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Abstract
We consider asymmetric convex intersection testing (ACIT).

Let P ⊂ Rd be a set of n points and H a set of n halfspaces in d dimensions. We denote
by ch(P ) the polytope obtained by taking the convex hull of P , and by fh(H) the polytope
obtained by taking the intersection of the halfspaces in H. Our goal is to decide whether the
intersection of H and the convex hull of P are disjoint. Even though ACIT is a natural variant
of classic LP-type problems that have been studied at length in the literature, and despite its
applications in the analysis of high-dimensional data sets, it appears that the problem has not
been studied before.

We discuss how known approaches can be used to attack the ACIT problem, and we provide
a very simple strategy that leads to a deterministic algorithm, linear on n and m, whose running
time depends reasonably on the dimension d.
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1 Introduction

Let d ∈ N be a fixed constant. Convex polytopes in dimension d can be implicitly represented
in two ways, either by its set of vertices, or by the set of halfspaces whose intersection defines
the polytope. A polytope represented by its vertices is usually called a V-polytope, while a
polytope represented by a set of halfspaces is known as an H-polytope. Note that the actual
complexity of the polytopes can be much larger than the size of their representations [20,
Theorem 5.4.5]. In this paper, we study the problem of testing the intersection of convex
polytopes with different implicit representations. When both polytopes have the same
representation, testing for their intersection reduces to linear programming. However, when
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9:2 Asymmetric Convex Intersection Testing

there is a mismatch in the representation, the problem changes in nature and becomes more
challenging.

To formalize our problem, let P ⊂ Rd be a set of n points in Rd, and let H be a set of n
halfspaces in Rd.2 Just as P implicitly defines the polytope ch(P ) obtained by taking the
convex hull of P , the set H implicitly defines the polytope fh(H) obtained by taking the
intersection of the halfspaces in H. In the asymmetric convex intersection problem (ACIT),
our goal is to decide whether the intersection of H and the convex hull of P are disjoint.

We may assume that fh(H) is nonempty. Otherwise, ACIT becomes trivial. If ch(P )
and fh(H) intersect, we would like to find a witness point in both ch(P ) and fh(H); if
not, we would like to determine the closest pair between ch(P ) and fh(H) and a separating
hyperplane.

Even though ACIT seems to be a natural problem that fits well into the existing work on
algorithmic aspects of high-dimensional polytopes [1], we are not aware of any prior work on
it. While intersection detection of convex polytopes has been a central topic in computational
geometry [14, 21, 13, 6, 5, 9], when we deal with an intersection test between a V-polytope
and an H-polytope, the problem seems to remain unstudied. Even the seemingly easy case of
this problem in dimension d = 2 has no trivial solution running in linear time.

The lack of a solution for ACIT may be even more surprising considering that ACIT
can be used in the analysis of high-dimensional data: given a high-dimensional data set,
represented as a point cloud P , it is natural to represent the interpolation of the data as the
convex hull ch(P ). Then, we would like to know whether the interpolated data set contains
an item that satisfies certain properties. These properties are usually represented as linear
constraints that must be satisfied, i.e., the data point must belong to the intersection of a
set of halfspaces. Then, a witness point corresponds to an interpolated data point with the
desired properties, and a separating hyperplane may indicate which properties cannot be
fulfilled by the data at hand.

Even though ACIT has not been addressed before, several approaches for related problems3
may be used to attack the problem. The range of techniques goes from simple brute-force,
over classic linear programming [10], the theory of LP-type problems [8, 24] (also in implicit
form [2]), to parametric search [19]. In Section 2, we will examine these in more detail and
discuss their merits and drawbacks. Briefly, several of these approaches can be applied to
ACIT. However, as we will see, it seems hard to get an algorithm that is genuinely simple
and at the same time achieves linear (or almost linear) running time in the number of points
and halfspaces, with a reasonable dependency on the dimension d.

Thus, in Section 4, we present a simple recursive primal-dual pruning strategy that
leads to a deterministic linear time algorithm with a dependence on d that is comparable
to the best bounds for linear programming. Even though the algorithm itself is simple
and can be presented in a few lines, the analysis requires us to take a close look at the
polarity transformation and how it interacts with two disjoint polytopes (Section 3). Its
analysis is also non-trivial and its correctness spans over the entire Section 4.3. We believe
in the development of simple and efficient methods. The analysis can be complicated, but
the algorithm must remain simple. The simpler the algorithm, the more likely it is to be
eventually implemented.

2 We will assume that both P and H are in general position (the exact meaning of this will be made clear
later)

3 In particular, checking for the intersection of the convex hulls of to d-dimensional point sets
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2 How to solve ACIT with existing tools

The first thing that might come to mind to solve ACIT is to cast it as a linear program.
This is indeed possible, however the resulting linear program consists of n variables and Θ(n)
constraints. We want to find a point x subject to being inside all halfspaces in H, and being a
convex combination of all points in P . That is, we want x =

∑
p∈P αp p, where

∑
p∈P αp = 1,

and αp ≥ 0, for all p ∈ P . Moreover, we want that x ∈ H, for all H ∈ H, which can be
expressed as n linear inequalities by looking at the scalar product of x and the normal vectors
of the bounding hyperplanes of the halfspaces. Because the best combinatorial algorithms
for linear programming provide poor running times when both the number of variables and
constraints are large, this approach is far from efficient unless n is really small.4

Another trivial way to solve ACIT, the brute force algorithm, is to compute all facets
of ch(P ). That is, we can compute ch(P ) explicitly to obtain a set HP of the O(nbd/2c)
halfspaces with ch(P ) = fh(HP ) [12, 7]. With this representation, we can test if fh(HP )
and fh(H) intersect using a general linear program with d variables, or compute the distance
between fh(HP ) and fh(H) using either an LP-type algorithm (see below), or algorithms
for convex quadratic programming [16, 17]. The running time is again quite bad for larger
values of n, since the size of HP might be as high as Θ(nbd/2c) [20, Theorem 5.4.5].

A more clever approach is to use the LP-type framework directly, as described below.

The LP-type Framework. The classic LP-type framework that was introduced by Sharir
and Welzl [24] in order to extend the notion of low-dimensional linear programming to a
wider range of problems. An LP-type problem (C, w) consists of a set C of k constraints and
a weight function w : 2C → R that assigns a real-valued weight w(C) to each set C ⊆ C of
constraints.5 The weight function must satisfy the following three axioms:

Monotonicity: For any set C ⊆ C of constraints and any c ∈ C, we have w
(
C ∪ {c}

)
≤

w(C).
Existence of a Basis: There is a constant d̃ ∈ N such that for any C ⊆ C, there is a
subset B ⊆ C with |B| ≤ d̃ and w(B) = w(C).
Locality: For any B ⊆ C ⊆ C with w(B) = w(C) and for any c ∈ C, we have that if
w
(
C ∪ {c}

)
< w(C), then also w

(
B ∪ {c}

)
< w(B).

For C ⊆ C, an inclusion-minimal subset B ⊆ C with w(B) = w(C) is called a basis for C.
Solving an LP-type problem (C, w) amounts to computing a basis for C. Many algorithms
have been developed for this extension of linear programming, provided that base cases
with a constant number of constraints can be solved in O(1) time. Seidel proposed a simple
randomized algorithm with expected O(d̃!k) running time [23]. From there, several algorithms
have been introduced improving the dependency on d̃ in the running time [3, 11, 23, 24]. The
best known randomized algorithm solves LP-type problems in O(d̃2k + 2O(

√
d̃ log d̃)) time,

while the best deterministic algorithms have still a running time of the form O(d̃O(d̃)k). We
would like to obtain an algorithm with a similar running time for ACIT.

4 In fact, in the traditional computational model of computational geometry, the Real RAM [22], we
cannot solve general linear programs in polynomial time, since the best known algorithms (e.g., ellipsoid,
interior point methods) are only weakly polynomial with a running time that depends on the bit
complexity of the input.

5 Actually, we can allow weights from an arbitrary totally ordered set, but for our purposes, real weights
will suffice.

SOSA 2019



9:4 Asymmetric Convex Intersection Testing

ACIT as an LP-type problem. To use these existing machinery, one can try to cast ACIT
as an LP-type problem. To this end, we fix H, and define an LP-type problem (P,w) as
follows. The constraints are modeled by the points in P . The weight function w : 2P → R is
defined as w(Q) = d

(
ch(Q), fh(H)

)
, for any Q ⊆ P , where d(·, ·) is the smallest Euclidean

distance between any pair of points from the two polytopes. It is a pleasant exercise to show
that this indeed defines an LP-type problem of combinatorial dimension d.

Thus, the elegant methods to solve LP-type problems mentioned above become applicable.
Unfortunately, this does not give an efficient algorithm. This is because the set H remains
fixed throughout, making unfeasible to solve the base cases consisting of O(1) constraints of
P in constant time.

A randomized algorithm for ACIT. As an extension of the LP-type framework, Chan [2]
introduced a new technique that allows us to deal with certain LP-type problems where the
constraints are too numerous to write explicitly, and are instead specified “implicitly”. More
precisely, as mentioned above, ACIT can be seen as a linear program, with m constraints
coming from H, and O(nbd/2c) constraints coming from all the facets of ch(P ). The latter are
implicitly defined by P using only n points. Thus an algorithm capable of solving implicitly
defined linear programs would provide a solution for ACIT. The technique developed by
Chan achieves this by using two main ingredients: a decision algorithm, and a partition
of the problem into subproblems of smaller size whose recursive solution can be combined
to produce the global solution of the problem. Using the power of randomization and
geometric cuttings, this technique leads to a complicated algorithm to solve this implicit
linear program, and hence ACIT, in expected O(dO(d)n) time [4]. Besides the complexity of
this algorithm, the constant hidden by the big O notation resulting from using this technique
seems prohibitive [18].

In hope of obtaining a deterministic algorithm for ACIT, one can turn to multidimensional
parametric search [19] to try de-randomizing the above algorithm. However, even if all the
requirements of this technique can be sorted out, it would lead to a highly complicated
algorithm and polylogarithmic overhead.

In the following sections, we present the first deterministic solution for ACIT using a
simple algorithm that overcomes the difficulties mentioned above. We achieve this solution
by diving into the intrinsic duality of the problem provided by the polar transformation,
while exploiting the LP-type-like structure of our problem. The resulting algorithm is quite
simple, and a randomized version of it could be written with a few lines of code, provided
that one has some LP solver at hand.

3 Geometric Preliminaries

Let o denote the origin of Rd. A hyperplane h is a (d− 1)-dimensional affine space in Rd of
the form

h = {x ∈ Rd | 〈z, x〉 = 1},

for some z ∈ Rd\{o}, where 〈·, ·〉 represents the scalar product in Rd. We exclude hyperplanes
that pass through the origin. A (closed) halfspace is the closure of the point set on either
side of a given hyperplane, i.e., a halfspace contains the hyperplane defining its boundary.
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Figure 1 (a) The situation described in Lemma 3.1. (b) A valid set P of points that is embracing
and its polar P ∗ that is also embracing. (c) A set P that is avoiding and its polar P ∗ that is also
avoiding.

3.1 The Polar Transformation
Given a point p ∈ Rd, we define the polar of p to be the hyperplane

p∗ = {x ∈ Rd | 〈p, x〉 = 1}.

Given a hyperplane h in Rd, we define its polar h∗ ∈ Rd as the point with

h = {x ∈ Rd | 〈x, h∗〉 = 1}.

Let ρo(p) = {x ∈ Rd | 〈p, x〉 ≤ 1} and ρ∞(p) = {x ∈ Rd | 〈p, x〉 ≥ 1} be the two halfspaces
supported by p∗ such that o ∈ ρo(p) and o /∈ ρ∞(p). Similarly, ho and h∞ denote the
halfspaces supported by h such that o ∈ ho and o /∈ h∞ .

Note that the polar of a point p ∈ Rd is a hyperplane whose polar is equal to p, i.e., the
polar operation is involutory (for more details, see Section 2.3 in Ziegler’s book [25]). The
following result is illustrated in Figure 1(a), for d = 2.

I Lemma 3.1 (Lemma 2.1 of [1]). Let p and h be a point and a hyperplane in Rd, respectively.
Then, p ∈ ho if and only if h∗ ∈ ρo(p). Also, p ∈ h∞ if and only if h∗ ∈ ρ∞(p). Finally,
p ∈ h if and only if h∗ ∈ p∗.

Let P be a set of points in Rd. We say that P is embracing if o lies in the interior of
ch(P ). We say that P is avoiding if o lies in the complement of ch(P ). Note that we do
not consider point sets whose convex hull has o on its boundary. We say that P is valid if it
is either embracing or avoiding.

Let H be a set of halfspaces in Rd such that fh(H) 6= ∅, and the boundary of no halfspace
in H contains o. We say that H is embracing if o ∈ H for all H ∈ H (i.e., o ∈ fh(H)). We
say that H is avoiding if none of its halfspaces contains o, i.e., o /∈

⋃
H∈HH. We say that H

is valid if it is either embracing or avoiding.

SOSA 2019



9:6 Asymmetric Convex Intersection Testing

We now describe how to polarize convex polytopes defined as convex hulls of valid sets of
points or as intersections of valid sets of halfspaces. Let H be a valid set of halfspaces in Rd.
To polarize H, consider the set of hyperplanes bounding the halfspaces in H, and let H∗ be
the set consisting of all the points being the polars of these hyperplanes.

I Lemma 3.2. Let H be a valid set of halfspaces in Rd. Then, H∗ is embracing if and only
if H is embracing.

Proof. Recall that H is embracing if and only if fh(H) is bounded and contains o.
⇒). Assume that H∗ is embracing. Thus, o ∈ ch(H∗). In this case, there is a subset

Q of d + 1 points of H∗ whose convex hull contains o, by Carathéodory’s theorem [20,
Theorem 1.2.3]. Consider all halfspaces of H whose boundary polarizes to a point in Q. If
none of these halfspaces contains the origin, then their intersection has to be empty. This is
not allowed by the validity of H. Thus, as H is valid, and as H cannot avoid the origin, we
conclude that H is embracing.
⇐). For the other direction, assume that o /∈ ch(H∗). We want to prove that H is

not embracing. For this, let h be a hyperplane that separates o from ch(H∗). That is,
H∗ ⊂ h∞ . Lemma 3.1 implies that the segment oh∗ intersects the boundary of each plane in
H. Therefore, since the ray shooting from o in the direction of the vector −h∗ intersects no
plane bounding a halfspace in H, the polytope fh(H) either does not contain the origin or is
not bounded. Consequently, H is not embracing. J

Let P be a valid set of points in Rd. To polarize P , let Π(P ) be the set of hyperplanes
polar to the points of P . We have two natural ways of polarizing P , depending on whether o
lies in the interior of ch(P ), or in its complement (recall that o cannot lie on the boundary
of ch(P )). If o ∈ ch(P ), then

P ∗ =
{
ho | h ∈ Π(P )

}
is the polarization of P . Otherwise, if o /∈ ch(P ), then

P ∗ =
{
h∞ | h ∈ Π(P )

}
.

I Lemma 3.3. Let P be a valid set of points in Rd. Then P ∗ is valid, i.e., fh(P ∗) 6= ∅ and
P ∗ is either embracing or avoiding.

Proof. If o /∈ ch(P ), then there is a hyperplane h such that P ⊂ h∞ . Thus, h∗ belongs to
p∗ for every p ∈ P , i.e., h∗ ∈ fh(P ∗). Thus, fh(P ∗) is nonempty, and none of its halfspaces
contains the origin by definition. That is, P ∗ is avoiding. If o ∈ ch(P ), then o ∈ fh(P ∗) by
definition. Thus, to show that P ∗ is embracing, it remains only to show that it is bounded.
To this end, assume for a contradiction that fh(P ∗) is unbounded. Then, we can take a
point x ∈ fh(P ∗) at arbitrarily large distance from o. Thus, x∗ is a plane arbitrarily close to
o such that P ⊂ x∗. Therefore, all points of P must lie on a single halfspace that contains o
on its boundary. Because P is valid, we know that o cannot lie on the boundary of ch(P )
and hence, o /∈ ch(P )—a contradiction with our assumption that o ∈ ch(P ). Therefore,
fh(P ∗) is bounded and hence P ∗ is embracing. J

I Lemma 3.4. Let P ⊂ Rd be a valid finite point set in d dimensions, and let H be a valid
finite set of halfspaces in d dimensions. Then the polar operator is involutory: P = (P ∗)∗

and H = (H∗)∗.
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x

fh(H)

ch(H∗)
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x∗

fh(P ∗)

ch(P )

Figure 2 An example of Theorem 3.6 in dimension 2, where a point x lies in the intersection of
ch(P ) and fh(H) if and only if x∗ separates ch(H∗) from fh(P ∗).

Proof. The equality P = (P ∗)∗ follows directly from the definition, because the polar
operator for points and hyperplanes is involutory. For equality H = (H∗)∗, we must check
that the orientation of the halfspaces is preserved. First, if H is embracing, i..e, o ∈ fh(H),
then every H ∈ H is of the form H = ho , for some (d − 1)-dimensional hyperplane h.
Moreover, Lemma 3.2 implies that o ∈ ch(H∗). Thus, we have H = (H∗)∗ in this case.
Similarly, if H is avoiding, i.e., o 6∈

⋃
H∈HH, then every H ∈ H is of the form H = h∞ for

some (d− 1)-dimensional hyperplane h, and by Lemma 3.2, we have o 6∈ ch(H∗). Thus, we
have again H = (H∗)∗. J

I Corollary 3.5. Let P be a valid set of points in Rd. Then, P ∗ is embracing if and only if
P is embracing. Moreover, P ∗ is avoiding if and only if P is avoiding.

Proof. Because P is valid, P ∗ is valid by Lemma 3.3. Therefore, Lemma 3.2 implies that
P ∗ is embracing if and only if (P ∗)∗ is embracing. Because P = (P ∗)∗ by Lemma 3.4, we
conclude that P ∗ is embracing if and only if P is embracing. Note that if a valid set P is not
embracing, then it is avoiding, yielding the second part of the result. J

The following result is illustrated in Figure 2, for d = 2.

I Theorem 3.6 (Consequence of Theorem 3.1 of [1]). Let P be a finite set of points and
let H be a valid finite set of halfspaces in Rd such that either (1) P is avoiding while H is
embracing, or (2) P is embracing while H is avoiding. Then, a point x lies in the intersection
of ch(P ) and fh(H) if and only if the hyperplane x∗ separates fh(P ∗) from ch(H∗). Also a
hyperplane h separates ch(P ) from fh(H) if and only if the point h∗ lies in the intersection
of fh(P ∗) and ch(H∗).

Conditions (1) and (2) will be crucial in our algorithm. Note that by Corollary 3.5, we
have that if P and H satisfy condition (1), then the point set H∗ and the set P ∗ of halfspaces
satisfy condition (2), and vice versa.

3.2 Conflict Sets, Epsilon-nets, and Closest Pairs
Let P ⊆ Rd be a finite point set in d dimensions, and let H be a halfspace in Rd. We say
that a point p ∈ P conflicts with H if p ∈ H. The conflict set of P and H, denoted VH(P ),
consists of all points p ∈ P that are in conflict with H, i.e., VH(P ) = P ∩H. Let ε ∈ (0, 1)

SOSA 2019



9:8 Asymmetric Convex Intersection Testing

be a parameter. A set N ⊆ P is called an ε-net for P if for every halfspace H in Rd, we have

VH(N) = ∅ ⇒
∣∣VH(P )

∣∣ < ε|P |. (1)

By the classic ε-net theorem of Haussler and Welzl [15, Theorem 5.28], a random subset
N ⊂ P of size Θ

(
ε−1 log

(
ε−1 + α−1)) is an ε-net for P with probability at least 1 − α.

For a deterministic algorithm running in linear time, we can compute such a net using
the complicated algorithm of Chazelle and Matoušek [8, Chapter 4.3] or the much simpler
algorithm introduced by Chan [3]. See the textbooks of Matoušek [20], Chazelle [8], or
Har-Peled [15] for more details on ε-nets and their uses in computational geometry. The
following observation shows the usefulness of conflict sets for our problem.

I Lemma 3.7. Let P ⊆ Rd be a finite point set and H a finite set of halfspaces in d dimensions.
Let N ⊆ P such that fh(H) and ch(N) are disjoint, and let x, y be the closest pair between
them, such that x ∈ fh(H) and y ∈ ch(N). Let Hy be the halfspace through y perpendicular
to the segment xy, containing fh(H). Then, we have d

(
fh(H), P

)
< d

(
fh(H), N

)
if and

only if VHy (P ) 6= ∅.

Proof. Since all points in Rd \Hy have distance larger than d
(
fh(H), N

)
from fh(H), the

implication VHy
(P ) = ∅ ⇒ d

(
fh(H), P

)
< d
(
fh(H), N

)
is immediate.

Now assume that VHy (P ) 6= ∅, say, p ∈ VHy (P ). Then, the line segment py is contained
in ch(P ), and since p ∈ VHy

(P ) and since p does not lie on the boundary of Hy be our
general position assumption, it follows that the angle between the segments py and xy is
strictly smaller than π/2. Hence, we have

d
(
fh(H), P

)
≤ d(x, py) <

(
fh(H), N

)
,

as claimed. J

Similarly, let H be a finite set of halfspaces in d dimensions, and let p ∈ Rd be a point.
The conflict set Vp(H) of H and p consists of all halfspaces that do not contain p, i.e.
Vp(H) = {H ∈ H | p 6∈ H}. We have the following polar version of Lemma 3.7:

I Lemma 3.8. Let P ⊆ Rd be a finite point set and H a finite set of halfspaces in d dimensions.
Let H′ ⊆ H such that fh(H′) and ch(P ) are disjoint, and let x, y be the closest pair between
them, such that x ∈ fh(H′) and y ∈ ch(P ). Then, we have d

(
fh(H), P

)
> d
(
fh(H′), P

)
if

and only if Vx(H) 6= ∅.

Proof. First, if Vx(H) = ∅, then x ∈ fh(H), and since fh(H) ⊆ fh(H′), it follows that
d
(
fh(H), P

)
= d
(
fh(H′), P

)
.

Second, suppose that Vx(H) 6= ∅, say, H ∈ Vx(H). Then, x 6∈ H, and since, by gneral
position, x is the unique point in fh(H′) with d(x,ch(P )) = d(fh(H′),ch(P )), we have

d
(
fh(H), P

)
≥ d
(
fh(H′ ∪ {H}), P

)
> d
(
fh(H′), P

)
,

as claimed. J

The following lemma gives a polar meaning to the notion of ε-nets.

I Lemma 3.9. Let N ⊆ P be an ε-net for P such that if o ∈ ch(P ), then also o ∈ ch(N).
For any point x ∈ Rd, it holds that if x ∈ fh(N∗), then

∣∣Vx

(
P ∗
)∣∣ ≤ ε|P |.
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Proof. First, suppose that o ∈ ch(P ), then, we have o ∈ ch(N), and hence o ∈ fh(N∗).
Since x ∈ fh(N∗), we have x ∈ ρo(p), for all p ∈ N . By Lemma 3.1, we get p ∈ ρo(x), for all
p ∈ N , so N ∩ ρ∞(x) = ∅. Since N is an ε-net for P , we conclude |P ∩ ρ∞(x)| ≤ ε|P |. The
claim now follows, because by Lemma 3.1, we have |P ∩ ρ∞(x)| = |Vx

(
P ∗)|.

Second, suppose that o 6∈ ch(P ), then, we also get o 6∈ ch(N), and hence o 6∈
⋃

H∈N∗ H.
Since x ∈ fh(N∗), we have x ∈ ρ∞(p), for all p ∈ N . By Lemma 3.1, we get p ∈ ρ∞(x), for
all p ∈ N , so N ∩ ρo(x) = ∅. Since N is an ε-net for P , we conclude |P ∩ ρo(x)| ≤ ε|P |. The
claim now follows, because by Lemma 3.1, we have |P ∩ ρo(x)| = |Vx

(
P ∗)|. J

4 A Simple Algorithm

Let P be a valid set of n points and let H be a valid set of m halfspaces in Rd such that
either (1) P is avoiding while H is embracing, or (2) P is embracing while H is avoiding.
We first present a slightly more restrictive algorithm that requires conditions (1) or (2) to
hold. We spend the next few sections proving its correctness and running time, and then we
extend it to a general algorithm for the ACIT problem.

4.1 Description of the Algorithm
Our algorithm Test(P,H) takes P and H as input, such that either (1) or (2) is satisfied,
and it computes either the closest pair between ch(P ) and fh(H), if ch(P ) and fh(H) are
disjoint, or the closest pair between ch(H∗) and fh(P ∗), if ch(P ) and fh(H) intersect. By
Theorem 3.6, this is always possible.

The algorithm is recursive. Let α = c d4 log d, for some appropriate constant c > 0. For
the base case, if both |P |, |H| ≤ α, we apply the brute force algorithm: we explicitly compute
the polytope ch(P ) to obtain the set HP of hyperplanes with ch(P ) = fh(HP ), and we use
a classic LP-type algorithm to find the closest pair between ch(P ) and fh(H) or between
fh(P ∗) and ch(H∗). Otherwise, we compute a (1/d4)-net N ⊆ P , and if necessary, we add
d+ 1 points to N such that if o ∈ ch(P ), then o ∈ ch(N). These d+ 1 points can be found
in O(n) time using basic linear algebra. Then, we execute the following loop.
Repeat 2d + 1 times: Recursively call Test(H∗, N∗); there are two possibilities.
Case 1: ch(H∗) and fh(N∗) are disjoint. Then, Test(H∗, N∗) returns the closest pair x,

y, with x ∈ ch(H∗) and y ∈ fh(N∗) (unique by our general position assumption). Let
Vy ⊂ P ∗ be conflict set of P ∗ and y. If Vy = ∅, then report that ch(P ) and fh(H)
intersect, and output x, y as the polar witness. Otherwise, add to N all elements of Vy

∗,
and continue with the next iteration.

Case 2: ch(H∗) and fh(N∗) intersect. Then, Test(H∗, N∗) returns the closest pair x, y
between fh((H∗)∗) = fh(H) and ch((N∗)∗) = ch(N), with x ∈ fh(H) and y ∈ ch(N).
Let H be the halfspace that contains fh(H) supported by the normal hyperplane of xy
through y. Let VH be the conflict set of P and H. If VH = ∅, then report that ch(P )
and fh(H) are disjoint, and output x, y as the witness. Otherwise, add to N all elements
of VH and continue with the next iteration.

If the loop terminates without a result, the algorithm finishes and returns an Error.

4.2 Running Time
While at this point we have no idea why Test(P,H) works, we can start by analyzing
its running time. In the base case, when both P and H have of at most α elements, we
can compute ch(P ) explicitly to obtain the O

(
αbd/2c

)
halfspaces of HP . We can do this
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in a brute force manner by trying all d-tuples of P d and checking whether all of P is on
the same side of the hyperplane spanned by a given tuple, or we can run a convex-hull
algorithm [12, 7]. The former approach has a running time O

(
αd+1), while the latter

needs O
(
αbd/2c) time [12, 7]. Once we have HP at hand, we can run standard LP-type

algorithms with O(αbd/2c) constraints to determine the closest pair either between ch(P )
and fh(H), or between ch(H∗) and fh(P ∗). The running time of such algorithms is
O(dO(d)αbd/2c) = O(dO(d)) [3].

To see what happens in the main loop of the algorithm, we apply the theory of ε-nets, as
described in the Section 3. As mentioned there, the initial set N is a (1/d4)-net for P . Thus,
the size of each VH added to N in Case 2 of the main loop of our algorithm is at most n/d4.
Using Lemma 3.9, the same holds for any set Vy added in Case 1. Thus, regardless of the
case, the size of N at the beginning of the i-th loop iteration is at most max{in/d4, α}.

The main loop runs for at most 2d + 1 iterations. Thus, the size of N never exceeds
(2d + 1)n/d4 ≤ βn/d3, for some constant β > 0. Since the algorithm to compute the
(1/d4)-net N for P runs in time O(dO(d)n) [3, 8], we obtain the following recurrence for the
running time:

T (n,m) ≤

LP
(
α+ αbd/2c, d

)
+O

(
αbd/2c), if n,m ≤ α,

(2d+ 1) · T
(
m,max

{
βn/d3, α

})
+O(dO(d)n), otherwise.

We look further into T
(
m,max

{
βn/d3, α}

)
and notice that if we do not reach the base case,

then unfolding the recursion by one more step yields

T
(
m,max{βn/d3, α}

)
≤ (2d+ 1) · T

(
max{βn/d3, α},max{βm/d3, α}

)
+O(dO(d)m).

Thus, by contracting two steps into one, we get the following more symmetric relation:

T (n,m) ≤ (2d+ 1)2 · T
(

max{βn/d3, α},max{βm/d3, α}
)

+O
(
dO(d)(n+m)

)
,

for sufficiently large n and m. Together with the base case, one can show by induction that
this yields a running time of O(dO(d)(n+m)).

Remark. Because the best deterministic algorithm know for LP-type problems with n

constraints runs also in time O(dO(d)n) [3], substantial improvements on the running time of
our problem seem out of reach. If we allow randomization however, then we can improve
in two places. First of all, by randomly sampling O(α logn) elements of P , we obtain a
(1/d4)-net of P with high probability. Secondly, the base case could be solved with faster
algorithms. The best known randomized algorithms for LP-type problems with n constraints
have a running time of O(d2n+ 2O(

√
d log d)), which substantially improves the dependency

on d. Alternatively, we could use methods to solve convex quadratic programs in the base
case to find the closest pair between two H-polytopes.

4.3 Correctness
We show that Test(P,H) indeed tests whether ch(P ) and fh(H) intersect. First, we verify
that the input to each recursive call Test(·, ·) satisfies either condition (1) or (2).

I Lemma 4.1. Let P ⊂ Rd be a finite point set and H a finite set of halfspaces in d

dimensions, such that either (1) P is avoiding while H is embracing, or (2) P is embracing
while H is avoiding. Consider a call of Test(P,H). Then, the input to each recursive call
satisfies either condition (1) or condition (2).
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Proof. We do induction on the recursion depth. The base case holds by assumption. For
the inductive step, we note that if the input (P,H) satisfies condition (1), then (N,H)
also satisfies condition (1), for any subset N ⊆ P . For condition (2), first note that our
algorithm ensures that if o ∈ ch(P ), then also o ∈ ch(N). This implies that if (P,H)
satisfies condition (2), then (N,H) also satisfies condition (2). Finally, if (P,H) satisfies
condition (1), then by Corollary 3.5

(
H∗, P ∗

)
satisfies condition (2), and vice-versa. The

claim follows. J

We are now ready for the correctness proof. We show that Test(P,H), with P and H
satisfying either (1) or (2), computes either the closest pair between ch(P ) and fh(H), if
they are disjoint, or the closest pair between ch(H∗) and fh(P ∗), if the polytopes intersect.

We use induction on max{|P |, |H|}. For the base case, when the maximum is at most α,
our algorithm uses the brute-force method. This certainly provides a correct answer, by our
assumptions on P and H and by Theorem 3.6.

For the inductive set, we may assume that each recursive call to Test(·, ·) provides a
correct answer. It remains to show (i) that the main loop succeeds in at most 2d+1 iterations;
and (ii) if the main loop succeeds, the algorithm returns a valid closest pair.

Number of Iterations. We show that the algorithm will never return an Error, i.e., that
the loop will succeed in at most 2d+ 1 iterations. To start, we observe that the cases in the
algorithm cannot alternate: first, we encounter only Case 2, then, we encounter only Case 1.

I Lemma 4.2. It the main loop in algorithm Test(P,H) encounters Case 1, it will never
again encounter Case 2.

Proof. In each unsuccessful iteration, the set N grows by at least one element, so the convex
polytope fh(N∗) becomes smaller. Once fh(N∗) and ch(H∗) are disjoint, they will remain
disjoint for the rest of the algorithm, and by our inductive hypothesis, this will be reported
correctly by the recursive calls to Test(·, ·). J

We now bound the number of iterations in Case 2.

I Lemma 4.3. The algorithm can have at most d+ 1 iterations in Case 2. If there are d+ 1
iterations in Case 2, then the last iteration is successful and the algorithm terminates.

Proof. Suppose there are at least d+ 2 iterations in Case 2. By Lemma 4.2, each iteration
until this point encounters Case 2. Let N1 ⊂ N2 ⊂ · · · ⊂ Nd+2 be the set N at the
beginning of the first d+ 2 iterations in Case 2. By Lemma 3.7 and the inductive hypothesis,
each time we run into Case 2 unsuccessfully, the distance between ch(N) and fh(H)
decreases strictly. Since the first d + 1 iterations in Case 2 are not successful, this means
d(ch(Ni), fh(H)) > d(ch(Ni+1), fh(H)), for i = 1, . . . , d+ 1.

Because the (d+2)-th iteration runs into Case 2, it follows that ch(Nd+2) does not intersect
fh(H). Let x, y be the closest pair between fh(H) and ch(Nd+2), with y ∈ ch(Nd+2). Then,
y must lie on a face of ch(Nd+2), and by Carathéodory’s theorem [20, Theorem 1.2.3], there
is a set B ⊆ Nd+2 with at most d elements such that y ∈ ch(Bd+2). We claim that in each
prior iteration i = 1, . . . , d+ 1, the conflict set VH must contain at least one new element
of B. Otherwise, if all the elements of B were already in some Ni, with i ≤ d + 1, then
ch(Ni) would contain y and hence have a distance to fh(H) smaller or equal than ch(Nd+2),
leading to a contradiction. Similarly, if in an iteration i ≤ d + 1, all elements of B were
contained in H, then the distance between ch(Ni) and fh(H) could not strictly decrease,
by Lemma 3.7. However, B contains only d elements, and we have d+ 1 iterations, so we
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cannot add a new element of B at the end of each iteration Thus, the main loop can have at
most d unsuccessful iterations in Case 2 before either encountering Case 2 successfully or
reaching Case 1. J

I Lemma 4.4. The algorithm can have at most d+ 1 iterations in Case 1.

Proof. Similar to the proof of Lemma 4.3, assume that we have at least d + 2 iterations
in Case 1. Let N1 ⊂ N2 ⊂ · · · ⊂ Nd+2 be the set N at the beginning of each such
iteration. By Lemma 3.8 and the inductive hypothesis, each time we encounter Case 1
unsuccessfully, we strictly increase the distance between ch(H∗) and fh(N∗). That is,
d(ch(H∗), fh(Ni

∗)) > d(ch(H∗), fh(Ni+1
∗)), for i = 1, . . . , d+ 1.

Because we run into Case 1 in the (d + 2)-th iteration, it follows that ch(H∗) and
fh(Nd+2

∗) do not intersect. Let x, y be the closest pair between ch(H∗) and fh(Nd+2
∗),

with y ∈ fh(Nd+2
∗). Let B be the at most d elements in Nd+2 such that x, y is the closest

pair of ch(H∗) and fh(B∗). Note that y could either be a vertex of fh(B∗), or lie in the
relative interior of one of its faces. Observe that in each unsuccessful iteration in Case 1,
Vy must include a new member of B. Otherwise, if all the elements of B were already in
some Ni with i ≤ d+ 1, then fh(Ni

∗) would have a distance to ch(H∗) larger or equal than
fh(Nd+2

∗), leading to a contradiction. Similarly, if in an iteration i ≤ d+ 1, all elements of
B∗ were not in conflict with y, then the distance between fh(Ni

∗) and ch(H∗) could not
strictly decrease, by Lemma 3.8. However, this is impossible, because B has d elements and
we have at least d+ 1 unsuccessful iterations. Thus, in the (d+ 1)-th iteration at the latest,
we would observe that Vy is empty and the algorithm would finish. That is, the main loop
can run for at most d unsuccessful iterations in Case 1. J

Lemmas 4.2, 4.3, and 4.4 guarantee that the algorithm will finish successfully within
2d + 1 iterations and that it will never return an Error. It remains to argue that the
algorithm reports a correct closest pair if one of the two cases is encountered successfully.

Correctness of the Closest Pair. We first analyze the success condition of Case 1, i.e.,
when ch(H∗) and fh(N∗) are disjoint. This condition is triggered when we have a set N ⊆ P
and a point y ∈ fh(N∗) such that Vy = ∅. By Lemma 3.8, the closest pair x, y between
ch(H∗) and fh(N∗) then coincides with the closest pair between ch(H∗) and fh(P ∗). In
particular, this implies that ch(H∗) and fh(P ∗) are disjoint. Because the recursive call
returns correctly the closest pair x, y between ch(H∗) and fh(N∗) by induction, it follows
that the algorithm correctly returns the closest pair between ch(H∗) and fh(P ∗).

Next, we analyze the success condition of Case 2, i.e., when ch(H∗) and fh(N∗) intersect.
This implies by Theorem 3.6 that ch(N) and fh(H) are disjoint. Let x, y be the closest pair
between ch(N) and fh(H), with y ∈ ch(N). The success condition of Case 2 is triggered
when VH = ∅. By Lemma 3.7, this means that x, y coincides with the closest pair between
ch(P ) and fh(H). In particular, ch(P ) and fh(H) are disjoint. Because the recursive
call returns correctly the closest pair x, y between ch(N) and fh(H) by induction, the
algorithm correctly returns the closest pair between ch(P ) and fh(H). This now shows that
Test(P,H) is indeed correct.

4.4 The Final Algorithm
Finally, we show how to remove the initial assumption that (P,H) satisfies either condition
(1) or condition (2).



L. Barba and W. Mulzer 9:13

I Theorem 4.5. Let P be a set of n points in Rd and let H be a set of m halfspaces in Rd.
We can test if ch(P ) and fh(H) intersect in O(dO(d)(n + m)) time. If they do, then we
compute a point in their intersection; otherwise, we compute a separating plane.

Proof. Recall that our algorithm requires that either (1) o /∈ ch(P ) and o ∈ fh(H), or (2)
o ∈ ch(P ) and o /∈

⋃
H∈HH to work, which might not hold for the given P and H.

Thus, before running Test(P,H), we first compute a point in the interior of fh(H)
using standard linear programming in d+ 1 dimensions. More precisely, consider the linear
program max e, subject to Ax + e · 1 ≤ 1, e ≤ 1, where x ∈ Rd, e ∈ R are variables, 1 is
the m-dimensional all-ones-vector, and A ∈ Rm×d is the matrix whose rows are the normal
vectors of the hyperplanes that bound the halfspaces in H. Let (x∗, e∗) be an optimal solution.
Then, if e∗ < 0, the intersection fh(H) is empty, and if e∗ = 0, the intersection fh(H) is not
fully dimensional. Otherwise, if e∗ > 0, the point x∗ lies in the interior of fh(H). We change
the coordinate system so that x∗ coincides with o. Next, we use standard linear programming
to test if o ∈ ch(P ). These two linear programs have a running time of O(dO(d)(n+m)) [3]
Notice that if o ∈ ch(P ), then we are done. Otherwise, we guarantee that condition (1) is
satisfied, and we can run Test(P,H) in O(dO(d)(n+m)) time. J
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