same result
also holds with high probability as long as µ(G) = ω(1/p) (i.e., just barely more than a
constant), by concentration of maximum matching size in edge-sampled subgraphs (see,
e.g. [2], Lemma 3.1). The algorithm in Theorem 13 simply computes an EDCS of the input
graph as follows:

An algorithm for the stochastic matching problem.

Output the subgraph H := EDCS(G, β, β − 1) for β := C log (1/εp)
ε2p , for large enough

constant C.

By Proposition 5, the EDCS H in the above algorithm always exists and can be found in
polynomial time. Moreover, by Property (P1) of EDCS H, the total number of edges in this
subgraph is O(nβ). We now prove the bound on the approximation ratio which concludes
the proof of Theorem 13 (by re-parametrizing ε to be a constant factor smaller).

I Lemma 14. Let Hp := H ∩Gp denote a realization of H; then E [µ(Gp)] ≤ (3/2 +O(ε)) ·
E [µ(Hp)] where the randomness is taken over the realization Gp of G.

Suppose first that Hp were an EDCS of Gp; we would be immediately done in this case
as we could have applied Lemma 9 directly and prove Lemma 14. Unfortunately, however,
this might not be the case. Instead, we exhibit subgraphs H̃p ⊆ Hp and G̃p ⊆ Gp with the
following properties:
1. E [µ(Gp)] ≤ (1 + ε)E

[
µ(G̃p)

]
, where the expectation is taken over realizations Gp.

2. H̃p is an EDCS(G, (1 + ε)p · β, (1− 2ε)p · β) for G̃p.
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V +

V −

V +

V −

V +

V −

V +

V −

(a) Realized Graph Gp.

V +

V −

V +

V −

V +

V −

V +

V −

(b) Subgraph G̃p ⊆ Gp.

V +

V −

V +

V −

V +

V −

V +

V −

(c) Subgraph H̃p ⊆ Hp.

Figure 2 Illustration of the sets V +, V − and the subgraphs G̃p and H̃p in the proof of Lemma 14
on a bipartite graph G. Here, (green) solid lines denote the edges of Gp that appear in each subgraph
and (red) dashed lines denote the edges of Hp.

Showing these properties concludes the proof of Lemma 14, as for the EDCS in item (2)
above, we have (1+ε)p·β

(1−2ε)·pβ = 1+O(ε), so by Lemma 9 we get that µ(G̃p) ≤ (3/2+O(ε)) ·µ(H̃p).
Combining this with item (1) then concludes E [µ(Gp)] ≤ (1 + ε) · (3/2 + ε)E [µ(Hp)].

It now remains to exhibit H̃p and G̃p that satisfy the main properties stated above. Note
that for any vertex v ∈ V , we have E

[
degHp

(v)
]

= p · degH(v) by definition of a realization
Gp (and hence Hp). We now want to separate out vertices that deviate significantly from
this expectation.

I Definition 15. Let V + ⊆ V contain all vertices v for which degHp
(v) > p ·degH(v)+εpβ/2.

Similarly, let V − contain all vertices v such that degHp
(v) < p · degH(v)− εpβ/2 OR there

exists an edge (v, w) ∈ H such that w ∈ V +, i.e., if v is neighbor to V +.

I Claim 16. E [|V +|] ≤ ε7p7µ(G) and E [|V −|] ≤ ε4p4µ(G), where the expectation is over
the realization Gp of G. As we a result we also have E [|V +|+ |V −|] ≤ ε3p3µ(G).

Before proving this claim, let us consider why it completes the larger proof.

Proof of Lemma 14 (assuming Claim 16). To prove Lemma 14 it is enough to show the
existence of subgraphs G̃p and H̃p that satisfy the properties above. We define G̃p as follows:
the vertex set is V and the edge-set is the same as Gp, except we remove all edges incident
to V + and all edges (u, v) /∈ H that are incident to V −. We define H̃p to be the subgraph
of Hp induced by the vertex set V \ V +, that is, H̃p contains all edges of Hp except those
incident to V +; see Figure 2.

For item (1), note that G̃p differs from Gp by vertices in V + ∪ V −, so µ(G̃p) ≥ µ(Gp)−
|V +| − |V −|. It is also clear that E [µ(Gp)] ≥ p · µ(G) (as each edge in G is sampled w.p. p
in Gp). By Claim 16,

E
[
µ(G̃p)

]
≥ E [µ(Gp)]− E

[
|V +| − |V −|

]
≥ E [µ(Gp)]− p3ε3µ(G) ≥ (1− ε3)E [µ(Gp)] .

The above equation then implies the desired E [µ(Gp)] ≤ (1 + ε)E
[
µ(G̃p)

]
.

For item (2), let us verify Property (P1) and Property (P2) for EDCS H̃p of G̃p. Neither
H̃p nor G̃p have any edge incident on V + and hence we can ignore these vertices entirely.
Thus, for all vertices v we have deg

H̃p
(v) ≤ p · degH(v) + εpβ/2, and for all v /∈ V − we have
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deg
H̃p

(v) ≥ p · degH(v)− εpβ/2. Moreover, recall that G̃p \ H̃p contains no edges incident to
V −. As such,

Property (P1) of EDCS H̃p: For an edge (u, v) ∈ H̃p,

deg
H̃p

(u) + deg
H̃p

(v) ≤ p · degH(u) + p · degH(v) + εpβ ≤ (1 + ε)pβ.

(by Property (P1) of EDCS H of G)

Property (P2) of EDCS H̃p: For any edge (u, v) ∈ G̃p \ H̃p, we have u, v /∈ V − so:

deg
H̃p

(u) + deg
H̃p

(v) ≥ p · degH(u) + p · degH(v)− εpβ ≥ (1− 2ε)pβ.

(by Property (P2) of EDCS H of G)

This concludes the proof of Lemma 14 (assuming Claim 16). J Lemma 14 J

All that remains is to prove Claim 16.

Proof of Claim 16. Let us start by bounding the size of V +. Consider any vertex v ∈ V .
We know that degH(v) ≤ β. Each edge then has probability p of appearing in Hp, so
E
[
degHp

(v)
]

= p · degH(v) ≤ pβ. By the multiplicative Chernoff bound in Proposition 2
with λ = pβ:

Pr[v ∈ V +] = Pr[degHp
(v) ≥ p · degH(v) + εpβ/2] ≤ e−O(ε2pβ) ≤ e−O(log(ε−1p−1)) ≤ K−2ε10p10,

where K is a large constant and the last two inequalities follow from the fact that we set
β := C log (1/εp)

ε2p , for large enough constant C. (Note that since constant C is in the exponent,
we can easily set C large enough to achieve the final probability with a constant K > C.)
This probability bound shows that E [|V +|] ≤ nK−2ε10p10, but that is not quite good enough
since we want a dependence on µ(G) instead of on n. To achieve this, we observe that the
total number of edges in H is at most βµ(G): the reason is that G has a vertex cover of size
at most 2µ(G), and all vertices in H have degree at most β (by Property (P1) of EDCS H).
There are thus at most 2βµ(G) vertices that have non-zero degree in H, each of which has at
most a ε10p10 probability of being in V +; all vertices with zero degree in H are clearly not
in V + by definition. We thus have E [|V +|] ≤ 2βµ(G) ·K−2ε10p10 ≤ K−1ε7p7µ(G), where
in the last inequality we use that K > C.

Let us now consider V −. First let us bound the number of vertices v ∈ V − for which
degHp

(v) < p · degH(v)− εpβ/2. By an analogous argument to the one above, we have that
the expected number of such vertices is at most ε7p7µ(G). A vertex can also end up in V −
because it has a neighbor in V + in H. But each vertex in H has degree at most β so we have

E
[
|V −|

]
≤ ε7p7µ(G) + β E

[
|V +|

]
≤ ε4p4µ(G),

where the last inequality again uses that K > C. J

I Remark. Interestingly, our result in Theorem 13 continues to hold as it is even when the
edges sampled in realizations of Gp are only Θ(1/p)-wise independent, by simply using a
Chernoff bound for bounded-independence random variables (see, e.g. [31]) in the proof of
Claim 16. Allowing correlation in the process of edge sampling is highly relevant to the main
application of this problem to the kidney exchange setting (see [15]). To our knowledge, our
algorithm is the first to work with such a little amount of independence between the edges.
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6 A Fault-Tolerant Subgraph for Matching

In the fault-tolerant matching problem, we are given a graph G(V,E) and an integer f ≥ 1,
and our goal is to compute a subgraph H of G, named an f -tolerant subgraph, such that for
any subset F ⊆ E of size f , H \ F contains an approximate maximum matching of G \ F .
We show that,

I Theorem 17 (Formalizing Result 3). There exists a deterministic poly-time algorithm that
given any ε > 0 and integer f ≥ 1, computes a (3/2 + ε)-approximate f -tolerant subgraph H
of any given graph G with O(ε−2 · (n log (1/ε) + f)) edges.

The algorithm in Theorem 17 simply computes an EDCS of the input graph as follows:

An algorithm for the fault-tolerant matching problem.

1. Define µmin := minF
(
µ(G \ F )

)
, where F is taken over all subsets of E with size f .

2. Output H := EDCS(G, β, β − 1) for β := C·f
ε2·µmin

+ C·log (1/ε)
ε2 for a constant C > 0.

By Proposition 5, the EDCS H in the above algorithm always exists and can be found in
polynomial time. The above algorithm as stated however is not a polynomial time algorithm
because it is not clear how to compute the quantity µmin. Nevertheless, for simplicity, we
work with the above algorithm throughout this section, and at the end show how to fix this
problem and obtain a poly-time algorithm. We start by proving that the subgraph H only
has O(f + n) edges.

I Lemma 18. The total number of edges in H is O( fε2 + n · log (1/ε)
ε2 ).

Proof. Let F ? be a subset of E with size f such that µmin = µ(G \ F ?). Let M? be a
maximum matching of size µmin in G \ F ?. Note that V (M?) is a vertex cover for G \ F ?.
This means that all edges in G except for f of them are incident on V (M?). As no vertex in
the EDCS H can have degree more than β by Property (P1) of EDCS, the degree of vertices
in V (M?) in E \ F ? is at most β. This implies that:

|EH | ≤ |V (M?)| · β + |F ?| ≤ 2µmin ·
(

C · f
ε2 · µmin

+ C · log (1/ε)
ε2

)
+ f

= O( f
ε2 + n · log (1/ε)

ε2 ),

finalizing the proof. J

We now prove the correctness of the algorithm in the following lemma.

I Lemma 19. Fix any subset F ⊆ E of size f and define GF := G \ F and HF := H \ F .
Then, µ(GF ) ≤ (3/2 +O(ε)) · µ(HF ).

We first need some definitions. We say that a vertex v ∈ V is bad iff degHF
(v) <

degH(v)− εβ, i.e., at least εβ edges incident on v (in H) are deleted by F . We use BF to
denote the set of bad vertices with respect to F , and bound |BF | in the following claim.

I Claim 20. Number of bad vertices in HF is at most |BF | ≤ ε · µ(GF ).
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Proof. Any deleted edge can decrease the degrees of exactly two vertices. Any vertex
becomes bad iff at least εβ edges incident on it from HF are removed. As such, |BF | ≤ 2f

ε·β ≤
2f ·ε2·µmin
ε·C·f ≤ ε · µ(GF ), for sufficiently large C > 0, and since µ(GF ) ≥ µmin by definition.

J Claim 20 J

Proof of Lemma 19. Define a subgraph G̃F ⊆ GF as follows: V (G̃F ) = V (GF ) (= V (G))
and edges in G̃F are all edges in GF except that we remove any edge (u, v) ∈ GF such that
(u, v) /∈ HF and either of u or v is a bad vertex. We prove that µ(G̃F ) is at least (1 − ε)
fraction of µ(GF ), and moreover, HF is an EDCS of G̃F with appropriate parameters. We
can then apply Lemma 9 to obtain that µ(GF ) ≤ (1+2ε)µ(G̃F ) ≤ (1+ε) ·(3/2+O(ε))µ(HF ),
finalizing the proof.

We first prove the bound on µ(G̃F ). Fix any maximum matching M in GF . It can
have at most |BF | edges incident on vertices of BF . Hence, even if we remove all edges
incident on BF , the size of this matching would be at least µ(GF )− ε · µ(GF ), by the bound
of |BF | ≤ ε · µ(GF ) in Claim 20. However, this matching belongs to G̃F entirely by the
definition of this subgraph, and hence we have, µ(GF ) ≤ (1 + 2ε)µ(G̃F ).

We now prove that HF is an EDCS(G̃F , β, (1− 2ε)β − 1) of G̃F . It suffices to prove the
two properties of EDCS for HF using the fact that degHF

(v) ∈ [degH(v)− εβ,degH(v)] for
vertices in V \BF , and that all edges incident on BF in G̃F also belong to HF .

Property (P1) of EDCS HF of G̃F : For any edge (u, v) ∈ HF :

degHF
(u) + degHF

(v) ≤ degH(u) + degH(v) ≤ β.
(by Property (P1) of EDCS H of G)

Property (P2) of EDCS HF of G̃F : For any edge (u, v) ∈ G̃F \HF both u, v ∈ V \BF
and so:

degHF
(u) + degHF

(v) ≥ degH(u) + degH(v)− 2εβ ≥ (1− 2ε)β − 1.
(by Property (P2) of EDCS H of G as (u, v) is missing from H)

As such, HF is an EDCS(G̃F , β, (1− 2ε)β − 1) of G̃F and by the lower bound on value of β
in the algorithm (the second term in definition of β), we can apply Lemma 9, and obtain
that µ(G̃F ) ≤ (3/2 +O(ε)) · µ(HF ), finalizing the proof. J

Theorem 17 now follows from Lemmas 18 and 19 by re-parametrizing ε to a sufficiently
smaller constant factor of ε (by picking the integer C large enough) modulo the fact that
the algorithm designed in this section is not a polynomial time algorithm. To make the
algorithm polynomial time, we only need to make a simple modification: instead of finding
µmin explicitly, we find the smallest value of β (by searching over all n possible choices of β,
or by doing a binary search) such that the EDCS H has at least 2·C·f

ε2 + n·C·log (1/ε)
ε2 many

edges. By the proof of Lemma 18, any EDCS of G can have at most 2µmin ·β+ f edges. This
implies that the chosen β ≥ C·f

ε2·µmin
+ C·log (1/ε)

ε2 as needed in the algorithm. This concludes
the proof, as by definition of β, H has O(C·fε2 + n·C·log (1/ε)

ε2 ) many edges, and hence satisfies
the sparsity requirements of Theorem 17.
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A Missing Details and Proofs

A.1 Proof of Proposition 5
We give the proof of this proposition following the argument of [2], which itself was based
on [14].

Proof. We give a polynomial local search algorithm for constructing an EDCS H of the
graph G which also implies the existence of H. The algorithm is as follows. Start with
empty graph H. While there exists an edge in H or G \H that violates Property (P1) or
Property (P2) of EDCS, respectively, fix this edge by removing it from H for the former or
inserting it to H for the latter.

We prove that this algorithm terminates after polynomial number of steps which implies
both the existence of the EDCS as well as give a polynomial time algorithm for computing
it. We define the following potential function Φ for this task:

Φ1(H) := (β − 1/2) ·
∑

u∈V (H)

degH(u), Φ2(H) :=
∑

(u,v)∈E(H)

(degH(u) + degH(v)) ,

Φ(H) := Φ1(H)− Φ2(H).

We claim that after fixing each edge in H in the algorithm, Φ increases by at least 1. Since
max-value of Φ is O(n · β2), this implies that this procedure terminates in O(n · β2) steps.

Let (u, v) be the fixed edge at this step, H1 be the subgraph before fixing the edge
(u, v), and H2 be the resulting subgraph. Suppose first that the edge (u, v) was violating
Property (P1) of EDCS. As the only change is in the degrees of vertices u and v, Φ1 decreases
by (2β − 1). On the other hand, degH1(u) + degH1(v) ≥ β + 1 originally (as (u, v) was
violating Property (P1) of EDCS) and hence after removing (u, v), Φ2 also decreases by β+ 1.
Additionally, for each neighbor w of u and v in H2, after removing the edge (u, v), degH2(w)
decreases by one. As there are at least degH2(u)+degH2(v) = degH1(u)+degH1(v)−2 ≥ β−1
choices for w, this means that in total, Φ2 decreases by at least (β + 1) + (β − 1) = 2β. As a
result, in this case Φ = Φ1 − Φ2 increases by at least 1 after fixing the edge (u, v).

Now suppose that the edge (u, v) was violating Property (P2) of EDCS instead. In this
case, degree of vertices u and v both increase by one, hence Φ1 increases by 2β−1. Additionally,
since edge (u, v) was violating Property (P2) we have degH1(u) + degH1(v) ≤ β− − 1, so the
addition of edge (u, v) decreases Φ2 by at most degH2(u)+degH2(v) = degH1(u)+degH1(v)+
2 ≤ β−+ 1. Moreover, for each neighbor w of u and v, after adding the edge (u, v), degH2(w)
increases by one and since there are at most degH1(u) + degH1(v) ≤ β−− 1 choices for w, Φ2
decreases in total by at most (β− + 1) + (β− − 1) = 2β−. Since β− ≤ β − 1, we have that Φ
increases by at least (2β− 1)− (2β−) ≥ 1 after fixing the edge (u, v), finalizing the proof. J

A.2 Optimality of the (3/2)-Approximation Ratio in Result 3
Our argument is a simple modification of the one in [23] for proving a lower bound on the
one-way communication complexity of approximating matching and is provided for the sake
of completeness.

Let G1(V1, E1) be a graph on N vertices such that its edges can be partitioned into
t := NΩ(1/ log logN) induced matchings M1, . . . ,Mt of size (1 − δ)N/4 for arbitrarily small
constant δ > 0. These graphs are referred to as (r, t)-Ruzsa-Szemerédi graphs [30] ((r, t)-RS
graphs for short) and have been studied extensively in the literature (see [4, 23] for more
details). In particular, the existence of such graphs with parameters mentioned above is
proven in [23].
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Let G(V,E) be a graph with n = 2N vertices consisting of G1(V1, E1) plus N additional
vertices U that are connected via a perfect matching MU to V1. In the following, we prove
that any f -fault tolerant subgraph H of G that achieves a (3/2− ε)-approximation for some
constant ε > 0 when f = Θ(n) requires n1+Ω(1/ log logn) = ω(f) edges.

Suppose towards a contradiction that H contains o(m) edges where m is the number of
edges in the graph G. As edges in G1 are partitioned into induced matchings M1, . . . ,Mt,
it means that there exists some induced matching Mi such that only o(1) fraction of its
edges belong to H. Let the set of deleted edge F be only the set of edges in the perfect
matching between U and V1, namely, MU , which are incident to V (Mi). The number of
deleted edges is O(n) and after deletion, MU has size N − (1− δ)N/2 = (1 + δ)N/2. As such,
µ(G \ F ) ≥ (1 + δ)N/2 + (1− δ)N/4 ≥ 3N/4, by picking the remainder of the matching MU

and the induced matching Mi (which is not incident on remainder of MU by construction).
However, we argue that µ(H \ F ) ≤ (1 + δ)N/2 + o(N), simply because only o(N) edges of
Mi belong H and all other matchings are incident to the remaining edges of MU (we can
assume remaining edges of MU belong to any maximum matching of H \ F because they
are incident on degree one vertices). As such, µ(H \ F ) < (2/3 + 2δ)µ(G \ F ). By picking
δ < ε/4, we obtain that H is not a (3/2− ε)-approximate f -fault tolerant subgraph of G.

A.3 Other Standard Algorithms for Fault-Tolerant Matching
Since the goal in fault-tolerant matching is to prepare for adversarial deletions, the most
natural approach seem to be adding many different matchings by a finding maximum
matching in G, adding it to the subgraph H, deleting it from G, and repeating until we have
O(f + n) edges. A similar approach would be to let H be a maximum b-matching, with
b set appropriately to end up with O(f + n) edges. We show a lower bound of 2 on the
approximation ratio of these approaches.

Consider the following approach first: find a maximum matching M in G, add all the
edges of M to the fault-tolerant subgraph H, remove all the edges of M from G, and repeat
until the graph contains C(f +n) edges for some large constant C. For f = n/5, we present a
graph G where this approach yields a graph H where µ(H) = µ(G)/2. The graph is bipartite
and the vertex set is partitioned into 5 sets X,Y, Y ′, Z, Z ′, each of size n/5. There is an
edge in G from every vertex in X to every vertex in Y or Z, and there are also exactly n/5
vertex-disjoint edges from Y to Y ′, and similarly from Z to Z ′; those are all the edge of G.
The fault tolerant algorithm might choose the following subgraph H: H contains a perfect
matching from Y to Y ′ and from Z to Z ′, as well as many edges from X to Y , but no edges
from X to Z. (The algorithm can end up with such an H by first choosing the maximum
matching in G that consists of the edges from Y to Y ′ and from Z to Z ′; then for all future
iterations the maximum matching size is only |X| = n/5, so the algorithm might always pick
a maximum matching that only contains edges between X and Y .) Now consider the set of
failures F which consists of the n/5 edges from Z to Z ′. It is clear that µ(G \ F ) = 2n/5,
while µ(H \F ) = n/5. Note also that allowing H to contain more than O(n+ f) edges would
still not allow this approach to break through the 2-approximation: in this lower-bound
instance, even if H was allowed to have up to n2/100 edges, H might still not contain any
edges from X to Z, and so we would still have µ(H \ F ) = n/5 = µ(G \ F )/2.

The other natural approach is to let H contain the edges of a maximum b-matching in G,
where b is set to a value for which the resulting b-matching still contains Θ(f +n) edges. The
lower-bound graph G is exactly the same as above, though in this case we use f = 2n/5. The
maximum b-matching H might then contain the edges from Y to Y ′ and Z to Z ′, a single
matching of size n/5 from X to Z, and then many edges from X to Y . It is easy to see that
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this is a maximum b-matching. Now consider the following set F of deletions: F contains all
edges from Z to Z ′, as well as the n/5 edges in H from X to Z. It is easy to see that we
once again have µ(H) = n/5 and µ(G) = 2n/5. Also as above, setting B to be very large
and allowing H to have n2/100 edges would still not break through the 2-approximation.
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