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Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the

generation of extremely powerful femtosecond pulses in the infrared and visible spectral

ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in

fundamental and applied research. In recent years, a strong need emerged for light sources

producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a

variety of disciplines, ranging from physics and chemistry to biology and material sciences.

This demand was satisfied by the advent of short-wavelength free-electron lasers. However,

for any given free-electron laser setup, a limit presently exists in the generation of ultra-short

pulses carrying substantial energy. Here we present the experimental implementation of

chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving

the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water

window (2.3–4.4 nm).
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S
everal methods have been proposed to generate ultra-short
pulses in short-wavelength free-electron lasers (FELs)1–5. In
these methods6–10, the output pulse energy is limited by the

reduced number of electrons participating in the amplification
process. More recently, few theoretical schemes have been
proposed to increase the peak power up to the terawatt
level11,12. However, in all cases, the pulse shortening is
constrained by the FEL gain bandwidth. This represents an
obstacle to the investigation of ultra-fast reaction mechanisms,
occurring both in dilute and solid matter, with a nanometric
resolution. Moreover, none of the proposed methods allows to
control the spectro-temporal properties of the generated light,
which is a fundamental requisite for the production of fully
coherent optical pulses13.

An alternative process for generating ultra-short pulses with
high peak power relies on laser harmonic generation in gas14.
However, owing to the presence of a cutoff energy, harmonic
generation in gas can hardly compete with FELs in the high-
energy spectral range.

The above-mentioned restrictions can be overcome when
applying chirped pulse amplification (CPA)15 to FELs that are
seeded by an external laser and generate light at the nth harmonic
of the laser wavelength16. The working principle of CPA in
seeded FELs17–20 is illustrated in Fig. 1. As in the case of classical
lasers, the technique relies on stretching the seed pulse in time by
means of a linear frequency chirp before amplification. This
virtually allows to extract energy from the whole electron bunch,
substantially enhancing the FEL pulse energy at saturation.
Moreover, as shown below, the bandwidth of a seeded FEL
operated in CPA mode increases with the harmonic number n.
Such an increase can be ‘sustained’ by properly chirping in energy
the electron beam, to match the FEL resonant condition. This
allows one to circumvent the constraint due to the finite FEL gain
bandwidth, removing the limit on the shortest FEL pulse duration
reachable with an optical compressor21,22.

As demonstrated in the Methods, in the presence of a
significant frequency dispersion on the seed pulse, the FEL pulse

bandwidth, (Do)FEL, scales according to the relation

Doð ÞFEL¼n1� a Doð Þseed; ð1Þ
where (Do)seed is the seed pulse bandwidth and a (positive and
smaller than 1/2) is a factor depending on the FEL operating
regime. In the following, we will focus on the case of an FEL in
moderately saturated regime, corresponding to aC1/3 (ref. 23).
Equation (1) points out an important difference between CPA in
solid-state lasers and in seeded FELs. Indeed, although in
standard lasers the spectral content of the generated light is
fundamentally identical to that of the input pulse, in seeded FELs
the bandwidth of the output emission can be significantly larger
than that of the seed. It is noteworthy that the broadening of the
FEL pulse bandwidth relative to that of the seed pulse results from
two competing phenomena. On the one hand, the frequency
up-conversion process increases the FEL pulse bandwidth by a
factor n relative to the bandwidth of the seed. On the other hand,
this effect is partially counteracted by the dynamic reduction of the
FEL pulse duration due to the nonlinear laser–electron interaction
within the modulator, represented by the factor a (see Methods).

Equation (1) allows us to derive the shortest pulse duration,
Dtð Þmin

FEL, which can be obtained after compressing the FEL pulse:

Dtð Þmin
FEL¼

Dtð ÞTL
seed

n1� a : ð2Þ

Here Dtð ÞTL
seed is the seed pulse duration at the transform limit

(that is, in the absence of chirp).
In the following, we present the experimental implementation

of CPA on a seeded extreme-ultraviolet (XUV) FEL.

Results
The setup. The CPA scheme was tested at the FERMI FEL facility
in Trieste5. The seed was provided by the third harmonic of a
Ti:Sapphire laser (lseed¼ 261 nm). The seed-pulse full width at
half-maximum (FWHM) bandwidth was 0.7 nm and its initial
(before stretching) FWHM duration 170 fs. It is noteworthy that,
due to nonlinear effects occurring during harmonic generation
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Figure 1 | Scheme of a seeded free-electron laser in CPA mode. When operated in CPA regime, the FEL is seeded with a Gaussian laser pulse carrying a

linear frequency chirp. The seed interacts with electrons in a short undulator (the modulator). The resulting electron-beam energy modulation is

transformed into a density modulation (bunching) when the electrons cross the magnetic field generated by a dispersive section. The bunching has a

significant harmonic content at the frequency of the seed, oseed, and at its harmonics. Finally, the modulated electrons are injected into a long undulator

(the radiator), which is tuned to the nth harmonic of the seed. In the radiator, electrons emit coherently at the frequency oFEL¼ noseed. Under proper

conditions, the frequency chirp of the seed is transmitted to the FEL harmonic pulse generated at the end of the radiator and can then be compensated by

an optical compressor. The compressor includes four optical elements: two gratings (G1 and G2) in classical diffraction geometry and two plane mirrors

(M1 and M2), which steer the beam back to its original propagation axis. After the exit of the compressor, the FEL beam is directed towards the

experimental chamber of the FERMI Low Density Matter beamline (see: http://www.elettra.eu/lightsources/fermi/fermi-beamlines/ldm/ldmhome-

page.html) where the FEL pulse duration is measured using a cross-correlation scheme. In the latter, the atoms of a He gas are photo-ionized by the FEL,

assisted by a synchronized infrared laser pulse (see Fig. 2). A raw image is shown of a He photo-electron distribution acquired with a VMI spectrometer.
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and transport to the undulator entrance, the initial seed pulse was
not transform limited. Indeed Dtð ÞTL

seed¼ 145 fs. We will further
comment on this below. The FEL was tuned to 37.3 nm (n¼ 7).
The compressor, shown in Fig. 1, consists of two plane gratings
with uniform line spacing used at grazing incidence in classical
diffraction geometry24. The compressor action induced a negative
chirp compensating the positive chirp of the FEL pulse. The
measured transmission efficiency was B5%.

The FEL pulse duration was measured using a cross-correlation
scheme25, which relies on the ionization of a He gas sample by
the FEL in the field of an intense infrared laser with variable time
delay and known duration (90 fs, FWHM). A typical image of a
He photo-electron distribution, acquired with a velocity map
imaging (VMI) spectrometer, is shown in Fig. 1. By inverting the
VMI image and integrating over the angular dependence of the
electron emission, one gets the photo-electron energy spectrum,
which consists of a main line, associated to the direct
photoemission process, and of sideband lines, indicating the
interaction with the infrared field. The latter are sensitive to the
temporal overlap of the FEL and infrared pulses, see Fig. 2. The
cross-correlation curves associated to different sidebands, from
which one can deconvolve the FEL pulse profile, are obtained by
integrating the electron signal over all emission angles and
plotting the area under the corresponding peaks as a function of
the FEL-infrared delay (see Fig. 2 and Methods).

The measurements. As a first step, we characterized the FEL
spectrum and pulse duration in the standard working conditions,
that is, no stretching of the seed and no FEL compression.
The measured FWHM spectral width and pulse duration were,
respectively, 5.2� 1013 rad s� 1 (3.8� 10� 2 nm) and 91 fs (see
inset of Fig. 2), with fluctuations between consecutive measure-
ments of the order of few percent. It is worth noting that the
corresponding time-bandwidth product is a factor of 1.7 above
the transform limit. Such a deviation is due to an unwanted chirp
on the FEL pulse23 that results from the combination of two
effects: the above-mentioned initial chirp on the seed, which is
expected to provide the prevalent contribution and a residual
quadratic chirp on the temporal profile of the electron-beam

energy. All in all, the measured pulse duration is in very good
agreement with the one predicted by the theory23 (see Methods),
that is C89 fs.

Then, to enable the CPA regime, we induced a positive linear
frequency chirp in the seed pulse and stretched it up to 290 fs. In
these conditions, we characterized the FEL pulse before and after
compression. Five independently measured single-shot spectral
profiles are shown in Fig. 3a. The average FWHM spectral width
is 6.05� 1013 rad s� 1 (4.46� 10� 2 nm), with fluctuations
between consecutive measurements of the order of few per cent.
This result is close to the theoretical value predicted by
equation (1), that is, Doð ÞFEL= 72=3 Doð Þseed

� �
’ 0:85. Three

independently measured cross-correlation curves, associated to
the second sideband of the photo-electron spectrum, are shown in
Fig. 3b for the non-compressed case and in Fig. 3c for the case of
maximum compression. Also shown (dotted curves) are the
deconvolved FEL pulses. The obtained FWHM pulse duration for
the case of no-compression is B143 fs (with fluctuations of few
per cent), which is again in satisfactory agreement with the
theoretical expectation of B152 fs. The increase of the FEL pulse
bandwidth with respect to that of the seed, which is the essence of
CPA in seeded FELs, allowed us to obtain, after compression,
a significant shortening of the FEL pulse with respect to the
no-CPA case. For the reported case, see Fig. 3c, Dtð Þmin

FEL’ 50 fs.
This value is quite close to the one predicted by equation (2), that
is B40 fs. The measured time-bandwidth product is now only a
factor of 1.1 above transform limit. This remarkable result shows
that the CPA technique is able to compensate not only the linear
frequency chirp in the FEL pulse induced through the seed
control, but also the unwanted residual generated by other
sources, such as the seed transport and the quadratic curvature of
the electron-beam energy profile. The effect of the compressor
setting is shown in Fig. 4, in which the measured pulse duration is
reported, as a function of the difference between the FEL incident
angles on the two gratings (d1 and d2 in Fig. 1).

Discussion
We demonstrated the possibility of carrying out CPA in an
extreme-ultraviolet seeded FEL. The technique, which can be
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Figure 2 | Measurement of the FEL pulse duration. Photo-electron spectra, obtained by inverting the electron distributions acquired with the VMI
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conditions, that is, no stretching of the seed, no FEL compression. For the sake of visualization, only the first, second and third sidebands (normalized to the

main line, associated to the direct photoemission process) are plotted. The inset shows three independent cross-correlation curves obtained by plotting the
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extended to FELs based on self-amplified spontaneous emis-
sion26,27 and to plasma amplifiers28, allowed us to achieve a
relevant reduction of the FEL pulse duration, with respect to that
obtained in standard operation mode. The present low
transmission of the compressor (B5%) and the relatively small
harmonic number (n¼ 7) limited the obtained peak power to a
fraction of a gigawatt. However, by adopting an off-plane mount
geometry of the gratings24 (which has a proven peak efficiency up

to 70% measured on a single grating29), and by choosing n460
(which is feasible using, for example, the FEL-2 configuration at
FERMI30), the potential is there to produce, with existing
technology, coherent few-femtosecond gigawatt laser pulses. In
a perspective view, a natural extension of our results may allow to
generate fully coherent sub-femtosecond FEL pulses at
wavelengths close to the K-absorption edge of oxygen
(2.3 nm), paving the way to X-ray imaging experiments with
unprecedented temporal resolution in the water window. Based
on the reported results, we believe that CPA will soon become an
essential tool for existing and future X-ray FELs.

Methods
FEL and seed settings. For the reported experiment, the
electron-beam energy was tuned to 1.2 GeV, the peak electron current was set to
about 500 A and the bunch duration was B1 ps. The electron beam profile was
close to constant in the region seeded by the laser pulse (that is, few hundreds of
femtosecond around the beam centre), with a residual quadratic energy curvature
of the order of few MeV ps� 2.

The seed was provided by the third harmonic of a Ti:Sapphire laser (261 nm,
Gaussian spectral profile). In standard operating conditions (no CPA), the seed had
a FWHM duration of 170 fs and a FWHM bandwidth of B0.7 nm. For the CPA
operation, a positive linear frequency chirp was introduced by propagating the
third-harmonic pulse through a calcium fluoride plate that stretched the pulse
duration to 290 fs. The peak power at the entrance of the modulator was
B250 MW, for both the standard and CPA configurations.

The FERMI FEL modulator has a period of 100 mm and a length of 3 m. The
radiator is composed of six 2.4 m-long APPLE-II undulator sections with a period
of 55 mm. During the reported experiment, the strength of the dispersive section
was about 50mm.

The optical compressor. The compressor consists of four optical elements: two
gratings (G1 and G2 in Fig. 1) and two plane folding mirrors (M1 and M2 in
Fig. 1), which steer the beam back to its original propagation axis. The control of
the optical delay between different FEL spectral components is achieved through
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the variation of the FEL incident angles (d1 and d2 in Fig. 1) on the gratings. The
latter can be varied independently. This allows the compensation of the wavefront
tilt due to the divergence of the FEL beam. The gratings are placed at a distance of
400 mm, have a groove density of 600 gr mm� 1 and a blaze angle of 2�. The
compressor is hosted in a ultra high-vacuum chamber. The optics are moved by
external stepper motors. The angular resolution is 65.8 mrad per step in a full step
mode; controllers are capable of a 1/8-step resolution. The angles d1 and d2 may be
selected in the range between � 0.5� and 14.5�.

Measurement of the FEL pulse duration. The FEL pulse duration was measured
using a cross-correlation scheme, which relied on the ionization of a He gas sample
by the FEL in the field of an intense infrared laser pulse with variable delay and
known duration (90 fs, FWHM). The photo-emitted electrons were acquired using
a VMI spectrometer. To reconstruct the electron energy spectrum, the VMI images
have been inverted using the programme MEVIR (maximum entropy velocity
image reconstruction31). The cross-correlation curves associated to different
sidebands are obtained by integrating the electron signal over all emission angles
and plotting the area under the corresponding peaks (see Fig. 2), as a function of
the FEL-infrared delay. Neglecting the time jitter between the FEL and the infrared
laser, assuming Gaussian temporal profiles and moderate infrared energies
(no saturation of sidebands intensities), the FEL pulse duration can be obtained

from the following relation: Dtc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtð Þ2FELþ Dtð Þ2IR=‘

q
, where Dtc is the FWHM of

the cross-correlation curve, (Dt)IR is the width of the infrared probe pulse and ‘ is
the sideband order.

Theoretical framework of CPA in seeded FELs. Consider a Gaussian chirped laser

pulse, whose electric field in the frequency domain reads Ê oð Þ� e�o2= 2s2
oð Þ e� ibo2=4.

Here so is the (r.m.s.) laser bandwidth and b is the so-called group delay
dispersion32, which is used in the following to quantify the frequency dispersion.

The Fourier transform of Ê oð Þ is E tð Þ� e� t2= 2s2
tð ÞeiGt2

. The coefficient of
the quadratic temporal phase, G, and the (r.m.s.) laser pulse duration, st, are
related to so and b through the following relations: G ¼b= 4=s4

o þ b2� �
and

s2
t¼1=s2

o þb2s2=4
o . Based on the previous relations, two extreme regimes

can be distinguished: (a) for b � 2=s2
o : st ’ 1=so and (b) for b � 2=s2

o :
st ’ 1=2bso . The latter regime is the one suitable for CPA. It is worth noting that
the previous relation is valid also for non-Gaussian pulse profiles, due to the
equivalence between the spectral and temporal profiles (both in amplitude and
phase) in the case of strongly chirped pulses33.

Consider now the case of a seeded FEL. For a Gaussian seed laser pulse, the FEL
is expected to have a quasi-Gaussian pulse profile. According to the literature23,
the duration of the FEL pulse in standard operating conditions (no CPA) is
stð ÞnoCPA

FEL ’ n� a stð Þseed, where (st)seed is the seed pulse duration and a (positive
and smaller than 1/2) is a factor depending on the regime in which the FEL is
operated. As a consequence of the frequency up-conversion, the temporal phase
profile of the FEL pulse is n times that of the seed. On the basis of the above, one
can easily show that, if the seed is characterized by a strong chirp (and the
longitudinal electron-beam energy profile can be assumed to be almost flat), the
same holds for the FEL33. In this case, always in the high-chirp regime, the amount
of group delay dispersion to be compensated by the optical compressor, bFEL, is
related to bseed by the following relation: bFEL ’ bseed=n. By combining the
previous equations, the fundamental relations (1) and (2) reported in the main text
can be obtained. It is noteworthy that, for the sake of comparison with
experimental results, the latter are expressed in FWHM for the spectral (Do) and
temporal (Dt) powers.

Data availability. All relevant data contained in this manuscript are available from
the authors.
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