
LP Relaxation and Tree Packing for
Minimum k-cuts
Chandra Chekuri
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
11786, USA
chekuri@illinois.edu

Kent Quanrud
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
11786, USA
quanrud2@illinois.edu

Chao Xu1

Yahoo! Research, New York, NY 10003, USA
chao.xu@oath.com

https://orcid.org/0000-0003-4417-3299

Abstract
Karger used spanning tree packings [14] to derive a near linear-time randomized algorithm for the
global minimum cut problem as well as a bound on the number of approximate minimum cuts.
This is a different approach from his well-known random contraction algorithm [13, 15]. Thorup
developed a fast deterministic algorithm for the minimum k-cut problem via greedy recursive
tree packings [29].

In this paper we revisit properties of an LP relaxation for k-cut proposed by Naor and
Rabani [21], and analyzed in [3]. We show that the dual of the LP yields a tree packing, that
when combined with an upper bound on the integrality gap for the LP, easily and transparently
extends Karger’s analysis for mincut to the k-cut problem. In addition to the simplicity of the
algorithm and its analysis, this allows us to improve the running time of Thorup’s algorithm by a
factor of n. We also improve the bound on the number of α-approximate k-cuts. Second, we give
a simple proof that the integrality gap of the LP is 2(1− 1/n). Third, we show that an optimum
solution to the LP relaxation, for all values of k, is fully determined by the principal sequence
of partitions of the input graph. This allows us to relate the LP relaxation to the Lagrangean
relaxation approach of Barahona [2] and Ravi and Sinha [24]; it also shows that the idealized
recursive tree packing considered by Thorup gives an optimum dual solution to the LP. This
work arose from an effort to understand and simplify the results of Thorup [29].

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases k-cut, LP relaxation, tree packing

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.7

Funding Work on this paper supported in part by NSF grant CCF-1526799.

1 This work was done while the author was at University of Illinois at Urbana-Champaign.

© Chandra Chekuri, Kent Quanrud, and Chao Xu;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 7; pp. 7:1–7:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/168410683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:chekuri@illinois.edu
mailto:quanrud2@illinois.edu
mailto:chao.xu@oath.com
https://orcid.org/0000-0003-4417-3299
https://doi.org/10.4230/OASIcs.SOSA.2019.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 LP Relaxation and Tree Packing for Minimum k-cuts

1 Introduction

The global minimum cut problem in graphs (MinCut) is well-known and extensively studied.
Given an undirected graph G = (V,E) with non-negative edge capacities c : E → R+, the
goal is to remove a minimum capacity set of edges such that the residual graph has at
least two connected components. When all capacities are one, the mincut of a graph is its
global edge-connectivity. The k-Cut problem is a natural generalization. Given a graph
G = (V,E) and an integer k ≥ 2, the goal is to remove a minimum capacity set of edges such
that the residual graph has at least k connected components. MinCut and k-Cut have
been extensively studied in the literature. Initial algorithms for MinCut were based on a
reduction to the s-t-mincut problem. However, it was realized later on that it can be solved
more efficiently and directly. Currently the best deterministic algorithm for MinCut runs in
O(mn+ n2 logn) time [27] and is based on the maximum adjacency ordering approach of
Nagamochi and Ibaraki [19]. On the other hand, there is a near-linear time Monte Carlo
randomized algorithm due to Karger [14]. Bridging the gap between the running times
for the deterministic and randomized algorithms is a major open problem. In recent work
[16, 12] obtained near-linear time deterministic algorithms for simple unweighted graphs.

The k-Cut problem is NP-Hard if k is part of the input [10], however, there is a polynomial-
time algorithm for any fixed k. Such an algorithm was first devised by Goldschmidt and
Hochbaum [10], and subsequently there have been several different algorithms improving
the run-time. The randomized algorithm of Karger and Stein [15] runs in Õ(n2(k−1)) time
and outputs the optimum cut with high probability. The fastest deterministic algorithm,
due to Thorup [29], runs in Õ(mn2k−2) time [29]. Recent work of Gupta, Lee and Li [11]
obtains a faster run-time of Õ(kO(k)n(2ω/3+o(1))k) if the graph has small integer weights,
where ω is the exponent in the run-time of matrix multiplication. It is also known that
k-Cut is W [1]-hard when parameterized by k [6]; that is, we do not expect an algorithm
with a run-time of f(k)nO(1). Several algorithms that yield a 2-approximation are known
for k-Cut; Saran and Vazirani’s algorithm based on repeated minimum-cut computations
gives (2− 2/k)-approximation [25]; the same bound can be achieved by removing the (k − 1)
smallest weight edges in a Gomory-Hu tree of the graph [25]. Nagamochi and Kamidoi
showed that using the concept of extreme sets, a (2− 2/k)-approximation can be found even
faster [20]. Naor and Rabani developed an LP relaxation for k-Cut [21] and this yields a
2(1−1/n)-approximation [3]. Ravi and Sinha [24] obtained another 2(1−1/n)-approximation
via a Lagrangean relaxation approach which was also considered independently by Barahona
[2]. A factor of 2, for large k, is the best possible approximation under the Small Set
Expansion hypothesis [18]. Recent work has obtained a 1.81 approximation in 2O(k2)nO(1)

time [11]; whether a PTAS can be obtained in f(k)poly(n) time is an interesting open
problem.

Motivation and contributions: The main motivation for this work was to simplify and
understand Thorup’s tree packing based algorithm for k-Cut. Karger’s near-linear time
algorithm and analysis for the MinCut problem [14] is based on the well-known theorem
of Tutte and Nash-Williams (on the minmax relation for edge-disjoint trees in a graph).
It is simple and elegant; the main complexity is in the improved running time which is
achieved via a complex dynamic program. Karger also tightened the bound on the number
of α-approximate minimum cuts in a graph (originally shown via his random contraction
algorithm) via tree packings. In contrast to the case of mincut, the main structural result in
Thorup’s work on k-Cut is much less easy to understand and motivate. His proof consists

C. Chekuri, K. Quanrud, and C. Xu 7:3

of two parts. He shows that an ideal tree packing obtained via a recursive decomposition of
the graph, first outlined in [28], has the property that any optimum k-cut crosses some tree
in the packing at most 2k− 2 times. The second part argues that a greedy tree packing with
sufficiently many trees approximates the ideal tree packing arbitrarily well. The greedy tree
packing is closely related to a multiplicative weight update method for solving a basic tree
packing linear program, however, no explicit LP is used in Thorup’s analysis. Thus, although
Thorup’s algorithm is very simple to describe (and implement), the analysis is somewhat
opaque.

In this paper we make several contributions which connect Thorup’s tree packing to the
LP relaxation for k-Cut [21]. We outline the specific contributions below.

We show that the dual of the LP for k-Cut gives a tree packing and one can use a simple
analysis, very similar to that of Karger, to show that any optimum k-cut crosses some
tree in the packing at most (2k − 3) times. Thorup proved a bound of (2k − 2) for his
tree packing. This leads to a slightly faster algorithm than that of Thorup and also to an
improved bound on the number of approximate k-cuts.
We give a new and simple proof that the integrality gap of the LP for k-cut is upper
bounded by 2(1 − 1/n). We note that the proof claimed in [21] was incorrect and the
proof in [3] is indirect and technical.
We show that the optimum solution of the k-cut LP, for all values of k, can be completely
characterized by the principal sequence of partitions of the cut function of the given
graph. This establishes the connection between the dual of the LP relaxation and the
ideal recursive tree packing considered by Thorup. It also shows that the lower bound
provided by the LP relaxation is equivalent to the Lagrangean relaxation lower bound
considered by Barahona [2] and Ravi and Sinha [24].

Our results help unify and simplify the different approaches to k-cut via the LP relaxation
and its dual. A key motivation for this paper is to simplify and improve the understanding
of the tree packing approach. For this reason we take a leisurely path and reprove some of
Karger’s results for the sake of completeness, and to point out the similarity of our argument
for k-Cut to the case of MinCut. Readers familiar with [14] may wish to skip Section 3.

Organization: Section 2 sets up some basic notation and definitions. Section 3 discusses
Karger’s approach for MinCut via tree packings with some connections to recent develop-
ments on approximately solving tree packings. Section 4 describes the tree packing obtained
from the dual of the LP relaxation for k-Cut and how it can be used to extend Karger’s
approach to k-Cut. Section 5 gives a new proof that the LP integrality gap for k-Cut is
2(1− 1/n). In Section 6 we show that the optimum LP solution for all values of k can be
characterized by a recursive decomposition of the input graph.

2 Preliminaries

We use n and m to denote the number of nodes and edges in a given graph. For a graph
G = (V,E), let T (G) denote the set of spanning trees of G. For a graph G = (V,E) with
edge capacities c : E → R+ the fractional spanning tree packing number, denoted by τ(G),
is the optimum value of a simple linear program shown in Figure 1 whose variables are
yT , T ∈ T (G). The LP has an exponential number of variables but is still polynomial time
solvable. There are several ways to see this and efficient strongly combinatorial algorithms
are also known [8]. We also observe that there is an optimum solution to the LP whose
support has at most m trees since the number of non-trivial constraints in the LP is at most
m (one per each edge).

SOSA 2019

7:4 LP Relaxation and Tree Packing for Minimum k-cuts

max
∑

T∈T (G)

yT

∑
T3e

yT ≤ c(e) e ∈ E

yT ≥ 0 T ∈ T (G)

Figure 1 LP relaxation defining τ(G).

There is a min-max formula for τ(G) which is a special case of the min-max formula for
matroid base packing due to Tutte and Nash-Williams. To state this theorem we introduce
some notation. For a partition P of the vertex set V let E(P) denote the set of edges that
cross the partition (that is, have end points in two different parts) and let |P| denote the
number of parts of P. A k-cut is E(P) for some partition P such that |P| ≥ k. A cut is a
2-cut. The value of the minimum cut of G is denoted as λ(G). It is not hard to see that for
any partition P of the vertex set V , τ(G) ≤ c(E(P))

|P|−1 since every spanning tree of G contains
at least |P| − 1 edges from E(P). The minimum over all partitions of the quantity, c(E(P))

|P|−1 ,
is also referred to as the strength of G (denoted by σ(G)), and turns out to be equal to τ(G).

I Theorem 1 (Tutte and Nash-Williams). For any undirected edge capacitated graph G,

τ(G) = min
P

c(E(P))
|P| − 1 .

Tutte and Nash-Williams proved the integer packing version of the preceding theorem
which is harder; they showed that the maximum number of edge-disjoint spanning trees in a
graph G with integer capacities c is give by minPb c(E(P))

|P|−1 c. The theorem is in fact a special
case of matroid base packing theorem and can also be derived via the matroid union theorem
of Edmonds; we refer the reader to [26].

A useful and well-known corollary of the preceding theorem is given below.

I Corollary 2. For any graph G, τ(G) ≥ n
2(n−1) · λ(G). If G is an unweighted graph then

τ(G) ≥ λ(G)+1
2 .

Proof. Consider the partition P∗ that achieves the minimum in the minmax formula. We
have c(E(P)) ≥ |P∗|λ(G)/2 since the capacity of edges leaving each part of P∗ is at least
λ(G) and an edge in E(P∗) crosses exactly two parts. Thus,

τ(G) = c(E(P∗))
|P∗| − 1 ≥

|P∗|λ(G)
2(|P∗| − 1) ≥

n

2(n− 1)λ(G)

since |P∗| ≤ n. If G is unweighted graph then |P| ≤ λ(G) + 1 and hence τ(G) ≥ λ(G)+1
2 as

desired. J

We say that a tree packing y : T (G) → R+ is (1 − ε)-approximate if
∑
T∈T (G) yT ≥

(1− ε)τ(G). Note that we typically want a compact tree packing that can either be explicitly
specified via a small number of trees or even implicitly via a data structure representing
a collection of trees. Approximate spanning tree packings have been obtained via greedy
spanning tree packings which can be viewed as applying the multiplicative weight update
method. Recently [4] obtained the following result.

C. Chekuri, K. Quanrud, and C. Xu 7:5

I Theorem 3 ([4]). There is a deterministic algorithm that, given an edge-capacitated
undirected graph on m edges and an ε ∈ (0, 1/2), runs in O(m log3 n/ε2) time and outputs
an implicit representation of a (1− ε)-approximate tree packing.

3 Tree packings and minimum cuts

We review some of Karger’s observations and results connecting tree packings and minimum
cuts [14] which follow relatively easily via Corollary 2. In this section, we restrict the
definition of a cut to an edge set E(P) for a partition P = {S, V \ S} with exactly two parts.
Hence, we use δ(S) to uniquely identify a cut. However, as one can see later in section 4,
the results will also hold for the more general definition of a cut, where P have at least two
parts. We rephrase his results and arguments with a slightly different notation. Given a
spanning tree T and a cut A ⊆ E, following Karger, we say that T h-respects A for some
integer h ≥ 1 if |E(T) ∩A| ≤ h.

Karger proved that a constant fraction of trees (in the weighted sense) of an optimum
packing 2-respect any fixed mincut. In fact this holds for a (1− ε)-approximate tree packing
for sufficiently small ε. The proof, as follows, is an easy consequence of Corollary 2 and an
averaging argument. It is convenient to view a tree packing as a probability distribution. Let
pT = yT /τ(G). We then have

∑
T pT = 1 for an exact tree packing and for a (1− ε)-packing

we have
∑
T pT ∈ (1− ε, 1]. Let δ(S) be a fixed minimum cut whose capacity is λ(G). Let

`T = |E(T) ∩ δ(S)| be the number of edges of T that cross S. Let q =
∑
T :`T≤2 pT be the

fraction of trees that 2-respect δ(S). Since each tree crosses S at least once we have,∑
T

pT `T =
∑

T :`T≤2
pT `T +

∑
T :`T≥3

pT `T ≥ q + 3(1− ε− q).

Because y is a valid packing,

τ(G)
∑
T

pT `T =
∑
T

yT `T ≤ c(δ(S)) = λ(G).

Putting the two inequalities together and using Corollary 2,

3(1− ε)− 2q ≤ λ(G)/τ(G) ≤ 2(n− 1)/n

which implies that

q ≥ 3
2(1− ε)− (1− 1/n) = 1

2 + 1
n
− 3ε

2 .

If ε = 0 this implies that at least half the fraction of trees 2-respect any minimum cut.
Let q′ be the fraction of trees that 1-respect a minimum cut. One can do similar calculations
as above to conclude that

q′ ≥ 2(1− ε)− 2(1− 1/n) ≥ 2(1
n
− ε).

Thus, q′ > 0 as long as ε < 1/n. In an optimum packing there is always a tree in the support
that 1-respects a mincut. The preceding argument can be generalized in a direct fashion to
yield the following useful lemma on α-approximate cuts.

I Lemma 4. Let y be a (1 − ε)-approximate tree packing. Let δ(S) be an α-approximate
minimum cut (i.e., c(δ(S)) ≤ αλ(G)) for some fixed α ≥ 1. For a fixed integer h ≥ 1, let qh
denote the fraction of trees in the packing y that h-respect δ(S). Then

qh ≥ (1− ε)
(

1 + 1
h

)
− 2α

h

(
1− 1

n
.

)

SOSA 2019

7:6 LP Relaxation and Tree Packing for Minimum k-cuts

3.1 Number of approximate minimum cuts
Karger showed that the number of α-approximate minimum cuts is at most O(n2α) via his
random contraction algorithm [13]. He improved the bound to O(nb2αc) (for any fixed α)
via tree packings in [14]. We review the latter argument.

For any cut δ(S), we associate the subset of edges of T that cross S, E(T) ∩ δ(S). In
the other direction, removing a set of edges A ⊆ E(T) induces several components in T −A,
which induces a unique cut in G where any two components of T −A adjacent in T lie on
opposite sides of the cut. This gives a bijection between cuts induced by edge removals in T ,
and cuts in the graph.

Fix α > 1, and let h = b2αc. Let y be a fixed optimum tree packing supported by some
m′ ≤ m trees. For any α-approximate mincut δ(S), by Lemma 4 and some simplification,
the fraction of trees in the packing y that h-respects δ(S) is at least

qh,α ≡
1
b2αc (1− (2α− b2αc)(1− 1/n)) .

Observing that qh,α > 0, an easy counting argument for approximate mincuts is the
following. For each α-approximate mincut, there is at least one tree in the (support of the)
packing y which crosses it at most h times. Hence each α-approximate cut can be mapped
to a distinct combination of a tree in the packing and at most h edges from that tree. The
total number of these combinations is m′

(
n−1
h

)
= O(mnh).

We can avoid the factor of m by leveraging the fact that qh,α is a constant for every
fixed α. We give an informal argument here. A tree can h-respect at most hh

(
n−1
h

)
distinct

cuts, while each α-approximate minimum cut is h-respected by a (constant) qh,α-fraction of
the tree packing. It follows by a packing argument that the total number of α-approximate
mincuts is at most

hh
(
n−1
h

)
qh,α

= O
(
nh
)
.

3.2 Algorithm for minimum cut via tree packings
Karger used tree packings to obtain a randomized near linear time algorithm for the global
minimum cut. The algorithm is based on combining the following two steps.

Given a graph G there is a randomized algorithm that outputs O(logn) trees in Õ(m)
time such that with high probability there is a global minimum cut that 2-respects one
of the trees in the packing.
There is a deterministic algorithm that given a graph G and a spanning tree T , in Õ(m)
time finds the cut of minimum capacity in G that 2-respects T . This is based on a clever
dynamic programming algorithm that utilizes dynamic tree data structures.

Only the first step of the algorithm is randomized. Karger solves the first step as
follows. Given a capacitated graph G and an ε > 0, he sparsifies the graph G to obtain an
unweighted skeleton graph H via random sampling such that (i) H has O(n logn/ε2) edges
(ii) λ(H) = Θ(logn/ε2) and (iii) a minimum cut of G corresponds to a (1 + ε)-approximate
minimum cut of H in that the cuts induce the same vertex partition. Karger then uses
greedy tree packing in H to obtain a (1− ε′)-tree packing in H with O(logn/ε′2) trees, and
via Corollary 2 argues that one of the trees in the packing 2-respects a mincut of G; here ε
and ε′ are chosen to be sufficiently small but fixed constants.

C. Chekuri, K. Quanrud, and C. Xu 7:7

We observe that Theorem 3 can be used in place of the sparsification step of Karger.
The deterministic algorithm implied by the theorem can be used to find an implicit (1− ε)-
approximate tree packing in near linear time for any fixed ε > 0. For sufficiently small but
fixed ε, a constant fraction of the trees in the tree packing 2-respect any fixed minimum cut.
Thus, if we sample a tree T from the tree packing, and then apply Karger’s deterministic
algorithm for finding the smallest cut that 2-respects T , we can find a minimum cut with
constant probability. We can repeat the sampling Θ(logn) times to obtain a high probability
bound.

Karger raised the following question in his paper. Can the dynamic programming
algorithm for finding the minimum cut that 2-respects a tree be made dynamic? That is,
suppose T is altered via edge swaps to yield a tree T ′ = T −e+e′ where e ∈ E(T) is removed
and replaced by a new edge e′. Can the solution for T be updated quickly to obtain a solution
for T ′? Note that G is static, only the tree is changing. The tree packing from Theorem 3
finds an implicit packing via Õ(m) edge swap operations from a starting tree T0. Suppose
there is a dynamic version of Karger’s dynamic program that handles updates to the tree in
amortized g(n) time per update. This would yield a deterministic algorithm for the global
mincut with a total time of Õ(mg(n)). We note that the best deterministic algorithm for
capacitated graphs is O(mn+ n2 logn) [27]. This would be improved be any g(n) = o(n).

4 Tree packings for k-cut via the LP relaxation

In this section we consider the k-Cut problem. Thorup [28] constructed a probability
distribution over spanning trees which were obtained via a recursive greedy tree packing
and showed that there is a tree T in the support of the distribution such that a minimum
weight k-cut contains at most 2(k − 1) edges of T . He then showed that greedy tree packing
with O(mk3 logn) trees closely approximates the ideal distribution. With this approach, he
derived the currently fastest known deterministic algorithm to find the minimum k-Cut in
Õ(mn2k−2) time. This is only slightly slower than the randomized Monte Carlo algorithm of
Karger and Stein [15] whose algorithm runs in Õ(n2k−2) time. Thorup’s algorithm is fairly
simple. However, the proofs are somewhat complex since they rely on the recursive tree
packing and its subtle properties. Arguing that the greedy tree packing approximates the
recursive tree packing is also technical.

Here we consider a different tree packing for k-Cut that arises from the LP relaxation
for k-Cut considered by Naor and Rabani [21]. This LP relaxation is shown in Figure 2.
The variables are xe ∈ [0, 1], e ∈ E which indicate whether an edge e is cut or not. There is
a constraint for each spanning tree T ∈ T (G); at least k − 1 edges from T need to be chosen
in a valid k-cut. We note that for k > 2 the upper bound constraint xe ≤ 1 is necessary.

The dual of the LP is given in Figure 3. Naor and Rabani claimed an integrality gap of 2
for the k-Cut LP. Their proof was incomplete and a correct proof was given in [3] in the
context of a more general problem called the Steiner k-Cut problem. Let λk(G) denote the
minimum k-cut capacity in G.

I Theorem 5 ([3]). The worst case integrality gap of the LP for k-Cut in Figure 2 is
2(1− 1/n).

I Corollary 6. Let (y, z) be an optimum solution for the dual LP for k-Cut shown in
Figure 3. Then

(k − 1)
∑
T

yT ≥
nλk(G)
2(n− 1) + z(E).

SOSA 2019

7:8 LP Relaxation and Tree Packing for Minimum k-cuts

min
∑
e∈E)

cexe

s.t.
∑
e∈T

xe ≥ k − 1 for all T ∈ T (G)

xe ≤ 1 for all e ∈ E
xe ≥ 0 for all e ∈ E

Figure 2 An LP relaxation for the k-Cut problem from [21].

max (k − 1)
∑

T∈T (G)

yT −
∑
e∈E

ze

s.t.
∑
T3e

yT ≤ ce + ze for all e ∈ E

yT ≥ 0 for all T ∈ T (G)

Figure 3 Dual of the LP relaxation from Figure 2.

Note that Corollary 2 is a special case of the preceding corollary.
I Remark. We note that the LP relaxation in Figure 2 assumes that G is connected. This
is easy to ensure by adding dummy edges of zero cost to make G connected. However, it
is useful to consider the general case when the number of connected components in G is h
where we assume for simplicity that h < k (if h ≥ k the problem is trivial). In this case
we need to consider the maximal forests in G, each of which has exactly n − h edges; to
avoid notational overload we use T (G) to denote the set of maximal forests of G. The LP
constraint now changes to∑

e∈T
xe ≥ k − h T ∈ T (G).

Tree packing interpretation of the dual LP: The dual LP has two types of variables.
For each edge e there is a variable ze and for each spanning tree T there is a variable yT .
The dual seeks to add capacity z : E → R+ to the original capacities c, and then find a
maximum tree packing y : T (G)→ R+ within the augmented capacities c+ z. The objective
is (k − 1)

∑
T yT −

∑
e∈E ze. Note that for k = 2, there is an optimum solution with z = 0;

this can be seen by the fact that for k = 2 the primal LP can omit the constraints xe ≤ 1
for e ∈ E. For k > 2 it may be advantageous to add capacity to some bottleneck edges (say
from a minimum cut) to increase the tree packing value, which is multiplied by (k − 1).

Our goal is to show that one can transparently carry over the arguments for global
minimum cut via tree packings to the k-Cut setting via (optimum) solutions y, z to the dual
LP. Theorem 5 plays the role of Corollary 2. The key lemma below is analogous to Lemma 4.

I Lemma 7. Let y, z be an optimum solution to the dual LP for k-Cut shown in Figure 3.
Let E′ ⊆ E be any subset of edges such that c(E′) ≤ αλk(G) for some α ≥ 1. For each

C. Chekuri, K. Quanrud, and C. Xu 7:9

tree T , let `T = |E′ ∩ E(T)| denote the number of edges in both T and E′. For an integer
h ≥ (k − 1), let qh =

∑
T :`T≤h pT denote the fraction of the trees in the packing induced by

y, z that contain at most h edges from E′. Then

qh ≥ 1−
2α(k − 1)(1− 1

n)
h+ 1 .

Proof. Let τk(G) denote
∑
T yT and let pT = yT /τk(G). Thus,∑

T

pT `T =
∑

T :`T≤h

pT `T +
∑

T :`T≥(h+1)

pT `T ≥ (h+ 1)(1− qh).

Because y is a valid tree packing in capacities c+ z,

τk(G)
∑
T

pT `T =
∑
T

yT `T ≤ c(E′) + z(E′) ≤ αλk(G) + z(E′) ≤ α(λk(G) + z(E)).

In the second to last inequality uses the fact that α ≥ 1 and z ≥ 0. Putting the preceding
inequalities together, we have

(h+ 1)(1− qh) ≤ 1
τk(G)α(λk(G) + z(E)).

We rearrange and simplify the inequality in Corollary 6 as

2
(

1− 1
n

)
(k − 1)

∑
T

yT ≥ λk(G) + 2(1− 1/n)z(E) ≥ λk(G) + z(E).

Plugging this inequality into the preceding one yields

(h+ 1)(1− qh) ≤ 2α(k − 1)(1− 1/n),

which implies that

qh ≥ 1−
2α(k − 1)(1− 1

n)
h+ 1 . J

I Remark. Lemma 7 does not require A to be a k-cut. Ultimately we will only apply Lemma 7
to k-cuts.
I Corollary 8. Let (y, z) be an optimum solution to the dual LP. For every optimum k-cut
A ⊆ E there is a tree T in the support of y such that |E(T) ∩A| ≤ 2k − 3.
Proof. We apply Lemma 7 with h = 2k − 3 and α = 1 and observe that qh > 0, which
implies the desired statement. J

I Corollary 9. Let (y, z) be a (1−ε)-approximate solution to the dual LP where ε < 1
2k−1 . For

every optimum k-cut A ⊆ E there is a tree T in the support of y such that |E(T)∩A| ≤ 2k−2.
Proof. Let qh be defined as in Lemma 7. If (y, z) is a (1− ε)-approximate solution to the
dual LP, we would have

(k − 1)
∑
T

yT ≥ (1− ε) nλk(G)
2(n− 1) + z(E) ≥ (1− ε)λk(G)

2 + z(E) (1)

in place of Corollary 6.
Examining the proof of Lemma 7, we see that optimality of (y, z) is not used in the proof

except when invoking Corollary 6. Repeating the proof of Lemma 7, except using (1) instead
of Corollary 6 and setting α = 1, we obtain the bound

qh ≥ 1− 2(k − 1)
(h+ 1)(1− ε) .

We observe that qh > 0 for h = 2k − 2 and ε < 1
2k−1 . J

SOSA 2019

7:10 LP Relaxation and Tree Packing for Minimum k-cuts

4.1 Number of approximate k-cuts
We now prove the following theorem.

I Theorem 10. Let G = (V,E) be an undirected edge-weighted graph and let k be a fixed
integer. For α ≥ 1, the number of cuts with weight ≤ αλk(G) is O

(
nb2α(k−1)c).

Proof. Let h = b2α(k − 1)c. By Lemma 7, there is a fixed value

qh = 1−
2α(k − 1)

(
1− 1

n

)
h+ 1 > 0

such that for any cut A with total weight ≤ αλk(G), then at least a qh-weighted fraction of
trees in the tree packing y contains at most h edges of A.

For a given tree T , consider the number of distinct cuts that contain h or fewer edges in T .
There are at most nh subsets of the tree’s edges of size at most h, and each selection induces
f(h) partitions of the components ≤ h+ 1 into at least 2 parts for some f(h) < hh. Thus
there are at most f(h)nh cuts containing h or fewer edges from T for some fixed function f .

If there are (strictly) more than f(h)nh/qh distinct cuts with weight at most αλk(G),
then by the pigeonhole principle there exists a tree T in the packing that induces strictly
more than f(h)nh different cuts with h or fewer edges – a contradiction. J

Like Lemma 7, Theorem 10 is not restricted to k-cuts. The primary application of
Theorem 10 is to count the number of approximate minimum k-cuts, as follows.

I Corollary 11. Let G = (V,E) be an undirected edge-weighted graph and let k be a fixed
integer. For α ≥ 1, the number of α-approximate minimum k-cuts is O(nb2α(k−1)c).

4.2 Enumerating all minimum k-cuts
We briefly describe how to enumerate all k-cuts via Lemma 7. The argument is basically
the same as that of Karger and Thorup. First, we compute an optimum solution (y∗, z∗)
to the dual LP. We can do this via the Ellipsoid method or other ways. Let β(n,m) be
the running time to find (y∗, z∗). Moreover, we find a basic feasible solution to the dual
LP we are guarantees that the support of y has at most m distinct trees. Now Lemma 7
guarantees that for every minimum k-cut A ⊆ E there is a tree T such that y(T) > 0 and T
(2k − 3)-respects A. Thus, to enumerate all minimum k-cuts the following procedure suffices.
For each of the trees T in the optimum packing we enumerate all k-cuts induced by removing
h = 2k − 3 edges from T . With appropriate care and data structures (see [14] and [28]) this
can be done for a single tree T in Õ(n2k−3 +m) time. The total time over all m trees in the
support of y is Õ(mn2k−3) for k > 2. This gives the following theorem.

I Theorem 12. For k > 2 all the minimum k-cuts of a graph with n nodes and m edges
can be computed in time Õ(mn2k−3 + β(m,n)) time where β(m,n) is the time to find an
optimum solution to the LP for k-cut.

We observe that Thorup’s algorithm [28] runs in time Õ(mn2k−2). Thorup uses greedy
tree packing in place of solving the LP. The optimality of the LP solution was crucial in
using the bound of 2k − 3 instead of 2k − 2. Thus, even though we obtain a slightly faster
algorithm than Thorup, we need to find an optimum solution to the LP which can be done
via the Ellipsoid method. The Ellipsoid method is not quite practical. Below we discuss a
different approach.

In recent work Quanrud showed that a (1− ε)-approximate solution to the dual LP can
be computed in near-linear time. We state his theorem below.

C. Chekuri, K. Quanrud, and C. Xu 7:11

I Theorem 13 ([23]). There is an algorithm that computes a (1− ε)-approximate solution
(y, z) the dual LP in O(m log3 n/ε2) time.

We observe that the preceding theorem guarantees O(m log3 n/ε2) trees in the support
of y and also implicity stores them in O(m log3 n/ε2) space. If we choose ε < 1/(2k − 1)
then, via Corollary 9, for every minimum k-cut A ⊆ E there is a tree T in the support of y
that (2k − 2)-respects A. This leads to an algorithm that in Õ(mn2k−2) time enumerates
all minimum k-cuts and recovers Thorup’s running time. However, we note that the trees
generated by the algorithm in the preceding theorem are implicit, and can be stored in small
space. It may be possible to use this additional structure to match or improve the run-time
achieved by Theorem 12.

I Remark. For unweighted graphs with Õ(m
n−k

1
ε2) trees [23] guarantees a (1−ε)-approximation.

This improves the running time to Õ(mn2k−3) for unweighted graphs.

We briefly discuss a potential approach to speed up the computation futher. Recall that
Karger describes an algorithm that given a spanning tree T of a graph G finds the minimum
cut that 2-respects T in Õ(m) time, speeding up the easier Õ(n2) time algorithm. We can
leverage this as follows. In the case of k > 2 we are given T and G and wish to find the
minimum k-cut induced by the removal of at most t edges where t is either 2k − 3 or 2k − 2
depending on the tree packing we use. Suppose A is a set of t − 2 edges of T . Removing
them from T yields a forest with t− 1 components. We can then apply Kargers algorithm
in each of these components with an appropriate graph. This results in a running time of
Õ(mnt−2) per tree rather than Õ(nt). We can try to build on Karger’s ideas to improve the
running time to find the best 3-cut induced by removing at most 4 edges from T . We can
then leverage this for larger values of k.

5 A new proof of the LP integrality gap for k-Cut

The proof of Theorem 5 in [3] is based on the primal-dual algorithm and analysis of Agarwal,
Klein and Ravi [1], and Goemans and Williamson [9] for the Steiner tree problem. For
this reason the proof is technical and indirect. Further, the proof from [3] is described
for the Steiner k-cut problem which has additional complexity. Here we give a different
and intuitive proof for k-Cut. Unlike the proof in [3], the proof here relies on optimality
properties of the LP solution and hence is less useful algorithmically. We note that [23] uses
Theorem 13 and a fast implementation of the algorithmic proof in [3] to obtain a near-linear
time (2 + ε)-approximation for k-Cut.

Let G = (V,E) be a graph with non-negative edge capacities ce, e ∈ E. We let deg(v) =∑
e∈δ(v) ce denote the capacitated degree of node v. We will assume without loss of generality

that V = {v1, v2, . . . , vn} and that the nodes are sorted in increasing order of degrees, that
is, deg(v1) ≤ deg(v2) ≤ . . . ≤ deg(vn). We observe that deg(v1) + deg(v2) + . . .+ deg(vk−1)
is an upper bound on the value of an optimum k-Cut; removing all the edges incident
to v1, v2, . . . , vk−1 gives a feasible solution in which the components are the k − 1 isolated
vertices {v1}, {v2}, . . . , {vk−1}, and a component consisting of the remaining nodes of the
graph.

The key lemma is the following which proves the integrality gap in a special case.

I Lemma 14. Let G be a connected graph and let x∗ be an optimum solution to the k-Cut
LP such that x∗(e) ∈ (0, 1) for each e ∈ E (in other words x∗ is fully fractional). Then∑k−1

i=1 deg(vi) ≤ 2(1− 1/n)
∑
e cex

∗
e.

SOSA 2019

7:12 LP Relaxation and Tree Packing for Minimum k-cuts

Proof. Let (y∗, z∗) be any fixed optimum solution to the dual LP. Complementary slackness
gives the following two properties:

z∗(e) = 0 for each e ∈ E, for if z∗(e) > 0 we would have x∗(e) = 1.
for each e ∈ E,

∑
T3e y

∗
T = ce since x∗(e) > 0.

From the second property above, and the fact that each spanning tree has exactly (n− 1)
edges, we conclude that

(n− 1)
∑
T

y∗T =
∑
e∈E

ce. (2)

Since the degrees are sorted,
k−1∑
i=1

deg(vi) ≤
k − 1
n

n∑
i=1

deg(vi) = 2k − 1
n

∑
e

ce. (3)

Putting the two preceding inequalities together,
k−1∑
i=1

deg(vi) ≤ 2(1− 1
n

)(k − 1)
∑
T

y∗T = 2(1− 1
n

)
∑
e

cex
∗
e,

where, the last equality is based on strong duality and the fact that z∗ = 0. J

The preceding lemma can be easily generalized to the case when G has h connected
components following the remark in the preceding section on the k-Cut LP. This gives us
the following.

I Corollary 15. Let G be a graph with h connected components and let x∗ be an optimum
solution to the k-Cut LP such that x∗(e) ∈ (0, 1) for each e ∈ E. Then

∑k−h
i=1 deg(vi) ≤

2(1− 1/n)
∑
e cex

∗
e.

Now we consider the general case when the optimum solution x∗ to the k-Cut LP is not
necessarily fully fractional as needed in Lemma 14. The following claim is easy.
I Claim 5.1. Let x∗(e) = 0 where e = uv. Let G′ be the graph obtained from G by contracting
u and v into a single node. Then there is a feasible solution x′ to the k-Cut LP in G′ of the
same cost as that of x∗. Moreover a feasible k-cut in G′ is a feasible k-cut in G of the same
cost.

Using the preceding claim we can assume without loss of generality that x∗(e) > 0 for
each e ∈ E. Let F = {e ∈ E | x∗(e) = 1}. Since the LP solution x∗ paid for the full cost of
the edges in F , we can recurse on G′ = G − F and the fractional solution x′ obtained by
restricting x∗ to E \ F . If G′ is connected then x′ is an optimum solution the k-Cut LP on
G′, and is fully fractional, and we can apply Lemma 14. However, G′ can be disconnected.
Let h be the number of connected components in G′. If h ≥ k we are done since A is a
feasible k-cut and c(A) ≤

∑
e cex

∗
e. The interesting case is when 2 ≤ h < k. In this case we

apply Corollary 15 based on the following claim which is intuitive and whose formal proof
we omit.
I Claim 5.2. Let x′ be the restriction of x∗ to E \ F . Then for any maximal forest T in G′
we have

∑
e∈T x

′(e) ≥ k − h. Moreover, x′ is an optimum solution to the k-Cut LP in G′.
From Corollary 15 we can find E′ ⊂ E \ F such that G′ − E′ induces a k-cut in G′ such

that

c(E′) ≤ 2
(

1− 1
n

) ∑
e∈E\F

cex
′
e = 2

(
1− 1

n

) ∑
e∈E\F

cex
∗
e.

C. Chekuri, K. Quanrud, and C. Xu 7:13

Therefore F ∪ E′ is a k-cut in G and we have that

c(F ∪ E′) = c(F) + c(E′) ≤
∑
e∈F

cex
∗
e + 2(1− 1

n
)
∑

e∈E\F

cex
∗
e ≤ 2(1− 1

n
)
∑
e∈E

cex
∗
e.

This finishes the proof. Note that the proof also gives a very simple rounding algorithm
assuming we have an optimum solution x∗ for the LP. Contract all edges with x∗(e) = 0,
remove all edges e with x∗(e) = 1, and use Corollary 14 in the residual graph to find the
(k − h) smallest degrees vertices.

An LP-based proof of Theorem 1: The preceding proof idea also yields a proof of Theo-
rem 1, which we sketch here. We are not sure whether this argument has been considered
previously. Recall that τ(G) is the optimum solution value to the tree packing LP, which
corresponds to the dual of the k-Cut LP when k = 2. When k = 2, as we remarked, the
LP does not require the upper bound constraints x(e) ≤ 1 which implies that the dual tree
packing LP does not have the z variables. Following Lemma 14 we consider a fully fractional
optimum solution x∗ to the k-Cut LP with k = 2 and an optimum dual solution y∗ to the
dual tree packing LP. We have

(n− 1)
∑
T

y∗T = (n− 1)τ(G) =
∑
e∈E

ce.

Consider the partition P consisting of all the singleton vertices; all edges cross this partition,
hence c(P) =

∑
e ce and |P| = n. Since τ(G) =

∑
e
ce

n−1 = c(P)
|P|−1 it must be the case that∑

e
ce

n−1 is the network strength which equals the tree packing value. When x∗ is not fully
fractional we can contract edges with x∗e = 0 and apply the preceding argument. A similar
argument can be used to prove the corresponding min-max relation for the fractional packing
of bases of a matroid.

6 Characterizing the optimum LP solution

We have seen that the dual of the LP relaxation for k-Cut yields a tree packing that can be
used in place of Thorup’s recursive tree packing. In this section we show that the two are
the same by characterizing the optimum LP solution for a given graph through a recursive
partitioning procedure. This yields a nested sequence of partitions of the vertex set of the
graph. This sequence is called the principal sequence of partitions of a graph and is better
understood in the more general context of submodular functions [22]. We refer the reader
to Fujishige’s article for more on this topic [7], and to [5, 17] for algorithmic aspects in
the setting of graphs. We also connect the LP relaxation with the Lagrangean relaxation
approach for k-Cut considered by Barahona [2] and Ravi and Sinha [24]. Their approach is
also built upon the principal sequence of partitions. In order to keep the discussion simple
we mainly follow the notation and approach of [24].

Given G = (V,E) and an edge set A ⊆ E let κ(A) denote the number of connected
components in G−A. Recall that the strength of a capacitated graph G, denoted by σ(G)
is defined as minA⊆E c(A)

κ(A)−1 . The k-Cut problem can be phrased as minA:κ(A)≥k c(A).
However, the constraint that κ(A) ≥ k is not straightforward. It is, however, not hard
to show that κ(A) is a supermodular set function over the ground set E. A Lagrangean
relaxation approach was considered in [2, 24]. To set this up we define, for any fixed edge
set A, a function gA : R+ → R as gA(b) = c(A)− b(κ(A)− 1). We then obtain the function

SOSA 2019

7:14 LP Relaxation and Tree Packing for Minimum k-cuts

g : R+ → R where g(b) = minA⊆E c(A)− b(κ(A)− 1). The quantity g(b) is the attack value
of the graph for parameter b and was considered by Cunningham [5] in his algorithm to
compute the strength of the graph.

Then, as noted in [2, 24],

min
A:κ(A)≥k

c(A) ≥ max
b≥0

min
A⊆E

c(A) + b(k − κ(A)) = max
b≥0

g(b) + b(k − 1).

Thus g′(b) = g(b) + b(k − 1) provides a lower bound on the optimum solution value. [24]
describes structural properties of the function g, several of which are explicit or implicit in
[5]. We state them below.

The functions g and g′ are continuous, concave and piecewise linear and have no more
than n− 1 breakpoints. The function g is non-increasing in b.
Under a non-degeneracy assumption on the graph, which is easy to ensure, the following
holds. If b is not a breakpoint then there is a unique edge set A such that gA(b) = g(b).
If b is a breakpoint then there are exactly two edge sets A,B such that gA(b) = gB(b).
If b0 is a breakpoint of g′ induced by edge sets A and B with κ(A) > κ(B) then B ⊂ A.
In particular A \B is contained in some connected component of G′ = (V,E \B).
Let b0 be a breakpoint of g′ induced by edge set A. Then the next breakpoint is induced
by the edge set which is the solution to the strength problem on the smallest strength
component of G′ = (V,E \A).

The above properties show that the breakpoints induce a sequence of partitions of V
which are refinements. Alternatively we consider the sequence of edge sets A1, A2, . . . ,

obtained by the following algorithm. We will assume that G is connected. Let A0 = ∅. Given
Ai we obtain Ai+1 ⊇ Ai as follows. Let Gi = (V,E \ Ai−1). If Gi has no edges we stop.
Otherwise let Ci+1 be the minimum strength connected component of Gi and Bi+1 be a
maximal minimum strength edge set of Ci+1. We define Ai+1 = Ai ∪ Bi+1, and τi to be
the strength of the component Ci+1. That is, τi = c(Ai)−c(Ai−1)

κ(Ai)−κ(Ai−1) . The process stops when
Ah = E. Let Pi denote the partition of V induced by Ai. Note that Pi+1 is obtained from
Pi by replacing Ci+1 by a minimum strength partition of Ci+1, thus Pi+1 is a refinement of
Pi and Ph consists of singleton nodes. Note that Thorup’s ideal tree packing is also based
on the same recursive decomposition. Let the ith breakpoint of g′ to be bi. It was shown
that bi = τi is precisely the ith breakpoint of the function g′ [24].

Ravi and Sinha obtained a 2-approximation for k-Cut as follows. Given the preceding
decomposition of G they consider the smallest j such that |Pj | ≥ k. If |Pj | = k they output
it and can argue that it is an optimum solution. Otherwise they do the following. Recall Pj
is obtained from Pj−1 by replacing the component Cj in G−Aj−1 by a minimum strength
decomposition of Cj . Let k′ = k − |Pj−1|. Consider the minimum strength partition of
Cj and let H1, H2, . . . ,Hk′ be the connected components of the partition with the smallest
shores. Output the cut Aj−1 ∪ (∪k′`=1δ(H`)).

6.1 An optimum LP solution from the decomposition
Given k, as before let j be the smallest index such that κ(Aj) ≥ k. We consider the following
solution to the LP:

x(e) = 1 for each e ∈ Aj−1.
x(e) = α for each e ∈ Aj \Aj−1, where α = k−κ(Aj−1)

κ(Aj)−κ(Aj−1) .

x(e) = 0 for each e ∈ E \Aj .

C. Chekuri, K. Quanrud, and C. Xu 7:15

I Lemma 16. The solution x is feasible and has objective value

c(Aj−1) + αc(Bj) = c(Aj−1) + (k − κ(Aj−1)) bj .

Proof. Let T be any spanning tree. We want to show that
∑
e∈T x(e) ≥ k − 1. For each j,

let κj = κ(Aj), and let `j = |T ∩Aj |. Then T has `j−1 edges of value x(e) = 1, and `j − `j−1
edges of value α. We have∑

e∈T
x(e) = `j−1 + (`j − `j−1)α

≥ κj−1 − 1 + (κj − κj−1)α = k − 1,

where we observe that the RHS of the first line is decreasing in both `j and `j−1, `j ≥ κj − 1,
and `j−1 ≥ κj−1 − 1. To calculate the objective value, we have∑

e∈E
x(e) =

∑
e∈Aj−1

c(e) +
∑

e∈Aj\Aj−1

αc(e) = c(Aj−1) + αc(Bj) J

The harder part is:

I Lemma 17. The solution x attains the optimum value to the LP relaxation.

Proof. We prove the claim by constructing a dual solution of equal value. See Figure 3 for
the dual LP.

Recall the definitions of Pi, Ai, Bi, and Ci from above. For each i, let κi = κ(Ai) = |Pi|
be the number of components in the ith partition. The sequence b1 < b2 < · · · < bj is the
breakpoints for g′, which is also the strengths of the components C1, C2, . . . , Cj . Let Qi be
the partition of Ci corresponding to Bi. An ideal tree packing, following [29], is a convex
combination of trees p : T (G)→ [0, 1] s.t.

∑
T pT = 1 with the following properties.

1. For each i, every tree T supported by p induces a tree in the graph G/Pi obtained by
contracting each component of Pi.

2. For each i and each edge e ∈ Bi, p induces
∑
T3e pT = c(e)/bi on e.

Every graph has an ideal tree packing, and (for example) can be constructed recursively as
follows. For each Ci, we write each Bi as a sum of bi (units of fractional) trees in Ci/Qi
(which holds because Bi is a minimum strength cut), and scale it down to a distribution p′
of trees in Ci/Qi with

∑
T3e p

′
T = c(e)/bi on each edge in Bi. An ideal tree packing now

corresponds to the distribution where we take the union of one sampled spanning tree from
(the distribution of) each Ci/Qi.

Let p : T (G)→ [0, 1] be an ideal tree packing. To construct our dual solution, we define
nonnegative edge potentials z(e) ≥ 0 and a tree packing y(t) ≥ 0 (packing into c+ z) s.t.

yT = bjp(T) for all T ∈ T (G),

c(e) + z(e) =
{
bj

bi
c(e) for all e ∈ Bi for i < j

c(e) otherwise.

We first claim that (y, z) is feasible in the dual LP; that is, y is a feasible tree packing w/r/t
the augmented capacities c+ z. Observe that for any edge e, y uses capacity bj times the
capacity by p. We need to show the capacity used by y along any edge e is at most c(e)+z(e).
We have two cases.
1. If e ∈ Bi for some i < j, then p uses capacity c(e)

bi
. In turn, y uses capacity bj

bi
c(e). By

choice of z(e), we have c(e) + z(e) = bj

bi
c(e), as desired.

SOSA 2019

7:16 LP Relaxation and Tree Packing for Minimum k-cuts

2. If e ∈ E \Aj−1, then p uses capacity at most c(e)
bj

. In turn, y uses capacity at most bj

bi
c(e).

But bi ≤ bj , so the capacity used by y is ≤ c(e).
We now analyze the objective value of our dual solution. We first observe that since each
tree supported by y is a tree in G/Pj , we have

(k − 1)
∑
T

yT = k − 1
κj − 1

∑
T

yT |T ∩Aj | =
k − 1
κj − 1

∑
e∈Aj

∑
T3e

yT

= k − 1
κj − 1bj

∑
i≤j

1
bi

∑
e∈Bi

c(e) = k − 1
κj − 1bj

∑
i≤j

κi − κi−1

= k − 1
κj − 1bj(κj − 1) = (k − 1)bj .

On the other hand, when subtracting out the augmented capacities, we have

∑
e∈E

z(e) =
∑
i<j

∑
e∈Bi

(
bj
bi
− 1
)
c(e) = bj

∑
i<j

1
bi

∑
e∈Bi

c(e)

− ∑
e∈Aj−1

c(e)

= bj
∑
i<j

(κi − κi−1)−
∑

e∈Aj−1

c(e) = bj (κj−1 − 1)−
∑

e∈Aj−1

c(e)

Thus the total objective value of our solution, as a function of bj , is

(k − 1)
∑
T

yT −
∑
e∈E

z(e) = (k − κj−1) bj +
∑

e∈Aj−1

c(e),

as desired. J

I Remark. One can also verify the optimality of (x, y, z) in the proof above by complimentary
slackness conditions. Recall that x and (y, z) satisfy the complimentary slackness conditions
if
1. ze > 0 only if xe = 1.
2. yT > 0 only if

∑
e∈T xe = k − 1.

3. xe > 0 only if
∑
T3e ye = ce + ze.

We address these individually.
1. ze > 0 only if e ∈ Bi for some i < j. In this case, e ∈ Aj−1 so xe = 1.
2. If yT > 0 then T is in the support of the ideal tree packing. In particular, T contains

exactly κj − 1 edges from Aj and κj − 1 edges from Aj−1, so we have∑
e∈T

xe =
∑

e∈T∩Aj−1

1 +
∑

e∈T∩(Aj\Aj−1)

k − κj−1

κj − κj−1
= κj−1 − 1 + k − κj−1 = k − 1,

as desired.
3. If xe > 0, then e ∈ Bi for some i ≤ j, so y uses bj

bi
c(e) = c(e) + z(e) units of capacity of

e, as desired.

6.2 Implications of the characterization
We now outline some implications of the preceding characterization of the optimum LP
solution.

Ravi and Sinha showed that Lagrangian relaxation lower bound is no weaker than the
one provided by LP relaxation. Here we show that they are equivalent.

C. Chekuri, K. Quanrud, and C. Xu 7:17

I Theorem 18. The Lagrangian relaxation value is the same as the LP value.

Proof. Let κi = κ(Ai) = |Pi| be the number of components after removing Ai. If κj = k for
some j, then the Lagrangian relaxation value is the min k-cut value. Hence it matches the
LP value. Otherwise, assume κj−1 < k < κj . Since g′ is concave, continuous and piecewise
linear, one can see that the function g′ maximizes at one of the breakpoint, and it is precisely
bj . Indeed, κj > k, so bj+1(k − κj) < 0 is a negative slope. We have

g′(bj) = c(Aj−1)− bj(κj−1 − 1) + bj(k − 1) = c(Aj−1) + (k − κj−1)bj .

This is precisely the value of the LP in Lemma 16. J

The preceding also gives yet another proof that the integrality gap of the LP is 2(1− 1/n).

Second, as we saw, for any value of k, an optimum dual solution to the k-Cut LP can be
derived from the ideal tree packing [28, 29]. The last issue is the connection between greedy
tree packing and the dual LP. At the high-level it is tempting to conjecture that greedy tree
packing is essentially approximating the dual LP via the standard MWU approach. Proving
the conjecture formally may require a fair amount of technical work and we leave it for future
work. We believe that some insights obtained in [23] could be useful in this context; [23]
recasts the LP relaxation for k-Cut into a pure covering LP, and the dual as a pure packing
LP that packs forests instead of trees.

References
1 Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–
456, 1995.

2 Francisco Barahona. On the k-cut problem. Operations Research Letters, 26(3):99–105,
2000.

3 Chandra Chekuri, Sudipto Guha, and Joseph Naor. The Steiner k-cut problem. SIAM
Journal on Discrete Mathematics, 20(1):261–271, 2006.

4 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 801–820. SIAM, 2017.

5 William H Cunningham. Optimal attack and reinforcement of a network. Journal of the
ACM (JACM), 32(3):549–561, 1985.

6 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez,
and Frances A. Rosamond. Cutting Up is Hard to Do: the Parameterized Complexity of
k-Cut and Related Problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

7 Satoru Fujishige. Theory of principal partitions revisited. In Research Trends in Combina-
torial Optimization, pages 127–162. Springer, 2009.

8 Harold N. Gabow and K. S. Manu. Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. Mathematical Programming, 82(1):83–109, June 1998.

9 Michel X Goemans and David P Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

10 O. Goldschmidt and D.S. Hochbaum. A polynomial algorithm for the k-cut problem for
fixed k. Mathematics of Operations Research, pages 24–37, 1994.

11 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster Exact and Approximate Algorithms
for k-Cut. In Proceedings of IEEE FOCS, 2018.

SOSA 2019

7:18 LP Relaxation and Tree Packing for Minimum k-cuts

12 Monika Henzinger, Satish Rao, and Di Wang. Local Flow Partitioning for Faster Edge
Connectivity. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1919–1938. SIAM, 2017.

13 David R Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, February 1995.

14 David R. Karger. Minimum Cuts in Near-linear Time. J. ACM, 47(1):46–76, January 2000.
doi:10.1145/331605.331608.

15 David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal
of the ACM (JACM), 43(4):601–640, 1996.

16 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic Global Minimum Cut of a
Simple Graph in Near-Linear Time. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665–674. ACM, 2015.

17 Vladimir Kolmogorov. A faster algorithm for computing the principal sequence of partitions
of a graph. Algorithmica, 56(4):394–412, 2010.

18 Pasin Manurangsi. Inapproximability of Maximum Edge Biclique, Maximum Balanced
Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis. In Proc. of ICALP,
volume 80 of LIPIcs, pages 79:1–79:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

19 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(1-6):583–596, 1992.
doi:10.1007/BF01758778.

20 Hiroshi Nagamochi and Yoko Kamidoi. Minimum cost subpartitions in graphs. Information
Processing Letters, 102(2):79–84, 2007. doi:10.1016/j.ipl.2006.11.011.

21 J Naor and Yuval Rabani. Tree Packing and Approximating k-Cuts. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, volume 103, page 26. SIAM,
2001.

22 H. Narayanan. The principal lattice of partitions of a submodular function. Linear Algebra
and its Applications, 144:179–216, 1991.

23 Kent Quanrud. Fast and Deterministic Approximations for k-Cut. CoRR, abs/1807.07143,
2018. arXiv:1807.07143.

24 R Ravi and Amitabh Sinha. Approximating k-cuts using network strength as a lagrangean
relaxation. European Journal of Operational Research, 186(1):77–90, 2008.

25 Huzur Saran and Vijay V. Vazirani. Finding k-Cuts Within Twice the Optimal. SIAM J.
Comput., 24(1):101–108, February 1995.

26 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

27 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, July 1997. doi:10.1145/263867.263872.

28 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.
29 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings

of the Fortieth Annual ACM Symposium on Theory of Computing, pages 159–166. ACM,
2008.

http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/10.1007/BF01758778
http://dx.doi.org/10.1016/j.ipl.2006.11.011
http://arxiv.org/abs/1807.07143
http://dx.doi.org/10.1145/263867.263872

	Introduction
	Preliminaries
	Tree packings and minimum cuts
	Number of approximate minimum cuts
	Algorithm for minimum cut via tree packings

	Tree packings for k-cut via the LP relaxation
	Number of approximate k-cuts
	Enumerating all minimum k-cuts

	A new proof of the LP integrality gap for k-Cut
	Characterizing the optimum LP solution
	An optimum LP solution from the decomposition
	Implications of the characterization

