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Abstract: Rigid-body displacements obtained by combining spatial translations and rotations
around axes whose direction is fixed in the space are named Shoenflies’ motions. They constitute
a 4-dimensional (4-D) subgroup, named Shoenflies’ subgroup, of the 6-D displacement group.
Since the set of rotation-axis’ directions is a bi-dimensional space, the set of Shoenflies’ subgroups
is a bi-dimensional space, too. Many industrial manipulations (e.g., pick-and-place on a conveyor
belt) require displacements that belong to only one Schoenflies’ subgroup and can be accomplished
by particular 4-degrees-of-freedom (4-DOF) manipulators (Shoenflies-motion generators (SMGs)).
The first author has recently proposed a novel parallel SMG of type CRS-RRC 1. Such SMG features
a single-loop architecture with actuators on the base and a simple decoupled kinematics. Here, firstly,
an organic review of the previous results on this SMG is presented; then, its design is addressed by
considering its kinetostatic performances. The adopted design procedure optimizes two objective
functions, one (global conditioning index (GCI)) that measures the global performance and the
other (CImin) that evaluates the worst local performance in the useful workspace. The results of
this optimization procedure are the geometric parameters’ values that make the studied SMG have
performances comparable with those of commercial SMGs. In addition, a realistic 3D model that
solves all the manufacturing doubts with simple and cheap solutions is presented.

Keywords: parallel robot; Shoenflies-motion generator; dimensional synthesis; kinetostatic performances;
conditioning index

1. Introduction

Shoenflies’ motions are rigid-body displacements obtained by combining spatial translations
and rotations around axes with a fixed direction. They constitute a 4-dimensional (4-D) subgroup,
named Shoenflies’ subgroup, of the 6-D displacement group [1,2]. Since the set of rotation-axis’
directions is a bi-dimensional space, the set of Shoenflies’ subgroups is a bi-dimensional space, too.
Many industrial manipulations (e.g., pick-and-place on a conveyor belt) require displacements that
belong to only one Schoenflies’ subgroup and can be accomplished by particular 4-degrees-of-freedom
(4-DOF) manipulators, named Shoenflies-motion generators (SMGs) [3].

1 Hereafter, R, P, U, S, and C stand for revolute pair, prismatic pair, universal joint, spherical pair, and cylindrical pair,
respectively. With reference to a parallel architecture, which features the frame (base) and the end effector (platform)
connected to each other by a number of kinematic chains (limbs), a string of capital letters denotes the sequence of joint
types that are encountered by moving from the base to the platform on a limb. The hyphen separates the strings of the limbs
and the underlining indicates the actuated joints. A serial architecture has only one limb and is denoted by only one string.
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The serial robot SCARA, presented in 1981, is the most known SMG, but many alternative serial
architectures can be conceived [3]. The main drawback of serial architectures is the need of actuating
joints that connect mobile links, which brings to increase the mobile masses and, simultaneously,
to reduce the dynamic performances. Parallel architectures can solve this issue and parallel SMGs
have been presented (see, for instance [4–12]), too. Most of the proposed parallel SMGs feature four
limbs (e.g., [5–7,9,12]) and one actuator per limb located on the base. Other parallel SMGs are simply
obtained by adding a double Cardan shaft (i.e., a limb of RUPUR type), which connects the base to the
platform, in a translational parallel manipulator.

The main drawback of parallel SMGs is their complex multi-loop structure that drastically
reduces their workspace, usually brings cumbersome kinematics and control algorithms, and, often,
does not allow a full rotation of the end effector (platform). Nevertheless, adopting two-limbed
(i.e., single-loop) architectures with serial [4,13] or hybrid [8,11] limbs with two actuators per limb
reduces the structure complexity while keeping the actuators on the base. Some design tricks [14,15] can
yield end-effector’s full rotations, and some architectures [12,13] can give the possibility of decoupling
position and orientation (decoupled kinematics), which allows simpler and more intuitive control
strategies. Moreover, not-overconstrained architectures [4] make it possible to avoid jamming without
using small tolerances during manufacturing.

The first author has recently proposed a novel not-overconstrained parallel SMG of type
CRS-RRC [13]. Such SMG features a single-loop architecture with actuators on the base and a simple
decoupled kinematics. Here, firstly, an organic review of the previous results on this SMG is presented;
then, its design is addressed by considering its kinetostatic performances. This design procedure will
yield a realistic 3D model that solves all the manufacturing doubts with simple and cheap solutions.

The paper is organized as follows. Sections 2 and 3 state the notations and review the previous
results presented in [13,16]. Section 4 addresses the analysis of the kinetostatic performances and the
design based on them. Section 5 discusses the results and Section 6 draws the conclusions.

2. Notations and Background

Figure 1 shows the SMG of type CRS-RRC presented in [13]. The axes of the R and C pairs are all
parallel. The platform is connected to the base through two limbs: one of type CRS and the other of type
RRC. The actuated C pair of the CRS limb is obtained by mean of a PR chain with the sliding direction
of the P pair parallel to the axis of the R pair. Such a kinematic chain can be actuated by keeping the
motors on the base and using commercial components as shown in Figure 2. Also, the second actuated
R pair of the RRC limb can be moved from the base by simply using a toothed-belt transmission.

With reference to Figure 1, Obxbybzb is a Cartesian reference fixed to the base; the direction of the
zb coordinate axis is the same as the R and C pair axes. In the platform, ap is the constant distance of the
center of the S pair from the axis of the passive C pair and is equal to the length of the segment ApA2.
Op is the reference point of the platform, and h is the length of the segment ApOp. The coordinates,
(xp, yp, zp)T, of Op, measured in Obxbybzb, locate the position of the platform; whereas, the angle, ϕ,
between the segment ApA2 and a line parallel to xb and passing through Ap uniquely determines the
platform orientation. In the CRS limb, point B2 lies on the axis of the actuated C pair and is fixed to the
output link of the C pair. The linear variable of the actuated C pair is the signed distance, d, of B2 from
Ob. The plane parallel to the xbyb plane and passing through B2 intersects the axis of the passive R
pair at D2, the axis of the passive C pair at Ap, and the axis parallel to the zb axis and passing through
the center of the S pair at A2. a3 and a4 are the lengths of the segments B2D2 and D2A2, respectively;
whereas, θ3 and θ4 are the angular variable of the actuated C pair and the joint variable of the passive
R pair, respectively. The point Ap is fixed to the platform. In the RRC limb, the actuated-joint variables
are θ1 and θ2. The xbyb plane intersects the axis of the R pair adjacent to the base at B1, the axis of the
other R pair at D1, and the axis of the passive C pair at A1. a0, a1 and a2 are the lengths of the segments
ObB1, B1D1 and D1A1, respectively. The RRC limb constrains the platform to perform Schoenflies
motions with rotation axis parallel to the zb axis; whereas, the CRS limb controls the coordinate zp of
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point Op through its linear variable, d, and, independently, the platform orientation through its angular
variable, θ3.
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According to these notations, the 4-tuples q = (θ1, θ2, θ3, d)T and κ = (xp, yp, zp, ϕ)T collect the
actuated-joint (input) variables and the platform-pose (output) variables, respectively. The inspection
of Figure 1 yields the following closure equations

xp = a0 + a1 cos θ1 + a2 cos (θ1 + θ2), (1a)

yp = a1 sin θ1 + a2 sin (θ1 + θ2), (1b)

zp = d − h (1c)

(xp + ap cos ϕ − a3 cos θ3)2 + (yp + ap sin ϕ − a3 sin θ3)2 = a4
2 (1d)

If q is assigned (direct position analysis (DPA)), Equation (1a–c) yield a unique platform position;
whereas, Equation (1d) yields two platform orientations (i.e., the DPA has two solutions that share the
same platform position). Vice versa, if κ is assigned (inverse position analysis (IPA)), Equation (1c)
yields only one value for d; whereas, Equation (1a,b,d) yield at most four values for (θ1, θ2, θ3) which
can be computed through explicit formulas (see [13] for the proof and the formulas), that is, the IPA
has at most four solutions which share the same value of d.

The time derivatives of Equation (1a–d) yield

.
xp = −[a1 sin θ1 + a2 sin(θ1 + θ2)]

.
θ1 − a2 sin(θ1 + θ2)

.
θ2 (2a)

.
yp = [a1 cos θ1 + a2 cos(θ1 + θ2)]

.
θ1+a2 cos(θ1 + θ2)

.
θ2 (2b)

.
zp =

.
d (2c)

mx
.
xp + my

.
yp +

.
ϕap(my cosϕ−mx sinϕ

)
=

.
θ3 a3(my cos θ3 −mx sin θ3) (2d)

where mx = xp + ap cos ϕ − a3 cos θ3 and my = yp + ap sin ϕ − a3 sin θ3.
Since the RRC limb forbids the platform to perform displacements that do not belong to the

above-mentioned Schoenflies’ subgroup, the studied SMG has no constraint singularities2 and
.
κ = (

.
xp,

.
yp,

.
zp,

.
ϕ
)T

uniquely identifies the platform twist. As a consequence, Equation (2a–d) are

sufficient to relate the platform twist to the actuated-joint rates,
.
q, that is, they are the instantaneous

input-output relationship (InI/O).
The InI/O of a manipulator is a linear mapping between platform twists and actuated-joint

rates whose coefficient matrices (Jacobians) only depend on the configuration of the manipulator.
The configurations (singularities) where these Jacobians have not full rank make the linear mapping
not bijective and have relevant kinetostatic implications [17–21].

According to the above-deduced InI/O, if
.
q is assigned,

.
Op = (

.
xp,

.
yp,

.
zp

)T
is always uniquely

determined, but
.
ϕ is not determined when the segments A2D2 and A2Ap are aligned (i.e., a parallel

singularity3 occurs). In addition, if
.
κ is assigned, only two geometric conditions make one or more

actuated-joint rates undetermined (i.e., a serial singularity4 occurs): (i) the 2-tuple (
.
θ1,

.
θ2) is not

2 Parallel manipulators with mobility lower than six that are designed to make the platform move inside a given displacement
subgroup may have configurations (constraint singularities) where the platform can perform instantaneous displacements
that do not belong to that subgroup [17].

3 Parallel singularities, also named type-II singularities [18], usually occur inside the workspace. They are configurations
where the platform can perform instantaneous motions with locked actuators. At a type-II singularity, a load (even
infinitesimal) applied to the platform needs infinitely-high generalized torques, in at least one actuator, to be balanced.

4 Serial singularities, also named type-I singularities [18], lie on (and identify) the workspace boundary. They are
configurations where the platform stands still while the actuated joints perform instantaneous motions. At a type-I
singularity, the platform can carry loads without needing that the actuators provide generalized torques to balance them.



Robotics 2018, 7, 55 5 of 15

determined when the segments A1D1 and D1B1 are aligned, and (ii)
.
θ3 is not determined when the

segments A2D2 and D2B2 are aligned.

3. Workspace Analysis

According to the adopted notations, the geometric constants of the CRS-RRC SMG, which affect
the SMG behavior, are a0, a1, a2, a3, a4, ap, and h (Figure 1). Two of the authors, in [16], analyzed some
workspace characteristics of this SMG. Such analysis brought to size some of those constants.
This section summarizes and reviews the results deduced in [16].

If the two actuated R pairs of the RRC limb and the linear variable, d, of the actuated C
pair are locked (i.e., by keeping zp and A1 fixed), the segments B2Ap (=ObA1 =

√
x2

p + y2
p), B2D2

(=a3), D2A2 (=a4), and ApA2 (=ap) behave like frame, input link, coupler, and follower, respectively,
of a four-bar linkage. θ3 and ϕ are input and output variables, respectively, of this four-bar linkage,
and the singularities of this four-bar correspond to the above-identified parallel singularity and serial
singularity (ii). If this four-bar satisfies Grashof’s law [22] and ApA2 is the shortest bar, the platform
can perform a complete rotation (i.e., the angle ϕ has no limitation). Nevertheless, only a double-crank
four-bar can guarantee a full control of the platform rotation.

Let p and p denote the position vector (A1–Ob) and its magnitude (=
√

x2
p + y2

p), respectively.

From an analytic point of view, the four-bar is a double-crank (i.e., the platform can perform a complete
rotation fully controlled by θ3) if and only if

(ap + p) ≤ (a3 + a4), (3a)

|ap − p| ≥ |a3 − a4|, (3b)

p = min{p, a3, a4, ap}. (3c)

Inequalities (3a,b) impose that the platform can perform a full rotation and condition (3c) make
the four-bar linkage double-crank.

Since there is no reason to have a3 different from a4 and a possible scaling factor does not affect
the analysis, the choice a3 = a4 = 1 length unit (l.u.) is adopted. With this assumption, inequality (3b)
become |ap − p| ≥ 0 and is identically satisfied; whereas, inequality (3a) and condition (3c) become

p ≤ ap ≤ 2 − p (4)

The blue area of Figure 3 indicates the values of the 2-tuple (p, ap) that satisfy inequalities (4).
Figure 3 shows that the maximum value, pGr, that p can assume depends only on ap: when the values
of ap increase, pGr increases for ap ≤ 1 and, then, decreases for ap > 1. The maximum value of pGr is
1 l.u. and is obtained with ap = 1 l.u. Since pGr is the radius (see Figure 1) of the circle centered at
Ob that is the region (double-crank region) where A1 must be located to have a double-crank linkage,
the choice ap = 1 l.u. is adopted to maximize the double-crank region.
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Let ∆d (=dmax − dmin) be the maximum linear stroke of the actuated C pair. The reachable
workspace [23] referred to Op is a right cylinder with height ∆d, whose cross section is the intersection
between two circles: one centered at Ob with radius a3 + a4 + ap and the other centered at B1 with
radius a1 + a2. The cross section of the reachable workspace is maximized if the smaller circle is located
inside the other, that is, if

a0 + a1 + a2 ≤ a3 + a4 + ap (5a)

or
a3 + a4 + ap ≤ a1 + a2 − a0. (5b)

In addition, if such section contains the double-crank region, the dexterous workspace [23]
referred to Op is maximum, and it is equal to a right circular cylinder obtained by translating the
double-crank region along the zb axis of ∆d. This condition is satisfied if

pGr + a0 ≤ a1 + a2, (6a)

|a1 − a2| ≤ a0 − pGr, (6b)

pGr ≤ a3 + a4 + ap. (6c)

At the border of the double-crank region (i.e., for p = pGr), the four-bar linkage can still make the
platform perform a complete rotation, but the linkage encounters two times the parallel singularity
condition during the platform rotation. Since the integrity of parallel manipulators can be preserved
only by keeping them work out and far from parallel singularities, a safe free-from-singularity
dexterous workspace requires p << pGr.

Outside the double-crank region (i.e., for p > pGr), the four-bar linkage does not satisfy Grashof’s
law any longer; as a consequence, it can only be a rocker-rocker four-bar linkage and the rotation
range, ∆ϕ, of the platform is limited. Figure 4 shows the above-defined not-Grashof four-bar linkage
at the configurations corresponding to the extreme values of ϕ. In a rocker-rocker four-bar, the whole
∆ϕ is swept by moving from a serial singularity (ii) to a parallel singularity (Figure 4a) or vice versa
(Figure 4b). In both the cases, ∆ϕ does not change, but the configurations the mechanism passes
through are different. The analysis of Figure 4 gives the following simple analytic formula for ∆ϕ

∆ϕ = π+ cos−1

[
(a4 + ap)

2 + p2 − a2
3

2p(a4 + ap)

]
− cos−1

[
(a3 + a4)

2 − p2 − a2
p

2 p ap

]
(7)
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Formula (7) highlights that ∆ϕ depends only on p (i.e., the direction of the position vector
p does not affect ∆ϕ) and decreases when p increases. This symmetry with respect to the zb axis
and the fact that the decrease of ∆ϕwith the increase of p is not sharp [16] make wide regions of the
reachable workspace that are out of the double-crank region usable for manipulation tasks that need
not a complete platform rotation.

4. Kinetostatic-Performance Analysis and Dimensional Synthesis

The previous sections brought to choose a3 = a4 = ap = 1 l.u. All the other geometric constants
(i.e., a0, a1, a2, and h) can be used to match the adoption of a useful workspace adequate to industrial
tasks with satisfactory kinetostatic properties. Even though the CRS-RRC SMG can perform some
tasks outside the above-defined dexterous workspace, the choice of the useful workspace has to take
into account the generality of the industrial tasks of an SMG. Consequently, in this case, the useful
workspace is chosen as a right circular cylinder with axis passing through Ob (see Figure 1) and radius,
puw, that satisfies the condition puw << pGr, which makes it coincide with a safe free-from-singularity
dexterous workspace.

The determination of puw can be done by imposing that the transmission angle [22,24], µ, of the
above-defined four-bar linkage has an acceptable value during the platform rotation. In general,
tasks that require the application of relevant forces to the gripper during motion (e.g., machining
tasks like drilling) need values of |µ − 90| (◦) lower than 50◦ and low friction in the kinematic pairs.
Other manipulation tasks with reduced force interaction can accept |µ − 90| values lower than
70◦; whereas, when force interaction is not present (e.g., pick-and-place tasks) |µ − 90| could be
even larger than 70◦. The formulas (see [24]) that give the minimum, µmin, and the maximum, µmax,
transmission angles, when particularized to the studied case, become (µ ∈ [0◦, 180◦])

µmin = cos−1

[
a2

4 + a2
p − (p− a3)

2

2 a4 ap

]
(8a)

µmax = cos−1

[
a2

4 + a2
p − (p + a3)

2

2 a4 ap

]
(8b)

which, for a3 = a4 = ap = 1 l.u., give the diagrams of Figure 5.Robotics 2018, 7, x FOR PEER REVIEW  8 of 15 
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Figure 5 shows that |µ − 90| ≤ 50◦ corresponds to p = 0.317 and |µ − 90| ≤ 70◦ corresponds to
p = 0.653; whereas, for p = 0.75, |µ − 90| exceeds 70◦ only in a small neighborhood of µmin which is
equal to 14.4◦.

Since SMGs are mainly employed in pick-and-place tasks, the choice puw = 0.75 is adopted by
confining the force interaction tasks in region with p ≤ 0.653 or with p ≤ 0.316 according to the type
of task.

A commercial SMG is the pickstar YS02N of Kawasaki [25]. Its useful workspace is a right circular
cylinder with a base radius of 300 mm and a height of 200 mm. Hereafter, this right circular cylinder is
chosen as useful workspace for the dimensional synthesis of the CRS-RRC SMG. This choice together
with the previous choice puw = 0.75 yield 1 (l.u.) = 400 mm, that is, a3 = a4 = ap = 400 mm.

Figure 6 shows the region of the xbyb plane swept by the above-defined four-bar linkage with
a3 = a4 = ap = 400 mm when point A1 is moved along the xb axis from Ob (i.e., A1 = (0, 0)) to the border
of the useful workspace (i.e., A1 = (300, 0) mm). The whole region swept by the four-bar when the
direction of the motion of A1 changes can be obtained by making the region highlighted in Figure 6
rotate around Ob in the xbyb plane. Such rotation yields a circle with a radius of 700 mm. Consequently,
by taking into account the physical sizes of the links, the choice a0 = 800 mm is adopted in order to
avoid interferences between the frame and the four-bar during motion.
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4.1. Measure of the Kinetostatic Performances

The matrix form of system (2) (i.e., of the InI/O) is

Jk
.
κ = Jq

.
q (9)

with

Jk =


1 0 0 0
0 1 0 0
0 0 1 0

mx my 0 ap(my cosϕ−mx sinϕ
)
 (10a)
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Jq =


−[a1 sin θ1 + a2 sin(θ1 + θ2)] −a2 sin(θ1 + θ2) 0 0
[a1 cos θ1 + a2 cos(θ1 + θ2)] a2 cos(θ1 + θ2) 0 0

0 0 0 1
0 0 a3(my cos θ3 −mx sin θ3) 0

 (10b)

Kinetostatic performances of manipulators can be evaluated by using indices built by using the
Jacobians Jk and Jq of Equation (9). Two of these indices are the “conditioning index” (CI) [26] of the
matrix J = (Jq)−1Jk, which is defined as the inverse of the condition number of J, and its average value
on the useful workspace, named “global conditioning index” (GCI). The computation of the CI and GCI
needs that the entries of the Jacobians Jk and Jq be homogeneous [9,27–29]. Jacobian homogenization
can be obtained with the introduction of a characteristic length, λ, through a change of variables [27],
even though which λ should be used is an open problem.

In the studied case, the introduction of the new homogeneous variables
.
κh =

( .
xp
λ ,

.
yp
λ ,

.
zp
λ ,

.
ϕ

)T

and
.
qh =

( .
θ1,

.
θ2,

.
θ3,

.
d
λ

)T
into Equation (9) yields

Jh
.
κh =

.
qh (11)

where Jh = (Jqh)−1Jkh with

Jkh =


1 0 0 0
0 1 0 0
0 0 1 0

mx
λ

my
λ 0 ap

λ2 (my cosϕ−mx sinϕ
)
 (12a)

Jqh =


−[a1 sinθ1+a2 sin(θ1+θ2)]

λ − a2
λ sin(θ1 + θ2) 0 0

[a1 cosθ1+a2 cos(θ1+θ2)]
λ

a2
λ cos(θ1 + θ2) 0 0

0 0 0 1
0 0 a3

λ2 (my cos θ3 −mx sin θ3) 0

 (12b)

Jh is a homogeneous Jacobian with dimensionless entries. The condition number, χ, of Jh is,
by definition, χ = ‖Jh‖ ‖J−1

h ‖ where ‖(·)‖ stands for any matrix norm of the argument, if the

Frobenius norm [21] is adopted ‖Jh‖ =
√

trace(JhJT
h). Consequently, the conditioning index, CI = 1/χ,

depends both on the SMG configuration and on the geometric constants a1 and a2 that have not
been determined, yet. The CI ranges from 0, at parallel singularities to 1 at isotropic configurations
(i.e., SMG configurations where Jh is proportionate to the identity matrix), which are the farthest from
parallel singularities. The CI is a local index that measures the kinetostatic performance of the SMG at
a configuration; whereas, the GCI (i.e., its average value on the useful workspace) gives a score to the
kinetostatic performance of the SMG and could be used to compare different manipulators.

Optimizing the kinetostatic performances of a manipulator by using the CI and the GCI means
determining the available geometric constants (in this case, a1 and a2) so that the minimum value,
CImin, of the CI and the GCI are as high as possible for that architecture. Such optimization is presented
in the following subsection.

4.2. Dimensional Synthesis

The admissible values of a1 and a2 must satisfy inequalities (6a,b) with a0 = 800 mm and
pGr = ap = 400 mm. Moreover, a reasonable choice for the RRC limb would be a2 ≤ a1. All these
inequalities are satisfied in the region highlighted in blue of Figure 7.
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Figure 7. The values of (a1,a2) that satisfy inequalities (6a), (6b) and a2 ≤ a1 with a0 = 800 mm and
pGr = ap = 400 mm are those belonging to the blue region.

By setting λ = 400 mm (i.e., equal to the length of ap, a3 and a4 and to the arithmetic mean of the
diameter and the height of the useful workspace), a numerical algorithm has been used to compute the
GCI and the CImin referred to the useful workspace for each admissible values of (a1, a2). The results
of these computations are shown in Figure 8.
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Figure 8. Kinetostatic performance as a function of a1 and a2: (a) global conditioning index (GCI)
evaluated on the useful workspace, and (b) CImin in the useful workspace.

The analysis of the GCI values displayed in Figure 8a reveals that the maximum GCI is equal
to 0.48795 and is obtained with a1 = 869 mm and a2 = 469 mm, which correspond to CImin = 0.28682
(Figure 8b). Also, Figure 8a shows that the maximum GCI falls in a smooth region (more or less flat)
which allows large variation of (a1, a2) with small reductions of the GCI.

On the other side, the analysis of the CImin values displayed in Figure 8b reveals that the maximum
CImin is equal to 0.29806 and is obtained with a1 = 993 mm and a2 = 593 mm, which correspond to
GCI = 0.4763 (Figure 8a). Moreover, Figure 8b shows that also the maximum CImin falls in a smooth
region (more or less flat). These results bring to choose a1 = 950 mm and a2 = 600 mm which correspond
to a good compromise with GCI = 0.482 and CImin = 0.29743 that are values near enough to their
maxima. The chosen values of a1 and a2 yield the minimum CI values at each A1 position inside
the useful workspace shown in Figure 9. Figure 9 highlights that most of the useful workspace has
CI ≥ 0.45, which makes the CI distribution acceptable.
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a1 = 950 mm and a2 = 600 mm.

4.3. The 3D Model

The dimensional synthesis, with useful workspace assigned as a right circular cylinder with
a radius of 300 mm and a height of 200 mm, brought to choose the following values of the geometric
constants: a0 = 800 mm, a1 = 950 mm, a2 = 600 mm, a3 = 400 mm, a4 = 400 mm, and ap = 400 mm.
Figure 10 shows the region of the xbyb plane swept by the RRC limb, with a0 = 800 mm, a1 = 950 mm,
and a2 = 600 mm, when point A1 is moved on the whole circular boundary of the useful workspace
and the limb is assembled in either of the two assembly modes the IPA identifies [13]. The analysis of
Figure 10 highlights that no link interference occurs with the chosen geometric data. By combining
Figures 6 and 10 the overall region of the xbyb plane that is swept by both the limbs is obtained.
Figure 11 shows such region.
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Figure 10. Region of the xbyb plane swept by the RRC limb, with a0 = 800 mm, a1 = 950 mm,
and a2 = 600 mm, when point A1 is moved on the whole circular border of the useful workspace and
the limb is assembled in either of the two assembly modes the inverse position analysis (IPA) identifies.



Robotics 2018, 7, 55 12 of 15Robotics 2018, 7, x FOR PEER REVIEW  12 of 15 

 

 

Figure 11. Overall region of the xbyb plane that is swept by both the limbs. 

 

 

(a) (b) 

Figure 12. CAD model: (a) 3D view, and (b) lateral view. 

In order to solve all the doubts about the actual feasibility of the machine, a CAD model of the  

CRS‐RRC SMG has been built with the chosen geometric data. Figure 12 shows the 3D view (Figure 12a) 

and the lateral view (Figure 12b) of this model. Such model has an L‐shaped base, only commercial 

actuators that are all mounted on the base, rolling bearings in all the R pairs to avoid jamming of the 

above‐defined four‐bar linkage at low transmission angles, a spherical roller bearings that implements the 

S‐pair constraint5, and a linear ball bearing that implements the constraint of the passive C‐pair. The bevel 

gearbox and the toothed belts (Figures 2 and 12) are commercial products, too. 

5. Summary of the Results and Discussion 

                                                 
5 In the studied SMG, the S pair has the only role of compensating errors of parallelism among the R‐pair axes. 

Figure 11. Overall region of the xbyb plane that is swept by both the limbs.

In order to solve all the doubts about the actual feasibility of the machine, a CAD model of the
CRS-RRC SMG has been built with the chosen geometric data. Figure 12 shows the 3D view (Figure 12a)
and the lateral view (Figure 12b) of this model. Such model has an L-shaped base, only commercial
actuators that are all mounted on the base, rolling bearings in all the R pairs to avoid jamming of the
above-defined four-bar linkage at low transmission angles, a spherical roller bearings that implements
the S-pair constraint5, and a linear ball bearing that implements the constraint of the passive C-pair.
The bevel gearbox and the toothed belts (Figures 2 and 12) are commercial products, too.
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5 In the studied SMG, the S pair has the only role of compensating errors of parallelism among the R-pair axes.
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5. Summary of the Results and Discussion

The kinematic analysis [13] of the CRS-RRC SMG showed that both the DPA and IPA are
solvable with simple and explicit formulas, and that platform’s translation and rotation are decoupled.
Therefore, the control algorithms are easy to implement and require very low computation time,
which makes it possible to build a fast online control system.

The above-reviewed workspace analysis (see also Ref. [16]) highlighted that the reachable
workspace has axially-symmetric properties. In particular, a safe free-from-singularity dexterous
workspace, which is a right circular cylinder, is easy to identify in a wider region of the reachable
workspace where the platform can perform complete rotations. Moreover, parallel singularities
occur only for two known platform orientations and, in the reachable workspace, they are located
on a circle that is the boundary of the dexterous workspace. Thus, the platform can pass through
the parallel-singularity locus simply by changing its orientation and, if necessary, can accomplish
particular tasks in region where the platform rotation is bounded.

The kinetostatic analysis based on the transmission angle and the conditioning index revealed
that the machine can be so dimensioned that the GCI and the CImin are acceptable in a useful
workspace, equal to those of commercial SMGs, with transmission angles adequate to the generality of
industrial tasks.

The CAD model of the CRS-RRC SMG showed that its manufacture needs only commercial
components. This result proves the actual feasibility of the machine with cheap production processes.
Moreover, it highlights that the L-shaped base when fixed on a rotating frame allows an easy way for
setting up the machine with respect to different machining planes (e.g., belt conveyors).

6. Conclusions

Kinetostatic indices have been used to complete the dimensional synthesis of the SMG of type
CRS-RRC previously presented by the first author. In particular, a safe free-from-singularity useful
workspace equal to that of a commercial SMG (the pickstar YS02N of Kawasaki [25]) has been chosen
and all the geometric constants of this machine have been determined so that the minimum CI and the
GCI are maximized.

Then, the so-determined geometric constants have been used to build a realistic 3D model that
involves only commercial components, and implements an original architecture for actuated C pairs
that brings all the actuators on the frame.

The obtained results positively close the validation of the machine concept and open to the
structural and dynamic analyses/checks necessary to match static and dynamic requirements for an
assigned payload. These analyses together with stiffness and accuracy analyses are the next steps of
this project.
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