
Eddy covariance raw data processing for CO2 and energy fluxes calculation 
at ICOS ecosystem stations

Simone Sabbatini1*, Ivan Mammarella2, Nicola Arriga3, Gerardo Fratini 4, Alexander Graf 5, 
Lukas Hörtnagl 6, Andreas Ibrom7, Bernard Longdoz8, Matthias Mauder 9, Lutz Merbold 6,10, 

Stefan Metzger11,17, Leonardo Montagnani12,18, Andrea Pitacco13, Corinna Rebmann14, Pavel Sedlák 15,16, 
Ladislav Šigut16, Domenico Vitale1, and Dario Papale1,19

1DIBAF, University of Tuscia, via San Camillo de Lellis snc, 01100 Viterbo, Italy
2Institute for Atmosphere and Earth System Research/Physics, PO Box 68, Faculty of Science, FI-00014, University of Helsinki, 
 Finland 
3Research Centre of Excellence Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 
 2610, Wilrijk, Belgium
4LI-COR Biosciences Inc., Lincoln, 68504, Nebraska, USA
5Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
6Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zürich, 
 Switzerland
7DTU Environment, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
8TERRA, Gembloux Agro-Bio-Tech, University of Liège, 5030 Gembloux, Belgium
9Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, KIT Campus Alpin, Kreuzeckbahnstraße 19, 
 D-82467 Garmisch-Partenkirchen, Germany
10Mazingira Centre, International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya 
11National Ecological Observatory Network, Battelle, 1685 38th Street, CO 80301 Boulder, USA
12Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy
13Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Via dell’Università 16, 
  35020 Legnaro, Italy
14Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
15Institute of Atmospheric Physics CAS, Bocni II/1401, CZ-14131 Praha 4, Czech Republic
16Global Change Research Institute, CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
17University of Wisconsin-Madison, Dept. of Atmospheric and Oceanic Sciences, 1225 West Dayton Street, Madison, WI 53706, USA
18Forest Services, Autonomous Province of Bolzano, Via Brennero 6, 39100 Bolzano, Italy
19CMCC Euro Mediterranean Centre on Climate Change, IAFES Division, viale Trieste 127, 01100 Viterbo, Italy

Received January 29, 2018; accepted August 20, 2018

Int. Agrophys., 2018, 32, 495-515
doi: 10.1515/intag-2017-0043

*Corresponding author e-mail: simone.sabbatini@unitus.it

A b s t r a c t. The eddy covariance is a powerful technique to 
estimate the surface-atmosphere exchange of different scalars 
at the ecosystem scale. The EC method is central to the ecosys-
tem component of the Integrated Carbon Observation System, 
a monitoring network for greenhouse gases across the European 
Continent. The data processing sequence applied to the collected 
raw data is complex, and multiple robust options for the differ-
ent steps are often available. For Integrated Carbon Observation 
System and similar networks, the standardisation of methods is 
essential to avoid methodological biases and improve compara-
bility of the results. We introduce here the steps of the processing 
chain applied to the eddy covariance data of Integrated Carbon 
Observation System stations for the estimation of final CO2, water 

and energy fluxes, including the calculation of their uncertain-
ties. The selected methods are discussed against valid alternative 
options in terms of suitability and respective drawbacks and 
advantages. The main challenge is to warrant standardised pro-
cessing for all stations in spite of the large differences in e.g. 
ecosystem traits and site conditions. The main achievement of 
the Integrated Carbon Observation System eddy covariance data 
processing is making CO2 and energy flux results as comparable 
and reliable as possible, given the current micrometeorological 
understanding and the generally accepted state-of-the-art process-
ing methods. 

K e y w o r d s: ICOS, protocol, method standardisation, bio-
sphere-atmosphere exchange, turbulent fluxes
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INTRODUCTION

The eddy covariance (EC) technique is a reliable, wide-
spread methodology used to quantify turbulent exchanges 
of trace gases and energy between a given ecosystem at 
the earth’s surface and the atmosphere. The technique 
relies on several assumptions about the surface of inter-
est and the atmospheric conditions during measurements, 
which however are not always met. An adequate setup 
of the instrumentation is needed, to minimise the rate of 
errors and increase the quality of the measurements. A con- 
sistent post-field raw data processing is then necessary, 
which includes several steps to calculate fluxes from raw 
measured variables (i.e. wind statistics, temperature and gas 
concentrations). Quality control (QC) and the evaluation of 
the overall uncertainty are also crucial parts of the process-
ing strategy. The present manuscript is based on the official 
“Protocol on Processing of Eddy Covariance Raw Data” 
of the Integrated Carbon Observation System (ICOS), 
a pan-European Research Infrastructure, and is focu- 
sed on the processing of EC raw data, defining the steps 
necessary for an accurate calculation of turbulent flux-
es of carbon dioxide (FCO2

), momentum (τ), sensible (H) 
and latent heat (LE). The processing chain for non-CO2 
fluxes is not included here. Besides concentrations and 
wind measurements, some auxiliary variables are meas-
ured in the field (e.g. climate variables), and additional 
parameters calculated during the processing (e.g. mass 
concentrations, air heat capacity), as detailed below. 
The main EC processing chain, used to derive the final 
data, is applied once per year; at the same time a near 
real time (NRT) processing is also performed day-by-
day following a similar scheme. The general aim of 
the definition of the processing scheme is to ensure stan- 
dardisation of flux calculations between ecosystems and 
comparability of the results. ICOS Class 1 and Class 2 
stations are equipped with an ultrasonic anemometer-ther-
mometer (SAT) Gill HS 50 or HS 100 (Gill Instruments 
Ltd, Lymington, UK), and an infrared gas analyser (IRGA) 
LICOR LI-7200 or LI-7200RS (LI-COR Biosciences, 
Lincoln, NE, USA), both collecting data at 10 or 20 Hz (for 
further details on ICOS EC setup). 

In order to achieve a reliable calculation of the ecosys-
tem fluxes to and from the atmosphere with the EC method, 
not only the covariance between high-frequency measured 
vertical wind speed (w) and the scalar of interest (s) has 
to be calculated, but corrections have to be applied to the 
raw data to amend the effect of instrumental limitations and 
deviances from the theory of application of the EC tech-
nique (Aubinet et al., 2012). 

The application of different corrections to the EC data-
sets has been widely discussed in the scientific literature, 
both for single options, steps and for the comprehensive 
set of corrections. Before the “Modern Age” of EC, began 
with the start of European and North-American networks 

(EUROFLUX, AMERIFLUX and FLUXNET, around the 
years 1995-1997), Baldocchi et al. (1988) depicted the state 
of the art of flux measurements, including EC and its most 
important corrections developed at the time. Afterwards, 
the presence of research networks and the technological 
development enhanced the opportunities for studies and 
inter-comparisons. A considerable number of publications 
on the topic followed: a brief and probably not exhaustive 
review includes the publications of Moncrieff et al. (1997), 
Aubinet et al. (2000), Baldocchi (2003), Lee et al. (2004), 
van Dijk et al. (2004), Aubinet et al. (2012), who described 
the EC methodology from both theoretical and practical 
perspectives, going through the several processing options 
required. On the side of comparisons, Mauder et al. (2007) 
tested five different combinations of post-field data pro-
cessing steps, while Mammarella et al. (2016) performed 
an inter-comparison of flux calculation in two different EC 
setup, using two different processing software, and apply-
ing different options of processing. For the single options 
and corrections, the most important publications are listed 
in the text.

Among several possible options that can be selected 
and used for each different step, a comprehensive “process-
ing chain” (main processing chain producing final data) has 
been conceived to be used in the treatment of the raw data 
collected at ICOS ecosystem stations. In this environmen-
tal research infrastructure and particularly in the ecosystem 
network, standardised processing is necessary to facilitate 
data inter-comparability between stations and to simplify 
the organisation of the centralised processing. The fact that 
all the stations use the same instrumentation setup helps 
this standardisation process. Some of the steps selected 
for the ICOS processing need the provisional calculation 
of specific parameters. This means that a pre-processing 
is necessary before the application of the actual process-
ing, where the required parameters are extrapolated on 
a sufficiently long dataset. Two months of raw data cov-
ering unchanged site characteristics and instrument setup 
are deemed sufficient, with the exception of fast-growing 
crops where a shorter period is accepted. For a list of the 
most important characteristics see Table 1. When a suf-
ficiently long dataset is not available, the application of 
a simplified – possibly less accurate – method is necessary, 
especially for NRT (producing daily output) data process-
ing (see below).

METHODOLOGY

The ICOS processing is performed once every year for 
each ICOS station. The core processing is made by using 
LICOR EddyPro software. All the routines used in the 
processing chain are applied centrally at the Ecosystem 
Thematic Centre (ETC), and will be publicly available in 
the Carbon Portal (https://www.icos-cp.eu). In addition to 
data processing, the ETC is the ICOS facility also in charge 
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of coordinating the general activities of the stations, pro-
viding support to the station teams, following the smooth 
proceeding of the measurements. The selected methods, 
however, allow a certain degree of flexibility, especially for 
those options depending on site characteristics, as shown 
below. The ICOS processing chain described here is cha- 
racterised by a Fourier-based spectral correction approach 
on the covariances of interest. The steps performed in 
the ICOS processing chain are described in this section, 
numbered from Step 1 to Step 14, and schematically 
reported in Figs 1-3. The NRT processing mentioned in the 
Introduction follows a similar path, with some differences 
due to the short window used in this case (i.e. 10 days), as 
detailed in a dedicated sub-section.

Step 1: Raw data quality control

Raw data may be erroneous for different reasons. 
Several tests to flag and possibly discard data exist, and 
several combinations of them are also possible (Vickers 
and Mahrt, 1997; Mauder et al., 2013). In principle, the 
tests selected for ICOS processing work independently on 
the dataset. However, as for some of them we discard bad 
quality records, the order of their application is also impor-
tant. The QC includes a test on the completeness of the 
available dataset, test on unrealistic values exceeding abso-
lute limits (including their deletion), elimination of spikes, 
and test on records in distorted wind sectors and their elimi-
nation (Fig. 1). The tests with deletion of bad data produce 
a flag according to Table 2, and the resulting gaps are filled 
with linear interpolation of neighbouring values only if the 
number of consecutive gaps is lower than 3, and with NaN 
if higher, as to reduce as much as possible the impact on the 
calculation of the covariances (Step 7).

Then, on this pre-cleaned dataset, additional tests are 
performed to determine the quality of the data, namely an 
amplitude resolution test, a test on drop-out values, and 
a test on instrument diagnostics.

Step 1.1: Completeness of the averaging interval (AI)
This step checks the number of originally missing re- 

cords in the time-series. The flagging system is based on 
the rules shown in Table 2: if the number of missing records 
is below 1% of what expected based on the acquisition 
frequency (i.e. 18000 for a 30-min long AI and sampling 

Ta b l e  1. List of the main characteristics that should be as con-
stant as possible, and of the variables to be represented, during 
the pre-processing phase. SAT = sonic anemometer thermometer, 
IRGA=infrared gas analyser, RH = relative humidity

Constant characteristics Overall variability
Measurement height RH

Canopy height Atmospheric 
stability

IRGA sampling line characteristics (tube 
length and diameter, flow rate)
Relative position of the SAT and IRGA
Roughness of the surface
Absence/presence of leaf/vegetation
Instruments calibration parameter

Fig. 1. ICOS flagging system applied to the raw time series in the processing schemes to flag and to eliminate corrupted data. Left: 
type of test, centre: criteria used in the flagging system, right: steps as numbered in the text and literature references, where it applies. 
N=number; SS=signal strength.
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Fig. 2. ICOS scheme of the steps performed for the calculation of “raw” (not corrected) fluxes. Left: corrections applied, centre: options 
selected or criteria used in the flagging scheme, right: steps as numbered in the text and literature references, where it applies. Green 
boxes indicate methods that require a pre-processing phase: green text between brackets indicates the method used in case the dataset 
is not available for the pre-processing. Dashed boxes indicate the steps used for the estimation of the uncertainty: text in black between 
brackets indicates the different method applied.  FS= indicator for flux stationarity.

Fig. 3. Spectral corrections. Left: corrections performed, centre: options selected or criteria used in the flagging scheme, 
right: steps as numbered in the text and literature references, where it applies. ζ=stability parameter; Ts=sonic temperature; 
RH=relative humidity; CF=correction factor. Green boxes indicate methods that require a pre-processing on a long data-
set: green text between brackets indicates the method used if the dataset is not available.
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frequency fs = 10 Hz) the flag is ‘0’. If this number is 
between 1 and 3% flag is ‘1’, while if more than 3% of 
records are missing the flag is ‘2’.

Step 1.2: Absolute limits test
Unrealistic data values are detected by comparing the 

minimum and maximum values of all points in the record 
to fixed thresholds: values above and below the thresholds 
are considered unphysical. Thresholds defining plausibility 
ranges for the exclusion of records are defined as follow: 

1. Horizontal wind (u and v): corresponding to the speci- 
fication of the sonic anemometer (±30 m s-1 for Gill HS).

2. Vertical wind (w): ±10 m s-1.
3. Sonic temperature (Ts): -25°C to +50°C (correspond-

ing to the operation range of LI-7200).
4. Carbon dioxide (CO2) dry mole fraction (ΧCO2,d): 320 

to 900 ppm.
5. Water vapour (H2O) dry mole fraction (ΧH2O,d): 0 to 

140 ppt (corresponding to saturated water vapour pressure 
at max temperature, 12.3 kPa).

The records are discarded accordingly, and flags issued 
according to Table 2. 

Step 1.3: De-spiking
Spikes are large, unrealistic deviations from the average 

signal, mainly due to electrical failures, instrument prob-
lems, or data transmission issues, that need to be eliminated 
from the raw dataset to avoid biased (or fictitious) flux va- 
lues. At the same time, physical and large fluctuations of 
the measured variables must be retained. The method for 
spike determination, elimination and flagging is based 
on the median absolute deviation (MAD) as described in 
Mauder et al. (2013). MAD is calculated as: 

(1)
where: xi is the single record and <x> the median of the 
data within a 30-min window. Records out of the following 
range are considered spikes:

(2)
where: h is a parameter which is set to 7. The factor of 
0.6745 allows the correspondence between MAD = 1 and 
one arithmetic standard deviation in case of Gaussian fre-
quency distribution (Mauder et al., 2013). A flag is set 
according to Table 2, considering the number of discarded 
values (i.e. values identified as spikes).

Step 1.4: Wind direction test
Sonic anemometer arms and tower structures are known 

to distort the wind component. Also, other obstacles in the 
source area could create disturbances. According to this 
test, records are eliminated by default if the corresponding 
instantaneous wind direction lies within a range of ±10° 
with respect to the sonic arm, corresponding also to the 
direction of the tower. This range corresponds to the dis-
torted wind sector in the calibration tunnel for the Gill HS 
due to the presence of the arm (Gill, personal communica-
tion). Different ranges and additional sectors can however 
be defined according to site-specific characteristics, such 
as tower size and transparency. Flags are raised according 
to Table 1. 

Step 1.5: Amplitude resolution test
The amplitute resolution test identifies data with a too 

low variance to be properly assessed by the instrument 
resolution. It is performed according to Vickers and Mahrt 
(1997). A series of discrete frequency distributions for half-
overlapping windows containing 1000 data points each is 
built, moving one-half the window width at a time through 
the series. For each window position, data are grouped 
within 100 bins, the total range of variation covered by all 
bins is the smaller between the full range of occurring data 
and seven standard deviations. When the number of empty 
bins in the discrete frequency distribution exceeds a critical 
threshold value, the record is flagged as a resolution prob-
lem. This test only produces a ‘0’ or ‘2’ flag. A flag = ‘2’ is 
raised if the number of empty bins in the discrete frequency 
distribution exceeds 70%.

Step 1.6: Drop out test
The drop out test is performed to flag sudden “jumps” 

in the timeseries which continue for a too long period to be 
identified by the despiking procedure (offsets). It is based 
on the same window and frequency distributions used for 
the amplitude resolution test. Consecutive points that fall 
into the same bin of the frequency distribution are tenta-
tively identified as dropouts. When the total number of 
dropouts in the record exceeds a threshold value, the record 
is flagged for dropouts. This test only produces flag ‘0’ 
and ‘1’. The definition of the thresholds for this test varies 
depending on the location of the record in the distribution. 
For records between the 10th and the 90th percentile, if the 
number of consecutive points in the same bin in the discrete 
frequency distribution is higher than 10% of the total num-
ber of records, the flag is ‘1’; for records beyond this range 
the threshold is set to 6% to consider the higher sensitivity 
to the extremes of the distribution.

Step 1.7: Instruments diagnostics
The Gill HS ultrasonic anemometer outputs information 

on possible failures in transducer communication, while the 
LICOR LI-7200 diagnostics include information on several 

Ta b l e  2. Flagging logic applied to steps from 1.1 to 1.4: 0 = good 
quality; 1 = moderate quality; 2 = bad quality; N = number of 
records within the averaging interval (AI)

% missing/deleted records Flag
N<=1% 0

1%<N<=3% 1
N>3% 2
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possible failures of the instrument. If one of the diagnos-
tics of the instrument detects a problem within the AI, no 
records are discarded, but the AI is flagged ‘2’. This is done 
based on the diagnostic codes produced by the sonic ane-
mometer (issued at the selected frequency when an error 
occurs) and the IRGA (issued at 1 Hz). In addition, based 
on the average signal strength of the gas analyser, if this is 
above 90% in the AI a flag ‘0’ is produced; if between 75 
and 90%, the flag is ‘1’; if below 75%, flag ‘2’ is produced. 
We stress that this value is not an absolute indicator of 
measurement offset, as the error induced by dirt in the cell 
depends on the spectral nature of the particles as well as on 
temperature. Furthermore, the user can reset the value to 
100% after cleaning, setting the conditions of deployment 
at the cleaning as reference (LICOR, personal communica-
tion). For that reason, the flag based on signal strength is 
indicative of the amount of dirt in the cell, and no data are 
discarded from its value.

Step 2: Selection of the length of the AI

The AI must be long enough to include eddies in the low 
frequency range of the spectrum, and short enough to avoid 
inclusion of non-turbulent motions and potential overesti-
mation of turbulent fluxes. The widely accepted length of 
30 min (Aubinet et al., 2000), associated with the spectral 
correction and the Ogive test described below, is deemed 
appropriate.

Step 3: Coordinate rotation of sonic anemometer wind 
data

One of the assumptions at the basis of the EC method 
is that, on average, no vertical motion is present (w = 0, 
where the overbar represent the mean value, i.e. the va- 
lue of w averaged over the AI). This means that the pole 
where the SAT is installed has to be perpendicular to the 
mean streamline. This assumption is not always met due to 
small divergences between the mean wind streamline and 
the ground, imperfect levelling of the instrument, or large 
scale movements, i.e. low frequency contributions (below 
1/(length of AI) Hz). Hence, the coordinate frame has to 
be rotated so that the vertical turbulent flux divergence 
approximates the total flux divergence as close as possible 
(Finnigan et al., 2003). ICOS uses a modified version of the 
planar-fit (PF) method proposed by Wilczak et al., 2001 to 
rotate the coordinates of the sonic anemometer, often re- 
ferenced as sector-wise PF (Mammarella et al., 2007). This 
PF method assumes that w = 0 only applies to longer aver-
aging periods, in the scale of weeks. Firstly, a plane is fitted 
for each wind sector to a long, un-rotated dataset including 
all the possible wind directions:

(3)

where w0, u0 and v0 are time series of mean un-rotated wind 
components and b0, b1 and b2 are regression coefficients, 
calculated using a bilinear regression. Then, for each aver-
aging period the coordinate system is defined as having the 
vertical (z) axis perpendicular to the plane, the first horizon-
tal axis (x) as the normal projection of the wind velocity to 
the plane, and the y-axis as normal to the other axes. The 
rotation matrix results to be time-independent, and it does 
not need to be fitted for each AI.

Also in this case a period of two months to be pre-
processed is deemed sufficient to fit the plane with the 
number of sectors set to 8 by default. A different number 
of sectors might be considered on the basis of vegetation 
and topographic characteristics. For the detailed equations 
of the method see the above-mentioned publications, and 
also van Dijk et al. (2004). SAT orientation and canopy 
structure have a significant influence on the fit; this means 
that a new plane is fitted in case relevant changes occur to 
these parameters. In case the plane for a given wind sector 
is not well defined (e.g. not enough wind data from this 
direction), the closest valid sector is used to extrapolate the 
planar-fit parameter. If the time period for which data with 
a given site configuration is available is shorter than the 
required two months, a different method is applied (the 2D 
rotation method as in Aubinet et al. (2000) and a special 
flag is raised.

Alternative options: Different options suitable for the 
coordinate rotation are available in the scientific literature, 
in particular the so-called 2D (Aubinet et al., 2000) and 3D 
(McMillen, 1988) rotations. The 3D rotation was excluded 
from the ICOS routine, while the 2D rotation is used for 
the estimation of the uncertainty. An overall discussion 
on alternative procedures is reported in the Results and 
Discussion section.

Step 4: Correction for concentration/mole fraction drift 
of the IRGA

The LI-7200 is subject to drift in measured mole frac-
tions due to thermal expansion, aging of components, or 
dirt contamination. If an offset exists in the absorptance 
determination from the IRGA, not only the estimation of the 
mole fraction of the gas is biased, but also its fluctuations, 
due to the polynomial (non-linear) calibration curve used 
to convert absorptance into gas densities, with an impact 
on the calculation of turbulent fluxes (Fratini et al., 2014). 
Even if these issues are expected to be strongly reduced by 
the filter and heating in the tube and the periodic cleaning 
and calibrations, the problem might still arise. The method 
by Fratini et al., 2014 is used to correct the data: assuming 
that the zero offset in mole fraction readings (∆χg,w) increas-
es linearly between two consecutive field calibrations, the 
offset measured in occasion of calibration can be converted 
into the corresponding zero offset absorptance bias (∆a) 
through the inverse of the factory calibration polynomial, 
and spreading it linearly between two calibrations leads 
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each AI to be characterised by a specific absorptance off-
set (∆ai). The inverse of the calibration curve is then used 
to convert raw mole fraction values χg,w,i into the original 
absorptances ai, and these latter corrected for ∆ai using:

(4)

ai,corr is then easily converted to mole fraction χg,w, corr,i apply-
ing the calibration curve, yielding a corrected dataset which 
can be used for the calculation of fluxes. For the LI7200 
the calibration function uses number densities: measure-
ments of cell temperature and pressure are necessary for 
conversion to/from mixing ratios. After each calibration the 
method is applied to the data of the LI-7200.

Step 5: Time lag compensation

In EC systems, and particularly those using a closed 
path gas analyser, a lag exists between measurements of 
w and gas scalars (sg), due to the path the air sample has to 
travel from the inlet to the sampling cell of the IRGA, and 
due to the separation between the centre of the anemometer 
path and the inlet of the IRGA. In closed-path systems like 
the LI-7200, this time lag varies mostly with sampling vo- 
lume and flow in the tube, and depending on water vapour 
humidity conditions; more slightly with wind speed and 
direction. The different treatment of the electronic signal 
might also contribute. Time series of w and sg need to be 
shifted consequently to properly correct this lag, or the 
covariances will be dampened and the fluxes underestimat-
ed. Even if a “nominal” time lag can be easily calculated 
based on the volume of the tube and the flow rate of the 
pump, this lag can vary with time due to different rea-
sons such as accumulation of dirt in the filter of the tube, 
slight fluctuations of the flow rates, and relative humid-
ity (RH) content. It may also be different between gases, 
as molecules of H2O tend to adhere more to the walls of 
the tube than other gases like CO2, resulting in a higher 
time lag (Ibrom et al., 2007b; Massman and Ibrom, 2008; 
Mammarella et al., 2009; Nordbo et al., 2014). The method 
used to correct this lag in ICOS is called “time lag optimi-
sation”, as it consists in a modification of the well-known 
covariance maximisation approach (Aubinet et al., 2012). 
Both methods seek an extremum in the cross correlation 
function between w and the sg that has the same direction 
as the flux (e.g. a minimum for a negative flux). However, 
in the time lag optimisation the sizes of the window where 
to look for the time lag are computed continuously instead 
of being constant. For H2O, different windows and nominal 
lags are automatically computed for different RH classes in 
order to take into account the dependence of the time lag on 
RH. The width and centre of the windows are statistically 
computed on the basis of an existing, long enough dataset, 
subjected to the cross correlation analysis: the nominal time 

lag (TLnom) is calculated as the median of the single time 
lags (TLi), and the limits of the window (TLrange) are defined 
by:

(5)

where: <> indicates the median operator. For water vapour, 
this procedure is replicated for each RH class, and a diffe- 
rent TLrange is calculated for any different RH. TLnom is used 
as default value to be used as time lag in case the actual 
time lag cannot be determined in the plausibility window 
(i.e. if an extremum is not found). This method requests 
the execution of Steps 1-5 of the standard processing chain 
on a sufficiently long dataset to calculate the time lag 
parameters. The dataset has to cover a range of climatic 
conditions as broad as possible, and its minimum length is 
two months. The two time series are then shifted accord-
ingly with the calculated time lag in every AI. In the case of 
a shorter period with a given site configuration, the method 
is switched to the “traditional” covariance maximisation 
(i.e. using a fixed window). A special flag indicates the 
occurrence of this different method applied to the final 
users.

Alternative options: The most widespread alternative 
method consists in maximising the covariance in fixed 
windows, a less flexible approach especially for H2O con-
centrations at different values of RH. See also the Results 
and discussion section.

Step 6: Calculation of background signal and fluctuations

The procedure of separating background signals (x) 
and fluctuations (x’) of a time series x = x(t) is based on 
Reynolds averaging (Lee et al., 2004):

x’=x – x. (6)
This operation introduces a spectral loss, especially at 

the low frequency end of the spectra (Kaimal and Finnigan, 
1994, see Step 10.2). The method used in the main process-
ing chain of ICOS is the so-called block averaging (BA). 
The effect on the spectra can be conveniently represent-
ed with a high-pass filter, and then corrected (see below). 
Block averaging consists of time averaging all the instan-
taneous values in an AI, and the subsequent calculation of 
fluctuations as instantaneous deviations from this average 
(xBA):

(7)

(8)
where: N is the number of digital sampling instants j of 
the time series x(t) (discrete form) in the AI. As the mean 
is constant in the averaging interval, BA fulfils Reynolds 
averaging rules (Lee et al., 2004) and impacts at a lower 
degree the spectra (Rannik and Vesala, 1999). 
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Alternative options: two alternative methods are widely 
used in the EC community, namely the linear de-trending 
(LD, Gash and Culf, 1996) and the autoregressive filtering 
(AF, Moore, 1986; McMillen, 1988). The LD is used as an 
alternative method to calculate the uncertainty in the data. 
An overall discussion is reported in the respective section.

Step 7: Calculation of final covariances and other 
statistics

After the steps described in the above, the final covarian- 
ces are calculated, together with other moment statistics. 
In turbulent flows, a given variable x can be statistically 
described by its probability density function (PDF) or 
associated statistical moments. Assuming stationarity and 
ergodicity of x (Kaimal and Finnigan, 1994) we are able to 
calculate statistical moments, characterizing the PDF of x, 
from the measured high frequency time series x(t). 

Single-variable statistics include moments used for flag-
ging data: mean value (first order moment), variance (and 
thus standard deviation), skewness and kurtosis, i.e. se- 
cond, third and fourth order moments. Indicating with n the 
moment, we can resume all of them in a unique equation: 

(9)
where: x'n indicates the n-th moment, N = lAI fs, lAI the length 
of the averaging interval (s) and fs the sampling frequency 
(Hz), xj the instantaneous value of the variable x, x the mean 
value.

In the same way, moments of any order associated with 
joint probability density function of two random variables 
can be calculated. In particular, covariances among verti-
cal wind component w and all other variables also need to 
be calculated. In general, the covariance of any wind com-
ponent uk or scalar sg with another wind component ui is 
calculated as follows: 

(10)

(11)

where: uk, with k =1, 2, 3, represents wind components ui, vi 
or wi, and the subscript j indicates the instantaneous values 
of the corresponding scalar or wind component from 1 to N.

Please note that this step refers to the calculation of 
the final covariances used for the calculation of the fluxes. 
However, statistics are also calculated after each step of the 
processing.

Step 8: Quality control on covariances: steady-state and 
well developed turbulence tests

These two tests (Foken and Wichura, 1996), applied 
to the calculated covariances, are necessary to check the 
verification of basic assumptions of the EC method, i.e. the 

stationarity of the variables in the AI and the occurrence 
of conditions where the Monin-Obukhov similarity theory 
applies.

Step 8.1 Steady-state test (Foken and Wichura, 1996)
Typical non-stationarity is driven by the change of 

meteorological variables with the time of the day, changes 
of weather patterns, significant mesoscale variability, or 
changes of the measuring point relative to the measuring 
events such as the phase of a gravity wave. The method to 
define non-steady-state conditions within AI by Foken and 
Wichura (1996) uses an indicator for flux stationarity FS:

(12)
where: m = 6 is a divisor of the AI defining a 5 mins win-
dow. x's'(AI/m) is the mean of the covariance between w and s 
calculated in the m windows of 5 min:

(13)

The flux is considered non-stationary if FS exceeds 
30%.

Step 8.2 Well-developed turbulence test (Foken and 
Wichura, 1996)
Flux-variance similarity is used to test the development 

of turbulent conditions, where the normalized standard  
deviation of wind components and a scalar are parame- 
terized as a function of stability (Stull, 1988; Kaimal and 
Finnigan, 1994). The measured and the modelled norma- 
lized standard deviations are compared according to:

(14)

where: variable x may be either a wind velocity component 
or a scalar, and x* the appropriate scaling parameter. The 
test can in theory be done for the integral turbulence char-
acteristics (ITC) of both variables used to determine the 
covariance, but it is applied only on w (more robust), with 
the exception of w’u’ for which both parameters are calcu-
lated, and the ITCσ is then derived using the parameter that 
leads to the higher difference between the modelled and 
the measured value (numerator Eq. (14)). The models used 
for (σx/x*)mod are the ones published in Thomas and Foken 
(2002) (Table 2). An ITCσ exceeding 30% is deemed as the 
absence of well-developed turbulence conditions.

Step 9: From covariances to fluxes: conversion 
to physical units 

Calculated covariances as described above need to be 
converted in physical units, mainly via multiplication by 
meteorological parameters and constants. The subscript ‘0’ 
indicates that the fluxes are still not corrected for spectral 
attenuation, and the sonic temperature not yet corrected for 
the humidity effect:
Flux of buoyancy (W m-2):
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(15)
Flux of CO2 (μmol m-2 s-1):

(16)
Flux of H2O (mmol m-2 s-1):

(17)
Flux of evapotranspiration (kg m-2 s-1)

(18)
Flux of latent heat (W m-2)

(19)
Flux of momentum (kg m-1 s-2)

(20)
Friction velocity (m s-1)

(21)
where χCO2,d is the mixing ratio of CO2, χv,d that of water 
vapour; Mv the molecular weight of water vapour: 0.01802 
kg mol-1; λ the specific evaporation heat: (3147.5-2.37Ta) 
103; and pd = pa – e is the dry air partial pressure. Gas fluxes 
are calculated using the dry mole fraction data, which are 
not affected by density fluctuations, differently from e.g. 
mole fraction (Kowalski and Serrano Ortiz, 2007). As the 
ICOS selected IRGA is able to output the gas quantities in 
terms of dry mole fraction, this is a mandatory variable to 
be acquired at ICOS stations. The IRGA applies a transfor-
mation in its software to convert mole fraction in dry mole 
fraction using the high-frequency water vapour concentra-
tion data.  

Steps to calculate the air density ρa,m:

a)  (air molar volume); (22)

b) (water vapour mass concentrations); (23)

c) (dry air mass concentrations); (24)

d) (25)

Steps to calculate the air heat capacity at constant pres-
sure cp:

a)

(water vapour heat capacity at constant 
pressure);

(26)

b)

(dry air heat capacity at constant pressure);
(27)

c)  (specific humidity); (28)

d) (29)

Step 10: Spectral correction

In the frequency domain, the EC system acts like a fil-
ter in both high and low frequency ranges. Main cause of 
losses at the low frequency range is the finite AI that limits 
the contribution of large eddies, together with the method 
used to calculate turbulent fluctuations (see Step 6), which 
acts as a high-pass filter. Main cause for losses at the high 
frequency range is the air transport system of the IRGA, 
together with the sensor separation and inadequate fre-
quency response of instruments leading to the incapability 
of the measurement system to detect small-scale varia-
tions. To correct for these losses, the correction is based on 
the knowledge of the actual spectral characteristics of the 
measured variables, and on the calculation of the difference 
with a theoretical, un-attenuated spectrum. A loop is pre-
sent in this part of the processing chain (Fig. 3), where the 
corrections are performed iteratively to refine the calcula-
tion of the spectral parameters. 

Step 10.1: Calculation and quality of spectra 
and cospectra
Calculation of power spectra (and cospectra) is a fun-

damental step to perform spectral analysis and correction 
of the fluxes. Calculated fluxes are composed of eddies of 
different lengths, i.e. signals of different contributions in 
the frequency domain: the knowledge of the spectral cha- 
racteristics of the EC system and the shape of the model 
spectra is crucial for the execution of spectral corrections. 
In ICOS processing the calculation of power (co)spectra, 
at the basis of the analysis in the frequency domain, is per-
formed using the Fourier transform (Kaimal and Finnigan, 
1994), which allows to correct the spectral losses analys-
ing the amount of variance associated with each specific 
frequency range. Validity of the Fourier transform for EC 
measurements is supported by the Taylor’s hypothesis of 
frozen turbulence (Taylor, 1938). For further details on the 
theory (Stull, 1988).

Full spectra and cospectra are calculated for each AI 
over a frequency range up to half the acquisition frequency 
(Nyquist frequency). The algorithm used to calculate the 
Fourier transform is the FFT (Fast Fourier Transform), 
which is applied to the time series after their reduction 
and tapering (Kaimal and Kristensen, 1991). In order 
to apply the FFT algorithm, the number of samples used 
will be equal to the power-of-two closest to the available 
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number of records (i.e. 214 for 10 Hz and 215 for 20 Hz 
data). Binned cospectra are also calculated to reduce the 
noise dividing the frequency range in exponentially spaced 
frequency bins, and averaging individual cospectra values 
that fall within each bin (Smith, 1997). Finally, spectra and 
cospectra are normalised using relevant run variances and 
covariances, recalculated for the records used for (co)spec-
tra calculation, and averaged into the exponentially spaced 
frequency base. The integral of the spectral density rep-
resents the corresponding variance and the integral of the 
cospectral density the corresponding covariance (Aubinet 
et al., 2000). Normalisation by the measured (co)variances 
forces the area below the measured (co)spectra to 1, but 
the ratio between the areas (model/measured (co)spectra) is 
preserved. Thus, addressing losses in the different ranges of 
frequency allows having a flux corrected for spectral losses 
due to different causes.

The approach to compensate for spectral losses is dif-
ferent in the low and high frequency ranges, and for fluxes 
measured by the SAT and gas scalars. All the methods used 
in ICOS processing are based on Fourier transforms, and 
rely on the calculation of an ideal (co)spectrum unaffect-
ed by attenuations (CSId,F), on the definition of a transfer 
function (TF) characteristic of the filtering made by the 
measuring system (both functions of frequency f (Hz)), and 
on the estimation of a spectral correction factor (CF):

(30)

Multiplying the attenuated flux for CF leads to the spec-
tral corrected flux. Several parameterisations exist of the 
ideal cospectrum, which depends mainly upon atmospheric 
stability conditions, frequency, horizontal wind speed, 
measurement height and scalar of interest. One of the most 
used model cospectrum is based on the formulation by 
Kaimal et al. (1972), and is implemented also in the ICOS 
processing when an analytic approach is adopted. In the 
following we describe the application of spectral correc-
tions separately for the different frequency ranges and the 
different types of flux.

Step 10.2: Low-frequency range spectral correction 
(Moncrieff et al., 2004)
Losses at the low end of the (co)spectra mainly arise 

when the necessarily finite average time is not long enough 
to capture the full contribution of the large eddies to the 
fluxes. The methods used to separate fluctuations from the 
background signal enhance this event, excluding eddies 
with periods higher than the averaging interval. This cor-
rection is based on an analytic approach.

In this case the ideal cospectrum is based on the formu-
lation of Moncrieff et al. (1997), while TF represents the 
dampening at the low frequency range. Application of TF to 
the cospectra gives the attenuation due to frequency losses, 
and because of the proportional relationship between a flux 

and the integral of its cospectrum, a spectral correction fac-
tor can be easily calculated. This can be done on the basis 
of the method used to separate the fluctuations from the 
rest, which acts as a filter as said above. From Rannik and 
Vesala (1999) and Moncrieff et al. (2004) we get the high-
pass transfer function corresponding to the block average:

(31)

where: lAI is the length of AI (s). The corresponding correc-
tion factor (HPSCF) is calculated as the ratio:

(32)

where: fmax is the higher frequency contributing to the flux, 
and CSId,F (f) represents the model describing the normalised 
un-attenuated cospectrum for a given flux F, depending on 
the natural frequency f.

Step 10.3: High-frequency range spectral correction
Corrections of the high frequency part of the spectra 

and cospectra are more detailed as this end of the spectra 
is defined and several publications exist to correct the cor-
responding attenuations.

A fully analytic method is applied to correct H and τ, an 
experimental method for the other fluxes.

Step 10.3.1: Fully analytic method (Moncrieff et al., 
1997)
This method is used in ICOS processing only to cor-

rect anemometric fluxes (i.e. H and τ). With this method 
both the ideal cospectral densities CSId,F and the low-pass 
transfer function LPTFSAT are calculated in an analytical 
(theoretical) way. LPTFSAT results from a combination of 
transfer functions each characterising a source of attenu-
ation, as described among others in Moore et al. (1986); 
Moncrieff et al. (1997), from where all of the transfer func-
tions reported below are taken, while the cospectral model 
is based on Kaimal et al. (1972):

1. LPTFSAT of sensor-specific high frequency loss:

(33)

where: τs the instrument-specific time constant.
2. TF of the sonic anemometer path averaging for w and 

for Ts, respectively:

(34)

(35)

where fw is the normalised frequency:
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(36)

and lp is the path length of the sonic anemometer transducers.
The final transfer function of the analytic method results 

from the product:

(37)

Application of Eq. (36) using LPTFSAT allows the cal-
culation of the corresponding low-pass spectral correction 
factor for sonic fluxes (LPSCFSAT).

Step 10.3.2: Experimental method (Ibrom et al., 
2007a; Fratini et al., 2012)
The experimental method firstly described in Ibrom et 

al. (2007a) and then refined in Fratini et al., 2012 is applied 
to gas scalars. Assuming spectral similarity, this method 
derives in-situ the un-attenuated spectral density, assuming 
that the spectrum of the sonic temperature is unaffected by 
the main sources of dampening, and then represents a proxy 
for the ideal spectrum of gas concentrations. 

The effect of the measuring system is approximated 
with a first-order recursive, infinite impulse response fil-
ter (IIR), whose amplitude in the frequency domain is well 
approximated by the Lorentzian: 

(38)

where: Smeas represents the ensemble averaged measured 
spectra, and STs the ensemble averaged spectra of sonic 
temperature representing the ideal unaffected spectrum. 
This way, the cut-off frequency fc can be determined in-
situ based on the actual conditions of the measuring system 
and of the ecosystem using Eq. (38). For water vapour 
in closed-path systems, this fit is performed for different 
classes of RH, and then the general cut-off frequency is 
extrapolated fitting the single cut-off frequencies fci to an 
exponential function:

(39)
where: a, b and c are fitting parameters.

The low-pass spectral correction factor for gas scalars 
is then calculated as:

(40)

where: A1 and A2 are parameters determined by filtering 
sonic temperature time series with the low pass recursive 
filter using varying values of the filter constant, in both sta-
ble and unstable atmospheric stratifications (see Ibrom et 
al., 2007a for details). This leads to a LPSCFGAS that not 
only depends on stratification, but is also site-specific.

Both the gas (attenuated) and the sonic temperature 
(un-attenuated) spectra are intended as ensemble-averaged 
spectra. Averaging is performed on binned spectra (see 
Step. 10.1) selected for high-quality. This quality control 
is based on the same tests applied to the time series (see 
above), including also skewness and kurtosis. Moreover, 
only spectra for AIs with high fluxes are used for the deter-
mination of high-quality spectra, thus excluding periods of 
low turbulence and low signal-to-noise ratio. Thresholds 
are therefore applied on the calculated fluxes before spec-
tral correction. Thresholds are defined differently between 
stable and unstable atmospheric conditions: in the latter 
case thresholds are less strict, in order to reduce the risk 
of missing night-time spectra. The situations excluded are 
reported in Table 3. In addition, H2O spectra are sorted into 
nine relative humidity classes. 

Fratini et al. (2012) suggested a modification of this 
method to provide a refinement in case of large fluxes. The 
calculation of LPSCFGAS is as above (Eq. (40), but see the 
original papers for a difference in the approach) only for 
small fluxes, while for large fluxes it becomes:

(41)

thus applying the general Eq. (38) with measured data, 
using the lower frequency allowed by the averaging inter-
val (fmin) and the Nyquist frequency (fmax=fs/2); using the 
current cospectral density of sensible heat (CSH) as a proxy 
for the ideal, unaffected cospectral density for each AI; and 
using the TF determined by the low-pass filter with the fc 
determined in-situ, dependent from RH in the case of H2O 
fluxes. 

“Small” fluxes are defined on the basis of the following 
thresholds: |H| and |LE| < 20 W m-2; |FCO2

|< 2 μmol m2 s-1.
The dataset used to calculate the spectral characteristics 

and to extrapolate LPSCFGAS should be representative of 
the overall variability of micrometeorological conditions, 
especially RH and the overall ecosystem characteristics 
(dynamics of canopy development) and EC system (not 

Ta b l e  3. Thresholds used to discard spectra from the calculation of ensemble averages in spectral corrections, depending on atmos-
pheric stability. Stability conditions are defined by the Obhukov length L

Flux Unstable conditions (-650 < L < 0) Stable conditions (0 < L < 1000)
|H0| < 20 W m-2; > 1000 W m-2 < 5 W m-2; > 1000 W m-2

|LE0| < 20 W m-2; > 1000 W m-2 < 3 W m-2; > 1000 W m-2

|FCO2,0| < 2 μmol m-2 s-1; > 100 μmol m-2 s-1 < 0.5 μmol m-2 s-1; > 100 μmol m-2 s-1

< 0.2 m s-1; > 5 m s-1 < 0.05 m s-1; > 5 m s-1
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changing setup). In Table 1 the most important characteri- 
stics that have to be homogeneous throughout the overall 
period of spectral characterisation are reported, together 
with the most important conditions whose variability has 
to be represented as much as possible. This means that 
even if in theory the full-year period used in ICOS pro-
cessing is sufficiently long, every time the setup is changed 
a new characterisation of (co)spectra is needed. For fast-
growing species an exception is needed, due to both the fast 
changes in canopy height, and the consequent adaptation 
of the measurement height made at the stations to keep the 
distance between measurement and displacement height 
as constant as possible. In this case a two-week period is 
deemed enough to calculate spectral parameters, and the 
station team should ensure as much as possible periods of 
minimum two weeks with a constant measurement height 
and the same EC configuration in general. In any different 
case when a given configuration is operational for less than 
two weeks, the fully analytic method for spectral correc-
tions is applied (Moncrieff et al., 1997), more generic but 
with no need of calculating spectral parameters on a long 
dataset. A special flag is issued accordingly.

Alternative options: several alternatives are published 
in the scientific literature for the high-frequency correction 
for gas scalars, belonging to the two big groups of analytic 
and experimental methods. In the Results and discussion 
section is presented a wider discussion on alternative 
options.

Step 10.4: Losses due to instrumental separation 
(Horst and Lenschow, 2009)
The spatial separation between the gas analyser (inlet) 

and the sonic anemometer path causes attenuation in the 
high-frequency range of the cospectra which can be often 
neglected. However, it may become important especially 
over smooth surfaces at low measurement heights, due to 
the dependence of the cospectral peak frequency (fp) on the 
atmospheric stratification (fp shifts to lower frequencies 
with increasing (z-d)/L, Kaimal and Finnigan, 1994). To 
account for these losses a correction method was developed 
by Horst and Lenschow (2009), which depicts the flux of 
a scalar measured at a distance ls from the centre of the son-
ic path as a function of the distance itself and the frequency 
at the peak of the corresponding cospectrum according to:

(42)

where: F0 is the un-attenuated flux, np = fp (z-d)/u, fp being 
the frequency at the peak of the cospectrum and z the meas-
urement height. This formulation can then be modulated for 
the three linear components of the 3D distance respective to 
the wind direction, i.e. along-wind, cross-wind and vertical. 
However, the along-wind component is mostly corrected 
when compensating for the time lag. For that reason, the 
method implemented in ICOS only uses the cross-wind and 
the vertical component of this correction.

Step 10.5: Calculation of the spectral correction factor
The implementation of the above-described methods is 

based on the calculation of different transfer functions in 
the frequency domain representing the dampening at both 
low and high frequencies, characterised by a specific cut-off 
frequency. Application of transfer functions to the cospectra 
gives the attenuation due to frequency losses. A correction 
factor including all the spectral corrections as a whole can 
be calculated. In practical terms, this is done by multiply-
ing HPTFBA and LPTFSA, resulting in a band pass transfer 
function for sonic variables correction (BPTFSA) which is 
then inserted in Eq. (30) to derive a unique spectral cor-
rection factor. For the gas variables, whose high-frequency 
attenuation was instead calculated with the experimental 
approach, the HPSCF is first used to correct the gas fluxes 
for the high-pass filtering effects and then the LPSCF is 
applied for the low-pass filtering effects.

Step 11: Humidity effect on sonic temperature

Sonic temperature (Ts) is used to calculate the covarian- 
ce w'Ts', which approximates the buoyancy flux, as Ts is 
close to virtual temperature (Tv). The sensible heat flux 
(H) is defined as the covariance of w with the real air tem-
perature, which may deviate from Ts for 1-2% due to the 
dependency of sound velocity on water vapour pressure 
(Aubinet et al., 2012): 

(43)

where: T is the real absolute temperature, e the partial pres-
sure of water vapour and p the air pressure. A correction 
for this effect is thus needed, and is based on papers by 
Schotanus et al. (1983) and van Dijk et al. (2004), using the 
following equation:

(44)

where: Hcorr represents the sensible heat flux corrected for 
humidity effect, Hsp approximates the buoyancy flux cor-
rected for spectral losses, ρa,mcp is the product of air density 
and air heat capacity, Esp is the evapotranspiration flux cor-
rected for spectral losses, and q the specific humidity. 

Step 12: Iteration and calculation of atmospheric stability

Some of the above mentioned methods depend on 
atmospheric stability. This characteristic is commonly 
described using the parameter ζ, defined as:

ξ (45)

where: d is the displacement height, i.e. the height at which 
the wind speed would assume zero if the logarithmic wind 
profile was maintained in absence of vegetation. It is mostly 
calculated from canopy height (hc) as d = 0.67hC. However, 
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in case the ICOS station has a wind profile (not manda-
tory), this parameter can be calculated more accurately. L is 
instead the Obukhov length:

(46)

where: Tp is the potential temperature (K), calculated from 
air temperature as  (p0 is the reference pres-
sure set to 105 Pa), κ = 0.41 is the von Kármán constant 
and g is the acceleration due to earth’s gravity (9.81 m s-2). 
Fluxes are thus involved in the calculation of L, meaning 
that some of the spectral correction methods above lead to 
a modification of L itself, and hence of ζ, which is used in 
spectral correction, thus there is the need for iteration to 
achieve higher precision (Fig. 3, Clement, 2004). 

Step 13: Quality-control tests on calculated fluxes 

After the calculation of the fluxes as described above, 
tests can be performed for a further exclusion of bad quality 
data, which are based on the spectral analysis. 

Step 13.1: Spectral correction factor test

Spectral correction at both low and high frequency 
ranges basically estimates the attenuations of the EC sig-
nal due to different causes, and corrects for this losses. If 
however the losses turn out to be very big, i.e. if the EC 
system is capable of detecting only a small portion of the 
spectrum, the AI is discarded. The method for filtering data 
after fluxes calculation takes into consideration the portion 
of the power spectrum measured by the EC system: if the 
spectral correction factor obtained applying the spectral 
correction method is below 2, i.e. if more than half of the 
power spectrum has been detected by the EC system, the 
flag is ‘0’. If the spectral correction factor is between 2 and 
4, i.e. if the EC system is capable of detecting less than half 
but more than one third of the power spectrum, the flag is 
‘1’. Otherwise (less than one third of the power spectrum 
detected), flag is ‘2’ and the calculated flux eliminated.

Step 13.2: Ogives test
The finite ogive (Og) is defined as the cumulative co-

spectrum. At each given frequency, the ogive represents the 
integration of the co-spectrum from the current frequency 
to the Nyquist frequency. Then its value at the lowest fre-
quency provides the integration of the full co-spectrum, 
which corresponds to the covariance (Berger et al., 2001). 
Ogives can be used to evaluate the suitability of the chosen 
AI. Provided that conditions of stability are met in the AI, 
the typical form of an Ogive for EC fluxes has an S-shape: 
significant deviations from this shape indicate problems 
in the measured covariance. In particular, if the ogive has 
a large slope at the lowest frequencies, it means that signifi-
cant fractions of the flux occur at these timescales, and then 
that the chosen AI may not be long enough. To use Ogives 
as a test, a smoothing filter is applied to reduce scatter at the 

higher frequencies, and the Ogives are normalised to the 
corresponding covariances to make them comparable. To 
determine the slope in the low frequency range, two thresh-
olds are selected as in Spirig et al. (2005): the frequency 
threshold (0.002 Hz) determining the lower part of the 
frequency range, and the threshold (15%) for the value of 
the normalised Ogive at this given frequency, above which 
the corresponding AI is considered too short and a flag ‘1’ 
raised. However, this flag is not used for the calculation of 
the overall data quality.

Step 14: Calculation of overall data quality flags 

First the indicators of the quality-control tests applied to 
the covariances in Step 8 are combined in a single flag using 
the flagging system based on Mauder and Foken (2006). 
A system of nine flags is developed for both tests cor-
responding to as many ranges of FS and ITCσ, and then 
combined in a 0-1-2 flag system: if both tests yield a value 
lower than 30% the flag is ‘0’, if at least one of them is 
between 30% and 100% the flag is ‘1’, and if at least one 
is above 100% the flag is ‘2’. All the flags produced as 
described in this manuscript are combined to decide wheth-
er or not the flux value for an AI will be discarded. If at 
least one of the flags is ‘2’, the corresponding flux value is 
discarded. If four or more of the other tests have a flag ‘1’ 
the AI is discarded as well. In Table 4 we report a summary 
of all the tests performed and used in the overall QC. From 
that list we intentionally excluded the following indicators, 
which are not part of the overall data quality control:

1. signal strength information from IRGA;
2. flag indicating periods with methods for spectral cor- 

rection, coordinate rotation and time-lag compensation dif- 
ferent from the standard ones (lack of data for the pre- 
processing);

3. Ogives test.
Post-processing stages
In the following a synthetic description of the ICOS 

treatment applied to the processed raw-data is presented. 
This section is organised in sub-sections called Stages to 
avoid confusion with the Steps above. It starts from the 
description of the assessment of data uncertainty, includes 
Ta b l e  4. Tests used in the overall quality estimation

TEST DATA FLAGS
Completeness of the AI raw 0, 1, 2
Absolute limits raw 0, 1, 2
Spike detection raw 0, 1, 2
Wind direction raw 0, 1, 2
Amplitude resolution raw 0, 2
Drop-out raw 0, 1
Instruments diagnostics raw 0, 2
Steady-state + ITC covariances 0, 1, 2
Spectral correction factor fluxes 0, 1, 2
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the organisation of the Near Real Time (NRT) processing 
applied daily to the raw data, and finally lists the actions 
needed to filter out low quality periods or suspicious data 
points, to account for non-turbulent fluxes and to fill the 
gaps created by filtering and missing data. The footprint 
analysis is introduced. The description of the post-process-
ing in this section is general, but it has the aim of clarifying 
that after the turbulent flux calculation a number of addi-
tional and crucial steps are needed in order to calculate the 
final NEE estimate.

Stage 1: Uncertainty estimation
Due to the complexity of the method, the overall uncer-

tainty of the EC technique derives from a diverse pattern of 
sources of errors (Richardson et al., 2012): from the instru-
ment-related measuring errors to the non-occurrence of the 
conditions at the basis of the method, from the random error 
due to one-point sampling to the uncertainty introduced by 
the processing chain itself. Also the filtering of periods with 
too low turbulence (Stage 5) is responsible for a fraction 
of uncertainty. The estimation of uncertainty is under dis-
cussion in the EC community (Vickers and Mahrt, 1997; 
Finkelstein and Sims, 2001; Hollinger and Richardson, 
2005; Dragoni et al., 2007; Mauder et al., 2013). Here we 
describe the estimation of random uncertainty and that 
introduced by the choice of the data processing scheme. 
Finally we mention how the different approaches used in 
the post-processing (namely the u* thresholds calculation 
and the partitioning methods) depict the overall variability 
of the final fluxes.

Stage 1.1: Flux random uncertainty
The flux random uncertainty due to the limitations of 

sampling, also known as turbulence sampling error (TSE), 
is estimated following the approach by Finkelstein and 
Sims (2001). The Integral Turbulence time-Scale (ITS) is 
derived from the integral of the auto-covariance function 
of the time-series φ = w' s' normalised by the variance of φ 
(Rannik et al., 2016), where φ contains the instantaneous 
covariance values between w and s measured over AI. Then 
the random uncertainty (εF,rand) is estimated, based on the 
calculation of the variance of covariance:

(47)

where: N is the number of raw measurements in the AI,  
represents a number of samples large enough to capture the 
integral timescale, calculated as ITS*fs, and  and  
are auto-covariance and cross-covariance terms for atmos-
pheric fluxes, which can be estimated for lag h as:

(48)

(49)
In the ICOS processing h is set to 200 s, as recommended 
by Rannik et al. (2016).

Stage 1.2: Uncertainty in the half-hourly turbulent 
fluxes due to the processing scheme
The processing options used to calculate the fluxes 

contribute to the overall uncertainty. At present there is no 
a widely agreed strategy conceived to calculate this uncer-
tainty in the scientific community, but few studies exist 
(Kroon et al., 2010; Nordbo et al., 2012; Richardson et al., 
2012; Mauder et al., 2013; Mammarella et al., 2016). 

The main processing scheme proposed currently for 
ICOS ecosystems and described in the present manuscript 
aims at a maximum degree of standardisation. However, as 
shown above, other processing options might also be valid 
and reliable. This leads to an uncertainty due to the process-
ing scheme. For evaluating this portion of the uncertainty, 
some alternative processing methods are proposed in a fac- 
torial approach together with the methods used in the main 
processing chain, which are assumed to contribute the 
most to the variability in the flux estimation, and which are 
equally reliable for the ICOS setup: the 2D coordinate rota-
tion and the linear de-trending (LD) approach. Hence, the 
processing scheme described is replicated four times, cor-
responding to the factorial combination of the suggested 
options (BA/LD combined with 2D/PF). This scheme does 
not apply in the pre-processing, neither in the NRT process-
ing scheme (Stage 2).

For each flux of each AI, the factorial combination re- 
sults in four quantities of calculated fluxes. Since there are 
not tools to establish a priori which is the combination of 
processing options providing unbiased flux estimates, we 
assume that the “true unobserved” flux quantity is equally 
likely to fall anywhere between the upper and lower limit 
derived from the 4 processing schemes. This translates 
in assuming that the PDF of flux estimated by a multiple 
processing scheme is better approximated by a continuous 
uniform distribution (BIPM et al., 2008). Hence, the mean 
value is calculates as:

(50)

and the uncertainty is quantified as:

(51)

Fs denotes the flux of a generic scalar s, while max (Fs,j) 
and min (Fs,j) are the maximum and minimum flux values 
respectively among those calculated in j=1,…,4 processing 
schemes. 

εF,proc represents the between-flux variability due to diffe- 
rent processing schemes. However, different processing 
schemes lead also to different values of εF,TSE, whose varia- 
bility needs to be taken into account for a proper quantifi-
cation of the random uncertainty affecting half-hourly flux 
time series. To this aim, the TSE associated with the half-
hourly Fs,mean is estimated by averaging the four values of 
εF,TSE,j estimated for each processing scheme:



EDDY COVARIANCE DATA PROCESSING SCHEME AT ICOS ECOSYSTEM STATIONS 509

(52)

Stage 1.3: Combination and expanded random 
uncertainty
The combined random uncertainty εF,comb is then obtained 

by combining εF,TSE and εF,proc via summation in quadrature:

(53)

The expanded uncertainty (see also BIPM et al., 2008) 
is achieved by multiplying the combined random uncer-
tainty with a coverage factor of 1.96 in order to define the 
95% confidence interval of the true unobserved flux esti-
mates as follows:

(54)
The magnitude of the confidence interval is then pro-

portional to the importance of the processing scheme in the 
flux estimates uncertainty.

Stage 2: Near-real time (NRT) data processing

Near-real time (NRT) data processing is an important 
tool for ICOS, as it allows updating fluxes on a daily basis 
for real time visualisation of the fluxes and possible inges-
tion in modelling activities. It also enables ETC to send 
warnings to principal investigators (PIs) in case of errors 
or failures of the system. A prompt reaction is demanded 
to the PI so that problems at the station can be solved 
swiftly, and the high-quality standard of data maintained. 
The NRT processing is applied on a moving window of 
10 days. In order to achieve a high quality standard, the 
same processing chain as for the final data (main process-
ing) is applied as far as possible. However, certain options 
are not applicable to NRT processing, as detailed below. 
This translates in applying Steps 1 – 14 of the main pro-
cessing, with the exclusion of Step 4 and some differences 
in Steps 3, 5, 10 (Figs 2-3). Step 4 corresponds to the cor-
rection of concentration/mole fraction drift of the IRGA, 
which is not included in the NRT processing scheme, as it 
uses data from calibrations that may only become available 
afterwards. Differences in Steps 3, 5 and 10 occur due to 
the need for a pre-processing to calculate parameters used 
in these corrections. The corresponding parameters are cal-
culated once on a given dataset of two months, and then 
used in the daily runs for flux calculation. It is therefore 
important to keep the distance between the measurement 
height and the displacement height as constant as possible, 
by dynamically move the system according to the height 
increment in stations with fast-growing vegetation. 

A different method is used when the two-month 
dataset is not available. This applies, in addition to the 
beginning of the measurement period, every time a re- 

levant change occurs in the instrument setup, or the eco-
system characteristics become different from those used in 
the pre-processing. This translates in a temporary (possibly 
less accurate) flux computation. 

NRT processing stops after the calculation of net eco-
system exchange (NEE) by summing up the storage term 
to FCO2, excluding gap-filling and filtering based on friction 
velocity (u*) methods (see below). Also, the uncertainty 
estimation is limited to the random component, i.e. the fac-
torial combination of options is not applied to estimate the 
uncertainty due to the selection of processing methods. 

Step 1 and Step 2 are the same as in the main process-
ing. The rotation of the coordinate system of the sonic is 
also the same (sector-wise planar fit, Step 3) only if the 
corresponding parameters, calculated on a period of at least 
two months, are available: these coefficients are then used 
for the daily processing, as long as no relevant changes 
occur, or as long as their calculation will be updated. When 
the two-month dataset is not available, the 2D rotation is 
applied until a new two-month dataset will be complete.

As stated above, Step 4 is not applied in the NRT. Step 5, 
i.e. the time lag optimisation to align the data streams of the 
sonic and the IRGA, is applied with the same limitations of 
Step 3: a two-month dataset is used once for the calculation 
of the statistic parameters of the method, which are then 
used for the daily processing. When relevant changes hap-
pen in the setup of the EC system the parameters need to be 
updated. In this case, and whenever a coherent two-month 
dataset is not available, the classic approach of covariance 
maximisation is applied. Step 6, Step 7, Step 8, and Step 
9 are executed following the same methods as in the main 
processing. Step 10 is partly different in case a long enough 
dataset of two months is not available to estimate the low-
pass filter characteristics and the spectral model parameters 
of the experimental high-frequency spectral corrections 
(Step 10.3.2). Even if in theory the size of the data window 
depends on the characteristics listed in Table 1, for stand-
ardisation a period of minimum two months is required. 
As in the main processing scheme, for fast-growing species 
a two-week period is deemed enough to calculate spectral 
parameters, and the PI has to avoid a more frequent change 
of the EC system configuration. When the dataset is not 
available, the fully analytic method (Moncrieff et al., 1997) 
is temporarily applied, and the Step 10.4 is not needed. In 
any case, the sub-Steps 10.1, 10.2 and 10.3.1 are the same 
of the main processing scheme. Step 11, Step 12, Step 13 
and Step 14 in the NRT processing scheme are identical to 
the main processing scheme.

Stage 3: Storage component

The NEE is calculated from the turbulent flux of CO2 
by summing it up with the fluxes arising from the change 
in storage below the eddy covariance instrumentation 
(Nicolini et al., 2018). The storage change term is calcu-
lated from CO2 and H2O concentration measurements along 
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a vertical profile on the tower. If there are half hours with 
gaps in the CO2 profile or if the measurement height is 
below 3 m, a discrete approach is used, that is based on the 
measurement of CO2 content from the IRGA used for the 
EC. These half hours are flagged but used in the following 
processing steps.

Stage 4: Spike detection

The half-hourly dataset of NEE can contain spikes. 
These spikes are being interpreted as outliers and are iden-
tified and flagged. The method described in Papale et al. 
(2006), based on MAD approach using a z value of 5.5 as in 
the original implementation, is used and spikes are flagged 
and removed from the subsequent processing steps.

Stage 5: u*-filtering

Low turbulence conditions need to be identified and 
filtered out because there is the risk of strong advective 
fluxes that are not detected by neither the EC nor the stor-
age profile systems. Half-hourly data sets measured below a 
certain threshold value of u* have to be filtered out (Aubinet 
et al., 2012). The threshold value is ecosystem-specific and 
can be identified using automatic methods. Two different 
u*-threshold selection methods are applied (Reichstein et 
al., 2005, modified in Barr et al., 2013 respectively), using 
a bootstrapping approach: this allows the calculation of the 
uncertainty in the threshold definition, and the calculation 
of a threshold distribution that is used to flag and filter both 
daytime and night-time data. This uncertainty is expected 
to provide useful information for future steps in the data 
filtering. In fact a large uncertainty in the u* threshold warns 
on difficulties in detecting and filtering out the advection, 
on the presence of large noise in the storage flux, as well as 
on large variability of the footprint.

Stage 6: Gap filling of CO2 flux data

Gaps in the half-hourly fluxes resulting from not 
measured data or missing results after data quality control 
filtering can be filled with different types of imputation 
procedures, parameterised on good quality measurements 
to build relations between drivers and fluxes, and then 
applied using only the drivers in the presence of gaps. For 
ICOS purposes, the well-consolidated method of Marginal 
Distribution Sampling (MDS, Reichstein et al., 2005) is 
used. Missing values in half-hourly flux time series are 
imputed according to an average calculated in a moving 
window of 7-14 days of observed values under similar mete-
orological conditions. Similarity is defined by a deviation 
in short-wave incoming radiation, Ta and vapour pressure 
deficit lower than 50 W m-2, 2.5°C and 5 hPa, respectively. 
This approach is deemed suitable to consider the different 
regimes of crop phenology. In case of ecosystems where 
clearly distinguished functional periods are present due to 

human activities (management) or rapid naturally induced 
changes like in case of fires, the MDS is parameterised 
individually for the different periods (Béziat et al., 2009).

Stage 7: Overall uncertainty quantification

Uncertainty in NEE is estimated creating an ensemble 
of the processing step combinations described above, i.e. 
uncertainty calculated from the post-field raw data pro-
cessing (Stage 1.2) and from u* threshold calculation and 
application (Stage 5). Percentiles describing the distribu-
tion for each data point are then extracted. Total uncertainty 
is calculated by propagating the single uncertainties.

A consistency indicator is also applied to detect issues 
in the measurements. It is derived from the calculation 
of the two main components of NEE (gross primary pro-
duction, GPP; and total ecosystem respiration, TER) with 
two independent models parameterized using night-time 
and day-time data following Reichstein et al., 2005 and 
Lasslop et al., 2010, respectively. The indicator is based in 
the difference between the results of these two models. The 
parameterisation of the models using independent (night- 
and day- time) data indicates the occurrence of advective 
phenomena and decoupling, or of relevant changes in the 
footprint, which will lead to large differences in the results 
of the two methods.

Stage 8: Footprint analysis

The source area of the measured fluxes in relation to 
its spatial extent and distribution of intensity can be repre-
sented by the footprint function Φ, defined as the integral 
equation of diffusion (Wilson and Swaters, 1991; Pasquill 
and Smith, 1983):

(55)
where η is the signal being measured at location  (  is 
a vector), and Q( ) is the source emission rate/sink strength 
in the surface-vegetation volume . The footprint is sensi-
tive to atmospheric stability and surface roughness (Leclerc 
and Thurtell, 1990), in addition to measurement height and 
wind direction. The percentage-level for the source area is 
used to represent the origin of the fluxes (Schmid, 1994).

Several theoretical approaches exist for the determi-
nation of Φ (Kormann and Meixner, 2001; Hsieh et al., 
2000; Kljun et al., 2004), that require in input the mean 
wind speed, the lateral wind speed standard deviation, the 
Obukhov length, the displacement height and the rough-
ness length z0, corresponding to the height above the 
displacement height where the wind speed is actually zero, 
and representing the roughness of the vegetation elements 
(z0=0.15 hc; can be calculated if wind profile is measured). 
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The parameterization by Kljun et al., 2015 is adopted 
in ICOS, which uses an optimal combination of different 
existing methods. For a more detailed description we refer 
the reader to the cited papers.

Overview of the dataset obtained with the described 
corrections

At the end of the main processing chain and of the post-
processing procedures, the dataset is composed of twelve 
months of half-hourly data, including fluxes of CO2, latent 
heat, momentum and sensible heat. In addition, flux of evap-
otranspiration is also calculated, as well as friction velocity 
u* and several atmospheric parameters and statistics. NEE 
includes the calculate change in storage, while gaps deriv-
ing from technical field problems as well as half hours 
filtered out for bad quality in Step 14 or after the definition 
of the u* threshold are filled as described above and flagged 
accordingly. In addition, from the NRT processing every 
day we have a 48-half-hour dataset of fluxes, meteorologi-
cal parameters and statistics relative to the day before, and 
calculated over a window of 10 days, publicly visible on the 
Carbon Portal website. Both the datasets (main and NRT) 
are open access, and can be cited in publications thanks to 
a dataset identifier system. In addition, also the raw data 
gets an identifier, as well as all the companion variables and 
the metadata sent by the PIs.

RESULTS AND DISCUSSION

The EC main processing chain described in the previous 
section has been selected in ICOS as the standard for the 
post-field elaboration of raw data to calculate high-quality, 
corrected fluxes. Even if using the same instrumentation, 
ICOS stations are characterised by different ecosystems, 
measurement heights, topography, and climatic conditions. 
In addition, the instrumentation ages due to the usage, 
and this must be recognised by automated data screening. 
The selected methods have to be applicable to different 
situations, and not specific for any special case. The experi-
mental method for the spectral corrections, for example, or 
the planar fit method to rotate the coordinate frame of the 
sonic anemometer, are options suited to be flexible enough 
to cover a wide range of situations. However, numerous 
alternative options exist, some of which have been exclud-
ed because of a known risk that these introduce additional 
errors. Other options, considered as equally valid as the 
main ones, are used to estimate a range of uncertainty due 
to the choice of the methods. We discuss in the follow-
ing the advantages and drawbacks of the options selected, 
also in comparison of some of the alternatives available. 
Moreover, we explain why some very well-known steps 
seem to be missing in the main processing chain.

The main risk of the quality control is the possible false 
flagging of good-quality values instead of flawed/wrong 
data. For that reason some of the tests proposed by Vickers 
and Mahrt (1997) are applied but not used for the quality 

control of ICOS. In particular, skewness and kurtosis are 
calculated and stored; a discontinuity test and the test on 
non-stationarity of the horizontal wind are applied. 

SATs calculate sonic temperature based on three paths, 
and thus crosswind has to be considered (Liu et al., 2001). 
Gill HS 50 and HS 100 include this correction in their 
embedded software, so it has not to be considered in the 
processing of data. 

SAT support arms and transducers constitute a physical 
obstacle to the wind flowing through them, thus creating 
a disturbance to the vertical wind speed (w) that could lead 
to an underestimation of the fluxes. At present, there is no 
wide agreement in the scientific community on the appli-
cation of the existing algorithms aiming at correcting this 
flow distortion error (aka angle of attack error; e.g. Van 
der Molen et al., 2004; Nakai et al., 2006, 2012). The Gill 
HS-50 and HS-100, yoke-mounted models, are less sensi-
tive to the issue because no spars are present in the vicinity 
of the sampling volume, but the wind sector where the arm 
of the instrument lies has to be excluded from the raw data-
set. However, transducer geometry is still an issue to be 
solved. Therefore, at present we do not perform any correc-
tion for the angle of attack, but this may change in future 
depending on new results and a higher degree of consensus 
within the scientific community. In this case, a retrospec-
tive application of new corrections is foreseen, as the raw 
data are archived along with the calculated fluxes.

Other options suitable for the coordinate rotation are the 
so-called 2D (as in Aubinet et al., 2000) and 3D (McMillen, 
1988) rotation. While the latter is known to result in some-
times unphysical orientation of the vector basis (Finnigan, 
2004), the 2D rotation is a valuable and widely adopted 
option. The 2D method is suitable in most cases, but, for 
stations having complex topography, the sector-wise PF 
method has better performances (Aubinet et al., 2012), 
while the original PF method is not differentiated per 
wind sector. The PF method on the other hand needs the 
pre-processing described above; also it nullifies only the 
long-term mean vertical wind speed, while the half-hourly  
may be different from zero. Therefore the 2D method has 
been selected as an alternative method to be performed for 
the calculation of the uncertainty in combination with the 
PF method.

At present, we are not aware of alternative methods 
for the correction of the mole fraction drift of the IRGA. 
A drawback of the method proposed is the assumption of 
a linear drift between two consecutive calibrations. The 
error due to this assumption depends on the magnitude 
of the non-linearity of the drift. However, the frequency 
of the field calibration of the IRGA in ICOS (minimum 4 
times in the first year, and once per year in the following) 
should reduce the likelihood of occurrence of non-linearity, 
together with the mandatory maintenance routine.
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Block averaging as a method for separating fluctuations 
from its background signal might lead to biased estima-
tion of the fluctuations if any trend exists in the time series, 
due to the lack of the condition of stationarity in the time 
series (drifts in the instrumentation, slow changes in the 
atmospheric conditions in the average time). This could be 
solved using one of the two alternative methods, namely 
the linear detrending (LD, Gash and Culf, 1996) or the 
autoregressive filtering (AF, Moore, 1986; McMillen, 
1988). The three methods have been compared by Rannik 
and Vesala, 1999: while solving the trend issue, the two 
alternative methods do not obey Reynolds’ averaging rules. 
AF also has a strong impact in terms of the spectral attenu-
ation, and for both these reasons we decided to avoid it. 
The LD could be a good compromise when some trends 
exist in the AI, and for that reason has been chosen in ICOS 
as a valid method for the calculation of the uncertainty. 
It is also worth mentioning that Richardson et al., 2012 
report that LD and AF reduce the random error as com-
pared to BA when combined with a proper high-pass filter 
for the spectral correction. However, AF method needs 
a proper calculation of the filter constant, and the LD should 
be applied only when a trend is present. This introduces 
a subjective component in the choice of the method, and for 
that reason in the main (standardised) processing chain we 
selected BA. The combination with LD in the uncertainty 
calculation is conceived also to include these differences in 
the variability range of the calculated fluxes.

Like most of the other methods selected in ICOS, also 
the option of time lag optimisation has the advantage of 
providing a certain degree of adaptation to the local con-
ditions, because the searching lag is differentiated and 
selected according to the RH values. On the other hand, 
the drawback of this option is also the need for a pre-pro-
cessing, which increases the computational demands. The 
more important alternative method is the maximisation of 
the covariance using fixed, predetermined windows, which 
can provide flawed time lags for H2O (Taipale et al., 2010; 
Mammarella et al., 2016).

Fluctuations of air density (related to fluctuations of 
ambient or cell temperature, pressure and water vapour 
content) would entail unphysical fluctuations of gas con-
centration/mole fraction, while the dry mole fraction is 
instead a conserved quantity in the presence of changes in 
these ambient/cell conditions (Kowalski and Serrano Ortiz , 
2007). The IRGA LI-7200 outputs dry mole fraction, hence 
the fluxes can be calculated using the reported processing 
chain. Otherwise, an additional step would have been need-
ed to compensate a posteriori for air density fluctuations 
(aka as WPL term, Webb et al., 1980; Ibrom et al., 2007b).

The spectral correction option at the low-frequency 
range is per se a standard method, and no relevant alter-
natives are known. A different filter function has to be 
selected when the LD method is applied for the calculation 
of the fluctuations. However, some concerns exist in a part 

of the EC community in using a model (theoretical) (co)
spectrum: the risk is that the spectral models, e.g. the spec-
tra shape and the position of the peak frequency in respect 
to atmospheric stability, do not fit the data well. Efforts are 
needed to find an alternative solution which makes use of 
a reference (co)spectrum calculated in-situ as in the pro-
posed method for the high-frequency range for gas scalars. 

Several alternatives are possible for the high-frequency 
correction of gas scalars, which can be gathered in two 
groups: analytic and experimental methods. For example, 
in addition to the methods used in ICOS, the method by 
Massman (2000) is analytic, while Horst (1997) can be 
classified as experimental as it is parameterised with in situ 
information. As usual, one of the experimental methods has 
been selected in ICOS for gas scalars due to its flexibility, 
as using the in-situ spectra of T as ideally un-attenuated 
allows adaptation to local conditions. The analytic alter-
natives are not suitable for the ICOS setup (closed-path 
IRGA), and the other experimental methods are less accu-
rate, especially in terms of dependence on RH. However, 
as with previous steps, the need of a two months dataset 
where to calculate the spectral parameters during the pre-
processing is a shortcoming of this method.

For some of the above listed corrections some other 
alternative options exist, which are so far less used in the 
EC community and need further testing before being adopt-
ed in ICOS. This applies e.g. to the quality control of EC 
data: several alternatives to the tests of Vickers and Mahrt 
(1997) exist, based on different approaches, which can be 
combined with the currently applied tests on the raw data, 
and with the tests on the covariances (Foken and Wichura, 
1996) or on the calculated fluxes. Other examples are 
the alternatives to the Fourier-based spectral corrections, 
mainly based on the wavelet decomposition (Nordbo and 
Katul, 2013). Future methodological development is then 
expected to take place in this part of the processing, pos-
sibly leading to significant improvements.

The uncertainty of the EC method has several sources. 
In both the main and NRT ICOS data processing schemes 
we quantify the random uncertainty according to the well-
defined method of Finkelstein and Sims (2001). In addition, 
in the main processing chain we also determine the range of 
uncertainty due to the most important causes of flux varia- 
bility, i.e. the selection of processing options, the selec-
tion of the u* thresholds and the partitioning method used. 
The variability of the fluxes calculated with different pro-
cessing options is based on the factorial combination of 
four options involving two steps, namely the coordinate 
rotation and the trend removal. These are expected to be 
the more important sources of variability, however some 
residual variability can also come from the corrections 
we decided to exclude for computational reasons (the full 
factorial of all the options available would mean hundreds 
of processing runs per station). The u* threshold selection, 
while being a robust method for the assessment of low-tur-
bulence periods, is prone to some subjectivity. Using two 
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different methods and bootstrapping the thresholds lead to 
consider the big variability in the fluxes due to the selection 
of different, plausible thresholds. Finally, the two alterna-
tive models used to parameterise the partitioning of NEE 
into GPP and TER use respectively daytime and night-time 
data, and are for that independent. The comparison of the 
two resulting time series gives an indication of the consist-
ency and uncertainty.

CONCLUSIONS

1. The eddy covariance processing chain is composed 
of fourteen steps, and is standardised for all the Integrated 
Carbon Observation System ecosystem stations.

2. Standardisation of procedures in an infrastructure 
made of >70 ecosystem stations in the whole Europe is 
an important requirement to avoid local methodological 
biases when comparing the C and GHG budgets at the con-
tinental scale. With this standardised approach, ICOS aims 
at maximising the comparability, the reliability and the 
methodological transparency and traceability of the final 
estimated flux data and other variables, including the quan-
titative estimation of their quality and uncertainty. 

3. The EC processing chain was developed with the 
contribution of different experts in the field of EC technique 
at global level and members of the Ecosystem Monitoring 
Station Assembly (MSA) of ICOS. 

4. The processing chain is considered the currently best 
possible compromise between standardisation and adapta-
tion of the state of the art methods to the specific conditions 
of each station. It is clear that it will evolve in time when 
new findings and methods will be available.

5. Random and processing uncertainties are also esti-
mated. In particular, the method to determine uncertainty 
due to the processing is described, adding a quantification 
of the station-specific variability in the results. The estima-
tion of the uncertainty evolving from the processing scheme 
is based on factorial combination of alternative processing 
techniques. 

6. The centralisation of the processing at the ICOS ETC 
warrants the standardisation, adding at the same time va- 
lue to the work made by the station team in establishing 
the stations and collecting the data. The data streams are 
dynamically linked to the metadata of the stations, resulting 
in an organic operational system. Central automated error 
detection and continuous communication with the station’s 
team helps fast identification and elimination of measure-
ment problems.
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Appendix A – symbols, abbreviations and acronyms used in the text 

For the sake of clarity, here follows a list of symbols and variables as reported in the text and used in formulas of 
the manuscript: 
 
s: generic scalar 
sg: gas scalar 
t: time 
x(t): generic time series 
x: generic variable 

: generic vector 
x’: fluctuation of x(t) 

: background signal of x(t) 
f: frequency 
u: first horizontal component of wind speed (m s-1) 
v: second horizontal component of wind speed (m s-1) 
w: vertical component of wind speed (m s-1) 
lAI: length of the average interval (s) 
z: measurement height (m) 
z0: roughness length (m) 
d: displacement height (m) 
hc: canopy height (m) 
Ts: sonic temperature (K) 
Tv: virtual temperature (K) 
T: absolute air temperature (K) 
Tp: potential temperature (K) 
Ta: air temperature (°C) 
a: absorptance 
Χg,w: mole fraction of generic gas g (ppm or ppt) 
Χg,d: dry mole fraction of generic gas g (ppm or ppt) 
ρg,m: mass concentration (kg m-3) 
p: atmospheric pressure (Pa) 
p0: reference atmospheric pressure (Pa) 
e: partial pressure of water vapour (Pa) 
q: specific humidity (kg kg-1) 
M: molecular mass (kg mol-1) 
cp: specific air heat capacity at constant pressure (J kg-1 K-1) 
cd: specific dry air heat capacity at constant pressure (J kg-1 K-1) 
cv: specific water vapour heat capacity (J kg-1 K-1) 
g: gravitational acceleration (m s-2) 
R: universal gas constant (J mol-1 K-1) 
L: Obukhov length (m) 
ζ: stability parameter 
Og: Ogive 
F: generic for flux 
H: sensible heat flux (W m-2) 
E: evapotranspiration flux (kg m-2 s-1) 
LE: latent heat flux (W m-2) 
τ: momentum flux (kg m-1 s-2) 

: friction velocity (m s-1) 



 

 

 

 

ν: molar volume (m3 mol-1) 
𝜆: specific latent heat of evaporation (MJ kg-1) 
TL: time lag (s) 
TF: transfer function 
fs: sampling frequency (Hz) 
n: natural frequency  
fc: cut-off frequency  
fw: normalised frequency  
fp: peak frequency  
S: spectrum 
CSId,F: ideal cospectrum of F 
CF: correction factor 
τs: filter time constant 
κ: von Kármán constant 
lp: SAT path length (m) 
ls: distance between centre of sonic and gas sampling paths (m) 
Φ: footprint function 
η: signal measured by the EC system in footprint analysis 
Q: source emission or sink strength from footprint analysis 
Ʀ: surface-vegetation sample volume 
<>: median operator 
ε: uncertainty (random or processing) 
 
Subscripts: 
v: water vapour 
d: dry air 
w: wet air 
a: air 
g: gas  
corr: corrected 
meas: measured 
sp: spectrally corrected 
0: not corrected 
rand: random 
proc: processing 
 
Acronyms: 
SAT: sonic anemometer thermometer 
IRGA: infra-red gas analyser 
EC: eddy covariance 
AI: average interval 
PI: Principal Investigator 
ETC: Ecosystem Thematic Centre 
MSA: Monitoring Station Assembly 
2D: double rotation 
3D: triple rotation 
PF: planar fit rotation 
BA: block average 
RH: relative humidity 
LD: linear detrending 
AF: autoregressive filtering 



 

 

 

 

PDF: probability density function 
MAD: median absolute deviation 
FS: flux stationarity 
ITS: integral time scale 
FFT: Fast Fourier Transform 
NRT: near-real time 
NEE: net ecosystem exchange of CO2 

MDS: marginal distribution sampling 
GPP: gross primary production 
TER: total ecosystem respiration 
IIR: infinite impulse response filter 
QC: quality control 
TSE: turbulent sampling error 

   


