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SUMMARY

Mutations in genes essential for mitochondrial
function have pleiotropic effects. The mechanisms
underlying these traits yield insights into metabolic
homeostasis and potential therapies. Here we report
the characterization of a mouse model harboring
a mutation in the tryptophanyl-tRNA synthetase 2
(Wars2) gene, encoding the mitochondrial-localized
WARS2 protein. This hypomorphic allele causes
progressive tissue-specific pathologies, including
hearing loss, reduced adiposity, adipose tissue
dysfunction, and hypertrophic cardiomyopathy. We
demonstrate the tissue heterogeneity arises as a
result of variable activation of the integrated stress
response (ISR) pathway and the ability of certain tis-
sues to respond to impaired mitochondrial transla-
tion.Many of the systemicmetabolic effects are likely
mediated through elevated fibroblast growth factor
21 (FGF21) following activation of the ISR in certain
tissues. These findings demonstrate the potential
pleiotropy associated with Wars2 mutations in
patients.

INTRODUCTION

Mitochondrial diseases are a heterogeneous group of disorders

caused by mutations in mitochondrial proteins encoded by

either the mitochondrial genome (mtDNA) or the nuclear genome

(genomic DNA [gDNA]). The nuclear-encoded mitochondrial

aminoacyl-tRNA synthetase (mt-aaRS) proteins catalyze the

aminoacylation of mitochondrial tRNAs with their cognate amino

acid. Mitochondrial tRNA aminoacylation is fundamental to

mitochondrial translation and synthesis of mtDNA-encoded res-

piratory chain subunits and the supply of ATP to the cell. The

mt-aaRS proteins are encoded by separate nuclear genes with

the exception of glycine- and lysine-tRNA synthetase (GARS
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and KARS), which function in both the mitochondria and the

cytoplasm. With the description of families with compound

heterozygous variants in the tryptophanyl-tRNA synthetase 2

(WARS2) gene (Burke et al., 2018; Musante et al., 2017; Theisen

et al., 2017; Vantroys et al., 2018; Wortmann et al., 2017), pa-

tients have been reported with biallelic, pathogenic mutations

in all 19 nuclear-encoded mt-aaRS genes (Oprescu et al., 2017).

Surprisingly, given their common function within mitochon-

drial translation and ubiquitous expression, mt-aaRS mutations

cause distinct tissue-specific pathologies and respiratory chain

deficiencies in a gene-dependent manner (Konovalova and

Tyynismaa, 2013). For example, pathogenic histidyl-tRNA syn-

thetase 2 (HARS2) (Pierce et al., 2011) and leucyl-tRNA synthe-

tase 2 (LARS2) (Soldà et al., 2016) mutations cause Perrault

syndrome (sensorineural hearing loss and ovarian dysgenesis),

glutamyl-tRNA synthetase 2 (EARS2) (Steenweg et al., 2012)

mutations cause leukoencephalopathy with thalamus and

brainstem involvement with high lactate (LTBL), and seryl-

tRNA synthetase 2 (SARS2) (Belostotsky et al., 2011; Rivera

et al., 2013) mutations cause hyperuricemia, pulmonary hyper-

tension, renal failure, and alkalosis (HUPRA) syndrome with

hypertrophic cardiomyopathy. The underlying mechanisms

dictating the pleiotropic effects and tissue-specific penetrance

and variability among individuals with mt-aaRS mutations are

unknown and are a major challenge in the understanding and

developing therapies for mitochondrial disease (Nunnari and

Suomalainen, 2012).

Global mt-aaRS knockout animal models are heterozy-

gous haploinsufficient and homozygous lethal (http://www.

mousephenotype.org/) (Dickinson et al., 2016). A heart and

skeletal muscle-specific aspartyl-tRNA synthetase 2 (Dars2)

knockout (Dars2-KOCkmm) mouse with fatal cardiomyopathy

has been reported (Dogan et al., 2014). Complete loss of Dars2

function caused disrupted mitochondrial proteostasis and acti-

vating transcription factor 4 (ATF4)-dependent fibroblast growth

factor 21 (FGF21) expression specifically in the heart, but not in

skeletal muscle, suggesting tissue-specific differences in mito-

chondrial proteostatic buffering capacity. However, residual

mt-aaRS activity is retained in human patients with mt-aaRS
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mutations; thus, animal models with global-hypomorphic mt-

aaRS alleles are vital to investigating tissue-specific penetrance.

Hypomorphs from N-ethyl-N-nitrosourea (ENU) mutagenesis

screens in the mouse allow the pleiotropic effects of a mutation

to be identified. We have incorporated aging as a sensitizing fac-

tor to assess recessive pedigrees for late-onset and progressive

phenotypes in metabolism and other body systems (Potter et al.,

2016). We report here the identification of an ENU-induced

mouse mutant harboring a recessive hypomorphic point

mutation in the Wars2 gene, Wars2V117L, which causes a com-

plex tissue-specific pathology, including hearing loss, reduced

adiposity, adipose tissue dysfunction, and hypertrophic cardio-

myopathy. We demonstrate that reduced WARS2 levels causes

tissue-specific respiratory chain deficiencies, modeling human

mt-aaRS patients. We demonstrate that tissue-specific upregu-

lation of mitochondrial biogenesis is coincident with respiratory

chain deficiencies in Wars2V117L/V117L mice, likely contributing

to the tissue-specific respiratory chain deficiencies observed.

We also show that activation of the integrated stress response

(ISR) is a heart-specific response to inhibition of mitochondrial

translation that contributes to increased FGF21 levels and sys-

temic changes in metabolism.

RESULTS

We applied high-throughput broad-based phenotyping to pedi-

grees of mutagenized mice to investigate the pleiotropic effects

of the mutations identified (Potter et al., 2016).

Wars2-V117L ENU-InducedMutation Causal for Hearing
Loss and Reduced Adiposity
Auditory phenotyping of one of these pedigrees (MPC151)

identified progressive hearing loss. At 3 months of age, all

mice displayed a normal response to a clickbox stimulus. How-

ever, at 6 months of age, 2 of 58 mice had a reduced response,

increasing to 7 animals (12%) by 9 months of age. At 12 months

of age, the pedigree was assessed using auditory brainstem

response (ABR) testing, which showed that 5 of the 53 surviving

mice exhibited elevated hearing thresholds at all frequencies

tested (Figure S1A). In addition, the hearing-impaired mice

were found to have reduced body weight (Figure S1B).

A genome scan of G3 mice showed linkage to a �73.3 Mb

region on chromosome 3 containing 1,298 genes (Figure S1C).

DNA from an affected G3 mouse (MPC151/2.10 g) underwent

whole-genome sequencing, and analysis of the data iden-

tified only three high-confidence non-synonymous coding

changes within the mapped interval. These consisted of

Chr3:93446568A>T at nucleotide 3314 of the trichohyalin

(Tchh) gene (Ensembl: ENSMUST00000064257), causing an

aspartate-to-valine substitution at residue 1105 (TchhD1105V);

Chr3:99204536G>T at nucleotide 349 of the Wars2 gene

(Ensembl: ENSMUST00000004343), causing a valine-to-

leucine substitution at residue 117 (Wars2V117L); and Chr3:

133330454A>T at nucleotide 368 of the pyrophosphatase (inor-

ganic) 2 (Ppa2) gene (Ensembl: ENSMUST00000029644),

causing a tyrosine-to-phenylalanine substitution at residue 123

(Ppa2Y123F). The presence of the three lesions was confirmed

using Sanger sequencing, and only mice showing hearing
3316 Cell Reports 25, 3315–3328, December 18, 2018
impairment were homozygous for these ENU-induced lesions

(Figure S1D).

To segregate the mutations, the offspring were backcrossed

for three generations to C3H.Pde6b+ mice. The Ppa2Y123F allele

was segregated from the TchhD1105V and Wars2V117L alleles at

backcross 2. However, the TchhD1105V andWars2V117L alleles re-

mained linked due to their proximity. Auditory phenotyping of

Ppa2Y123F/Y123Fmice at 6months of age showed they had similar

ABR thresholds to their wild-type and heterozygous littermates

(Figure S1E, A). In addition, the body, fat, and lean mass of ani-

mals for each genotype were not significantly different (Fig-

ure S1E, B–G). Thus, thePpa2Y123F lesion was excluded as being

causative of the phenotypes.

TheTchhgene encodes aprotein for hair shaft formation, anda

patient with a homozygous nonsense TCHH mutation and un-

combable hair syndrome has been described (Ü Basmanav

et al., 2016). We did not observe a hair phenotype in

Wars2V117L/V117L mice. However, to determine which of the two

lesions,Wars2V117L or TchhD1105V, is causal, we undertook a ge-

netic complementation test, crossing Wars2V117L/+:TchhD1105V/+

mice with mice heterozygous for a Wars2 knockout (Wars2+/�)
allele (Figure S2A). This generated offspring that are com-

pound heterozygotes for Wars2, but heterozygous for Tchh

(Wars2V117L/�:TchhD1105V/+). These mice displayed elevated

ABR thresholds at 4 months of age and reduced weight, total

fat, and lean mass compared to their colony mates, which had

normal hearing and weight (Wars2+/+:Tchh+/+, Wars2V117L/+:

TchhD1105V/+, and Wars2+/�:Tchh+/+) (Figures S2B–S2E). Failure

of the Wars2 alleles to complement confirms the Wars2V117L

lesion as the causal mutation underlying the observed pheno-

types. Homozygous null (Wars2�/�) mice were embryonic lethal,

andWars2V117L/� andWars2V117L/V117Lmice were subviable and

viable, respectively; thus, the Wars2V117L allele is hypomorphic,

rather than a complete loss of function (Table S1).

To further characterize the phenotypes and establish underly-

ing mechanisms, we bred additional cohorts of mice.

Hearing Loss in Wars2V117L/V117L Mice Was Progressive
To investigate progression of the auditory phenotype, ABR was

measured at 1, 3, 6, 10, and 12 months of age. The hearing

thresholds ofWars2+/+ andWars2+/V117L mice were comparable

and within the normal range at all ages tested. In contrast,

Wars2V117L/V117L mice display an age-related increase in hearing

thresholds at all tested frequencies (Figure 1). Investigation of the

cochlear sensory epithelia using scanning electron microscopy

showed a progressive loss of outer hair cell stereocilia bundles

in the homozygous mutants, with an apical-to-basal increase

in severity (Figure S3A). In addition, assessment of cochlear

histological sections identified a reduced number of spiral gan-

glion neurons in the cochlear apex of 12-month-old mutant

mice (Figure S3B). The mutant mice showed no overt vestibular

dysfunction (e.g., circling, head bob, or abnormal swim), and no

craniofacial dysmorphology was observed.

Wars2V117L/V117L Mice Failed to Gain Fat Mass
To refine the reduced bodyweight phenotype, we analyzed body

composition at monthly intervals and found reduced total body

weight from 2 months of age, reduced fat mass from 2 months



Figure 1. ABR Phenotyping

Minimum auditory detection thresholds (decibel

sound pressure level, dB SPL) were determined

using auditory brainstem response (ABR) at (A)

1month, (B) 3months, (C) 6months, (D) 10months,

and (E) 12 months of age. Wars2V117L/V117L,

Wars2V117L/+, and Wars2+/+ littermate numbers

(males and females pooled) were (A) 5, 2, and 4; (B)

15, 19, and 15; (C) 19, 19, and 22; (D) 9, 11, and 7;

and (E) 7, 10, and 7, respectively; mean ± SEM.

Significance was determined using a one-

way ANOVA Kruskal-Wallis test with Dunn’s

multiple comparisons test. Significance between

Wars2V117L/V117L and Wars2+/+ and between

Wars2+/V117L and Wars2+/+ is shown as * and

#p < 0.05, ** and ##p < 0.01, *** and ###p < 0.001,

and **** and ####p < 0.0001, respectively.

Wars2V117L/V117Lmice are blue squares,Wars2V117L/+

mice are red circles, and Wars2+/+ mice are black

triangles. See also Figures S1–S3 and Table S1.
(female) or 3 months (male) of age, and lean mass from 3months

(male) or 5 months (female, in cohort 1 only) of age (Figures 2A–

2C, male; Figures 2D–2F, female cohort 1; Figures S4A–S4C,

male; Figures S4D–S4F, female cohort 2). Thus, demonstration

of the reduction in total mass was primarily due to decreased

adiposity and a failure to increase fat mass. We further investi-

gatedwhether these differences were the result of specific organ

weight changes in Wars2V117L/V117L mice dissected at 6 months

of age. Visceral gonadal white adipose tissue (gWAT), subcu-

taneous inguinal WAT (iWAT), and brown adipose tissue

(BAT) normalized to body weight were all significantly reduced

in Wars2V117L/V117L mice compared to wild-type colony mates

(Figure 3A), consistent with reduced adiposity. Strikingly, heart

weight was increased in Wars2V117L/V117L mice (Figure 3A). No

significant differences in liver or kidney weight (Figure 3A) were

observed, demonstrating organ specificity and that the changes

in adipose tissues and heart weight were not because of global

growth or development impairment.

Wars2V117L/V117L Mice Showed Hypertrophic
Cardiomyopathy
To determine the cause of increased heart weight,

Wars2V117L/V117L cardiac morphology was assessed by echocar-

diogram at 5 months of age (Figure 3B). We found significantly

increased left ventricular anterior wall (LVAW) diameter and left

ventricular (LV) mass in Wars2V117L/V117L mice relative to wild-
Cell Reports
type colony mates, showing that the

increase in heart weight was due to hy-

pertrophic cardiomyopathy (Figure 3C).

Consistent with this, the LV stroke volume

(SV) and cardiac output (CO) were signifi-

cantly reduced (Figure 3C). These differ-

ences were also observed in compound

heterozygote Wars2V117L/� mice, which

showed increased LVAW and LV mass

and decreased CO relative to Wars2+/+,

Wars2+/V117L, and Wars2+/� mice at the
same age, regardless of Tchh genotype (Figure 3D), confirming

that theWars2V117L allelewas the causalmutation for hypertrophic

cardiomyopathy.

Wars2V117L/V117L Mice Did Not Show Gross Brain
Pathology
We carried out additional pathology screens to investigate

whether there were neurological abnormalities, as reported in

patients. On light microscopic examination of the brain (multiple

sections of cerebrum and cerebellum) (data not shown) there

were no detectablemorphological differences between homozy-

gote and wild-type animals (n = 3 of each) of the same age

(approximately 7 months) and sex (male). In particular, there

was no evidence of myelin deficits. There was also no evidence

from visual welfare observation of an in vivo neurological pheno-

type (seizures, tremors, or changes in locomotion), the detection

of which often precedes detectable morphological changes at

the light-microscopy level. Detection of potential subtle neuro-

logical changes would require behavioral or neurophysiological

testing, which was beyond the scope of this study.

The Wars2 c.349G>T Mutation Disrupted Exon Splicing
and Caused Tissue-Specific WARS2 Deficiencies
The Wars2 c.349G>T lesion causes a missense substitution

(p.V117L) in the encoded protein. In silico prediction of the func-

tional effects of the p.V117L missense substitution did not
25, 3315–3328, December 18, 2018 3317



Figure 2. Wars2V117L/V117L Mice Have

Reduced Body Weight due to Reduced

Adiposity

Male and female cohort 1 mice: (A and D) body

weight, (B and E) fat mass, and (C and F)

lean mass, respectively. Wars2V117L/V117L,

Wars2V117L/+, and Wars2+/+ littermate numbers

were 7 and 8, 13 and 17–21, and 11 and 3 male

and female, respectively; mean ± SD. Areas under

the curve (AUCs) were compared for males using

an ordinary one-way ANOVAwith Tukey’s multiple

comparison test and for females using a one-way

ANOVA non-parametric Kruskal-Wallis test and

Dunn’s multiple comparison test. For AUC for

Wars2+/+ and Wars2V117L/V117L, Wars2+/V117L and

Wars2V117L/V117L, and Wars2+/+ and Wars2V117L/+,

male body weight was p < 0.0001, p = 0.0002, and

p > 0.5057; fat mass was p < 0.0001, p < 0.0001,

and p = 0.6505; and leanmass was p = 0.0063, p =

0.0008, and p = 0.5314. Female body weight for

Wars2+/V117L andWars2V117L/V117Lwas p < 0.0001,

fat mass was p = 0.0001, and lean mass was p =

0.0055 (wild-type [WT] comparisons not shown,

because n = 3). Significance at specific time

points was calculated with a one-way ANOVA

non-parametric Kruskal-Wallis test and Dunn’s

multiple comparison test. Significance between

Wars2+/+ and Wars2V117L/V117L and between

Wars2+/V117L and Wars2V117L/V117L is shown

as * and #p < 0.05, ** and ##p < 0.01, and *** and

###p < 0.001, respectively. Wars2V117L/V117L mice

are blue squares, Wars2V117L/+ mice are red cir-

cles, and Wars2+/+ mice are black triangles. See

also Figure S4.
predict that it was deleterious. However, the mutated nucleotide

is the first coding nucleotide of exon 3, and the NetGene2 splice

site prediction program indicated that substitution of G to T at the

first nucleotide of the third exon of Wars2 would affect the effi-

ciency of exon 3 splicing (Figure 4A) (Hebsgaard et al., 1996).

We modeled the predicted consequence of exon 3 skipping

and found that three a helices, required for substrate binding

and release, are missing, which would likely lead to a loss of

WARS2 function (Figure S1F). To test the prediction of exon skip-

ping in vivo, RT-PCR analysis of cochlear RNA derived fromwild-

type, heterozygous mutant, and homozygous mutant mice was

undertaken (Figure 4B). This showed the Wars2V117L allele,

c.349G > T, caused in-frame skipping of exon 3. However, the

mutation does not abolish normal splicing, and some full-length

transcript is still produced (Figure 4B). Although the full-length

transcript was severely decreased in homozygotes, the small

amount still produced would generate mitochondrialWars2 tryp-

tophanyl-tRNA synthetase 2 protein (mtTrpRS) (with the p.V117L

substitution) and explains why Wars2V117L/V117L mutants were

viable, unlike Wars2�/� nulls (Table S1).
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We then investigated changes in RNA

splicing using three TaqMan probes tar-

geting Wars2 2/3, 4/5, and 5/6 exon-

exon boundaries in tissues (Figure 4C).

Exon 4/5 and exon 5/6 probes, present
in all transcripts, were significantly reduced in the heart,

kidney, and BAT and were unchanged in the other tissues

(Figure 4C). Exon 2/3 junctions, present only in full-length

transcript (Wars2FL), were significantly reduced in all

Wars2V117L/V117L tissues (Figure 4C). To determine the effect

of these differences on WARS2 steady-state protein levels,

tissues from Wars2V117L/V117L mice were analyzed by immu-

noblotting. Consistent with the RNA results, WARS2 protein

was significantly decreased in heart, liver, kidney, skeletal

muscle, iWAT, and BAT of Wars2V117L/V117L mice (Figure 4D;

Figure S5A).

The Wars2 c.349G>T Mutation Caused Tissue-Specific
OXPHOS Deficiencies
To determine the functional effects of reduced WARS2 protein

in the mitochondria, steady-state levels of mitochondrial

oxidative phosphorylation (OXPHOS) components (complex

I–CV) were quantified by immunoblotting in each tissue at

12 months of age (Figures 4E–4J; Figure S5A). Consistent with

decreased WARS2 protein, steady-state CI (NADH:ubiquinone



Figure 3. The Wars2V117L Allele Causes Hypertrophic Cardiomyopathy
(A) Organ weight divided by body weight at 6 months of age in male mice.Wars2V117L/V117L andWars2+/+ animal numbers were 3 and 3, respectively; mean ± SD.

Data were analyzed with multiple t tests by the Holm-Sidak method.

(B) Representative echocardiogram images of the left ventricle in male Wars2V117L/V117L and Wars2+/+ mice at 6 months of age.

(C) Functional analysis of images for left ventricle anterior wall (LVAW) diameter, left ventricle (LV) mass, stroke volume (SV), and cardiac output (CO).

Wars2V117L/V117L and Wars2+/+ male mice animal numbers were 6 and 5, respectively; mean ± SD. Data were analyzed using an ordinary one-way ANOVA with

Tukey’s post hoc test to correct for multiple comparisons.

(D) Echocardiogram analysis in Wars2V117L/� male mice at 6 months of age. Wars2V117L/�, Wars2V117L/+, Wars2+/� and Wars2+/+ animal numbers were 3, 5, 5,

and 5, respectively; mean ± SD. Data were analyzed using an ordinary one-way ANOVA with Tukey’s post hoc test to correct for multiple comparisons.

*p < 0.05, **p < 0.01, ***p < 0.001.Wars2V117L/V117L mice are blue squares,Wars2+/+ mice are black triangles,Wars2V117L/+ mice are red filled circles, compound

heterozygote Wars2V117L/� mice are brown filled blue squares, and Wars2+/� mice are brown circles.
oxidoreductase subunit B8 [NDUFB8]) and CIV (mitochondrially

encoded cytochrome c oxidase I [MTCO1]) protein levels

were significantly lower in Wars2V117L/V117L heart (Figure 4E;

Figure S5A), liver (Figure 4F; Figure S5A), and BAT (Figure 4G;

Figure S5A). Furthermore, respiratory complex activity measure-

ments in heart showed decreased CI and CIV activities (Figures

S5B and S5C). In addition, CIII (ubiquinol:cytochrome c reduc-

tase core protein 2 [UQCRC2]) steady-state protein levels

were decreased in Wars2V117L/V117L BAT, showing more pro-

found inhibition of mitochondrial translation in BAT compared

to heart or liver (Figure 4G; Figure S5A). By comparison, no

differences in CII (succinate:ubiquinone oxidoreductase com-

plex flavoprotein subunit A [SDHA]), CIII, and CV (ATP synthase

F1 subunit alpha [ATP5A]) subunit protein levels were observed

in Wars2V117L/V117L heart or liver; CV subunit levels were mildly

increased in Wars2V117L/V117L BAT relative to wild-type controls

(Figure S5A).

Despite a severe loss of WARS2 protein, OXPHOS subunit

steady-state protein levels remained largely unchanged in the
Wars2V117L/V117L kidney, with only a significant reduction in CV

and a trend to mildly reduce CI observed at 12 months of age

(Figure 4H; Figure S5A). Furthermore, immunoblot analysis

showed a significant increase in CI and a trend toward increased

CIII (unadjusted p = 0.029) steady-state OXPHOS protein levels

in Wars2V117L/V117L iWAT, despite decreased WARS2 protein

(Figure 4I; Figure S5A).Wars2V117L/V117L skeletal muscle showed

no consistent respiratory chain deficiencies (Figure 4J; Fig-

ure S5A), although CIII steady-state protein levels appeared

to be increased in skeletal muscle. This was confirmed in skel-

etal muscle by measurement of respiratory chain complex activ-

ities, which also showed a significant increase in CIII activity

(Figure S5C).

Given the observation of brain pathology in patients, we also

determined steady-state WARS2 and OXPHOS components in

brains of mice 3–5 months of age and observed clear reduction

of WARS2 protein and complex I subunit deficiency and a trend

toward CIV deficiency (Figures S5D–S5F), indicating that the

brain is not spared.
Cell Reports 25, 3315–3328, December 18, 2018 3319



Figure 4. Wars2V117L Allele Increases Exon Skipping, Causing Tissue-Specific WARS2 and Mitochondrial Respiratory Chain Deficiencies

(A) Wars2 c.349G > T NetGene2 splice site prediction.

(B) RT-PCR of RNA extracted from cochleae ofWars2+/+,Wars2V117L/+, andWars2V117L/V117Lmice using oligonucleotide primer pairs designed to exons 1 and 5.

Products were sequenced and contain the exons indicated.

(legend continued on next page)
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Wars2V117L/V117L Mice Show Browning of WAT and
Dysfunctional BAT Pathology
To investigate the functional consequences of the contrasting

differences in iWAT and BAT for CI, CIII, and CIV subunit

steady-state levels, we carried out histological analysis at

12 months of age in males. iWAT showed qualitatively higher

multi-locular lipid droplet formation indicative of browning,

although this was also observed to a lesser extent in wild-

type mice. Visceral gWAT appeared relatively normal (Figures

5A and 5B). Similar patterns were seen in females at 3 months

of age (data not shown). Gene expression analysis showed

significant upregulation of the key browning markers uncou-

pling protein 1 (Ucp1), iodothyronine deiodinase 2 (Dio2),

and cell death-inducing DNA fragmentation factor subunit

alpha (DFFA)-like effector a (Cidea) (Figure 5D) and immu-

noblot analysis showed increased UCP1 protein levels (Fig-

ure 5E) in Wars2V117L/V117L iWAT, showing activation of brown-

ing pathways. Furthermore, nuclear-encoded mitochondrial

respiratory chain cytochrome c oxidase subunit 7B (Cox7b)

and cytochrome c oxidase subunit 8A (Cox8a) mRNA

were significantly increased in Wars2V117L/V117L iWAT (Fig-

ure 5D), showing transcriptional upregulation, consistent with

the increased respiratory chain subunit protein levels shown

earlier (Figure 4I).

Conversely, in BAT, males at 12 months (Figure 5C) and

females at 3 months (data not shown) showed strikingly

increased unilocular lipid droplet formation, indicative of inhi-

bition of lipolysis and b-oxidation, and reduced BAT thermo-

genic function. In keeping with these observations, gene

expression analysis showed downregulation of browning

markers Ucp1, Dio2, and Cidea; and peroxisome prolifera-

tor-activated receptor gamma (Pparg) (Figure 5F) and immu-

noblot analysis showed reduced UCP1 protein (Figure 5G)

in males at 12 months, consistent with BAT dysfunction. Nu-

clear-encoded mitochondrial respiratory chain subunit Cox7b

and Cox8a mRNA expression levels were also decreased

(Figure 5F), showing transcriptional downregulation, consis-

tent with the respiratory chain dysfunction shown earlier

(Figure 4G).

Given the abnormal BAT pathology and tissue-specific

respiratory chain dysfunction observed, we carried out

indirect calorimetry using a comprehensive laboratory animal

monitoring system (CLAMS) at 4 months of age at 22�C
(home cage temperature well below �28�C thermoneutral-

ity). Energy expenditure (EE) was significantly reduced in

female Wars2V117L/V117L mice (Figure 5H), consistent with the

observed abnormal BAT pathology and tissue-specific respira-

tory chain dysfunction.
(C) To quantify Wars2mRNA missplicing in vivo, RNA was extracted from tissues

probes targeted to alternate Wars2 exon-exon boundaries and expressed relativ

Wars2V117L/V117L andWars2+/+ littermate numbers were 8 and 8 (5male and 3 fema

tailed t test. Significance differences between Wars2V117L/V117L and Wars2+/+ sam

(D–J) Immunoblot analysis of (D) WARS2 protein levels in multiple tissues and (E–

brown adipose tissue (BAT), (H) kidney, (I) inguinal white adipose tissue (iWAT), a

and Wars2+/+ littermate numbers were 3 and 3, respectively.

See also Figure S5.
Upregulation of Mitochondrial Biogenesis Ameliorated
Mitochondrial Respiratory Chain Dysfunction in
Wars2V117L/V117L MEFs, Skeletal Muscle, and iWAT
We further examined the effects of Wars2-V117L on mitochon-

drial function in Wars2V117L/V117L mouse embryonic fibroblasts

(MEFs), which were cultured and assayed using microscale

oxygraphy (Figures 6A and 6B). Unexpectedly, Wars2V117L/V117L

MEFs showed significantly increased basal respiration and ATP

production compared to wild-type MEFs (Figures 6A and 6C),

indicative of increased mitochondrial respiratory chain function.

There was no difference in glycolysis as measured by extracel-

lular acidification rate (ECAR) (Figure 6B). We hypothesized

that this could be due to increased mitochondrial mass and up-

regulation of mitochondrial biogenesis. To directly measure

mitochondrial mass, MEFs were stained with MitoTracker green,

which localizes to mitochondria in live cells independent of mito-

chondrial membrane potential, and the average fluorescence per

cell (30,000 cells per sample) was quantified by fluorescence-

activated cell sorting (Figure 6D). We found that the average

fluorescence intensity increased 40% in Wars2V117L/V117L MEFs

relative to Wars2+/+ controls showing increased mitochondrial

mass (Figure 6D). Consistent with this, the master regulator of

mitochondrial biogenesis, peroxisome proliferator-activated

receptor gamma coactivator 1-alpha (Pgc1a), was significantly

upregulated in Wars2V117L/V117L MEFs (Figure 6E).

MEFs are derived from themesenchyme stem cell lineage. We

hypothesized that mature tissues composed primarily of cells

derived from the mesenchymal stem cell lineage, such as myo-

cytes and adipocytes (skeletal muscle and iWAT, respectively),

upregulate Pgc1a and mitochondrial biogenesis to prevent

respiratory chain dysfunction in Wars2V117L/V117L mice. Gene

expression analysis showed Pgc1a increased, on average, 3.3-

and 4.3-fold in Wars2V117L/V117L skeletal muscle and iWAT,

respectively, at 12 months of age (Figure 6F), showing transcrip-

tional upregulation of mitochondrial biogenesis, consistent with

the increased respiratory chain subunits observed previously

(Figures 4I and 4J). No significant differences in Pgc1a expres-

sion were observed in other tissues (Figure 6F).

These data show Pgc1a is upregulated inWars2V117L/V117L tis-

sues displaying increased respiratory chain subunit levels, such

as iWAT, indicating upregulation of mitochondrial biogenesis

prevented respiratory chain dysfunction. Furthermore, Pgc1a

is not upregulated in Wars2V117L/V117L heart or BAT, in which

respiratory chain dysfunction and disease pathology were

observed, or in kidney, in which respiratory chain subunit levels

are comparable with controls. Transcription factor A, mitochon-

drial (Tfam), required for transcription and associated with

mtDNA copy number, was reduced in heart and BAT (Figure 6G).
from mice at 12 months of age and qRT-PCR was performed using 3 TaqMan

e to Wars2+/+: boundaries 2/3 (Wars2FL), 4/5 (Wars2Total), and 5/6 (Wars2Total).

le), respectively; mean ±SEM. Data were analyzed using aMann-Whitney two-

ples are shown as *p < 0.05, **p < 0.01, and ***p < 0.001.

J) mitochondrial respiratory chain subunit protein levels in (E) heart, (F) liver, (G)

nd (J) skeletal muscle from female mice at 12 months of age. Wars2V117L/V117L
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Figure 5. Wars2V117L/V117L Mice Show Browning of WAT and

Dysfunctional BAT

(A–C) Representative images of H&E-stained sections of adipose tissue de-

pots at 12 months of age from male mice. (A) Gonadal WAT (gWAT), (B) iWAT,

and (C) BAT. Scale bar, 100 mm. Wars2V117L/V117L and Wars2+/+ animal

numbers were 3 and 3, respectively.

(D) Relative mRNA expression analysis of browningmarkers in iWAT frommale

mice at 12months of age.Wars2V117L/V117L andWars2+/+ animal numbers were

5 and 5, respectively; mean ± SD. Data were log transformed and analyzed

using an unpaired two-tailed t test with equal SD. *p < 0.05, **p < 0.01, ***p <

0.001.

(E) Relative UCP1 protein levels in iWAT from female mice at 12months of age.

Wars2V117L/V117L and Wars2+/+ animal numbers were 3 and 3, respectively;

mean ± SD. Data were analyzed with an unpaired t test. *p < 0.05.

(F) Relative mRNA expression analysis of browning markers in BAT from male

mice at 12months of age.Wars2V117L/V117L andWars2+/+ animal numbers were
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In addition, peroxisome proliferator-activated receptor alpha

(Ppara) expression was increased in skeletal muscle and iWAT

of Wars2V117L/V117L mice, consistent with increased Pgc1a

expression (Figure 6H). Conversely, Ppara was significantly

decreased in the heart and BAT of Wars2V117L/V117L mice and

was unchanged in liver and kidney (Figure 6H). Overall, these

data show that the tissue-specific respiratory chain dysfunction

observed is partly because of the tissue-specific capacity

for upregulation of Pgc1a and compensatory mitochondrial

biogenesis.

Heart-Specific Activation of the ISR Caused Increased
Plasma FGF21 and Systemic Changes in Metabolism
Fasted plasma FGF21 protein levels showed a trend toward

elevation in male Wars2V117L/V117L mice relative to controls at

12 months (Figure 7A) and similarly, but reaching significance,

at 4 months of age in males only (Figures S6A and S6B). Plasma

clinical chemistry analysis showed unchanged plasma free fatty

acid levels and plasma glucose levels (Figures S6C and S6D),

trends for reduced plasma triglycerides (Figure S6E), and mark-

edly increased plasma ketone bodies (b-hydroxybutyrate) (Fig-

ure S6F) in Wars2V117L/V117L mice. Furthermore, intraperitoneal

glucose tolerance tests (IPGTTs) demonstrated increased

glucose tolerance relative to wild-type controls (Figure S6G).

FGF21 has previously been shown to reduce body weight by

stimulating WAT lipolysis, induce temperature-dependent

browning ofWAT (Fisher et al., 2012), increase glucose tolerance

by increasing insulin-independent glucose uptake in WAT and

skeletal muscle (Kharitonenkov et al., 2005; Mashili et al.,

2011), and increase hepatic ketogenesis (Inagaki et al., 2007).

Thus, our findings, together with the reduced adiposity pheno-

type (Figure 2) and increased WAT browning observed previ-

ously (Figures 5A and 5B), align with the known effects of

FGF21 on systemic metabolism and implicate FGF21 as the

cause of metabolic phenotypes observed in Wars2V117L/V117L

mice.

FGF21 has previously been shown to be transcriptionally regu-

lated via independent pathways governed by ATF4 and PPARa

(Inagaki et al., 2007; Kim et al., 2013). To determine the mecha-

nism of increased plasma FGF21, gene expression analysis was

performed in Wars2V117L/V117L mice at 12 months of age. Fgf21

expression was significantly increased in heart, skeletal muscle,

and iWAT (Figure 7B). No difference was observed in other tis-

sues (Figure 7B). A significant reduction in Atf4 expression was

observed in BAT, but not in other tissues (Figure 7C). However,

regulation of ATF4 at the protein level is key in Fgf21 regulation.

In other tissues, such as skeletal muscle and iWAT, an alternate
8 and 8, respectively; mean ± SD. Data were analyzed with a Mann-Whitney

two-tailed t test. **p < 0.01.

(G) Relative UCP1 protein levels in BAT from female mice at 12 months of age.

Wars2V117L/V117L and Wars2+/+ animal numbers were 3 and 3, respectively;

mean ± SD. Data were analyzed with an unpaired t test. **p < 0.01.

(H) Energy expenditure (EE) normalized to lean mass by multiple linear

regression (analysis of covariance [ANCOVA]) measured in female mice at

4 months of age.Wars2V117L/V117L andWars2+/+ animal numbers were 5 and 5,

respectively; mean ±SD analyzed with an unpaired two-tailed t test. **p < 0.01,

***p < 0.001.

Wars2V117L/V117Lmice are blue squares, andWars2+/+ mice are black triangles.



Figure 6. Upregulation of Mitochondrial Biogenesis Prevents Mitochondrial Respiratory Chain Dysfunction in Wars2V117L/V117L MEFs,

Skeletal Muscle, and iWAT

(A and B) Oxygen consumption rate (OCR) (A) and extracellular acidification rate (ECAR) (B) were measured in cultured primary mouse embryonic fibroblasts

harvested from Wars2V117L/V117L and Wars2+/+ embryos using a Seahorse XF24 analyzer. OCR and ECAR measurements were taken at baseline and following

oligomycin (Oligo), carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and rotenone and antimycin (Rot/Anti) treatment. OCR and ECAR mea-

surements were normalized to live cell number.

(C) Relative oxygen consumption rates of basal respiration, proton leak, ATP production, maximal respiration, and spare respiratory capacity in Wars2+/+ and

Wars2V117L/V117LMEF cultures. There were 9 replicates of each genotype; mean ±SD. Data were log transformed and analyzed using an unpaired two-tailed t test

or a Mann-Whitney t test.

(D) MEFs were stained with MitoTracker green, and fluorescence in 30,000 cells per sample was quantified by fluorescence-activated cell sorting (FACS). There

were 3 replicates of each genotype; mean fluorescence ± SD. Data were analyzed using an unpaired t test.

(E) Relative mRNA expression analysis of Pgc1a inWars2+/+ andWars2V117L/V117LMEF cultures. There were 3 replicates of each genotype; mean fluorescence ±

SD. Data were analyzed using an unpaired t test.

(F–H) RelativemRNA expression analysis of (F)Pgc1a, (G) Tfam, and (H)Ppara in tissues harvested fromWars2V117L/V117L andWars2+/+malemice at 12months of

age.Wars2V117L/V117L andWars2+/+ animal numbers were 5 and 5, respectively; mean ± SD. Data are shown as log transformed and analyzed using an unpaired

two-tailed t test or a Mann-Whitney t test (skeletal muscle and iWAT for Pgc1a).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Wars2V117L/V117L mice are blue squares, and Wars2+/+ mice are black triangles.
mechanism governed by Ppara could contribute to the

increased plasma FGF21 observed in Wars2V117L/V117L mice

(Figure 6H).

Upon various cellular stresses, the ISR is activated by phos-

phorylation of eukaryotic translation initiation factor 2A (eIF2a),
resulting in reduced cytoplasmic 50 cap-dependent protein syn-

thesis and preferential translation of mRNAs that contain up-

stream open reading frames in their 50 UTR, such as ATF4 (Lu

et al., 2004). ATF4 has been shown to transcriptionally regulate

stress response genes, including Atf5, DNA damage-inducible
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Figure 7. Heart-Specific Activation of the Integrated Stress Response Causes Increased Plasma FGF21 and Systemic Changes in

Metabolism

(A) Relative plasma FGF21 protein levels inmalemice at 12months of age.Wars2V117L/V117L andWars2+/+ animal numbers were 5 and 9, respectively; mean ±SD.

Unpaired t test.

(B andC) RelativemRNA expression levels of (B) Fgf21 and (C)Atf4 in tissues frommale mice at 12months of age.Wars2V117L/V117L andWars2+/+ animal numbers

were 5 and 5, respectively; mean ± SD. Data were log transformed and analyzed using t tests or a Mann-Whitney test (Fgf21 in heart and Atf4 in skeletal muscle

and iWAT). Fgf21 RNA expression is very low in kidney and in wild-type skeletal muscle: mean CT > 33.

(D and E) Immunoblot analysis (D) and quantification (E) of p-eIF2a and total EIF2a protein levels in heart, liver, kidney, and skeletal muscle from female mice at

12 months of age. Wars2V117L/V117L and Wars2+/+ animal numbers were 3 and 3, respectively; bands were normalized to tubulin and expressed relative to wild-

type as the mean ± SD. Significance was determined using an unpaired t test with Welch’s correction.

(legend continued on next page)
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transcript 3 (C/EBP homologous protein [Chop]), and Fgf21 (De

Sousa-Coelho et al., 2012). We hypothesized that the Wars2-

V117L allele caused cardiac-specific activation of the ISR

pathway, leading to increased Fgf21 expression and activation

of stress response pathways. To assess activation of the ISR,

we performed immunoblot analysis of phosphorylated eukary-

otic translation initiation factor 2A (p-eIF2a)/eIF2a steady-state

protein levels inWars2V117L/V117L heart, liver, kidney, and skeletal

muscle at 12 months of age (Figures 7D and 7E). We found that

p-eIF2a levels are significantly increased in heart (average of 6.1-

fold) compared to controls (Figure 7E). Conversely, no significant

differences in p-eIF2a levels were observed in kidney, liver, or

skeletal muscle (Figure 7E). Furthermore, ISR pathway genes

such as Atf5 and Chop were significantly increased at the

mRNA level in the heart of Wars2V117L/V117L mice (Figures 7F

and 7G). However, no significant differences in Atf5 or Chop

were observed in liver, kidney, skeletal muscle, or iWAT (Figures

7F and 7G). Altogether, these data show robust tissue-specific

activation of the ISR in the heart of Wars2V117L/V117L mice.

Progressive Activation of the ISR Is Coincident with CI
Deficiency and Independent of Disrupted Mitochondrial
Proteostasis in the Heart of Wars2V117L/V117L Mice
Disrupted mitochondrial proteostasis, rather than respiratory

chain dysfunction, was the primary stress caused by inhibition

of mitochondrial translation, leading to ATF4-dependent

FGF21 expression and systemic changes in metabolism in the

heart of Dars2-KOCkmm mice (Dogan et al., 2014). To charac-

terize activation of the ISR in the heart, we performed time

course immunoblot analysis of the ISR marker p-eIF2a, CI and

CIV OXPHOS subunits, and mitochondrial proteostasis markers

caseinolytic mitochondrial matrix peptidase proteolytic subunit

(CLPP), Lon peptidase 1, mitochondrial (LONP1), heat shock

protein family D (Hsp60) member 1 (HSP60), and mitochondrial

heat shock protein family A (Hsp70) member 9 (mtHSP70) at 1,

3, and 12 months of age (Figures S7A–S7C). At 1 month, no dif-

ferences in p-eIF2a, CI (NDUFB8), or CIV (COXI) steady-state

protein levels were observed (Figure S7A). At 3 and 12 months

of age, p-eIF2a levels were increased (Figure 7E; Figures S7B

and S7C). At 3 and 12 months of age, CI and CIV levels

were decreased (Figures S7B and S7C). Altogether, these data

show that activation of the ISR and respiratory chain dysfunction

occurred after 1 month of age in the heart of Wars2V117L/V117L

mice and that activation of the ISR was progressive, with age

from 3 to 12 months, and coincident with progressive CI defi-

ciency. CIV deficiencies were comparable between 3 and

12 months of age, showing no progressive further deficiency.

Finally, we found no significant differences in the steady-state

protein levels of LONP1, CLPP, HSP60, or mtHSP70 at any time

point measured in the heart of Wars2V117L/V117L mice with the

exception of a mild reduction in LONP1 protein at only 1 month

of age (Figures S7A–S7C).
(F andG) RelativemRNA expression levels of (F) Atf5 and (G)Chop in maleWars2V

and Wars2+/+ animal numbers were 8 and 8, respectively; mean ± SD. Data were

Chop in kidney and skeletal muscle).

*p < 0.05, **p < 0.01, ***p < 0.001. Wars2V117L/V117L mice are blue squares, and W
DISCUSSION

Sensorineural hearing loss is a common feature of human mito-

chondrial disease, andmutations in LARS2,HARS2, andNARS2

have been shown to cause sensorineural hearing loss (Pierce

et al., 2011, 2013; Simon et al., 2015). Reduced body mass is

also associated with mitochondrial diseases (Wolny et al.,

2009). Furthermore, mutations in genes encoding critical pro-

teins of the mitochondrial translation system, including MTO1,

GTBP3, and ELAC2 (Baruffini et al., 2013; Haack et al., 2013; Ko-

pajtich et al., 2014) and several mt-aaRS mutations in AARS2,

PARS2, SARS2, and YARS2, have been shown to cause hyper-

trophic cardiomyopathy (Belostotsky et al., 2011; Götz et al.,

2011; Riley et al., 2010; Rivera et al., 2013; Shahni et al., 2013;

Sofou et al., 2015). Individuals with compound heterozygous

WARS2 mutations showing neurological problems have been

reported (Burke et al., 2018; Musante et al., 2017; Theisen

et al., 2017; Vantroys et al., 2018; Wortmann et al., 2017). We

demonstrate that hypomorphic Wars2 alleles, Wars2V117L/�

and Wars2V117L/V117L, which do not have direct genocopies in

humans, cause sensorineural hearing loss, reduced adiposity,

and hypertrophic cardiomyopathy in mice. However, we have

not observed gross neurological effects during welfare observa-

tions or morphological differences using light microscopy of

brain sections. This may reflect the severity of the alleles

described so far in patients, in comparisonwith thismouse hypo-

morphic allele, and possible species differences.

Genetic mapping in the rat for coronary flow and capillary den-

sity traits in the heart identified a causal missense variant in

Wars2 that reduced WARS2 activity by �40% (Wang et al.,

2016). It was also shown that the mutation reduced endothelial

cell proliferation and activated pro-apoptotic pathways, as well

as impairing BAT function (Pravenec et al., 2017; Wang et al.,

2016). Finally, Wang et al. (2016) demonstrated that Wars2 is a

critical pro-angiogenic factor in zebrafish. We have not carried

out an analysis of coronary vasculature in the Wars2V117L/V117L

model, although we observed BAT dysfunction.

As in our model, human hypomorphic mt-aaRS mutations

cause tissue-specific pathology and respiratory chain dysfunc-

tion in humans, although the tissue-specific mechanisms remain

unknown. However, increased respiratory chain subunits

observed in iWAT ofWars2V117L/V117Lwere associatedwith upre-

gulation of Pgc1a mRNA expression. Furthermore, we showed

increased Pgc1a expression, mitochondrial mass, and function

in Wars2V117L/V117L MEFs. We suggest that Pgc1a is upregu-

lating mitochondria mass, preventing impaired respiratory

chain function. In support of this, targeting Pgc1a to upregulate

mitochondrial biogenesis, via therapeutic administration or

genetic manipulation, can alleviate disease traits and increase

mitochondrial respiratory capacity in human patient cell lines

and mouse models (Bastin et al., 2008; Khan et al., 2014). Alto-

gether, these data indicate that tissue-specific upregulation of
117L/V117L andWars2+/+ tissues harvested at 12months of age.Wars2V117L/V117L

log transformed and analyzed using a t test or a Mann-Whitney test (Atf5 and

ars2+/+ mice are black triangles. See also Figures S6 and S7.

Cell Reports 25, 3315–3328, December 18, 2018 3325



mitochondrial biogenesis explains the pattern of respiratory

chain deficiencies observed in Wars2V117L/V117L mice. However,

it remains unclear how some tissues inWars2V117L/V117Lmice up-

regulate Pgc1a and are protected while other tissues are not.We

speculate that this is explained partly by exogenous FGF21,

because studies have shown that FGF21 regulates browning of

WAT in response to adaptive thermogenesis and that this effect

is partly because of increased PGC1a protein levels (Fisher

et al., 2012). In addition, FGF21, which potentially signals meta-

bolic demands from stressed mitochondria to other tissues in

the body, was shown to regulate mitochondrial mass in BAT of

polymerase gamma mutator (POLG) mice following high fat diet

(HFD) administration (Wall et al., 2015). Some effects of FGF21,

such as in fat, could also be through an autocrine or paracrine

mechanism, as reported in thermogenic recruitment of WAT

(Fisher et al., 2012). FGF21, a biomarker of mitochondrial transla-

tion defects in human, likely has a beneficial role in tissues such

asWAT by upregulating browning andmitochondrial biogenesis,

providing some explanation for the tissue-specific respiratory

chain deficiencies observed inWars2V117L/V117L mice.

Common single-nucleotide polymorphisms, such as

rs984222, with an effect allele frequency of 0.635, are associated

with a 45% reduction in WARS2 RNA expression in multiple tis-

sues, including adipose (GTExPortal, http://www.gtexportal.

org/home/). These single-nucleotide polymorphisms (SNPs)

are associated with the waist-hip ratio in human genome-wide

association studies, which are explained by changes in adipose

tissue distribution (Heid et al., 2010). Our studies support the

possibility that WARS2 is one of the effector genes in this asso-

ciation locus (Pravenec et al., 2017).

Oxidative stress, mitochondrial unfolded protein response

(UPRmt), inhibition of mitochondrial translation, and respiratory

chain dysfunction are linked to activation of the ISR (Baker

et al., 2012; Kim et al., 2013; Michel et al., 2015; Rath et al.,

2012). Dogan et al. (2014) showed that knocking out Dars2

caused tissue-specific activation of the UPRmt, leading to

ATF4-dependent Fgf21 expression in the heart of Dars2Ckmm

mice before respiratory chain dysfunction and concluding that

mitochondrial proteostasis was the primary stress. We also

demonstrated that activation of the ISR was a cardiac-

specific response to inhibition of mitochondrial translation in

Wars2V117L/V117Lmice, resulting in increased Fgf21 gene expres-

sion. However, in contrast with the Dogan et al. (2014) findings,

we showed that activation of the ISR was independent of UPRmt

activation, was progressive with age, and was coincident with

progressive CI respiratory chain deficiency. Several studies

have demonstrated activation of the ISR upon progressive respi-

ratory chain deficiency independent of activation of the UPRmt.

Inhibition of expression of the mitochondrial genome via mtDNA

depletion or inhibition of mitochondrial translation through doxy-

cycline treatment caused respiratory complex deficiencies and

activation of the ISR independent of UPRmt activation in vitro (Mi-

chel et al., 2015). Furthermore, activation of the ISR due to doxy-

cycline treatment depended on the eIF2a kinase GCN2 (Michel

et al., 2015). Activation of the ISR in the heart ofWars2V117L/V117L

mice is thus due to progressive respiratory chain dysfunction,

is independent of the UPRmt, and may occur via GCN2-

dependent phosphorylation of eIF2a.
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We conclude that inhibition of mitochondrial translation can

cause ISR activation via alternate mechanisms that depend

upon the degree of mitochondrial translation inhibition. We spec-

ulate that complete inhibition ofmitochondrial translation, e.g., via

Dars2-KO, results in the accumulation of unassembled nuclear-

encoded respiratory chain subunits, causing severe proteostatic

stress and UPRmt-dependent ISR activation. In contrast, partial

inhibitionofmitochondrial translation, e.g.,Wars2V117L/V117Lheart,

causes activation of the ISR due to respiratory chain dysfunction

and loss of mitochondrial membrane potential. The failed ability

of the ISR to attenuatemitochondrial proteostatic stress likely ex-

plains the increasedseverity of thecardiacphenotypeobserved in

Dars2-KOCkmm mice that cannot survive beyond 6 weeks of age

compared toWars2V117L/V117L mice.

In summary, we have generated a key mouse model for study-

ing tissue-specific deficits in mitochondrial protein translation,

linking phenotypes and mechanisms and offering the potential

for therapeutic testing.
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M.T., Valentin, F., Wiegmann, H., Huchenq, A., Kandil, R., et al. (2016). Muta-

tions in three genes encoding proteins involved in hair shaft formation cause

uncombable hair syndrome. Am. J. Hum. Genet. 99, 1292–1304.

Vantroys, E., Smet, J., Vanlander, A.V., Vergult, S., De Bruyne, R., Roels, F.,

Stepman, H., Roeyers, H., Menten, B., and Van Coster, R. (2018). Severe hep-

atopathy and neurological deterioration after start of valproate treatment in a

6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency.

Orphanet J. Rare Dis. 13, 80.

Wall, C.E.,Whyte, J., Suh, J.M., Fan,W., Collins, B., Liddle, C., Yu, R.T., Atkins,

A.R., Naviaux, J.C., Li, K., et al. (2015). High-fat diet and FGF21 cooperatively

promote aerobic thermogenesis inmtDNAmutator mice. Proc. Natl. Acad. Sci.

USA 112, 8714–8719.

Wang, M., Sips, P., Khin, E., Rotival, M., Sun, X., Ahmed, R., Widjaja, A.A.,

Schafer, S., Yusoff, P., Choksi, P.K., et al. (2016). Wars2 is a determinant of

angiogenesis. Nat. Commun. 7, 12061.

Wolny, S., McFarland, R., Chinnery, P., and Cheetham, T. (2009). Abnormal

growth in mitochondrial disease. Acta Paediatr. 98, 553–554.

Wortmann, S.B., Timal, S., Venselaar, H., Wintjes, L.T., Kopajtich, R., Feich-

tinger, R.G., Onnekink, C., M€uhlmeister, M., Brandt, U., Smeitink, J.A., et al.

(2017). Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-

tRNA synthase in six individuals with mitochondrial encephalopathy. Hum.

Mutat. 38, 1786–1795.

http://refhub.elsevier.com/S2211-1247(18)31871-0/sref27
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref27
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref28
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref28
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref28
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref28
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref29
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref29
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref29
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref29
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref29
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref30
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref30
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref31
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref31
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref31
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref32
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref32
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref32
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref32
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref33
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref33
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref33
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref33
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref34
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref34
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref34
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref34
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref35
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref36
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref36
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref36
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref36
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref37
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref37
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref37
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref37
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref37
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref38
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref38
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref38
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref38
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref39
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref39
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref40
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref40
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref40
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref40
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref41
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref41
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref41
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref41
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref42
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref42
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref42
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref42
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref42
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref43
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref43
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref43
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref43
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref44
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref44
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref44
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref44
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref45
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref45
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref45
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref45
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref45
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref46
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref46
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref46
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref46
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref47
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref47
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref47
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref47
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref47
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref48
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref48
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref48
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref48
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref49
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref49
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref49
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref50
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref50
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51
http://refhub.elsevier.com/S2211-1247(18)31871-0/sref51


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

WARS2 – rabbit polyclonal by Covolab This paper N/A

Mouse monoclonal anti-NDUFB8 Abcam Cat#ab110242; CLONE No:

20-E9DH10C12; RRID: AB_10859122
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Mouse monoclonal anti-HSP70 Abcam Cat#ab2799; CLONE No:JG1;

RRID:AB_303311

Goat polyclonal anti-UCP1 Santa Cruz Cat#sc-6529; LOT No: M17;

RRID:AB_2213781
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antibody cocktail (5 monoclonal antibodies)
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Genome Reference
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WARS2 (5EKD, Human mitochondrial tryptophanyl-

tRNA synthetase bound by indolmycin and Mn*ATP.

Williams, T.L., Carter Jr., C.W.)
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Experimental Models: Cell Lines
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and Wars2V117L/V117L
This paper N/A
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Mouse Wars2:V117L This paper and Potter
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Mouse Wars2:tm1(KOMP)Vlcg UCDAVIS KOMP Repository KOMP: VG15335

C3H/Pde (Pde6b+ repaired mice) MRC Harwell Institute N/A

C57BL/6J MRC Harwell Institute JAX:000664, RRID:IMSR_JAX:000664

Oligonucleotides

Primers for Genotyping, see Table S2 This Paper N/A

Wars2 (Exon 2-3) (Mm04208965_m1) ThermoFisher CAT#: 4351372

Wars2 (Exon 4-5) (Mm04208967_m1) ThermoFisher CAT#: 4351372

Wars2 (Exon 5-6) (Mm00840490_m1) ThermoFisher CAT#: 4331182
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Cox8b (Mm00432648_m1) ThermoFisher CAT#: 4331182

Software and Algorithms

GenotypeCaller tool in the Genome Analysis

Toolkit (GATK)

Potter et al., 2016 https://software.broadinstitute.org/

gatk/

Phyre2 Kelley et al., 2015 http://www.sbg.bio.ic.ac.uk/�phyre2/

html/page.cgi?id=index

NetGene2 Hebsgaard et al., 1996 http://www.cbs.dtu.dk/services/

NetGene2/

PyMOL by schrodinger Schrodinger https://pymol.org/2/

ImageJ 1.8.0_172 Schneider et al., 2012 https://imagej.nih.gov/ij/

SPSS IBM https://www.ibm.com/uk-en/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Models
All mice used in this study were housed in the Mary Lyon Centre at MRC Harwell. Mice were kept and studied in accordance with UK

Home Office legislation and local ethical guidelines issued by the Medical Research Council (Responsibility in the Use of Animals for

Medical Research, July 1993; Home Office license 30/3146 and 30/3070). Procedures were approved by the MRC Harwell Animal

Welfare and Ethical Review Board (AWERB). Mice were kept under controlled light (light 7am–7pm, dark 7pm–7am), temperature

(21 ± 2�C) and humidity (55 ± 10%) conditions. They had free access to water (9–13 ppm chlorine) and were fed ad libitum on a com-

mercial diet (SDS Rat and Mouse No. 3 Breeding diet, RM3, 3.6 kcal/g).

MPC-151 pedigree was generated from The Harwell Aging ENU-mutagenesis Screen as documented previously (Potter et al.,

2016). These mice are C57BL/6J mutagenized mice crossed with C3H/Pde (Pde6b+ repaired mice) and subsequently maintained

by backcrossing to C3H/Pde mice. Age and sex of mice is indicated in the figure legends. Estimates for required cohort sizes

were made using GraphPad Statmate using trait data from previous experiments.

Cohorts of male and femalemicewere bred for longitudinal blood and body composition-based phenotyping tests. Four cohorts of

miceWars2V117L/V117Lmicewere generated fromWars2+/V117L xWars2+/V117Lmatings andwere aged to 1- (20mice total), 3- (58mice

total), 9- (74 mice total) and 12 months (58 mice total) of age before being humanely killed in accordance with Home Office

schedule 1 regulations. Wars2V117L/- mice were generated from Wars2+/� x Wars2V117L/+ matings (78 mice total). Ppa2Y123F/Y123F

mice were generated from Ppa2+/Y123F x Ppa2+/Y123F matings (47 mice total). Mice were randomly assigned to cages at weaning

before subsequent genotyping of individual mice. Downstream phenotyping experiments were performed blinded to the genotype

of the mice.

For body composition three cohorts were analyzed, two with multiple time points and one at 1 month only. In the first cohort one

wild-type mouse was humanely killed because it was sick and one found dead and all data from these animals was excluded. Final

cohort sizes wereWars2+/+ n = 11 and 3,Wars2+/V117L n = 13 and 17,Wars2V117L/V117L n = 7 and 8, male and female respectively. In

the second cohort data from one homozygous mouse was excluded after being found dead before the 6-month time-point and two

heterozygous mice humanely killed to reduce cage numbers prior to starting phenotyping. Final cohort sizes were Wars2+/+ n = 13

and 18, Wars2+/V117L n = 19 and 19, Wars2V117L/V117L n = 11 and 7, male and female respectively. In cohort 3 there were Wars2+/+

n = 4,Wars2+/V117L n = 15,Wars2V117L/V117L n = 9 and none of the differences for body weight, fat mass or lean mass were significant

(tested at one month only).

An additional fifth intercross cohort, congenic on C3H/Pde, was generated for additional replication experiments including

OXPHOS blots and FGF21 measurements in plasma at 3-4 months.

The NIH KOMP Wars2-KO allele (Wars2tm1(KOMP)Vlcg) obtained from the KOMP repository (https://www.komp.org/) comprises a

targeting construct integrated into the C57BL/6N ES cell genome by homologous recombination, deleting 46632bp of the Wars2

gene locus, including coding regions of both Wars2-Exon1 and Wars2-Exon2, leading to a frameshift and a premature stop codon.

Wars2tm1(KOMP)Vlcg ES cells were micro-injected into C57BL/6N blastocysts generating mosaic C57BL/6N-Wars2tm1(KOMP)Vlcg

offspring. Germ-line transmission (GLT) of the Wars2tm1(KOMP)Vlcg construct was determined by genotyping C57BL/

6N-Wars2tm1(KOMP)Vlcg x C57BL/6N offspring for the neomycin selection cassette.

Primary Cultures
MEFs were harvested from E12.5-14 (dpc) embryos from timedWars2+/V117L xWars2+/V117Lmatings and dissected on ice in Dulbec-

cos PBS (ThermoFischer 14190094). The sex of the embryos was unknown. Head, liver, heart and limbs were placed in 3ml GIBCO

0.25% trypsin (EDTA) (ThermoFischer 25200056) and minced using surgical scissors and then pipetted 10x using a P1000 pipette

and sterile filter tip, before transfer to a 15ml Falcon tube and incubated at 37�C for 10 minutes. The trypsin was neutralized with

7ml of culture medium, DMEM (ThermoFischer 31966021) supplemented with 1 X NEAA (Sigma-Aldrich M7145), 1 X Penicillin/Strep-

tomycin (ThermoFischer 15070-063), 50 mM 2-mercaptoethanol (2-mercaptoethanol (ThermoFischer 31350010) and 10% GIBCO

FBS (ThermoFischer 10500064). Cells were then plated on a 10cm dish and incubated at 37�C and 5% CO2.

METHOD DETAILS

SNP Mapping and Whole Genome Sequencing
SNPmapping and NGSwere performed as described previously (Potter et al., 2016). Briefly Individual mutations weremapped using

the Illumina GoldenGate MouseMedium Density Linkage Panel (Gen-Probe Life Sciences Ltd, UK) that utilizes over 900 SNPs for the

C3H/Pde (Pde6b+ repaired mice) and C57BL/6J strains. The genotypes of G3 ‘affected’ (elevated ABR thresholds) MPC-151 mice

were compared to ‘non-affected’ (‘normal’ ABR thresholds) littermate controls. This allowed us to identify a 75Mb regionwithin which

all ‘affected’ MPC-151 mice were homozygous for C57BL/6J SNPs and ‘non-affected’ MPC-151 littermates were either heterozy-

gous or homozygous for C3H.Pde6b+ SNPs. To identify candidate causal ENU-induced mutations within the mapped region,

WGS was performed using DNA from an ‘affected’ G3 MPC-151 mouse. WGS was performed as previously described (Potter

et al., 2016). Briefly, following DNA extraction a library was generated and a single lane or paired-end sequencing (100nt) was per-

formed using the Illumina HiSeq platform (Oxford Genomics Centre, Wellcome Centre for Human Genetics). The 100nt paired-end
Cell Reports 25, 3315–3328.e1–e6, December 18, 2018 e3
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readswere aligned to the referencemouse genome (NCBIM38/mm10) using Burrows-Wheeler Aligner software (Li andDurbin, 2009).

Single-nucleotide variants (SNVs) were identified for each alignment using the unified GenotypeCaller tool in the Genome Analysis

Toolkit (GATK) as previously described (Potter et al., 2016). Here the mouse dbSNP version 137 was used as the background

SNP set using default parameters. Identified SNVs were then given a quality score (Phred scaled quality score, �10 x log(1-p),

p is the probability of a SNV being called incorrectly). SNVs with a quality score of < 100 or with a read depth of < 3 reads were

removed from all further analysis. All remaining SNVs were termed ‘high-confidence’ mutations and were compared to previously

identified SNPs from 17 inbred strains from the Mouse Genome Project (Keane et al., 2011) as well as an in-house library of

SNVs. Any overlapping sites were removed leaving the final list of novel ENU-induced SNVs for the ‘affected’ MPC-151 G3 mouse.

SNVs were annotated using NGS-SNP to give an indication of the nature of the SNV (e.g., Missense, splice-site variant or intronic).

3 high-confidence, ENU-induced, missensemutations were identified for the MPC-151 G3 ‘affected’ mouse that were located within

the 75Mb mapped region as previously identified.

Genotyping
Mice were assayed for the presence or absence of ENU-induced mutations Ppa2A398T and Wars2G349T by pyrosequencing (Potter

et al., 2016). PCR primers were designed to amplify the regions of interest using a biotinylated primer for the Pyrosequencing tem-

plate strand. Ppa2A398T primers: biotinylated forward (50- CTCAATCCCATTAAGCAAGATAT-30), reverse (50-GGTTTCTGTAGAAGG

CATAAAAG-30) and sequencing reverse (50-GGGAAGATGTTCGGTG-30). Wars2G349T primers: forward (50-GGTCACCTTTCTTT

CTCTCC-30), biotinylated reverse (50-CAGGTGAGGATCCAACTTAA-30) and forward sequencing (50-TTTCTCTCCTTCCTTTTAG-30).
Mice generated fromWars2V117L/- xWars2+/�matings were genotyped using two strategies. TheWars2V117L allele was genotyped

using the Idaho Technology LightScanner System (Idaho Technology Inc, Utah, USA) and was used in accordance with the

manufacturers standard protocols. Wars2V117L Primers: forward (50-TCAGCCTATCCCTGTTGTCTA-30), reverse (50-TGG

TGTAAATGCTGCAATCG-30) and probe (50-CCTTCCTTTTAGTTGTCTGAACACACTCAG-30). The Wars2-KO allele was genotyped

for the presence of the LacZ reporter cassette using a RT-PCR copy number assay using FAM-labeled taqman probes.

Assays were performed using FAM-labeled TaqMan probes for LacZ and Wars2-WT DNA sequences as controls. Each assay

was performed along with an additional VIC-labeled TaqMan probe designed to Dot1l that acted as an internal controls. Wars2WT

primers: forward (50-GCCCAGCACTTGGGATGT-30) and reverse (50-GCAGCCAGCTCACCAATG-30), FAM labeled probe

(50-TCCCTTCACTTTCCTGTCTCCGTTTC-30). LacZ primers: forward (50-CTCGCCACTTCAACATCAAC-30), reverse (50-TTAT
CAGCCGGAAAACCTACC-30), FAM labeled probe (50-TCGCCATTTGACCACTACCATCAATCC-30). Dot1l primers: forward

(50-GCCCCAGCACGACCATT-30), reverse (50-TAGTTGGCATCCTTATGCTTCATC-30) and VIC labeled probe (50-CCAGCTCT

CAAGTCG-30).

Auditory phenotyping
Click box protocol as previously described (Hardisty-Hughes et al., 2010). Briefly, mice were placed on the operator’s palm and hear-

ing was tested using a purpose built frequency calibrated click box (CB) that emits a 90 dB SPL tone at 20 kHz (CB apparatus was

obtained fromMRC Institute of Hearing Research, Nottingham, UK). The CB emits a tone that elicits a Preyer reflex from themouse as

seen by a visible flick of the pinna or a startle response if the mouse can hear. The presence or absence of a Preyer reflex is then

scored as follows: 2 – normal startle response, 1 – reduced startle, 0 – no startle. CB testing was performed blinded and away

from the home cage to prevent littermates from becoming attenuated to the CB tone. Auditory-evoked brainstem response (ABR)

testing was performed as previously described (Hardisty-Hughes et al., 2010). Briefly, mice were anaesthetized via administration

of an intra-peritoneal injection of anesthetic (1 mL Ketamine, 0.5 mL Xylasine, 8.5 mL sterile H2O) at a rate of 0.1 ml/10 g of body

mass. Once unconscious, themouse was placed on a heatedmat in a sound proof booth. Electrodes were then placed sub-dermally

below the right pinna (reference), into the muscle mass below the left ear (ground) and on the midline of the skull (active). Mice were

placed with their auditory canal 1 cm from the speaker and were exposed to a broadband ‘click’ stimulus, followed by tones at 8, 16

and 32 kHz. The electrodes recorded the auditory brainstem responses to the tones. The recorded data was calibrated, generated

and processed using the Tucker Davies Technology (TDT) system III. Following the ABR testing an IP injection of Antipamezole

(0.1mL in 9.9mL of sterile water) at a rate of 0.1mL < 50 g or 0.2mL > 50 total bodymass was administered to reverse the anesthetic.

Body weight and composition analysis
Body mass was measured monthly on scales calibrated to 0.01 g. Body composition was measured monthly using an Echo-MRI

quantitative NMR machine (Echo-MRI-100, Echo-MRI, Texas, U.S.A.).

Echocardiograms
Mice were placed under general anesthetic using 4% isoflurane using an anesthetic chamber. Once unconscious the mouse was

placed on an ECG platform (Visualsonics heatpad / ECG platform) and mouse limbs are taped to ECG probes to allow heart rate

monitoring. Anesthesia wasmaintained using a nose cone and 1.5% (or as appropriate tomaintain a heart rate < 400 bpm) isoflurane.

Hair was removed from the mouse chest using hair clippers followed by hair removal cream. A rectal thermometer was inserted and

used to monitor core body temperature throughout the procedure. Contact gel was applied to the shaven mouse chest and a 707B

probewas lowered to themouse chest locating themouse heart left ventricle until contractions of the left ventricle could bemonitored
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on the Visualsonics Vevo 770 high resolution in vivomicro imaging system. Several images of mouse heart were taken inM-mode and

were analyzed using the Vevo 770 software. Following successful data capture, the rectal probe, contact gel and limb tape was

removed and the mouse was placed in a heat box to recover from the anesthetic.

Comprehensive Laboratory Animal Monitoring System
The Comprehensive lab animal monitoring system (CLAMS) was used to measure mice energy expenditure at home cage temper-

ature (22�C) according to standard protocols. Briefly mice were placed in individual cages for a total of 72 hours. Measurements of

oxygen (O2) and carbon-dioxide (CO2) in-flow and out-flow concentrations were automatically monitored and recorded along with

food consumption and water intake throughout the 72-hour period. Data from the first 24 hours was removed from the analysis

as this period was used to allow the mice to acclimatize to their new environment. Data collected from the second 24-hour period

was used for all subsequent analysis. Energy expenditure was calculated as follows EE = CV x VO2 (where CV = Calorific value =

3.815 + 1.232 x RER and VO2 = ViO2i - VoO2o (o = outflow, i = inflow). EE values were normalized to lean mass using multiple linear

regression analysis (ANCOVA) as described previously (McMurray et al., 2013).

Intraperitoneal Glucose Tolerance Test (IPGTT)
Micewere fasted overnight and IPGTTwere performed the followingmorning. On themorning of the IPGTT,micewereweighed and a

local anesthetic was administered to the mouse tail (EMLA cream, Eutectic mixture of Local Anesthetics Lidocaine / Prilocaine,

AstraZeneca, UK). A blood sample was collected from the mouse tail at time point zero in Lithium-Heparin microvette tubes

(CB30, Sarstedr, Numbrecht, Germany) to establish a baseline blood glucose level. Mice were then administered an intra-peritoneal

injection of 2 g glucose / kg bodyweight (20%glucose in 0.9%NaCl). Blood samples were then taken 60 and 120mins post-injection.

At each time point, blood glucose levels weremeasured using the handheld Alphatrak (Abbott) glucosemonitor with a fresh Alphatrak

strip (Abbott) being used for every reading.

Tissue collection
Micewere humanely killed at 1-, 3-, 9- and 12months of age and tissueswere harvested for analysis. Following confirmation of death:

cochlea, heart, liver, kidney, iWAT, gonadal which adipose tissue, BAT and skeletal muscle were dissected. For subsequent protein,

RNA and DNA analysis tissues were placed in cryotubes (Nunc, Thermo Fisher Scientific-Heraeus) and snap frozen in liquid nitrogen.

Tissue samples were stored long-term at �70�C.

Blood Biochemistry and ELISA analysis
Food was withdrawn and mice were fasted at 8:00 AM. 4hrs later, mice were humanely killed by administration of an over-dose of

anesthetic (0.2 mL of pentobarbitone) via intra-peritoneal injection in accordance with home office procedures. Once the mouse was

fully anaesthetized a glass capillary is inserted into the anterior corner of themouse eye to puncture themembrane of the retro-orbital

sinus. Blood was collected from the capillary in Lithium-Heparin microvette tubes (CB30, Sarstedr, Numbrecht, Germany). Blood

samples were centrifuged for 10 mins at 8000 x g at 8�C. The supernatant blood plasma was removed and analyzed on a Beckman

Coulter AU680 clinical chemistry analyzer using reagents and settings recommended by the manufacturer. Plasma FGF21 proteins

levels were assayed using Quantikine ELISA Mouse / Rat FGF-21 Immunoassays (R&D Systems) according to manufacturer’s

instructions.

Mitochondrial stress test in MEFs
Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured in MEFs using the Seahorse XF24 flux

analyzer (Seahorse Bioscience). Primary MEFs were seeded at a density of 40000 cells/well on XF-24 tissue culture plate and left

to adhere overnight. The following day MEFs media was replaced with XF Assay Media supplemented with L-glutamine 2 mM, so-

dium pyruvate 2 mM, and glucose 10 mM (pH 7.4) and were incubated for 1 hour at 37�C in a CO2 free incubator before being placed

in the XF24 analyzer. OCR and ECAR measurements were measured under basal conditions and following administration of mito-

chondrial inhibitors oligomycin (1 mM), antimycin (1 mM) and rotenone (1 mM) or in the presence of the mitochondrial uncoupler

FCCP (1 mM) (Seahorse XF Cell Mito Stress Test Kit, Agilent). Oxygen consumption rates were normalized to the number of live cells

using the LIVE/DEAD Viability/Cytotoxicity kit (ThermoFisher) according to the manufactures instructions.

Respiratory chain complex activities
The activities of individual respiratory chain complex activities and citrate synthase, a mitochondrial matrix marker, were determined

in skeletal muscle and cardiac muscle homogenates as previously described (Kirby et al., 2007).

Western blots analysis
Proteins were extracted from snap frozen mouse tissues using CelLyic MT Mammalian Tissue Lysis Buffer (Sigma- Aldrich) supple-

mented with 1 X complete protease inhibitor cocktail (1 mL / 100 mL lysis buffer, Sigma- Aldrich) and 1 X PhosStop phosphatase in-

hibitor cocktail (1 mL / 100 mL lysis buffer, Sigma Aldrich). Tissues were homogenized using the Precellys-24 automated homogenizer

(Bertin Technologies). Tissue homogenates were centrifuged at 13,000 rpm for 15 mins at 4�C to pellet cell debris. The supernatant
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tissue lysates were isolated and protein concentrations were determined using the BCA (bicinchoninic acid) Protein Assay Reagent

(BioRad). Samples were diluted to 4 mg / mL in lysis buffer and supplemented with NuPAGE LDS Sample Buffer (4X) and NuPage

Reducing Agent (10X) and were denatured by heating to 70�C for 10mins. Protein samples were separated using 4%–12% linear

gradient Bis-Tris ready polyacrylamide gels with 1 X MOPS electrophoresis running buffer (Invitrogen) using the XCell Surelock

Mini Cell tanks (Invitrogen) at 200 V for 50 mins. Protein samples were electrotransferred from the gels onto PVDF membrane

(Hybond – P, GE Healthcare Amersham) using a XCell II Blot Module (Invitrogen). Protein membranes were blocked in 5% non-fat

milk Tris Buffered Saline with Tween 20 (TBST, Merk) (non-phosphor antibodies) or 5% Bovine Serum Albumin TBST (phosphor-

antibodies) at room temperature for an hour or overnight at 4�C before being incubated with primary antibodies overnight at 4�C.
Protein membranes were washed 3-5 times in TBST for 10mins at room-temperature. Secondary antibodies were diluted in 5%

non-fat milk TBST. Membranes were incubated with species-specific secondary horseradish peroxidase (HRP) conjugated anti-

bodies for 4 hr at room-temperature. Membranes were washed 5 times in TBST for 10mins. Immunolabelledmembranewere treated

with Enhanced Chemiluminesence Plus (ECL plus; Amersham, GE Healthcare) and were imaged using the ChemiDoc UV chemilu-

minescent imager or exposure to X-ray film.

Primary antibodies used in this study: WARS2, at a 1:500 dilution (custom, Covalab); NDUFB8, at a 1:2,000 dilution (ab110242,

Abcam); SDHA, at a 1:10,000 dilution (ab14715, Abcam); UQCRC2, at a 1:3,000 dilution (ab14745, Abcam); MTCO1, at a 1:2,000

dilution (ab14705, Abcam); ATP5A, at a 1:5,000 dilution (ab14748, Abcam); eIF2a, at a 1:1000 dilution (#5324, Cell signaling); phos-

phor-Ser51-eIF2a, at a 1:1,000 dilution (#1090-1, Epitomics); ATF4, at a 1:500 dilution (sc-22800, Santa Cruz); LONP1, at a 1:1,000

dilution (ab103809, Abcam); CLPP, at a 1:5,000 dilution (ab124822, Abcam); HSP60, at a 1:10,000 dilution (ab46798, Abcam);

HSP70, at a 1:1,000 dilution (ab2799, Abcam); UCP1, at a 1:200 dilution (sc-6529, Santa Cruz); Actin, at a 1:5,000 dilution

(MAB1501, Millipore); a-Tubulin, at a 1:5,000 dilution (#2144, Cell Signaling); and GAPDH, at a 1:10,000 dilution (ab8245, Abcam).

In subsequent OXPHOS blot experiments (Figure S5) a total OXPHOS rodent WB antibody cocktail was used at a 1:1,000 dilution

(ab110413, Abcam).

Real-Time Quantitative PCR
Total RNA was extracted from MEFs and mouse tissues using the RNeasy Mini Plus Kit (QIAGEN) according to the manufacture’s

protocol. RNA concentrations were determined using a NanoDrop spectrophotometer (Thermo Scientific). RNA samples were

diluted to 200 ng/ml and reverse transcription reactions were performed using Super Script III reverse transcriptase (Invitrogen)

following the manufacturer’s protocol to generate 2 mg of cDNA. mRNA gene expression analysis was performed using the TaqMan

system. TaqMan Gene Expression Assay reagents and TaqMan FAM dye-labeled probes (Applied Biosystems, Invitrogen, U.S.A.)

were used according to the manufacturers protocol and assays were performed using an ABIPRISM 7500 Fast Real-Time PCR

System (Applied Biosystems). Data was normalized to house-keeping genes specific to the tissue / cell line being used. GeNORM

analysis was performed for each cell / tissue used to determine the most suitable housekeeping gene. Data were analyzed using the

comparativeDDCTmethod in order to determine the difference in sample groups relative to control samples. Taqman probes used in

this study:Wars2 (Exon 2-3) (Mm04208965_m1),Wars2 (Exon 4-5) (Mm04208967_m1),Wars2 (Exon 5-6) (Mm00840490_m1), Pgc1a

(Mm01208835_m1), Atf4 (Mm00515324_m1), Atf5 (Mm00459515_m1), Chop (Mm01135937_g1), Fgf21 (Mm00840165_g1), Tfam

(Mm00447485_m1), Ppara (Mm00440939_m1), Ucp1 (Mm01244861_m1), Dio2 (Mm00515664_m1), Cidea (Mm00432554_m1),

Pparg (Mm00440945_m1), Cox7a1 (Mm00438297_g1) and Cox8b (Mm00432648_m1).

Prediction of WARS2 3D structure
The crystal structure of human WARS2 (PDB: 5EKD, Human mitochondrial tryptophanyl-tRNA synthetase bound by indolmycin and

Mn*ATP. Williams, T.L., Carter Jr., C.W.) was downloaded from the PDB database (PDB; http://www.rcsb.org/). The predicted pro-

tein structure of human Wars2 was generated using PHYRE2 Protein fold recognition server (Kelley et al., 2015). The alignment and

visualization of the protein structures was performed by PyMOL by Schrödinger (https://pymol.org/2/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests in GraphPad Prism are indicated in the figure legends and were selected depending on whether data was normally

distributed as assessed by the D’Agostino & Pearson omnibus normality test in Prism. Equal variance was assessed by an F-test in

Prism and non-parametric tests used if this test was failed. Where necessary AUC’s were calculated using Prism to allow analysis of

longitudinal data. Number of animals and cellular assay replicates are indicated in the figure legends.

Western blot bands were analyzed and quantified using ImageJ (Schneider et al., 2012).

Energy Expenditure adjustment for lean mass by ANCOVA using SPSS.
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