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Abstract 

The objective of the study is to assess the predictive performance of three different techniques as classifiers for 

extra-intestinal manifestations in 152 patients with Crohn’s disease. Naïve Bayes, Bayesian Additive Regression 

Trees and Bayesian Networks implemented using a Greedy Thick Thinning algorithm for learning dependencies 

among variables and EM algorithm for learning conditional probabilities associated to each variable are taken into 

account. Three sets of variables were considered: (i) disease characteristics: presentation, behavior and location 

(ii) risk factors: age, gender, smoke and familiarity and (iii) genetic polymorphisms of the NOD2, CD14, TNFA, 

IL12B, and IL1RN genes, whose involvement in Crohn’s disease is known or suspected. Extra-intestinal 

manifestations occurred in 75 patients. Bayesian Networks achieved accuracy of 82% when considering only 

clinical factors and 89% when considering also genetic information, outperforming the other techniques. CD14 has 

a small predicting capability. Adding TNFA, IL12B to the 3020insC NOD2 variant improved the accuracy. 

Keywords: Clinical Decision Support, Clinical research informatics, Data mining and statistical data analysis. 

 

Introduction 

The extensive clinical heterogeneity of Inflammatory Bowel Disease (IBD), and in particular of Crohn’s disease 

(CD), has stimulated several efforts to classify patients according to recognized criteria, from the international 

meetings in Rome (1991) and Vienna (1998) to the recent revision in Montreal [1]. The presence of extra-intestinal 

manifestation (EIM), among others, has important consequences for the clinical management of CD patients and 

relevant effects on the overall burden of the disease, the quality of life and the allocation of health resources [2]. 

Attempts have been made to weight the risk of EIM according to the patients’ conditions both at onset and during 

disease progression, and among the potential risk factors for onset of EIM the role of several genetic 

predisposing/modifier factors have been recently reviewed [3], even if their clinical usefulness is at present unclear 

[4].  

This increase of information, usually in conjunction with the limited size of the analyzed samples, is posing several 

threats to the statistical procedures used for EIM risk stratification. Classical and most used tools, such as logistic 
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models, are known to have limits in such situations. In addition, the effect of some risk factors on the risk of EIM is 

known to be non-linear and to interact with other covariates [5, 6]. 

In a previous paper from Giachino et al. [7], six common statistical models (logistic regression model, generalized 

additive models, linear and quadratic discriminant analysis, artificial neural networks (ANN) and projection pursuit 

regression (PPR) were implemented to predict EIM using genetic data in addition of clinical factors, showing the 

impact that genetics, when appropriately modeled, can have in predicting EIM.  

The aim of this paper is to further develop on that pathway, approaching the problem of “predicting” EIM by 

implementing three different Bayesian classifiers and by assessing its predictive capability in comparison with these, 

previous and current, results.  

Several approaches have been proposed in the Bayesian framework to deal with classification (or prediction) in a 

clinical setting. Among them, of a heuristically increasing complexity, major groups include naïve Bayes, Bayesian 

Additive Regression Trees (BART) and Bayesian networks. 

Naïve Bayes (NB) classifier applies Bayes’ theorem by assuming that the features are independent given class, 

regardless of any possible correlation between them. Studied intensively from 1950s, it has been widely adopted in 

automatic medical diagnosis, with convincing performances, often outperforming other sophisticated techniques, 

despite its sometime unrealistic independence assumption [8].  

Bayesian Additive Regression Trees (BART), having been developed at the beginning for regression problems, is a 

nonparametric statistical approach making use of a sum-of-trees model and regularization prior on the parameters in 

order to approximate an unknown function. It has been extended by Chipman et al. [9] to the probit model setup to 

handle binary classification tasks. 

Bayesian Networks (BN) have been introduced in the 1980s as a probabilistic expert system for representing and 

reasoning models of problems involving uncertainty. Since the beginning of the 1990s, they have been used for 

developing medical applications [10, 11]. Their success in this field is due to the fact they possess the quality of 

being both a statistical and an Artificial Intelligent knowledge-representation tool. Furthermore, they allow for 

structuring domain knowledge by investigating causal relationships among domain variables [12]. In many cases, 

Bayesian Networks have been proven to outperform other statistical methodology in classification tasks [13]. 

 

Materials and Methods 

The present dataset derives from the larger series of CD and Ulcerative Colitis patients enrolled in our ongoing 

observational study of IBD genetics in collaboration with three gastroenterology Units in Torino, Italy. An 

association analysis of the three common NOD2 variants has been reported. Genomic DNA was extracted using a 

commercial kit (Promega). The nomenclature of the analysed polymorphisms is reported in Table 1, together with 

references to typing technique and relevant literature. Of the two polymorphisms in the 5’ region of the TNFA gene 

we here consider only the genotype at -308, since all analysed samples were homozygous for the common G allele 

at the -238 SNP. 

Table 1. Analyzed SNPs.  

Gene Polymorphism Analysis 
dbSNP 
ID32 

Pr F Pr R 
Restriction  
enzyme 

 Ref. 

NOD2 R702W 
PCR-

RFLP 
rs2066844 

5’-AGGTCA-

GCCTGATG-
ACATTTC-3’ 

5’-CGGGAT-

GGAGTGG-
AAGT-3’ 

Msp I 

A:329+66+54

bp 
T:329+120bp 

Giachin

o et al 
20047 

 G908R 
PCR-

RFLP 
rs2066845 

5’-CACTGA-

CACTGTCT-
GTTGACTC-3’ 

5’-AAGACC-

TTCAGAAC-
TGGCCCC-3’ 

HhaI 
G: 202bp 

C:155+47bp 

Giachin

o et al 
20047 

 INSC3020 
PCR-
RFLP 

rs2066847 

5’-CTGGCT-

AACTCCTG-

CAGT-3’ 

5’-ACTGAG-

GTTCGGA-

GAGCT-3’ 

NlaIV 

insC: 

142+37+38 
bp 

wt: 180+37bp 

Giachin

o et al 

20047 

CD14 -159C>T 
PCR-

RFLP 
rs2569190 

5'-GTGCCA-
ACAGATGA-

GGTTCAC-3' 

 

5'-GCCTCT-

GACAGTTT-
ATGTAATC-3' 

AvaII 

T: 353 + 

144bp 
C: 479bp 

Klein 

200233 
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Patients 

We decided to use for this work the same data set as in the previous analysis [7] in order to allow a direct 

comparison of the various statistical approaches. Detailed clinical and familiar information were acquired from each 

patient and encoded according to the Vienna classification that was in use at the time of enrolment. Extra-intestinal 

manifestations were defined as the occurrence of rheumatologic, dermatological, ocular, liver and biliary 

manifestations and amyloidosis. Patients form a retrospective cohort belonging to the Italian Population. They gave 

a written consent to the study, which was performed under permission of the Hospital Ethical Committee. 

Naïve Bayes 

A Naïve-Bayes classifier [14] is a simple BN that has the outcome variable as the parent node of all other nodes and 

no other connections between variables.  

Over the BN’s they are easy to construct, since the structure is given a priori and thus no structure learning 

procedure is needed. They require the assumption that all the features are independent of each other. Despite this 

strong assumption, Naive-Bayes have proven to outperform many classifiers especially where the features are not 

strongly correlated [15]. 

The naïve classifier combines a probability model with a decision rule: it computes the conditional a posterior 

probabilities of a categorical class variable given independent predictor variables using the Bayes’ theorem. The 

metric predictors are supposed to be distributed as a Gaussian. This technique is the simplest class of Bayesian 

Networks where all of the features are class-conditionally independent. Its simplicity makes it easy to use and it 

allows to get a good result especially in case of small databases [8]. Moreover, naïve classifiers can be extremely 

fast in comparison to more sophisticated methods of data mining.  

Naïve Bayes classifier’s implementation during this studio takes advantage of the “e1071” R package [16]. 

Bayesian Additive Regression Trees 

A Bayesian Additive Regression Trees is a nonparametric Bayesian approach to estimation which uses 

dimensionally adaptive random basis elements, the regression trees, to approximate an unknown function 𝑓(𝑥) =
𝐸(𝑌|𝑥), by imposing accurately the regularization prior. By weakening the single effects BART ends up with a sum 

of trees each of which explains a small and different portion of the function 𝑓 [9]. Obviously, respect to single trees, 

models composed of sums of trees have a greater ability to describe into details 𝑓, capturing interaction and non-

linearity.  Hence the information regarding 𝑓 is partitioned into different trees, each contributing to the overall fit.  

This technique was primarily designed to predict quantitative (continuous) outcomes from observations via 

regression, but an algorithm that extends BART for binary classification, written in the statistical R package 

“BayesTree”, is provided online by the original authors of BART [9].  

 continued        

TNFA -308G>A 
ARMS-

RFLP 
rs1800629 

5'-AGGCAA-
TAGGTT-

TTGAGGGG-
CAT-3' 

 NcoI 
A: 117bp 

G: 97 + 20bp 

Vinasco 
et al. 

19978 

 -238G>A 
ARMS-

RFLP 
rs361525  

5'-ACATCC-

CCATCCTC-
CCAGATC-3' 

BglII 
G: 117bp 

A: 97 + 20bp 

Vinasco 

et al. 
19978 

IL12B Ex8 +159A>C 
PCR-

RFLP 
rs3212227 

5'-TTTGGA-

GGAAAAGT-
GGAAGA-3' 

5'-AACATT-

CCATACAT-
CCTGGC-3'  

TaqI 
C: 161+139bp 

A: 300bp 

D’Alfon

so  
(persona

l 

commun
ication) 

IL1RN 86bp VNTR 
Elecropho

resis 
AJ289235 

5'-CTCAGCAA-

CACTCCTAT-3' 

5'-
TCCTGGTC-

TGCAGGTAA-

3' 

- - 

Mansfiel

d et al. 
199434 

Vamvak

opoulos 
200235 
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In general, as anticipated, BART model consists of two parts: a sum-of-trees model and a regularization prior of the 

model’s parameters that keeps the individual tree effects small. Mathematically BART probit extension model for 

binary classification (coded with outcomes “0" and “1") can be expressed as:  

𝑃[𝒀 = 1|𝑿] = 𝜙[𝒯1
𝑀(𝑿) + 𝒯2

𝑀(𝑿) + ⋯ + 𝒯𝑚
𝑀(𝑿)] 

where 𝜙[•] denotes the cumulative density function of the standard distribution, 𝒯 denotes a binary tree made of a 

set of node decision rules and a set of terminal nodes, M a set of parameter values associated with each of the 

terminal nodes of 𝒯. The number of trees, 𝑚, is fixed to 200 by choice as a good trade-off: the more this number 

increases the more the model is flexible, showing excellent prediction capabilities slowing down the computational 

time.  

Through a Bayesian backfitting MCMC algorithm [17] that iteratively constructs and fits successive residuals, 

thanks to the data augmentation approach of Albert and Chib (1993) [18], the posterior information is extracted. 

MCMC chooses between different generated trees the one providing the best sum-of-trees model according to a 

posterior probability. This approach, because of the complex computations, is usually time consuming. However, 

BART has several appealing features such as the additive characteristic able to catch the variability of the function 

and the capability to conduct automatic variable selection.  

BART approach releases the strong hypothesis of statistical independence of attributes making this technique more 

akin to real data.  

Bayesian Networks 

A Bayesian Network is a graphical representation of the joint probability distributions over a set of random 

variables. It consists of a series of nodes representing variables connected by arrows forming a graph that has no 

cycles. The arcs specify the independence assumptions that must hold between the random variables.  

In general, they may be many arcs going into and out of each node, creating a complex network. The most important 

restriction is that the arcs must not create cycles within the network; the resulting network is known as directed 

acyclic graph (DAG) [19]. Each node of the network is associated with a set of probability tables. For those nodes 

without ingoing arcs, the probability distribution is a prior distribution which requires supplying a set of initial 

values. Both the structure and the numerical parameters of a BN can be learned entirely from data [20, 21].  

There are a great number of algorithms for learning the structure and the parameters of Bayesian networks from 

data. Many of them are based on a scoring function and a search procedure. The algorithms based on a scoring 

function try to find a graph that best represents the data, according to a specific criterion. They use a scoring 

function in combination with a search method to measure the goodness of each explored structure from the space of 

feasible solutions. During the exploring process, the scoring function is applied to evaluate the fitness of each 

candidate structure to the data.  

In this analysis, a variant of this scoring approach is the Greedy Thick Thinning algorithm [22], which optimizes an 

existing structure by modifying the structure and scoring the result, was performed. By starting from a fully 

connected DAG and subsequently removing arcs between nodes based on conditional independences tests [23], the 

Greedy Thick Thinning algorithm is able to isolate the best scoring network. One of the most usual scoring function 

is the Bayesian metric [24], which is a measure of how likely it is to observe the data given the network structure, 

i.e. the best network in terms of the Bayesian metric is that one with the highest probability based on the given data 

[24]. 

Given the structure of the network, conditional probability learning is done. Since conditional probabilities to be 

learned depend not just on the parent variables’ values but also on the other linked variable (local structure), usually 

the assumption each variable is discrete is made. In this way, each local distribution is a collection of multinomial 

distributions. Given this class of local distributions, probabilities can be efficiently computed when there are no 

missing data in the sample and assuming local parameter independence, i.e. the probability of each state is 

independent of the probability of every other state. The learning method performed in this analysis was Expectation-

Maximization (EM) algorithm [25]. 

The EM algorithm performs a number of iterations. For each iteration, the logarithm of the probability of the case 

data given the current joint probability distribution is computed and the EM-algorithm attempts to maximize this 

quantity. The starting point of the EM algorithm is the conditional probability tables specified prior to calling the 

algorithm. As a priori distribution, the uniform distribution was assumed for each variable. The EM algorithm 
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terminates when the relative difference between the log-likelihood for two successive iterations is sufficiently small 

(less then10
-4

). 

To assess model performance, error rate and predictive value of the Bayesian Network were estimated using a 10-

fold cross validation procedure. 

Bayesian Networks implementation was carried out using GeNIe 2.0 [26]. 

 

Results 

Basic characteristics of the sample, stratified by occurrence of EIM, are presented in Table 2. A more detailed 

description of the dataset is given in Giachino’s work [27]. The clinical and genetic characteristics were divided into 

three groups: (1) characteristics of the disease: age at onset, location, disease behavior and presentation of the 

disease; (2) known risk factors: sex, smoking behavior and familiarity of the disease; (3) genetic polymorphisms of 

the NOD2, CD14, IL12B, TNF, IL1RN genes. 

 

Table 2. Data description. Median, I, III quartile, number, percentages as appropriate. N indicates the number of 

cases with a valid information for the given covariate. 

Variable  N EIM- 

(77) 

EIM+ 

(75) 

Combined 

(152) 

 

Characteristics of the 

disease 

      

PRESENTATION Medical 147 70 (90.9%) 63 (84%) 133 (87.5%)  

 Surgical  7 (9.1%) 7 (9.3%) 14 (9.2%)  

BEHAVIOUR Nonstricturing, 

nonpenetrating 

108 25 (32.5%) 25 (33.3%) 50 (32.9%)  

 Stricturing  15 (19.5%) 20 (26.7%) 35 (23%)  

 Penetrating  9 (11.7%) 14 (18.7%) 23 (15.1%)  

LOCATION Terminal ileum 109 14 (18.7%) 14 (18.7%) 28 (18.4%)  

 Colon  11 (14.3%) 14 (18.7%) 25 (16.4%)  

 Ileocolon  21 (27.3%) 27 (36%) 48 (31.6%)  

 Upper GI  4 (5.2%) 4 (5.3%) 8 (5.3%)  

AGE <40 yrs 146 53 (68.8%) 51 (68%) 104 (68.4%)  

 >40 yrs  21 (27.3%) 21 (28%) 42 (27.6%)  

Risk factors       

SEX Male 152 46 (59.7%) 34 (45.3%) 80 (52.6%)  

 Female  31 (40.3%) 41 (54.7%) 72 (47.4%) 

 

 

SMOKER No 146 42 (54.5%) 36 (48%) 78 (51.3%)  

 Yes  19 (24.7%) 26 (34.7%) 45 (29.6%)  

 Ex smoker  11 (14.3%) 12 (16%) 23 (15.1%) 

 

 

FAMILIARITY No 139 58 (75.3%) 57 (76%) 115 (75.7%)  

 Yes  11 (14.3%) 13 (17.3%) 24 (15.8%)  

Polymorphisms       

   NOD2: R702W RR 152 63 (81.8%) 64 (85.3%) 127 (83.6%)  

 RW  11 (14.3%) 9 (12%) 20 (13.2%)  

 WW  3 (3.9%) 2 (2.7%) 5 (3.3%) 

 

 

   G908R GG 152 73 (94.8%) 67 (89.3%) 140(92.1%)  

 GR  4 (5.2%) 8 (10.7%) 12 (7.9%) 

 

 

   INSC3020 LL 152 71 (92.2%) 65 (86.7%) 136 (89.5%)  

 L/insC  5 (6.5%) 8 (10.7%) 13 (8.6%)  
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continued       

CD14 CC 152 20 (26.0%) 20 (26.7%) 40 (26.3%)  

 TC  39 (50.6%) 36 (48%) 75 (49.3%)  

 TT  18 (23.4%) 19 (25.3%) 37 (24.3%) 

 

 

TNFA -308 GG 72 35 (45.5%) 18 (24%) 53 (34.9%)  

 GA  9 (11.7%) 4 (5.3%) 13 (8.6%)  

 AA  5 (6.5%) 1 (1.3%) 6 (3.9%) 

 

 

TNFA -238 GG 72 49 (63.6%) 23 (30.7%) 72 (47.4%) 

 

 

IL12B AA 72 17 (22.1%) 11 (14.7%) 28 (18.4%)  

 AC  24 (31.2%) 10 (13.3%) 34 (22.4%)  

 CC  8 (10.4%) 2 (2.7%) 10 (6.6%) 

 

 

IL1RN ILRN*1 72 29 (37.7%) 12 (16%) 41 (27%)  

 ILRN*1/ILRN*2  15 (19.5%) 7 (9.3%) 22 (14.5%)  

 ILRN*2  3 (3.9%) 3 (4%) 6 (3.9%)  

 ILRN*1/ILRN*3  1(1.3%) 1 (1.3%) 2 (1.3%)  

 ILRN*2/ILRN*3  1 (1.3%) 0 1 (0.7%)  

 

Due to the high number of patients with missing values, two different datasets are considered: the first one (1) in 

which TNF and IL1RN genes were excluded and a second one (2) containing only patients for whom data on TNF 

and IL were available (Figure 1).   

The Bayesian Networks were depicted in Figure 1. Arrows between nodes denoted probability dependencies among 

variables (bolder arrows pointed out stronger influences among variables). 

 

 

Figure 1. Bayesian Network for characterizing EIM: BN1 (left) and BN2with IL and TNF genes (right). 

 

Sensitivity to finding for BN1 is shown in Table 3. As can be seen from the low value of mutual information and 

variance of beliefs and from the graph, the role of CD14, is negligible for predicting EIM.  
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Table 3. Sensitivity of finding analysis for Extra intestinal manifestation in BN1. 

 

Node 

Mutual 

Information Variance of beliefs 

EIM 0.99937 0.2497803 

SMOKER 0.00767 0.0026439 

LOCATION 0.0047 0.0016265 

FAMILIARITY 0.00423 0.0014645 

BEHAVIOUR 0.00338 0.0011712 

PRESENTATION 0.00325 0.0011018 

CD14 0.00095 0.0003287 

AGE 0.00033 0.0001152 

SEX 0.00008 0.0000286 

INSC3020 0.00001 0.0000036 

G908R 0 0 

R702W 0 0 

 

In Table 4, comparison of accuracy and predictive values of the three statistical approaches implemented, and of 

their performance’s enhancements due to the role of genetic variables, was shown. 

 

Table 4. Accuracy, sensitivity, specificity, positive predictive values (PPV) and negative predictive value (NPV) for 

the three different techniques in case of considering (2) or not (1) the genetic variables. 

 

 
Accuracy Sensitivity Specificity PPV NPV AUC 

Naïve Bayes1 
0.62 

(0.54-0.70) 

0.57 

(0.45-0.69) 

0.66 

(0.55-0.77) 

0.62 

(0.50-0.74) 

0.61 

(0.50-0.72) 

0.64  

(0.55-0.73) 

Naïve Bayes2 
0.79 

(0.68-0.88) 

0.52 

(0.31-0.73 

0.92 

(0.80-0.98) 

0.75 

(0.48-0.93) 

0.80 

(0.68-0.90) 

0.78 

(0.67-0.90) 

BART1 
0.64 

(0.56-0.71) 

0.63 

(0.51-0.74) 

0.65 

(0.53-0.75) 

0.64 

(0.52-0.74) 

0.64 

(0.52-0.75) 

0.71 

(0.62-0.79) 

BART2 
0.75 

(0.63-0.84) 

0.26 

(0.10-0.48) 

0.98 

(0.89-1) 

0.86 

(0.42-1) 

0.74 

(0.61-0.84) 

0.86 

(0.78-0.95) 

BN1 
0.82 

(0.76-0.88) 

0.84 

(0.77-0.91) 

0.79 

(0.7-0.88) 

0.83 

(0.69-0.97) 

0.80 

(0.69-0.91) 

0.85 

(0.77-0.93) 

BN2 
0.89 

(0.81-0.97) 

0.78 

(0.71-0.86) 

0.94 

(0.86-1) 

0.86 

(0.71-0.95) 

0.90 

(0.81-0.99) 

0.95 

(0.86-1) 

 

 

Discussion 

The aim of our study was to compare the performance of three Bayesian classifiers in predicting EIM. Among 

Bayesian classifiers, in this work we focused on NBs, BNs and BARTs, which are the most popular ones. NBs are 

often regarded as a benchmark and generally well performing models in spite of their simplicity. On the other hand, 

BNs can be seen as a more general extension of NB, since they can capture also the interaction between features. 

Finally, BART represents a full Bayesian classifier.  
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Our analyses showed that BNs outperformed NB and BART. All classifiers show enhancements when introducing 

the knowledge about IL and TNF genes, paying the price of a small sensitivity. This comparison is useful to 

understand the important role of this factor in classification tasks. Taking into account the simplicity and the 

unrealistic assumption of independence at the basis of NB the results obtained through this classifier are quite 

comparable to those of BART technique that is more complex and computationally heavier. Typically, the 

performance of Naïve-Bayes can be further improved by carrying out features selection or by relaxing the 

independence assumption. From a clinical view a potential explanation could be due to the fact the information 

about genes is very specific. The involvement in Chron Disease of the genetic polymorphism analyzed is not proved 

but only suspected. Since this disease has a multifactorial origin, the presence of the polymorphism is not 

necessarily linked to the presence of the extra-intestinal manifestation but the absence can help in excluding it.  

 This also specifically means that when the information about genes is known the positive predictive values are 

higher, since better specificity lead to less false positives. 

Combining naïve Bayes with features selection is known as selective naïve Bayes [29]. The search strategies for 

features selection can be carried out following two different approaches: (i) the filter approach and (ii) the wrapper 

approach [30]. In the filter approach the search strategy is aimed at maximizing the accuracy of the classifier looking 

only at the discrimination power of the single variables. This is done considering the mutual information function, 

which is a function independent of the classifier, i.e. the variables already added to the classifier. 

Relaxing the independence assumption is basically performed by constructing a tree augmented Naïve-Bayes 

(TAN), i.e. first learning a structure tree over the set of variables and then adding a link from the response variable 

to each node, similar to a Naïve-Bayes structure. However, as discussed in [31], NBs often performs well even when 

the assumption is violated [31].  

Finally, NBs rely also on the assumption that continuous variables are Gaussian. The Gaussian assumption means 

that the conditional probability of each feature given the class is normal with class conditional mean and variance 

and then it uses maximum likelihood approach to estimate parameters. Since in our data all variables were 

categorical, the Gaussian assumption was indeed not required. 

The present analysis showed that Bayesian Networks were able to provide a further improvement with respect to 

other statistical model in terms of predictive accuracy. In addition to these features, the graphical nature of BNs 

allows to display the links between variable. This can facilitate discussion of the model from different backgrounds 

point of view (clinicians and genetists, for example) and can encourage interdisciplinary. Another important feature 

of BNs is the ability to learn about the structure and parameters on the basis of observed data. Knowledge of the 

structure reveals the dependencies of variables and can suggest a direction of causation. However, when using 

learning algorithm, causal interpretation of dependencies can be a matter of concern and it is more appropriate 

referring to them as probabilistic relationships. 

The assessment of the optimal BN structure is based on the highest probability score for possible candidate 

structures, given the data provided and eventually penalized for the level of complexity. Different score metrics can 

be used at this purpose, varying from entropy methods to genetic algorithms. In our analysis we considered a 

Bayesian metric. The choice of the Bayesian metric as scoring function may lead to have less prediction error 

compared with BNs suggested by other scoring metrics. However, on the other hand, it may suggest a model that is 

highly complex and more difficult to interpret with a large number of variables and a large number of links. 

A sufficient number of observations is needed to enable a robust estimation of conditional probabilities, even if it 

has been shown that BNs can yield good prediction accuracy using learning algorithms, even if sample size is small.  

As expected for previous studies, our analysis confirms the negligible role of CD14 and that adding the INF-308 and 

IL12B genotypes information improved the predictive performance of the model. Whereas, adding NOD2, only the 

variant 3020insC seemed to be associated to predictive accuracy of EIM. 

The small sample size and the absence of an independent sample to perform an external validation represent the 

major limitations of this work, even if the study's conclusions are strengthened internal validation performed with 

cross-validation procedure, in order to reduce overfitting bias.  

Among non-Bayesian classifiers, Projection Pursuit Regression, Artificial Neural Network and Quadratic 

Discriminant Analysis outperform in AUC the other models. However, BNs resulted in a comparable accuracy with 

them. Furthermore, BNs has the advantage to provide an interpretable graphical model, which can be easily 

discussed and accordingly modified on the basis of medical knowledge of the problem. 
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In this work we did not focus on the impact of the prior distributions over the posterior probabilities. Usually, the 

Naïve Bayes approach assumes equi-probable classes as a prior or it uses an estimate for the class probability given 

by the number of samples in the class over the total number of samples. In absence of prior information from other 

independent studies, we chose the former strategy in order to use data only once, i.e. just in the training/testing step 

and not also for specifying the a-priori probability over the classes.  Of course as the sample size tend to be large, 

the prior is forgotten and the data play the most important role is taken by the data.  

Also the two BNs were learned in a non-Bayesian way using the K2 greedy search algorithm, which has been shown 

to outperform other algorithms (Comparison of the Bayesian Network Structure Learning Algorithms).  

Regarding BART, [32] proposed a method for incorporating informed prior information about the predictors into the 

BART model by modifying the prior on the splitting rules as well as the corresponding calculations in the 

Metropolis-Hastings step. In particular, covariates believed to influence the response can be proposed a priori more 

often as candidates for splitting rules. Also for this classifier, we chose to use uninformative prior, considering to 

work in a total ignorance situation. 

The presence of small datasets is a common situation in medical applications. BN has some interesting implications 

for clinical practice where the dataset is usually very small, affecting statistical analysis. BN, even if temporal 

knowledge is not considered explicitly, can be useful to make a prediction about what will happen in future.  In fact 

the clinical available knowledges about the patients before the treatments is started influence the treatments actions 

and hence the final outcome. The prognostic Bayesian networks importance in health-care is a well-documented 

topic and the obtained results in terms of accuracy demonstrates their possible employment is automatic medical 

prediction.      

 

Conclusion 

Our study shows that BNs are a feasible and accurate tool for predicting EIM in CD patients. IL and TFN genes 

influence the classification and bring to a more reliable classification, increasing the accuracy of about 10%. 
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