

Università degli Studi di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Fe-rich ferropericlase and magnesiowüstite inclusions reflecting diamond formation rather than ambient mantle

Original Citation:

Availability: This version is available at: 11577/3283786 since: 2020-01-09T14:24:32Z

Publisher:

Published version: DOI: 10.1130/G45235.1

Terms of use: Open Access

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)

1 2	This is a post-peer-review, pre-copyedit version of an article published in Geology. The final authenticated version is available online at: https://doi.org/10.1130/G45235.1
3	
4	Fe-rich ferropericlase and magnesiowüstite inclusions
5	reflecting diamond formation rather than ambient mantle
6	Paolo Nimis ¹ , Fabrizio Nestola ¹ , Mariangela Schiazza ^{1*} , Riccardo Reali ² , Giovanna
7	Agrosì ³ , Daniela Mele ³ , Gioacchino Tempesta ³ , Daniel Howell ^{1,4} , Mark T.
8	Hutchison ⁵ , and Richard Spiess ¹
9	¹ Dipartimento di Geoscienze, Università di Padova, via G. Gradenigo 6, 35131 Padova,
10	Italy
11	² Unité Matériaux et Transformations, Université Lille1, 59655 Villeneuve d'Ascq, France
12	³ Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari
13	Aldo Moro, Via Orabona 4, 70125 Bari, Italy
14	⁴ Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
15	⁵ Trigon GeoServices Ltd., Las Vegas, Nevada 89146, USA
16	*Current address: Dipartimento di Scienze Psicologiche, della Salute e del Territorio
17	DiSPuTer, Università G. D'Annunzio di Chieti-Pescara, 66100 Chieti, Italy
18	ABSTRACT
19	At the core of many Earth-scale processes is the question of what the deep mantle
20	is made of. The only direct samples from such extreme depths are diamonds and their
21	inclusions. It is often assumed that these inclusions reflect ambient mantle or are
22	syngenetic with diamond, but these assumptions are rarely tested. We have studied
23	inclusion-host growth relationships in two potentially superdeep diamonds from Juina

24	(Brazil) containing nine inclusions of Fe-rich ($X_{Fe} \approx 0.33$ to ≥ 0.64) ferropericlase–
25	magnesiowüstite (FM) by X-ray diffractometry, X-ray tomography,
26	cathodoluminescence, electron backscatter diffraction and electron microprobe analysis.
27	The inclusions share a common [112] zone axis with their diamonds and have their major
28	crystallographic axes within 3-8° of those of their hosts. This suggests a specific
29	crystallographic orientation relationship (COR), resulting from interfacial energy
30	minimization, disturbed by minor post-entrapment rotation around [112] due to plastic
31	deformation. The observed COR and the relationships between inclusions and diamond
32	growth zones imply that FM nucleated during the growth history of the diamond.
33	Therefore, these inclusions may not provide direct information on the ambient mantle
34	prior to diamond formation. Consequently, a 'non-pyrolitic' composition of the lower
35	mantle is not required to explain the occurrence of Fe-rich FM inclusions in diamonds.
36	By identifying examples of mineral inclusions which reflect the local environment of
37	diamond formation and not ambient mantle, we provide both a cautionary tale and a
38	means to test diamond/inclusion time relationships for proper application of inclusion
39	studies to whole-mantle questions.

40 **INTRODUCTION**

Diamonds found in kimberlites and lamproites are our deepest samples of Earth's interior. Most diamonds come from deep lithospheric roots beneath cratons, but some rare diamonds are believed to have formed at sublithospheric levels, possibly as deep as the core/mantle boundary (see reviews in Stachel et al., 2005; Harte, 2010; Kaminsky, 2012). Ferropericlase–magnesiowüstite (Mg,Fe)O (hereafter FM) is the most common mineral contained in diamonds of interpreted lower-mantle origin and its composition has

47	been recently used to estimate oxygen fugacity in the lower mantle (Otsuka et al., 2013;
48	Kaminsky et al., 2015). This is notwithstanding the fact that FM also participates in
49	mineral parageneses straddling the upper mantle/lower mantle boundary (Hutchison et
50	al., 2001), the relative abundance of FM inclusions is higher than predicted by
51	experiments on 'pyrolite' at lower-mantle conditions (48%-63% versus 16%-20%; e.g.,
52	Irifune, 1994; Fei and Bertka, 1999; Wood, 2000; Kaminsky, 2012), and their
53	composition is more variable and often more Fe-rich than expected for FM in the lower
54	mantle [Fe/(Mg + Fe) _{mol} = X_{Fe} = 0.10–0.64 versus 0.10–0.27; e.g., Kesson and Fitz
55	Gerald, 1992; Wood, 2000; Lee et al., 2004]. Fe-rich compositions characterize a
56	significant proportion (ca. 46.5%) of FM inclusions in Brazilian stones (Kaminsky,
57	2012).
58	Several hypotheses have been put forward to explain the existence of Fe-rich FM.
59	These hypotheses can be grouped into two categories: (i) the Fe-rich composition is
60	considered to reflect a 'non-pyrolitic' composition of the ambient lower mantle, samples
61	of which were captured by the growing diamonds (Harte et al., 1999; Kaminsky, 2012;
62	Ryabchikov and Kaminsky, 2013; Kaminsky and Lin, 2017); (ii) formation of Fe-rich
63	FM and diamond is ascribed to reactions involving carbonate melts or minerals in the
64	lower mantle (Liu, 2002; Litvin, 2014) or in the deep upper mantle and transition zone
65	(Thomson et al., 2016). This contrast of views is partly justified by the fact that the
66	traditional criterion used to identify syngenetic inclusions (i.e., a diamond-imposed
67	shape) has proven unreliable (Nestola et al., 2014). Therefore, there is still uncertainty as
68	to whether Fe-rich FM inclusions represent accidentally encapsulated portions of an
69	anomalous ambient mantle or a product of reactions occurring during the growth history

70	of diamond. As diamonds and their mineral inclusions are such important windows on
71	mantle composition and processes it is critical to test these conflicting hypotheses. This
72	may have profound implications on our interpretation of the mechanisms of formation of
73	sublithospheric diamonds and on the significance of petrological and geochemical data
74	extracted from their inclusions (e.g., Shirey et al., 2013; Thomson et al., 2014, 2016).
75	Here we investigate the growth relationships of nine Fe-rich ($X_{\text{Fe}} = 0.33$ to ≥ 0.64)
76	FM inclusions in two diamonds from the notable alluvial deposits of tributaries of the Rio
77	Aripuanã, Juina district, Brazil (e.g., Hutchison et al., 2004; see detailed provenance data
78	in the GSA Data Repository ¹). We will show that our Fe-rich FM formed by direct
79	segregation from a fluid or melt or from fluid/melt-assisted dissolution-precipitation
80	during the growth history of their diamond hosts. Hence, the entrapped FM inclusions
81	should not be considered as representative samples of the ambient mantle in which the
82	diamond-forming processes took place.
83	SAMPLE MATERIAL AND ANALYTICAL METHODS
84	The diamonds studied in the present work (BZ270 and JUc4) appeared as

85 irregular, brown-colored stones, with maximum dimensions of 7 and 3 mm, respectively. Sample preparation and analyses were conducted in such a way as to preserve as much of 86 87 the samples as possible for future investigations. The stones were polished on two 88 opposite sides to obtain small windows that allowed visual recognition of most of their 89 inclusions. The FM inclusions showed a faceted to subround shape, sometimes with 90 concave angles, and maximum dimensions of a few 10s to 500 µm (Fig. 1A,B). The largest inclusions in diamond BZ270 exhibited stepped surfaces on some of the faces 91 92 (Fig. 1B). Decompression cracks were observed around most of the inclusions. Micro-

93	computed X-ray tomography (μ -CT) of diamond BZ270 showed the presence of
94	numerous additional inclusions, which have a size up to a few μm and are distributed
95	along a set of interconnected {111} diamond planes (Fig. 1C and supplementary video in
96	the Data Repository).
97	Previous investigation by X-ray diffraction topography (XRDT) showed that both
98	samples are affected by plastic deformation (Agrosì et al., 2017). BZ270 is more strongly
99	deformed and consists of an aggregate of different 'grains', which are misoriented by at
100	least a few seconds of arc, whereas JUc4 appears to be a single grain. Micro Fourier-
101	transform infrared spectroscopy (μ FTIR) (Agrosì et al., 2017) showed that BZ270 was
102	predominantly Type IIa (i.e., nitrogen below detection of ~10 ppm; Fig. 2D). The μ FTIR
103	of a portion of JUc4 suggested the presence of a more N-rich core (270 ppm N, 100%
104	IaB, no platelets) and decreasing N content toward the rim (~40 ppm, 100% IaB, no
105	platelets) (Fig. 1E).
106	Both samples were studied by single-crystal X-ray diffraction (XRD) to determine
107	the approximate chemical compositions of the FM inclusions and their crystallographic
108	orientation relationships (CORs) with the diamonds. Diamond BZ270 was then further
109	polished to expose some of the large and small inclusions and investigated by
110	cathodoluminescence (CL) and electron backscatter diffraction (EBSD). Electron
111	microprobe analysis (EMPA) was performed on the exposed inclusions (Table DR1).
112	Additional details on analytical methods are given in the Data Repository ¹ .
113	RESULTS
114	The analyzed FM inclusions have their major crystallographic axes within $3-8^{\circ}$ of
115	those of the host diamonds (Fig. 2, Table DR2). Despite this minor misorientation, the

116	angular mismatch between the [112] axes of the inclusions and those of the diamonds is
117	remarkably small (< 2°), i.e., within the uncertainty of the measurements (cf. Nestola et
118	al., 2014), and the inclusions appear to be mutually rotated around the [112] axis of their
119	host (Fig. 2).
120	The CL images of sample BZ270 show a complex growth-resorption pattern,
121	disturbed by plastic deformation (Fig. 1F-H), as commonly observed in sublithospheric
122	diamonds (Shirey et al., 2013). EBSD data are consistent with the activation of
123	{111}<011> slip systems (Fig. DR3 in the GSA Data Repository ¹), a mechanism
124	observed in several natural and experimentally deformed diamonds (Howell et al., 2012).
125	Domains characterized by slightly different lattice orientations (up to 3.5°) are observed,
126	which show no special relationship with the distribution of the inclusions (Fig. DR3).
127	Polishing of diamond BZ270 allowed us to uncover two of the FM inclusions and three
128	of the aligned, μ m-sized inclusions. The FM inclusions sit on distinct diamond growth
129	zones (Fig. 1G). The analyzed μ m-sized inclusions have a composition corresponding to
130	Ni-poor pyrrhotite (Table DR1), within the compositional range reported for other Juina
131	diamonds (Hutchison, 1997), and are located at the boundary between two more external
132	CL growth bands (Fig. 1H).
133	The compositions of the FM inclusions indicate an X_{Fe} range of ca. 0.33 to ≥ 0.64
134	(Table 1). Because high-quality XRD and EMPA data could be obtained only on some of
135	the inclusions, some X_{Fe} data have large uncertainties, but they are sufficient to establish
136	a relatively Fe-rich composition for all studied inclusions. Data for sample JUc4 suggest
137	a progressive X_{Fe} increase in inclusions sitting outside the N-rich diamond core. The
138	moderate NiO (0.4 wt. %) and very low Na ₂ O (<0.06 wt. %) contents measured on

139	exposed inclusions n. 4 and 5 in diamond BZ270 (Table DR1) are in line with those
140	reported for FM inclusions of similar X_{Fe} in worldwide diamonds (Thomson et al., 2016).
141	DISCUSSION AND CONCLUSIONS
142	Data for multiple inclusions in two stones indicate a non-random COR between
143	FM and diamond (Fig. 2; Table DR2). The nearly parallel orientation of FM's and
144	diamond's crystal lattices suggests an original specific COR (cf. Griffiths et al., 2016).
145	Post-entrapment plastic deformation in the diamond along {111}<011> slip systems (Fig.
146	DR3), with consequent slight rotation of the inclusions around the normal [112] axis (Fig.
147	2), may well account for the small observed angular mismatch. Consistently, this
148	particular type of rotational COR was not observed in inclusions from less deformed
149	lithospheric diamonds (Nestola et al., 2014; Milani et al., 2016).
150	A specific COR may result from interface energy minimization (i) on
151	precipitation from a fluid/melt, during mutual growth or when one of the two minerals
152	provides a substrate for nucleation of the other (e.g., Mutaftschiev, 2001), (ii) on static
153	recrystallization, when the small effect of interface energies is not swamped in magnitude
154	by that of imposed stress (Wheeler et al., 2001), or (iii) on fluid/melt-assisted
155	recrystallization, when dissolution-precipitation and epitaxial nucleation of new grains
156	occur (Putnis and Austrheim, 2010). Scenario (ii) is highly unlikely in our case, given the
157	high-stress environment in which our diamonds have formed. Scenario (iii) is most likely
158	accompanied by chemical resetting and in fact, with increasing solid-fluid
159	disequilibrium, may grade into scenario (i). Note that the distinction between 'fluid' and
160	'melt' tends to vanish with increasing pressure and may not exist under sub-lithospheric
161	conditions (Luth, 2014). Mechanical interactions between euhedral crystals can also

162	potentially lead to non-random COR (Wheeler et al., 2001). However, in this case only
163	one inclusion crystallographic direction, normal to the contact face, is fixed to the host.
164	Therefore, a statistical rotational relationship (cf. Griffiths et al., 2016) rather than a
165	strongly clustered orientation would be expected. Note that {112} faces are not found in
166	periclase-group minerals and are uncommon in diamond (Goldschmidt, 1916; Gaines et
167	al., 1997); therefore, they are unlikely to have played any role in determining the minor
168	rotational component in the observed COR (Fig. 2).
169	The distribution of the FM inclusions relative to diamond growth zones (Fig.
170	1G,H) and N zoning (Fig. 1D,E) indicates that at least some of them are sitting well away
171	from the diamond growth centers and, thus, cannot have acted as seeds for diamond
172	nucleation (cf. the 'central inclusions' in Bulanova, 1995, and Bulanova et al., 1998).
173	Moreover, none of the FM inclusions are located on healed cracks or subgrain boundaries
174	(Fig. 1G,H and DR3), which excludes that the inclusions were formed or modified after
175	diamond formation. Therefore, either diamond and FM precipitated from the same parent
176	medium, i.e., they are syngenetic, or FM nucleated epitaxially on diamond and was later
177	incorporated during a further episode of diamond growth. Whatever the nucleation
178	mechanism (dissolution-precipitation or precipitation as a new mineral), our Fe-rich FM
179	inclusions may not represent accidentally encapsulated portions of the ambient mantle,
180	but rather the product of reactions occurring during the growth history of diamond. A
181	similar conclusion can be drawn for the tiny pyrrhotite inclusions in diamond BZ270,
182	sitting at the boundary between two diamond growth zones (Fig. 1C,H). Their low-Cr,
183	low-Ni composition (Table DR1) suggests an 'eclogitic' or melt-rich environment.

184	FM compositions in diamond JUc4 ($X_{\text{Fe}} = 0.43$ to ≥ 0.64) show no overlap with
185	the range for FM in association with former bridgmanite ($X_{\text{Fe}} = 0.10-0.36$, median =
186	0.17, N = 19; Hutchison, 1997; Stachel et al., 2000; Davies et al., 2004; Hayman et al.,
187	2005; Tappert et al., 2009; Zedgenizov et al., 2014), and FM compositions in diamond
188	BZ270 are tightly clustered at its Fe-rich end. This suggests that the processes recorded in
189	our diamonds may not be typical of the lower mantle. Indeed, experiments by Thomson
190	et al. (2016) suggest that precipitation of variously Fe-enriched FM and diamond may
191	occur by reaction of slab-derived carbonatite melt with mantle rocks, at varying melt/rock
192	ratios, in the deep upper mantle and transition zone. This scenario is fully compatible
193	with our observations and provides a plausible mechanism for formation of our FM-
194	bearing diamonds at depths shallower than the lower mantle under increasing melt/rock
195	ratio.
196	Our interpretation of Fe-rich FM inclusions as a product of reactions occurring
197	during the growth history of diamond may potentially apply to other FM inclusions for
198	which evidence of pre-diamond formation is lacking. Therefore, using FM inclusions to
199	provide direct information on the composition of the ambient mantle and, particularly, of
200	the lower mantle is unwarranted. Specifically, a 'non-pyrolitic' composition of the lower
201	mantle is not required to explain the occurrence of Fe-rich FM inclusions in diamonds.
202	By identifying examples of mineral inclusions which reflect local growth conditions
203	rather than ambient mantle we emphasize the importance of, and provide a means for
204	testing host/inclusion time relationships in strongly deformed diamonds.

205 ACKNOWLEDGMENTS

206	DOI:10.1130/G45235.1 Material for the present study was supplied by MTH. This research was supported
207	by the Alfred P. Sloan Foundation's Deep Carbon Observatory (DMGC-project), ERC
208	Starting Grant INDIMEDEA to FN (agreement n. 307322), CPDA 122324/12 and
209	FACCPRAT12 grants (University of Padova) and National Project PONa3_00369
210	"SISTEMA" (University of Bari). Constructive reviews by F. Kaminsky and two
211	anonymous reviewers helped us improve the manuscript.
212	REFERENCES CITED
213	Agrosì, G., Tempesta, G., Della Ventura, G., Cestelli Guidi, M., Hutchison, M., Nimis,
214	P., and Nestola, F., 2017, Non-destructive in situ study of plastic deformations in
215	diamonds: X-ray diffraction topography and μ FTIR mapping of two super deep
216	diamond crystals from São Luiz (Juina, Brazil): Crystals, v. 7, p. 233,
217	doi:https://doi.org/10.3390/cryst7080233.
218	Angel, R., Milani, S., Alvaro, M., and Nestola, F., 2015, OrientXplot: a program to
219	analyse and display relative crystal orientations: Journal of Applied Crystallography,
220	v. 48, p. 1330–1334, doi:https://doi.org/10.1107/S160057671501167X.
221	Bulanova, G.P., 1995, The formation of diamond: Journal of Geochemical Exploration,
222	v. 53, p. 1–23, https://doi.org/10.1016/0375-6742(94)00016-5.
223	Bulanova, G.P., Griffin, W.L., and Ryan, C.G., 1998, Nucleation environment of
224	diamonds from Yakutian kimberlites: Mineralogical Magazine, v. 62, p. 409-419,
225	doi:https://doi.org/10.1180/002646198547675.
226	Davies, R.M., Griffin, W.L., O'Reilly, S.Y., and Doyle, B.J., 2004, Mineral inclusions

and geochemical characteristics of microdiamonds from the DO27, A154, A21,

228	A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton,
229	Canada: Lithos, v. 77, p. 39-55, doi:https://doi.org/10.1016/j.lithos.2004.04.016.
230	Fei, Y., and Bertka, C.M., 1999, Phase transitions in the Earth's mantle and mantle
231	mineralogy, in Fei, Y., et al., eds., Mantle Petrology: Field Observations and High
232	Pressure Experimentation; a Tribute to Francis R. (Joe) Boyd: Geochemical Society
233	London Special Publication 6, p. 189–207.
234	Gaines, R.V., Catherine, H., Skinner, W., Foord, E.E., Mason, B., and Rosenzweig, A.,
235	1997, Dana's new mineralogy: the system of mineralogy of James Dwight Dana and
236	Edward Salisbury Dana, Eighth Edition: New York, John Wiley & Sons, Inc., 1819
237	p.
238	Goldschmidt, V., 1916, Atlas der Krystallformen: Heidelberg, Germany, Carl Winters
239	Universitatsbuchhandlung, 144 p.
240	Griffiths, T.A., Habler, G., and Abart, R., 2016, Crystallographic orientation relationships
241	in host-inclusion systems: New insights from large EBSD data sets: The American
242	Mineralogist, v. 101, p. 690–705, doi:https://doi.org/10.2138/am-2016-5442.
243	Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R., and Wilding, M.C., 1999, Lower
244	mantle mineral associations in diamonds from Sao Luiz, Brazil, in Fei, Y., et al.,
245	eds., Mantle Petrology: Field Observations and High Pressure Experimentation; a
246	tribute to Francis R. (Joe) Boyd: Geochemical Society, London, Special Publication
247	6, p. 125–153.
248	Harte, B., 2010, Diamond formation in the deep mantle: the record of mineral inclusions
249	and their distribution in relation to mantle dehydration zones: Mineralogical
250	Magazine, v. 74, p. 189–215, doi:https://doi.org/10.1180/minmag.2010.074.2.189.

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G45235.1 , and Kaminsky, F.V., 2003

251	Hayman, P.C., Kopylova, M.G., and Kaminsky, F.V., 2005, Lower mantle diamonds
252	from Rio Soriso (Juina, Brazil): Contributions to Mineralogy and Petrology, v. 149,
253	p. 430-445, doi:https://doi.org/10.1007/s00410-005-0657-8.
254	Howell, D., Piazolo, S., Dobson, D.P., Wood, I.G., Jones, A.P., Walte, N., Frost, D.J.,
255	Fisher, D., and Griffin, W.L., 2012, Quantitative characterization of plastic
256	deformation of single diamond crystals: A high pressure high temperature (HPHT)
257	experimental deformation study combined with electron backscatter diffraction
258	(EBSD): Diamond and Related Materials, v. 30, p. 20-30,
259	doi:https://doi.org/10.1016/j.diamond.2012.09.003.
260	Hutchison, M.T., 1997, Constitution of the deep transition zone and lower mantle shown
261	by diamonds and their inclusions [Ph.D. thesis]: University of Edinburgh, 660 p. and
262	CDRom.
263	Hutchison, M.T., Hursthouse, M.B., and Light, M.E., 2001, Mineral inclusions in
264	diamonds: associations and chemical distinctions around the 670-km discontinuity:
265	Contributions to Mineralogy and Petrology, v. 142, p. 119-126,
266	doi:https://doi.org/10.1007/s004100100279.
267	Hutchison, M.T., Nixon, P.H., and Harley, S.L., 2004, Corundum inclusions in diamonds
268	- discriminatory criteria and a corundum compositional database: Lithos, v. 77,
269	p. 273-286, doi:https://doi.org/10.1016/j.lithos.2004.04.006.
270	Irifune, T., 1994, Absence of an aluminous phase in the upper part of the Earth's lower
271	mantle: Nature, v. 370, p. 131–133, https://doi.org/10.1038/370131a0.

272	Kaminsky, F.V., 2012, Mineralogy of the lower mantle: A review of 'super-deep'
273	mineral inclusions in diamond: Earth-Science Reviews, v. 110, p. 127-147,
274	doi:https://doi.org/10.1016/j.earscirev.2011.10.005.
275	Kaminsky, F.V., and Lin, JF., 2017, Iron partitioning in natural lower-mantle minerals:
276	Toward a chemically heterogeneous lower mantle: The American Mineralogist,
277	v. 102, p. 824-832, doi:https://doi.org/10.2138/am-2017-5949.
278	Kaminsky, F.V., Ryabchikov, I.D., McCammon, C.A., Longo, M., Abakumov, A.M.,
279	Turner, S., and Heidari, H., 2015, Oxidation potential in the Earth's lower mantle as
280	recorded by ferropericlase inclusions in diamond: Earth and Planetary Science
281	Letters, v. 417, p. 49–56, doi:https://doi.org/10.1016/j.epsl.2015.02.029.
282	Kesson, S.E., and Fitz Gerald, J.D., 1992, Partitioning of MgO, FeO, NiO, MnO and
283	Cr ₂ O ₃ between magnesian silicate perovskite and magnesiowüstite: implications for
284	the origin of inclusions in diamond and the composition of the lower mantle: Earth
285	and Planetary Science Letters, v. 111, p. 229–240, https://doi.org/10.1016/0012-
286	821X(92)90181-T.
287	Lee, K.K.M., O'Neill, B., Panero, W.R., Shim, S.H., Benedetti, L.R., and Jeanloz, R.,
288	2004, Equations of state of the high-pressure phases of a natural peridotite and
289	implications for the Earth's lower mantle: Earth and Planetary Science Letters,
290	v. 223, p. 381–393, doi:https://doi.org/10.1016/j.epsl.2004.04.033.
291	Litvin, Y.A., 2014, The stishovite paradox in the genesis of superdeep diamonds:
292	Doklady Earth Sciences, v. 455, p. 274–278,
293	doi:https://doi.org/10.1134/S1028334X14030064.

- Liu, L., 2002, An alternative interpretation of lower mantle mineral associations in
- diamonds: Contributions to Mineralogy and Petrology, v. 144, p. 16–21,
- 296 doi:https://doi.org/10.1007/s00410-002-0389-y.
- Luth, R.W., 2014, 3.9 Volatiles in Earth's mantle, *in* Holland, H.D., and Turekian,
- 298 K.K., eds., Treatise on Geochemistry: Elsevier Oxford, p. 355–391, doi:
- 299 https://doi.org/10.1016/B978-0-08-095975-7.00207-2.
- 300 Milani, S., Nestola, F., Angel, R.J., Nimis, P., and Harris, J.W., 2016, Crystallographic
- 301 orientations of olivine inclusions in diamonds: Lithos, v. 265, p. 312–316,
- 302 https://doi.org/10.1016/j.lithos.2016.06.010.
- 303 Mutaftschiev, B., 2001, The Atomistic Nature of Crystal Growth: Springer-Verlag Berlin
- Heidelberg New York, v. 43, 368 p.
- 305 Nestola, F., Nimis, P., Angel, R.J., Milani, S., Bruno, M., Prencipe, M., and Harris, J.W.,
- 306 2014, Olivine with diamond-imposed morphology included in diamonds. Syngenesis
- 307 or protogenesis?: International Geology Review, v. 56, p. 1658–1667,
- 308 doi:https://doi.org/10.1080/00206814.2014.956153.
- 309 Otsuka, K., Longo, M., McCammon, C.A., and Karato, S.-i., 2013, Ferric iron content of
- 310 ferropericlase as a function of composition, oxygen fugacity, temperature and
- 311 pressure: implications for redox conditions during diamond formation in the lower
- 312 mantle: Earth and Planetary Science Letters, v. 365, p. 7–16,
- 313 https://doi.org/10.1016/j.epsl.2012.11.030.
- 314 Putnis, A., and Austrheim, H., 2010, Fluid-induced processes: Metasomatism and
- 315 metamorphism: Geofluids, v. 10, p. 254–269, doi:10.1111/j.1468-
- 316 8123.2010.00285.x.

317	Ryabchikov, I.D., and Kaminsky, F.V., 2013, The composition of the lower mantle:
318	Evidence from mineral inclusions in diamonds: Doklady Earth Sciences, v. 453,
319	p. 1246–1249, https://doi.org/10.1134/S1028334X13120155.
320	Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G.,
321	Sobolev, N.V., and Walter, M.J., 2013, Diamonds and the geology of mantle carbon,
322	in Hazen, R.M., et al., eds., Carbon in Earth: Reviews in Mineralogy and
323	Geochemistry, v. 75, p. 355-421, doi:https://doi.org/10.2138/rmg.2013.75.12.
324	Stachel, T., Brey, G.P., and Harris, J.W., 2005, Inclusions in sublithospheric diamonds:
325	glimpses of deep Earth: Elements, v. 1, p. 73–78,
326	doi:https://doi.org/10.2113/gselements.1.2.73.
327	Stachel, T., Harris, J.W., Brey, G.P., and Joswig, W., 2000, Kankan diamonds (Guinea)
328	II: lower mantle inclusion paragenesis: Contributions to Mineralogy and Petrology,
329	v. 140, p. 16–27, https://doi.org/10.1007/s004100000174.
330	Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., and Wills, K., 2009,
331	Deep mantle diamonds from South Australia: A record of Pacific subduction at the
332	Gondwanan margin: Geology, v. 37, p. 43–46,
333	doi:https://doi.org/10.1130/G25055A.1.
334	Thomson, A.R., Kohn, S.C., Bulanova, G.P., Smith, C.B., Araujo, D., EIMF, and Walter,
335	M.J., 2014, Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil):
336	constraints from carbon isotopes and inclusion compositions: Contributions to
337	Mineralogy and Petrology, v. 168, p. 1081, doi:https://doi.org/10.1007/s00410-014-
338	1081-8.

339	Thomson, A.R.,	Walter, M.J.,	Kohn, S.C., and	Brooker, R.A., 2016,	Slab melting as a
557	Thomson, A.R.,	walter, 101.5.,	Konn, S.C., and	DIOOKCI, R.A., 2010,	Slab menting as a

- barrier to deep carbon subduction: Nature, v. 529, p. 76–79,
- 341 doi:https://doi.org/10.1038/nature16174.
- 342 Wheeler, J., Prior, D.J., Jiang, Z., Spiess, R., and Trimby, P.J., 2001, The petrological
- 343 significance of misorientations between grains: Contributions to Mineralogy and
- 344 Petrology, v. 141, p. 109–124, https://doi.org/10.1007/s004100000225.
- 345 Wood, B.J., 2000, Phase transformations and partitioning relations in peridotite under
- lower mantle conditions: Earth and Planetary Science Letters, v. 174, p. 341–354,
- 347 doi:https://doi.org/10.1016/S0012-821X(99)00273-3.
- 348 Zedgenizov, D.A., Kagi, H., Shatsky, V.S., and Ragozin, A.L., 2014, Local variations of
- 349 carbon isotope composition in diamonds from São-Luis (Brazil): evidence for
- 350 heterogeneous carbon reservoir in sublithospheric mantle: Chemical Geology,
- 351 v. 363, p. 114–124, https://doi.org/10.1016/j.chemgeo.2013.10.033.
- 352
- 353

Figure 1. (A-B) Microphotographs of FM inclusions in polished diamonds JUc4 (A,
transmitted light) and BZ270 (B, transmitted plus incident light); (C) μ-CT image of
diamond BZ270, showing a cluster of FM inclusions (numbered) and a trail of tiny
inclusions; (D) FTIR map of diamond BZ270; the color scale, from blue (zero intensity)
to red/whitish (max intensity), is qualitative and given the low values is not necessarily

354

- 360 related to N concentration; white outlines indicate projection of the FM inclusions (mod.
- after Agrosi et al., 2017); (E) same as in (D) for diamond JUc4, but here the color scale
- has been confirmed to correlate to N concentration (mod. after Agrosi et al., 2017); (F)
- 363 CL image of diamond BZ270 after limited polishing; (G-H) CL images of reverse side of
- 364 diamond BZ270 after different degrees of polishing, with exposed FM and sulfide (S)
- inclusions. Numbers in (A-C) and (G-H) as in Table 1.
- 366
- 367

368

369 Figure 2. Crystallographic orientations of FM inclusions relative to their diamond hosts,

370 plotted using the OrientXplot software (Angel et al., 2015). Open symbols plot in lower

hemisphere. Blue symbols = BZ270; red symbols = JUc4.

372

373 1GSA Data Repository item 2018xxx, sample location and analytical methods and micro-

374 computed X-ray tomography (µ-CT) of diamond BZ270 (video), is available online at

375 http://www.geosociety.org/datarepository/2018/, or on request from

376 editing@geosociety.org.

TABLE 1. COMPOSITIONAL DATA FOR FM INCLUSIONS

Diamond	Inclusion	X _{Fe}	X _{Fe}	X _{Fe}
		(site occ.)*	(<i>a</i> edge) [†]	(EMPA)§
BZ270	1	0.31(2)	≥0.34(2)	_
	2	0.31(2)	≥0.35(2)	-
	3	-	≥0.35(5)	-
	4	-	0.34(2)	0.346(3)
	5	0.36(2)	0.35(2)	0.338(0)
JUc4	2	-	≥0.57(5)	-
	3	-	≥0.44(5)	_
	4	-	≥0.43(6)	-
	5	_	>0.64(3)	_

Note: Numbers in parentheses are 1.o uncertainties on the last digit. See the Data

Note: Numbers in parentheses are $1 \cdot \sigma$ uncertainties on the last digit. See the Data Repository¹ for details on evaluation of chemical compositions. ^{*}Based on site occupancies after crystal structure refinement. [†]Based on equation $X_{Fe} = 8.441 \cdot a$ (Å) – 35.553, valid for stoichiometric FM at room pressure; minimum values for unexposed inclusions analyzed in situ, which may be under residual pressure. [§]Based on EMPA analysis of exposed inclusions (Table DR1).

389