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Abstract

Electroceramic materials research is a wide ranging field driven by device ap-

plications. For many years, the demand for new materials was addressed largely

through serial processing and analysis of samples often similar in composition to

those already characterised. The Functional Oxide Discovery project (FOXD) is a

combinatorial materials discovery project combining high-throughput synthesis and

characterisation with advanced data mining to develop novel materials.

Dielectric ceramics are of interest for use in telecommunications equipment; oxy-

gen ion conductors are examined for use in fuel cell cathodes. Both applications

are subject to ever increasing industry demands and materials designs capable of

meeting the stringent requirements are urgently required.

The London University Search Instrument (LUSI) is a combinatorial robot em-

ployed for materials synthesis. Ceramic samples are produced automatically using

an ink-jet printer which mixes and prints inks onto alumina slides. The slides are

transferred to a furnace for sintering and transported to other locations for analysis.

Production and analysis data are stored in the project database. The database

forms a valuable resource detailing the progress of the project and forming a basis

for data mining.

Materials design is a two stage process. The first stage, forward prediction, is ac-

complished using an artificial neural network, a Baconian, inductive technique. In a

second stage, the artificial neural network is inverted using a genetic algorithm. The

artificial neural network prediction, stoichiometry and prediction reliability form ob-

jectives for the genetic algorithm which results in a selection of materials designs.

The full potential of this approach is realised through the manufacture and charac-

terisation of the materials. The resulting data improves the prediction algorithms,

permitting iterative improvement to the designs and the discovery of completely

new materials.
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CHAPTER 1

Introduction

Electroceramic materials research is a complex field driven by technology and

device applications. The field covers a vast number of compounds which exhibit

wide ranging properties and find applications in many domains. Comprehension

of the composition-structure-property relationships is vital if scientists are to satisfy

the ever more stringent application requirements with suitable materials designs.

Currently, the continued demand for new electroceramic materials is addressed

largely by the serial processing and analysis of individual samples, new composi-

tions being selected in close proximity to existing compounds. Such an approach is

time-consuming and expensive owing to the large number of iterative steps required

to converge at a suitable material. The acceleration of this process, using automated

synthesis and analysis equipment, is known as combinatorial materials science and

can result in the rapid discovery of novel materials designs.

The Functional Oxide Discovery project (FOXD) [1] is a pioneering combina-

torial approach to materials discovery. The project utilises the London University

Search Instrument (LUSI) [2, 3], a large-scale combinatorial robot based around an

aspirating-dispensing ink-jet printer, and attempts to discover novel ceramic mate-

rials designs for use in dielectric and electrochemical devices [4]. This dissertation

commences with a detailed discussion of the project’s combinatorial philosophy and

the materials discovery cycle which is contained in Chapter 2. The project’s combi-

natorial approach is based on the ideas of “Baconian Induction” and employs high

throughput synthesis and screening techniques available via automated equipment.

In contrast to conventional “Popperian” scientific method, the Baconian technique

commences with the collection of data from which predictive models are developed.

Electroceramics are the class of materials considered here and cover a large range

of compositions, properties and applications [5]. Of particular interest are dielectric
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ceramics for use in telecommunications equipment and ion-conducting ceramics for

use as fuel cell cathodes. The current state of research in these fields, along with the

production and measurement techniques employed, are provided in Chapter 3. In

addition, traditional Popperian modelling of materials properties is discussed.

The project database [6] contains the data produced within FOXD and forms the

datasets to which data mining algorithms are applied. The database contains sample

production data from LUSI along with the analysis results and other relevant infor-

mation. The database also contains “literature datasets” comprising composition

and property information pertaining to electroceramic materials which have been

gleaned from the literature. A discussion of the design and implementation of the

database system is provided in Chapter 4 which also contains a description of the

public web-based interface to the database.

Data mining algorithms have been used previously in the field of electroceramics.

In particular, artificial neural networks have been used to design dielectric ceram-

ics [7] and to model fuel cell performance [8]. Artificial neural networks are highly

interconnected systems capable of developing complex non-linear models without

making any a priori assumptions about the underlying data relationships [9] and can

be used to model the relationship between the composition of a ceramic material

and the properties exhibited by the synthesised compound. An introduction to the

predictive models available, including the operation and training of artificial neural

networks and a discussion of the previous application of such networks to electroce-

ramic data, are the subject of Chapter 5.

A “forward predicting” artificial neural network, which is capable of providing

property predictions from composition [10], is a useful resource. “Inversion” of an

artificial neural network permits the generation of materials designs which are pre-

dicted to exhibit desirable properties [11]. The complexity of artificial neural net-

work algorithms does not permit analytical inversion and so numerical approaches

are called for. Genetic algorithms are stochastic optimisation techniques [12] which

employ concepts found in evolutionary biology. They function through application

of mathematical operators which perform breeding, selection and mutation on a

population of potential solutions. Through the iterative application of such oper-

ations, successive generations of the population evolve towards an optimal solution.

A general discussion of optimisation algorithms containing a detailed discussion on

genetic algorithms is contained in Chapter 6.
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The application of an artificial neural network to ceramic materials datasets is

described in Chapter 7, resulting in systems capable of predicting materials prop-

erties from elemental composition. The subsequent inversion of the artificial neu-

ral network is accomplished through a genetic algorithm and is discussed in Chap-

ter 9. The genetic algorithm results in materials designs predicted to exhibit desirable

functional properties.

Finally, the conclusions of the research performed in this thesis are contained in

Chapter 10, which discusses the completion of the materials discovery cycle, leading

to suggestions for future work.



18

CHAPTER 2

Combinatorial approaches to materials

science: the Functional Oxide Discovery

project

The Functional OXide Discovery (FOXD) project [1] is a pioneering combinatorial

approach to materials discovery which is funded by the Engineering and Physical

Sciences Research Council [13]. The project utilises the London University Search In-

strument (LUSI) [2, 3], a large-scale combinatorial robot based around an aspirating-

dispensing ink-jet printer, located at University College London. The materials stud-

ied include polycrystalline, inorganic, non-metallic ceramics and are investigated for

their dielectric/ionic properties.

Work on the dielectric properties of the materials commenced with the investi-

gation of the barium strontium titanate system, useful for its applications in tuning

and filtering in communications equipment [14]. The FOXD project aimed to de-

velop a material exhibiting maximum permittivity whilst minimising the dielectric

loss. Continued optimisation of these properties enables further improvement to

the already remarkable progress made in the development of mobile and satellite

communication equipment.

The investigation of ionic conduction properties began with the analysis of the

lanthanum strontium manganate/cobaltate system, used as a cathode in solid oxide

fuel cells [15]. The optimal fuel cell material has high ionic conductivity, chemical

stability and chemical and thermal compatibility with other components. The work

on fuel cell technology is intended to improve the efficiency of energy production

and reduce greenhouse gas emissions.

The project’s combinatorial approach is based on the idea of “Baconian Induc-
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tion” and employs high throughput synthesis and screening techniques available via

automated equipment. These techniques, in combination with powerful data analy-

sis algorithms, form a feedback loop to determine new material designs suitable for

further study.

Analysis of the large numbers of samples produced generates large quantities of

data. A database containing results of sample analysis, production data and other

relevant information is used as a central data repository. The research reported in

this dissertation is focussed on the application of “data mining” [16] algorithms to

the project database. Such algorithms attempt to model the composition-structure-

property relationships contained within the database. Further data mining is used to

provide novel material designs worthy of further study, thus opening new avenues

of research.

As the project database grows, it is becoming a useful resource for the wider

scientific community. The development of a web-based interface to the database

allows interested academic parties to have access to the data generated by the FOXD

project. In the future, users will be able to add their own data, thus increasing the

breadth of data and the scope of the data mining algorithms.

This chapter, which describes the overall purpose of the project, continues in Sec-

tion 2.1 with an introduction to the scientific approach. A description of the physical

materials discovery cycle is provided in Section 2.2 which is complimented with

a virtual materials discovery cycle effected through computational algorithms, de-

scribed in Section 2.3.

2.1 Materials discovery
Ultimately, the development of materials with enhanced properties can initiate or

revolutionise industries and help to improve our understanding of nature. In partic-

ular, comprehension of composition-structure-property relationships is essential for

the discovery of novel materials which are required to satisfy continuing industrial

demand. The field of materials science attempts to develop an understanding of the

fundamental nature of materials and connect their composition and atomic structure

to their functional properties.

In the past, the need for new materials was satisfied largely by the serial pro-

cessing and analysis of individual samples. In a traditional, serial process, a scien-

tist would synthesise and analyse one compound before progressing to another. By
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making slight adjustments to the composition, a “lead material”1 [17] is eventually

obtained. Such a process is time-consuming and expensive because of the number

of iterative steps required to converge at a suitable material.

Because, sometimes, the discovery of materials exhibiting enhanced properties

is unpredictable and error prone, “many materials and chemistry researchers have

turned to combinatorial and high throughput approaches” [18]. The cornerstone of

a combinatorial approach is to develop methods for rapidly synthesising very large

numbers of new compounds which are then quickly and automatically screened for

qualitative trends in desired properties. The high throughput of different material

designs enhances the probability of a serendipitous discovery [19].

Historically, the combinatorial approach was not well received within the chem-

ical community [20]; indeed, it has been referred to as an “unintelligent scatter-gun

methodology” [21]. Nevertheless, the large quantities of data that result from combi-

natorial synthesis and analysis can prove extremely useful. Data mining algorithms

can be applied to the data, permitting the development of predictive models which

can be exploited to obtain novel materials designs. Such designs form an essential

starting point for further research. Lead materials designs obtained from data min-

ing techniques will not necessarily exhibit “perfect” properties, ideally suited for the

desired purpose. However, optimisation using further repetitions of the synthesis-

analysis-data mining process can be used to converge to an ideal material design.

This “materials discovery cycle” can be repeated as many times as required. Once

suitable materials designs have been identified using the combinatorial approach,

conventional synthesis methods can commence for validation and/or further analy-

sis. The combinatorial method can therefore be viewed as a search technique for the

development of novel materials exhibiting desirable properties.

2.1.1 Combinatorial science

If we consider that the periodic table contains approximately 75 useful and stable

elements [22], the number of possible compounds which can be created is extremely

large. The elements form about 5600 binary, 4 × 105 ternary, 3 × 107 quaternary

and 1018 decanery compounds [22], without even considering stoichiometric and

structural variations. The synthesis, not to mention the analysis, of such numbers

of compounds would be prohibitively time consuming and expensive and a more

selective approach is required. Instead of randomly synthesising new compounds,

1Care must be taken not to confuse “lead” materials with the element having chemical symbol Pb.
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the search for new material designs begins with the synthesis of materials similar to

already well-known compounds. The results of the initial process are used to obtain

trends and patterns which are then used to select optimal compositional ranges for

further exploration, and the synthesis recommences. McFarland et al. stated that “It

is the integration of rapid chemical synthesis and high-throughput screening with

large-scale data analysis methods that constitutes the essence of combinatorial ma-

terials science.” [20] By utilising the power of these automated techniques, the time

required to converge upon new materials can be reduced.

2.1.2 Combinatorial projects

The combinatorial method is well recognised in the pharmaceutical industry [17],

where the techniques have been developed and used for the past 20 years. The ma-

turity of combinatorial science in bioinformatics is advantageous since the lessons

learnt can often be applied to other fields. Researchers have already identified

problems with the integration of disparate databases [23] and with long-term sup-

port [24, 25].

Scientists are now applying the combinatorial techniques developed in bioin-

formatics to materials science. The work of Xiang et al. in 1995 [26] revived the

field of combinatorial materials science which was begun with Kennedy et al. in

1965 [27] and by Hanak in 1970 [28]. Over the past decade, combinatorial technology

has been increasingly applied to the discovery of novel materials, including high-

temperature superconductors [29, 30] and catalysts [31, 32]. However, combinatorial

methods in materials discovery require new approaches to experiment design [33].

Woo et al. [34] reviewed the status of combinatorial catalyst discovery in 2004 dis-

cussing, inter alia, fuel cell electrode catalysts and thin-film dielectrics. In particular,

Woo et al. emphasised that characterisation methodology has not kept up with the

increasing pace of materials synthesis. However, Zhao’s 2006 review of combinato-

rial approaches [35], indicates that significant progress is now being made.

Combinatorial materials discovery projects depart from the traditional, deduc-

tive, scientific method and employ inductive techniques to develop predictive mod-

els. The conceptual bases of the two approaches appear to be in direct conflict and

raise profound issues in the philosophy of science.
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2.1.3 The philosophy of science

Sir Karl Popper (1902-1994) conceptualised the traditional scientific method known

as “Popperian falsifiability” [36]. Evans et al. provide a succinct statement of the

framework, according to which: “Science does not start with observations from

which inductive claims are made but rather with conjectures which may subse-

quently be refuted by appeal to experiment but which are never fully proven” [4].

Combinatorial science contradicts this statement, using observational data to de-

velop theories by induction. Sir Francis Bacon (1561-1626) proposed that scientific

theories can be generated from observations and that traditional deductive methods,

based on oversimplified models, prevent complete understanding [37, 38].

Bacon believed that observation of a wide range of natural phenomena leads

to true understanding and Allen states that “there has recently been a strong resur-

gence of the view that there is a direct route from observation to understanding” [39].

The idea that knowledge can flow directly from data has exhibited considerable

success, notably in the pharmaceutical industry [20] and systems biology [40]. In

particular, scientific models can be inferred directly from the analysis of observed

results. This technique has become known as “Baconian Induction” [4, 41]; in par-

ticular, Bacon emphasised the generation of tables in which to store data. As noted

by Evans et al. [4], such tables “bear a remarkable resemblance to the use of large

relational databases in use today”. Computational databases provide an essential

component of modern combinatorial science projects, permitting storage and organ-

isation of the vast quantities of data produced. Databases provide many advantages

over the traditional logbook such as cross-referencing, searching and backup [42].

Furthermore, on-line web-based interfaces incorporating user registration and log

in systems can be used to facilitate collaboration among geographically distributed

partners.

Using the conventional serial approach, a chemist might synthesise 50 [4] -

100 [17] compounds per year. Characterisation and analysis, may take longer, how-

ever. By developing combinatorial techniques for the processing and analysis of

samples, scientists can study approximately 10000 different compounds per day de-

pending on the chemistry of the materials under analysis and the automation pos-

sible [43]. Thus, the technique progresses from the traditional serial synthesis of

individual compounds to the parallel synthesis of compositional systems. With the

addition of high-throughput parallel screening techniques, large datasets can be ob-
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tained, thus permitting the application of Bacon’s inductive processes and resulting

in the generation of predictive models.

However, the conversion from serial to parallel combinatorial synthesis and anal-

ysis techniques is non trivial [44]. In general, the transition to parallel synthesis is

accompanied by a reduction in sample size, to ensure that the combinatorial equip-

ment does not become impractically large. However, sample size reduction can have

a profound effect on both the properties of the sample and the measurement pro-

cess required [5]. Ideally, the effects of sample minimisation are not so great that

the relative property values are lost. The FOXD project, and indeed most com-

binatorial projects use high-throughput sample analysis as a screening process to

determine potential material designs. Conventional, larger scale manufacture can

subsequently be used to obtain accurate bulk properties. In contrast to the life

sciences, where screening techniques are often similar and can be widely applied

to many compounds, characterisation tools in combinatorial materials science can

present a significant challenge due to the wide diversity of screening techniques re-

quired [32, 33, 44].

In an ideal combinatorial system, minimal user input should be required once the

synthesis and screening processes have been configured. By releasing researchers

from the tedium of repetitive procedures they are able to concentrate on the more

interesting aspects of the research [18]. Researchers are freed to perform analysis of

the results returned from the system and, ultimately, to determine other materials

which may be profitable to examine. Thus one can use combinatorial techniques

to increase the speed of the search through the largely unexplored compositional

parameter space to discover materials with novel properties.

2.1.4 Combinatorial searches

The combinatorial process results in large datasets containing the synthesis, process-

ing and analysis data of the samples produced. All information, even the seemingly

irrelevant results of unremarkable materials, may be useful in the future. It is there-

fore important that all data generated during a combinatorial search is recorded in

databases [6] to allow for data mining techniques to be applied, maximally facilitat-

ing the discovery of trends and patterns.

To locate the most interesting materials, it is useful to extend the search over as

wide an area as possible. To achieve this, initial searches consist of a large range

of materials of differing composition. This “low density” scan is used to determine
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areas worthy of further more detailed examination with subsequent searches [21].

During the subsequent searches, the parameters determining the materials for ex-

amination are adjusted based upon the previous results, permitting a search through

“parameter space” to iteratively approach a lead material. The operation of the ma-

terials discovery cycle is explained in the next section.

The development of computational models may permit researchers to perform

virtual combinatorial searches. Models which are able to predict, a priori, materials

properties from compositional information can supplement physical synthesis and

analysis. Such computational screening can be extremely useful and accurate [32].

2.2 Materials discovery cycle
A materials discovery cycle is a process that aims to develop novel materials designs

using combinatorial techniques. Large numbers of samples are manufactured using

parallel synthesis and their performance characteristics are determined using high-

throughput screening techniques. Advanced data mining algorithms are applied

to the collected data and used to guide future searches. Eventually, lead materials

designs are obtained, from which, traditional synthesis and analysis can occur. A

typical combinatorial materials discovery cycle is illustrated in Figure 2.1 [44].

The FOXD project is geographically and administratively distributed. Initially,

the project was distributed among four groups at four different institutions, how-

ever movement between locations has resulted in the current situation whereby the

four groups are located at two colleges. The initial institutions were: Queen Mary,

University of London (QM); Imperial College London (IC); University College Lon-

don (UCL) and London South Bank University (LSBU). Currently, two of the groups

are located at UCL and two at IC. My own work on the project is reported in this

thesis; project partners, along with their responsibilities are listed below.

• Peter Coveney (UCL) - PI for UCL group

• Matt Harvey (UCL) - LUSI control software and instrument interface

• Steven Manos (UCL) - Database web interface and data visualisation

• Julian Evans (QM - Now at UCL) - PI for QM group

• Shoufeng Yang (QM) - Co-investigator on project

• Lifeng Chen (QM - Now at UCL) - LUSI control software and sample printing
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Measurement of
performance

Planning of
combinatorial
experiments

Data mining Data processing

Parallel Synthesis

Database system

Lead materials

Figure 2.1: A typical combinatorial materials discovery process cycle centred around
a database [44]. The cycle usually commences with the parallel synthesis of large
numbers of samples which are then analysed and processed to determine their per-
formance characteristics. Lead materials can be selected at this point. Data mining
algorithms are applied to the database and are used to determine the direction of
further searches.

• Yong Zhang (QM - Now at UCL) - Ink production and sample preparation

• John Kilner (IC) - PI for IC group

• Sarah Fearn (IC) - Ion diffusion measurements

• Jeremy Rossiny (IC) - Ion diffusion measurement and modelling

• Neil Alford (LSBU - Now at IC) - PI for LSBU group

• Rob Pullar (LSBU - Now at IC) - Dielectric measurement methods

The following sections contain a description of the operation of the project and

the functions performed by each group.

2.2.1 London University Search Instrument

Materials synthesis is carried out by LUSI. LUSI is assembled from commodity com-

ponents and is intended to be flexibly reconfigurable, permitting the addition or
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exchange of individual devices as research demands dictate. Current research [45]

involves studies of dielectric and ionic characteristics of perovskite systems. Such

electroceramic samples are generally classified into thin and thick films. Thin films

are typically 10nm thick; thick films are generally in the 10-15µm range [14]. LUSI

employs a thick film technique, producing thick film samples by printing ceramic

inks using an ink-jet printer [46–48]. As stated previously (Section 2.1.3) the reduc-

tion in sample size which accompanies the combinatorial approach can cause prob-

lems with manufacture and analysis. For example, ink-jet printing can result in sam-

ples with large numbers of defects [49]. Overcoming such problems is non-trivial

and is a large part of the combinatorial process.

The LUSI equipment is comprised of the following systems:

1. 8-nozzle aspirating-dispensing ink-jet printer workstation (ProSys 6000, Carte-

sian Ltd, UK). Each nozzle is independently controlled by 192,000-step sy-

ringes. The printer has a 20nL dispensing capability.

2. A3 (295mm × 420mm) X-Y table sample building site with capacity for 100

sample slides and 3 × 96-well plates used for ink mixing.

3. Furnace with four independent programatically controlled (Eurotherm Model

2408 with Modbus interface) temperature zones.

4. Precision X-Y measurement table with programatically controlled 700K hot-

plate (Omron Electronics Ltd, UK).

5. Z-axis probe armature (LabMan Ltd, UK) co-located with X-Y table. Z dis-

placement is controlled by direct application of force by the picker.

6. Impedance phase analyser (Agilent/Hewlett-Packard Model 4194A).

These devices are installed within a gantry frame from which is suspended a

robotic picker (LabMan Ltd, UK) used to transfer library slides between devices.

With the exception of the gantry and picker, which were designed to the specific re-

quirements of the instrument, all devices are commodity items. The instrument is

intended to be flexibly reconfigurable, permitting the addition or exchange of indi-

vidual devices as demands dictate. Sample production commences with the manu-

facture of ceramic inks which are then printed onto the library slides.
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2.2.2 Synthesis

Initially, ceramic powders purchased from material suppliers are made into inks.

Ink manufacture is a complex process involving optimal selection of many different

parameters [50] and the methods used can vary, depending on the starting material.

The name of the material as indicated on the packaging (e.g. barium titanate) gives

only an approximate indication of the content. Other compositional information

such as purity and moisture content is important, as is physical information such as

particle size and degree of aggregation.

The purchased powder is milled using zirconia beads to reduce the particle size

and additives are used to ensure good dispersion and stability. After milling, a dis-

persant is used to help prevent sedimentation and a thixotropic additive ensures

uniform composition of the samples and helps prevent segregation [51].

Segregation is a major problem causing changes in the particle-size distribution,

and corresponding changes in the ink concentration making it difficult to accurately

control the sample composition. Hence, manufacture of a highly stable ceramic ink,

suitable for long time-scale printing processes is a critical but challenging task.

2.2.3 Processing

LUSI’s print system mixes the inks according to the compositions requested by the

user and prints the ink mixture onto slides. The slides, made of alumina (99%), are

50×25×2mm in dimension and contain 13×6 arrays of samples. The samples them-

selves are 2mm in diameter and are located on a 5mm grid. The printing process is

complex, involving ink replenishment and print head washing to ensure that no con-

tamination occurs. A LUSI slide is shown in Figure 2.2 and a representative diagram

is shown in Figure 2.3. The printer component of LUSI is shown in Figure 2.4.

During the initial period of the project, the inks required replacement every half-

hour to ensure that the powder remained fully dispersed throughout the ink. The use

of an ultrasonic agitator and magnetic micro-stirrers have been used in an attempt

to extend the ink lifetime. In addition, different dispersants such as distilled water,

isopropyl alcohol and mixtures of the two have been used to develop more stable

inks [51].

Once printing is complete, the slides are transferred into a furnace (Figure 2.5)

with four independent temperature controlled zones. The maximum operating

temperature of the furnace is 1600◦C and a preset temperature profile can be pro-
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Figure 2.2: A picture of an alumina slide, depicting the slide identification pattern.
Slides are 50×25×2mm in dimension.

grammed. The furnace generally runs overnight allowing sintered (Section 3.3) sam-

ples to be removed in the morning, ready for analysis.

2.2.4 Screening

LUSI contains an X-Y stage for analysis (Figure 2.6). However, no analysis is cur-

rently performed by LUSI; the slides are removed and transported elsewhere for

analysis. Currently, analysis is performed by two separate research groups at Impe-

rial College London, one for each of the two domains of interest of the FOXD project

research.

The rate-determining step in the combinatorial search process is the screening

of the materials and it is therefore highly desirable to automate these processes as

far as possible. Owing to the widely varying performance requirements (and hence

screening techniques), one has to develop specialised and individual methods for

all of the potential materials classes [44]. High-throughput measurement of dielec-

tric and transport properties of ceramic materials requires complex equipment. Un-

fortunately difficulties with the characterisation and analysis of LUSI samples have

limited the amount of data produced by the FOXD project. Techniques which are

accurate and well-known for serial analysis of samples do not always adapt well to

a high throughput technique. However, progress is being made [52]. Further dis-
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Figure 2.3: A representative diagram of a LUSI slide, depicting the slide identifica-
tion pattern and sample locations. Measurements in mm.

cussion of the measurement techniques employed is contained in Sections 3.4.2 and

3.5.4.

2.2.5 Data archiving

All information pertaining to each sample is recorded in a relational database. Data

such as composition, raw and processed analysis data, powder and ink information

are all recorded. In addition to the analysis data, the sample “meta-data” is also

recorded. Meta-data is the equally important “data about the data” and includes

information such as: production date/time, laboratory conditions, equipment oper-

ators and slide location history. This information, perhaps not obviously required

initially, is in fact essential when seeking to correlate results. For example, if a partic-

ular batch of samples provides unusual results, it may be attributable to differences

in the laboratory conditions. It is therefore vital that as much information as possible

about the production, analysis and storage of the slides and samples is recorded.

Owing to the geographically distributed nature of the project, it is also important

that the physical location of each slide is tracked. As and when required, a user may

query the database to determine the location of the slide and request that it is sent to

him/her. Obviously, such a system requires that the users are diligent in maintaining

the database and recording the movement of slides between locations to ensure that

the slide location data remains accurate.
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Figure 2.4: The LUSI aspirating-dispensing ink-jet printer, capable of automatically
mixing and printing ink samples. The ink wells containing ink supplies are located
at the bottom left. Spare wells for mixing are also available. The slides are located in
the centre of the picture and are printed using the eight channel print head (centre
right). The LUSI gantry gripper is shown at the top-right of the picture.

2.2.6 Interpretation

As with any combinatorial project, the potential amount of data that may be gener-

ated is enormous and the techniques used to extract information from the data are

very important. Data mining techniques can be used to extract interesting trends

and predictions.

Although it may be complex, we expect there to exist a functional mapping be-

tween composition and measurement results. The aim of data mining is to create

a predictive, albeit Baconian, model of the composition-structure-property relation-

ship, hence allowing a priori prediction of a given material’s properties. Further-

more, data mining can be extended to the development of materials designs which

are predicted to exhibit desirable properties. The research discussed in this disser-

tation concentrates primarily on the development of data mining algorithms for the

prediction of novel electroceramic materials.
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Figure 2.5: The LUSI furnace, consisting of four temperature-independent bays and
computer controlled temperature profile. The ink-jet printer and X-Y measurement
stage are to the right hand side of the furnace.

2.2.7 Steering

The materials discovery cycle is completed by manufacturing the predicted materi-

als. Subsequent analysis and screening generates further materials data for addition

to the database. As the database grows, both through results of experiments per-

formed on LUSI and additional data extracted from the literature, the precision and

compositional range covered by the data mining algorithms is set to increase. The

addition of data similar to that contained within the database permits more accurate

predictions to be made. Additionally, the increasing compositional range of mate-

rials data recorded in the database permits more general models to be developed.

As the cycle progresses, the compositional feedback information can be used to steer

towards the critical areas of materials parameter space. Each repetition of the cycle

results in iterative improvements to the properties, eventually converging on one or
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Figure 2.6: LUSI features an X-Y measurement table permitting high throughput
analysis. The table measures 500×600 mm and is precise to 1µm, subject to tempera-
ture fluctuation. A hot plate is mounted on the table and is independently controlled
up to 250◦C.

more desired materials. As the speed of automated sample synthesis and processing

increases, the database grows more rapidly, permitting faster convergence to desired

materials.

2.3 Virtual materials discovery cycle
In addition to the use of the combinatorial materials discovery cycle described above,

predictive modelling techniques can be used to accelerate the discovery of new ma-

terials. The investigation of the fundamental mechanisms underpins both our un-

derstanding of macroscopic behaviour and our ability to predict parameters in solid

materials. For centuries, scientists have attempted to model natural and technical

systems to develop general understanding and make predictions. In the conven-

tional, Popperian method, theories are typically based on fundamental principles

such as Newtonian mechanics, Maxwell’s equations, thermodynamics or quantum
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mechanics. For example, models developed in the semiconductor industry allow

simulation of complete integrated circuits. Only once virtual testing has been com-

pleted does real production commence. In electroceramics, however, the situation

is much less mature due to the materials’ complexity compared, for example, with

high purity, single crystal silicon used in integrated circuits. Consequently, empirical

methods prevail in the design of new electroceramic components [53].

A first principles model of, for example, the crystal structure of a material re-

quires that we solve the equations of motion for the fundamental forces between

the particles. However, there is a mathematical problem which arises when one at-

tempts to solve a system of N-bodies. The “N-body problem” is the problem of

calculating the motion of N bodies, given their initial positions, masses, and ve-

locities. Many eminent mathematicians and scientists have worked extensively on

the problem, most notably, Lagrange (1736-1813) [54] and Poincaré (1854-1912) [55].

The N-body problem is impossible to solve analytically for three or more bodies

although approximate solutions using numerical methods have been successfully

developed [56]. Once a system extends beyond two different bodies, our under-

standing, along with our ability to predict the properties of systems is necessarily

restricted [20].

2.3.1 Popperian modelling

Popperian models of systems are developed from first principles. This generally

involves the simulation of individual particles using classical or quantum mechanics.

Atomistic simulation methods determine the lowest energy configuration of the

crystal structure by employing efficient energy minimisation procedures. The calcu-

lations rest upon the specification of an interatomic potential model, which expresses

the total energy of the system as a function of the atomic co-ordinates. For ceramic

oxides, the Born model framework is commonly employed [57], which partitions

the total energy into long-range Coulombic interactions, and a short-range term to

model the repulsions and van der Waals forces between atoms.

Prume et al. [58] performed atomistic simulation of multilayer capacitors using

a finite element model to predict electrical, mechanical and thermal behaviour in

an attempt to improve capacitor reliability. Additionally, Lavrentiev et al. [59] em-

ployed atomistic simulation techniques to model surface diffusion in ceramic ma-

terials. Atomistic simulation of grain growth in perovskite ceramics has also been

performed [60].
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Molecular dynamics (MD) is a simulation method which consists of an explicit

dynamical simulation of the ensemble of particles for which Newton’s equations of

motion are solved numerically. Interatomic potentials are used to treat the forces,

while the integration of the equations of motion yields a detailed picture of the evo-

lution of ion positions and velocities as a function of time. This technique allows the

inclusion of the kinetic energy for an ensemble of ions (to which periodic boundary

conditions are often applied) representing the system simulated. The analysis of ion

positions and velocities from the MD simulations generates a wealth of dynamical

detail. The physical properties of dielectric materials [61] as well as ion diffusion in

lithium-ion batteries [62] have been studied using MD.

Quantum mechanical (ab initio) methods attempt, at a fine level of approxima-

tion, to solve the Schrödinger equation for the system and are thus able to provide

detailed information on the electronic structure of solids. For example, ab initio sim-

ulations to determine the influence of Si doping on the dielectric constant of HfSiO

have been shown to be in good agreement with experimental findings [63].

The Clausius-Mosotti relationship [64, 65] relates the dielectric constant of a com-

pound with the polarisability of the atoms comprising it. It is based on a reductionist

Popperian model of the material structure and has been shown to provide accurate

prediction of dielectric constants and polarisabilities [66, 67].

Popperian models have achieved a remarkable level of success in the prediction

of materials properties and are discussed thoroughly in Sections 3.4.5 and 3.5.6. Nev-

ertheless, such models frequently deal with simplified situations such as the analysis

of a narrow compositional range, or the performance of a single material under cer-

tain varying conditions. Their domain of success is therefore tightly circumscribed:

in practice, it is often very hard to predict ab initio the properties of new materials

using such deductive methods. Additionally, atomistic, molecular dynamics and ab

initio simulations require large systems to obtain accurate estimations of bulk proper-

ties such as permittivity or diffusion, and require large amounts of computing power

to obtain predictions for even a single material.

Baconian methods do not necessarily restrict the application domain of predic-

tion algorithms and can allow development of more general models. The detailed

analysis of data contained within the literature or generated by a combinatorial

project can be used to develop more general algorithms capable of predicting ma-

terials properties with a wide range of applicability [10].
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2.3.2 Baconian modelling

Baconian induction attempts to develop predictive models through the statistical

analysis of data. In contrast with Popperian approaches discussed in the previous

section, neither incredibly detailed first principles simulation or overly simplified

reductionist techniques are applied. Instead, existing experimental data is analysed

using statistical methods in an attempt to develop data relationships.

Breiman [68] divides statistical modelling into two “cultures” which are differ-

entiated by the functional form of the model. Models with simpler, fixed functional

forms are dubbed “data models” while flexible, more complex, models which make

no assumptions of the underlying mathematical relationships are dubbed “algorith-

mic models”. Many algorithmic models are generalisations of data models and so

the distinction between the two can become somewhat blurred depending on the

exact nature of the model employed.

The relationships between composition and functional properties are extremely

complex and the development of models capable of encapsulating such relationships

requires advanced algorithms. Chapter 5 is dedicated to this topic and describes

Baconian methods for the prediction of materials properties.

There have been several examples of Baconian models in materials science. Re-

cently Ciou et al. [69] performed a comparison between “theoretical” (Popperian)

and artificial neural network (Baconian) models for the electrophoretic deposition

(EPD) of ceramic powders. Although the prediction accuracies were good (standard

deviation of 0.00030 (ANN) and 0.00035 (theoretical)) for both models at low applied

voltage, the accuracy of the theoretical model became much worse than the accuracy

of the ANN as the voltage increased. Also, Guo et al. [7] performed predictions of di-

electric properties of ceramics using an artificial neural network, although the range

of materials covered is more restricted than in this thesis. Additionally, Arriagada

et al. [70] used ANNs for the prediction of the performance of fuel cells. Further in-

formation on the application of Baconian modelling in materials science is provided

later, in Section 5.10. Chapter 7 is dedicated entirely to the application of a Baco-

nian model, the artificial neural network, to ceramic materials for the prediction of

electronic properties.
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2.4 Summary
The FOXD project’s combinatorial approach to materials discovery builds on con-

cepts first developed in the pharmaceutical industry. LUSI’s high-throughput syn-

thesis initiates the materials discovery cycle which is progressed through sample

characterisation to obtain functional property data.

Although Popperian models have exhibited considerable success for the accu-

rate prediction of materials properties, their domain of applicability is often tightly

circumscribed. Baconian models, however, can be applied to experimental datasets

and can provide property predictions for a wide compositional range. In a further

data mining stage, such predictive models can be inverted to develop novel mate-

rials designs for manufacture and synthesis using the combinatorial technique. The

additional data generated via this method can increase the accuracy and scope of the

predictive models allowing iterative approach of optimised materials designs. The

materials of interest and their properties are described in the next chapter.



37

CHAPTER 3

Ceramic materials: Structure, processing,

properties and applications

3.1 Introduction
The ceramics examined within the FOXD project include polycrystalline, inorganic,

non-metallic materials and are investigated for their dielectric/ionic properties. This

chapter discusses the materials examined in general terms. A general introduction

to ceramic compounds is provided in Section 3.1 which then moves on to describe

their crystal structures in Section 3.2 and their processing in Section 3.3. The ionic

transport properties, measurement techniques and applications are discussed in Sec-

tion 3.4 and an equivalent section concerning the dielectric properties is found in

Section 3.5.

Barsoum described ceramics as “solid compounds that are formed by the appli-

cation of heat, and sometimes heat and pressure, comprising at least two elements

provided one of them is non-metal or a nonmetallic elemental solid. The other el-

ement(s) may be a metal(s) or another nonmetallic elemental solid(s)” [71]. As an

illustration, magnesia, MgO, is a ceramic, since it is a solid compound of a metal

and a nonmetal. Oxides, nitrides, borides, carbides, silicides and silicates of all met-

als and nonmetallic elemental solids are ceramics, which leads to a vast number of

compounds, all exhibiting wide-ranging properties [72].

Ceramics are crystalline solids in which the atoms combine with each other in a

regular pattern to form a periodic collection of atoms. The location of each atom is

well known due to the periodicity and long-range order found in the crystal struc-

ture. The structure consists of a repeating three-dimensional pattern, known as the

“unit cell” [71]. A typical ceramic material consists of many crystals and is said to
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be a polycrystalline solid. The constituent crystals or grains are separated from one

another by a disordered area known as a grain boundary.

The properties of any solid are determined primarily by the nature of the inter-

atomic bonds holding the atoms together [71] and it is important to understand how

the atoms are arranged and the nature of the bonding. The materials investigated in

the FOXD project are oxides, within which ionic effects are (pre)dominant.

3.2 Crystal structure
Many features of ceramic materials, including thermal, electrical, dielectric, optical

and magnetic properties are dependent on the crystal structure. Irregularities in the

structure, known as defects, can also have a large effect on the properties of these

materials.

Elemental materials, and simple binary materials generally form simple crystal

structures such as those shown in Figure 3.1. For example, a crystal of copper metal

possesses the cubic structure shown in Figure 3.1b, having Cu atoms at the corners

and one Cu atom at the centre of each face of the cube. This unit cell is said to be

face-centred cubic (FCC). The structure of a crystal of iron (Figure 3.1c) is also cubic

and has an iron atom at each corner, with one atom in the centre of the cube. Such

a structure is said to be body-centred cubic (BCC). Atoms are usually located on the

lattice points of the crystal. In some of the more complex crystal structures, atoms

can occupy points between the usual locations, known as interstitial sites.

The crystal structure exhibited by a particular material is dependent on the fol-

lowing factors:

1. Stoichiometry - The crystal must be electrically neutral; i.e. the sum of the pos-

itive charges must be equal to the sum of the negative charges, as illustrated

by the chemical formula. In sodium chloride, for example, one sodium ion is

balanced by the charge on one chloride ion. In other, more complicated bi-

nary salts, such as alumina, two Al3+ cations are balanced by three O2− anions

leading to the formula Al2O3. This constrains the crystal structure: alumina

cannot crystallise in the common “rock salt” structure due to the ratio of atoms

required to form the electrically neutral crystal.

2. Electric charge - The repulsion between similar charges and the attraction be-

tween opposing charges leads to a structure whereby a positively charged ion
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(a) (b)

(c) (d)

Figure 3.1: Examples of the face centred cubic and body centred cubic crystal struc-
tures. The length of the unit cell, called the lattice parameter is denoted by a. (a)
Simple cubic structure exhibited by polonium [73]. Atoms are located at each corner
of the cube. (b) Face centred cubic structure exhibited by copper metal [71]. Copper
atoms are located at each corner and on each face of the cube. (c) Body centred cu-
bic structure exhibited by iron metal [71]. Iron atoms are located at each corner of
the cube with one atom located in the centre. (d) Hexagonal close packed structure
exhibited by zinc metal [71].
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is surrounded by negatively charged ions and the negatively charged ions are

surrounded by positively charged ions.

3. Atomic size - As stated earlier, the atoms arrange to minimise the energy. Due

to the electric charges, the atoms tend to arrange with alternating charge, each

cation being surrounded by as many anions as possible (and vice versa). The

limiting condition of this arrangement is that none of the surrounding ions

“touch” each other. An optimum atomic size exists which allows for the maxi-

mum number of anions to surround each cation, but does not allow the anions

to become too close together. Conversely, the optimum atomic size permits

cations to surround each anion, also without becoming too close together.

3.2.1 Perovskites

Compounds comprising four or five different elements have more complicated crys-

tal structures due to the differing sizes and charges of the ions. “Perovskites”, which

obtain their name from the mineral perovskite, of chemical formula CaTiO3, have

an intricate crystal structure based on the face-centred cubic assembly. A Ti4+ ion

is located at the centre of the unit cell, with O2− ions located in the centre of each

face. The large Ca2+ ions are located at the corners of the unit cell. Alternatively, the

structure can be visualised by centering on the Ca2+ ion, as shown in Figure 3.2.

Eight Ti4+ ions are located at the corners of the cell, each corner being part of

eight unit cubes making a contribution of a single Ti4+ ion per unit cell. Twelve O2−

ions are located at the midpoint of each edge, with each edge being part of four cells,

resulting in a total of three O2− ions per unit cell. The generalised chemical formula

of perovskite compounds is therefore ABO3. The perovskite crystal structure is very

versatile and is able to accommodate many cationic combinations provided that the

resulting formula is electrically neutral and the relative sizes of the ions are com-

patible. Additionally, the structure is able to tolerate a degree of non-stoichiometry,

further increasing the number of different compounds available. Examples include

NaWO3 and CaSnO3, which both crystallise in the perovskite structure.

Compounds exhibiting the perovskite structure are of considerable interest in

materials research [74]. The versatility of the structure permits doping of both the A-

and B-sites with similar metallic elements, often resulting in a dramatic alteration of

the functional properties [14].
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Figure 3.2: Basic perovskite structure of CaTiO3 with the Ca2+ ion in the centre of the
cell, Ti4+ ions on the corner lattice sites and O2− ions on the centre of each edge [14].
The vertices of the 8 octahedra indicate the locations of O2− ions in both displayed
and neighbouring unit cells.

3.2.1.1 Crystal structure transitions

As a crystal (or grain) of material is heated or cooled, it can undergo a number of

transformations. One of the most common types of transformation is the melting of a

solid into a liquid. In ceramics, two types of solid-solid transitions can occur. A recon-

structive transformation involves the breaking and rearrangement of bonds whereas a

displasive transformation involves the rearrangement of atomic planes and no bonds

are broken. For example, barium titanate, a well known perovskite-structured com-

pound, undergoes three phase transitions as the temperature increases from−100◦C

to 150◦C [14]:

Rhombohedral −90◦C−→ orthorhombic 0◦C−→ tetragonal 130◦C−→ cubic

Above 130◦, the unit cell is cubic and the Ti4+ ions are centred in the unit cell. Be-

tween 0◦C and 130◦C, barium titanate has a slightly distorted perovskite structure

and the Ti4+ ions undergo a displasive transformation from their interstitial sites.

This displacement is believed to be responsible for the dielectric properties of bar-

ium titanate which are discussed in Section 3.5.
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3.2.2 Defects

The Gibbs energy is the greatest amount of work which can be obtained from a sys-

tem [14]. For a crystalline material, the Gibbs energy is minimised in a perfect crys-

tal, each lattice point being occupied by the anticipated atom and exhibiting perfect

translational symmetry. A real crystal, however, contains thermodynamic variations

and impurities that give rise to “defects” which are imperfections in the crystal struc-

ture.

This section discusses the defects found in real crystals and their effects on bulk

materials properties. Crystals can contain three different categories of defect: point,

line and planar which we consider in turn. The defects present in materials often

have a profound effect on the material’s properties. For example, point defects can

alter the conduction properties of the material by aiding or inhibiting the movement

of atoms through it. The presence of grains or “crystallites” in ceramic materials can

allow magnetic domains to form, considerably altering the electronic and magnetic

properties.

3.2.2.1 Point defects

Point defects are defined as lattice points which are not occupied by the expected

ion or atom required to preserve the long-range periodicity of the structure. A point

defect occurs where atoms are missing from the lattice (producing vacancies) or oc-

cupy sites between the regular atomic sites (within interstices). The introduction of

other atoms (“impurities”) may also produce point defects. In pure metallic and ele-

mental crystals, point defects are straightforward to describe because only one kind

of atom is involved and charge neutrality is not an issue. Ceramic compounds are

more complicated due to the constraints on charge neutrality. To preserve the overall

balance of positive and negative charges, point defects occur in groups:

1. Stoichiometric defects. A stoichiometric defect occurs when the ratio of cations

to anions is unchanged. A “Schottky defect” arises when a pair of ions are

missing from the crystal, forming vacancies. A “Frenkel” defect develops when

an ion is moved from its expected location to another site.

2. Non-stoichiometric defects. A non-stoichiometric defect, which is a change in the

ratio of anions to cations, can occur despite the requirement for charge neutral-

ity. Some elements can form differently charged ions. For example, iron, which

often forms Fe2+ ions due to the loss of the electrons in the 4s orbital can also
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form Fe3+ ions due to the additional loss of one electron from a 3d orbital.

Similarly, manganese can form Mn3+ ions in addition to the usual Mn2+ ions,

as well as several other oxidation states. The formation of stable, differently

charged, ions allows an alteration in the ratio of anions to cations. This alter-

ation in the ratio of elements may result in the formation of electrically neutral,

empty lattice sites that do not have to occur in pairs.

3. Extrinsic defects. Extrinsic defects are created as a result of impurities in the

crystal structure. Similarly sized, similarly charged but chemically distinct ions

are able to replace existing ions in the lattice. An example of this is the barium

strontium titanate system. Starting from a pure strontium titanate crystal, the

Ba2+ ions are able to replace the Sr2+ ions due to the same charge and the

similar size of the two ions.

3.2.2.2 Line defects

Two types of line defect or dislocation exist, edge and screw. An edge dislocation

occurs when a row of atoms terminates in the middle of the crystal lattice instead of

passing all the way to the end of the crystal. The planes above the neighbouring short

plane are displaced with respect to those below the terminated plane. The crystal

structure around the dislocation is strained because the atomic bonds on either side

of the dislocation must accommodate the missing plane of atoms.

A screw dislocation is essentially a shearing of one portion of the crystal with

respect to another. Screw dislocations aid crystal growth by providing an “edge”

for atoms to attach to. The addition of one atom to the edge is more energetically

favourable than the addition of a single atom in a new plane.

3.2.2.3 Plane defects

Grain boundaries, the interfaces between two crystal grains, are the most common

form of plane defects. Two grains comprised of the same material form a homo-

phase boundary while two grains are of different chemical composition form a

hetero-phase boundary. Ceramic materials are often more complicated still because

a third phase, only a few nanometres thick, can be present between the grains. These

phases form during processing, can be either crystalline or amorphous, and have

important ramifications so far as the functional properties of the bulk material are

concerned.



3.2. Crystal structure 44

3.2.3 X-ray diffraction

X-Ray diffraction (XRD) is a technique used to determine crystallographic informa-

tion of materials. It provides information about atomic/molecular arrangements in

crystalline solids and can be used to ensure that the anticipated crystal structure has

been formed during processing.

During XRD, X-rays impinge on a crystal lattice and are diffracted. A detector is

positioned at a range of angles around the sample and used to record the diffracted

radiation. The information is often displayed on a graph which shows the diffraction

angle versus the intensity of the scattered radiation. The diffraction pattern contains

peaks where the intensity is strong and provides an understanding of the atomic

and/or molecular structure of a substance.

The PANalytical X’Celerator rapid multi-sampling XRD detector can provide a

high quality scan of a sample in 5-10 minutes instead of hours typical of standard

diffractometers. On a combinatorial project such as FOXD, where large numbers of

samples are produced, high-throughput sample characterisation and analysis pro-

vided by such equipment is extremely useful. XRD of a FOXD slide which contains,

on average, 40 samples, can be performed in about 7 hours.

3.2.4 Electroceramics

Thus far, the discussion we have presented can be applied to all types of ceramics. In

this thesis, we are principally concerned with electroceramics which are the subset

of ceramic materials exhibiting interesting electrical, optical and magnetic proper-

ties [14]. In particular, we are working with electrical ceramics including both di-

electric and conductive ceramics. Dielectric ceramics cover linear and non-linear or

“ferroelectric” dielectrics, each comprising many different materials. Dielectric and

ferroelectric ceramics are used in mobile and wireless telecommunications equip-

ment. All such communication devices, from phone handsets to base stations to

satellites, contain dielectric resonators (DRs) which are used to both generate and

filter the transmitted signals and contain ceramic material components.

Conductive ceramics, meanwhile, can be divided into superconductors, conduc-

tors and semiconductors, and also include ionic and electronically conducting ce-

ramics. Materials exhibiting superior ionic and electronic transport in oxides are

useful for incorporation into efficient, clean electrochemical devices. Such devices in-

clude solid oxide fuel cells (SOFCs) and oxygen separators, improvements in which
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can have an enormous impact on pollution and greenhouse gas emissions [75].

We now continue the discussion of ceramic materials by considering their pro-

cessing, followed by a description of the properties and applications of conductive

and dielectric ceramics.

3.3 Processing
The properties of ceramic materials are essentially connected to the composition of

the compound [76]; however, the micro-structural features found in ceramics can

also have a major influence on the bulk properties. Processes used in the fabrication

of ceramics can therefore have a profound effect on the structure of the material

produced and hence the properties exhibited.

Fabrication of ceramics commences from the powder form. Traditionally, the

milled and mixed ceramic powder is moulded into the desired shape and sintered.

Sintering is the process by which the unfired, or “green”, powder is transformed

into a strong, dense ceramic material upon application of heat. The “holy grail”

of sintering is to obtain the maximum theoretical density of the material using the

minimum possible temperature.

Sintering occurs through the reduction of free energy that arises when individual

particle combine, resulting in a reduction in total surface area, leading to the min-

imisation of the free energy of the system. As sintering progresses the density of the

material increases through the following processes:

1. Evaporation-condensation: the evaporation from the particle surface and con-

densation in a different location.

2. Surface diffusion: diffusion over the surface of the particle.

3. Volume diffusion: diffusion through the body of the particle.

4. Grain boundary diffusion: diffusion across the grain boundary between two

grains.

5. Viscous or creep flow: the deformation of particles leading to a flow of particles

from areas of high stress to an area of low stress.

A typical sintered ceramic is an opaque material containing some residual poros-

ity and grains that are much larger than the initial particle sizes. The factors affecting

the degree of remaining porosity and grain size are as follows:
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1. Temperature: Diffusion is responsible for sintering; higher temperatures in-

crease diffusion, improving the sintering process and resulting in a denser

product.

2. Green density: If the unfired ceramic is dense, then the density of the sintered

ceramic is usually improved.

3. Impurities: Impurities in green ceramics can allow the formation of a liquid

phase and aid diffusion. They can also hinder sintering by suppressing grain

growth.

4. Particle size: Since an initially large surface area creates a large driving force

for sintering, it would appear that the finest possible powders should be used.

However, in very fine powders, electrostatic forces can hinder sintering and

lead to the formation of agglomerates. Therefore, there is an optimum particle

size which obtains the densest sintered ceramic.

3.4 Transport properties and applications
In many ceramics, diffusion and electrical conduction are inextricably linked. Their

similarities are attributable to the identical underlying mechanism of the motion of

ionic species under the influence of a chemical potential gradient (diffusion) and

under an electrical potential gradient (conduction).

Crystal structure defects (Section 3.2.2) are prerequisites for ionic diffusion and

electrical conductivity; their presence causes similar alteration in both properties.

For example, non-stoichiometric point defects result in formation of oxygen vacan-

cies, allowing oxygen to diffuse more easily through the material. In addition, de-

fects may causes a release of electrons, increasing the electrical conductivity of the

material.

3.4.1 Diffusion

Three mechanisms cause diffusion: The first, called vacancy diffusion, occurs by the

“jumping” of atoms from a regular site onto an adjacent vacant site. This moves

the vacancy to the site exited by the ion, so that the vacancy migrates in a direction

opposite to that of the ion. The second, interstitial diffusion, occurs by the transport

of atoms through vacant, neighbouring, interstitial sites. Motion of the interstitial

atom involves a distortion of the lattice and this mechanism is more probable when
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the interstitial atom or ion is smaller than those on the normal lattice sites. The third

mechanism, called the “interstitialcy mechanism”, is less common and occurs by an

interstitial atom displacing an atom from a regular lattice site into an interstitial site.

In all cases, an atom must squeeze through a gap between other atoms and must

overcome an energy barrier, known as the energy of migration [14].

In general, ions with small charge, small size and favourable lattice geometry

contribute most to lattice mobility. A highly charged ion will be hindered by the

oppositely charged ions that it must pass and, similarly, a large ion’s outer electrons

will interact with the oppositely charged ions. Vacancies in the material will assist

ionic conduction by offering the possibility of becoming filled by one of the neigh-

bouring ions, thus aiding the conduction of ions through the crystal lattice. Thus,

the defects in the crystal can have a profound effect on the diffusion properties of

the material.

3.4.2 Characterisation of ionic conductors

Ionic transport in materials can be measured using a technique known as Secondary

Ion Mass Spectrometry (SIMS). SIMS is carried out by bombarding sample surface

with a primary ion beam followed by mass spectrometry of the emitted secondary

ions. As the ion beam radiates the sample surface, ions in the sample are slowly

“sputtered” away and measured using mass spectrometry. Continuous analysis dur-

ing sputtering provides compositional information as a function of the depth, known

as a depth profile. A typical sputter rate is 0.5-5nm/s and the rate of sputtering is

dependent on the beam intensity, sample material and crystal orientation.

Isotopic exchange in combination with SIMS has long been used to determine

the oxygen transport properties of ceramic materials [77]. The sample is exposed

to 18O which diffuses through the sample, replacing the 16O. SIMS is then used to

determine the extent of diffusion through the sample and thus the diffusion coeffi-

cient. A sample density of 95% or greater is required to ensure that bulk diffusion is

measured rather than diffusion through pores [72].

3.4.3 Fuel cells

Although fossil and nuclear fuel sources will continue to remain important energy

providers for many years, their supplies are finite and other means of energy sup-

ply and storage are urgently required [14, 78]. Lower “greenhouse” gas emissions

to attain a cleaner environment are also imperative. This has stimulated intensive
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research and development efforts aimed at reducing reliance on the internal com-

bustion engine used in transport and fossil fuel powered electricity generation.

An electrochemical cell, also known as a battery or fuel cell is an energy storage

or production device which can produce electrical energy directly from gaseous fuel.

Advantages of fuel cells over conventional power generation methods include:

1. Conversion efficiency: This is the primary advantage of fuel cells. The fuel

is converted directly from the fuel into electrical energy. The losses sus-

tained during the multiple conversions used in traditional power generation

are avoided.

2. Environmental impact: Fuel cells use practical fuels as energy sources. The

waste outputs are lower than for conventional power generators. In addition,

output of NOx and SOx gases is negligible.

3. Modularity: Fuel cells can be made in modular sizes and can be easily in-

creased or decreased. Since the efficiency of fuel cells is relatively independent

of size, fuel cells can be designed to quickly adjust their output to meet demand

without significant efficiency loss.

4. Siting flexibility: The variety of fuel cell sizes available minimally restricts the

siting of fuel cells. Their operation is quiet because of the lack of moving parts

(although auxiliary equipment may cause some noise).

5. Multi-fuel capability: Some fuel cells are able to accept multiple fuel types.

In particular, high-temperature fuel cells such as the solid oxide fuel cell (Sec-

tion 3.4.4) can process hydrocarbon fuels internally, removing the need for ex-

pensive fuel pre-processing equipment.

3.4.3.1 Operation of fuel cells

A fuel cell consists of two electrodes separated by a solid electrolyte. The archetypal

example of a fuel cell is a “proton exchange membrane” (PEM) fuel cell which con-

sists of a proton-conducting polymer membrane (electrolyte) separating the anode

and cathode. A diagram showing the structure of a fuel cell is shown in Figure 3.3.

Each electrode consists of carbon paper coated with platinum catalyst.

The hydrogen enters on the anode side and diffuses to the anode catalyst where

it disassociates into protons and electrons
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Figure 3.3: A typical proton exchange membrane (PEM) fuel cell. Molecular hydro-
gen and molecular oxygen enter at the electrodes and are ionised. The hydrogen
ions pass through the electrolyte and combine with oxygen and the electrons which
have passed through the external circuit, forming water. Public domain image.

H2 → 2H+ + 2e−. (3.1)

The protons pass through the conducting membrane to the cathode but the electrons

are forced to travel around the external circuit because the membrane is electrically

insulating. When the protons reach the cathode, they react with supplied oxygen

and the electrons returning from the external circuit. The only “waste” product is

the resulting water vapour

4H+ + O2 + 4e− → 2H2O. (3.2)

Most cells typically use hydrogen as fuel, and oxygen as oxidant, although any

gases capable of being electrochemically oxidised and reduced could be used. Hy-

drogen is the fuel of choice due to its almost limitless availability in water. However,

the electrolysis of water to produce hydrogen requires energy. This can be achieved
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in a “renewable” fashion using techniques such as wind, tidal or wave power and

also via photo-electrolysis which harnesses the sun’s power. Oxygen is the most

popular oxidant, being readily and economically available from air.

The voltages provided by the cells are typically 1-2V and must be serially con-

nected to increase the voltage and connected in parallel to increase current availabil-

ity. Work over the past 150 years has resulted in fuel cells with steadily increasing

performance; however, the enhanced performance has not been sufficient to justify

the costs of isolation of H2 from primary fuels [79].

Transportation consumes vast amounts of energy and developments of fuel cells

have led to so-called “hybrid” cars which obtain power from a combination of the in-

ternal combustion engine and fuel cells [80]. Octane fuelled cells may also be useful

because no hydrogen production is necessary [81] and existing petrol infrastructure

can be used. Current work in fuel cell powered cars has resulted in fuel efficiency

records; a Swiss car powered in this way has achieved an efficiency of 5134 km per

litre of gasoline equivalent [82].

3.4.4 Solid oxide fuel cells

Solid Oxide Fuel Cells (SOFCs) are high temperature fuel cells which operate be-

tween between 650◦C and 1000◦C. Although low temperature fuel cells allow the

transport of hydrogen ions through the electrolyte, high temperature fuel cells allow

transport of much larger ions, such as oxide (O2−) and carbonate (CO2−
3 ), providing

much wider fuel flexibility. Since the oxygen ions oxidise the fuel, carbon containing

species such as CO or CH4 or higher hydrocarbons (from fossil fuels) are potential

fuel sources [83].

The disadvantages of high temperature fuel cells are:

1. As the operating temperature of the fuel cell increases, it becomes difficult to

make materials with the required properties. The reactivity of the materials

increases as the temperature increases requiring inert materials such as gold,

silver and platinum which are expensive.

2. The working life of the cell is reduced due to the corrosion of the metallic ele-

ments used.

3. The cyclical heating and cooling of the cell introduces thermal stress of the

components, increasing the risk of mechanical failure.
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If suitable materials can be developed which enable a reduction in the operat-

ing temperature, the disadvantageous effects outlined above can be reduced. This,

combined with their fuel flexibility makes SOFCs very attractive power generation

devices.

SOFCs operate as follows. The oxygen molecules supplied to the cathode disas-

sociate into oxide ions

2O2 + 8e− → 4O2−. (3.3)

The oxide ions diffuse through the electrolyte to the anode where they react with the

methane fuel forming carbon dioxide, water and electrons

CH4 + 4O2− → CO2 + 2H2O + 8e−. (3.4)

The efficiency of the fuel cell is largely dependent on the physical characteristics

of the electrolyte and electrodes. The optimal physical characteristics of a fuel cell

are:

1. Anode and cathode are designed to maximise the rates of oxidation and reduc-

tion reactions and to make good electrical contact with the external circuit.

2. An electrolyte having large surface area and small thickness. The material re-

quires high ionic and zero electrical conductance; any electrical conduction will

internally short circuit the cell, wasting power.

One of the most important tasks in SOFC research is to further reduce the operat-

ing temperature at the lower end of the operational range (650◦C and 1000◦C) [84].

The high operating temperatures of SOFCs relative to other fuel cell types make them

particularly suitable for combined heat and power plants, although the disadvan-

tages mentioned previously still apply. At sufficiently high temperatures, all kinetic

limitations at the cathode disappear, and it becomes possible to utilise solid ceramic

oxide-ion conductors that show very high conductivities above approx 900◦C. The

SOFC has potential for a wide range of applications, having a wide range of power

outputs and physical designs [85]. The different designs range from 20W portable

systems through to multi-megawatt fuel-cell/gas-turbine hybrid systems.
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3.4.4.1 Fuel cell components

Under typical operating conditions, one cell produces a potential difference of less

than 1V. Therefore, practical SOFCs consist of a multiple, serially connected “stack”

of units to create higher voltages. Each element of the stack consists of an individual

cell with the anode of one cell connected to the cathode of the next. The components

of the cell serve several functions and must meet certain requirements. All compo-

nents must be chemically compatible with each other, both at operational and fab-

rication temperature. In addition, the high temperature conditions require that the

thermal expansion of each component is similar to the others to prevent separation

or cracking during fabrication or operation.

Electrolyte The primary function of the electrolyte in SOFCs is to permit the flow

of oxygen ions. A high ionic conductivity is therefore essential. Additionally, elec-

trolyte stability in both oxidising and reducing environments is desirable. Also, as

mentioned previously, chemical and thermal compatibility between each of the fuel

cell components is desirable for long-term cell longevity. Finally, the electrolyte must

be sufficiently dense to prevent leakage of unionised gas.

The most popular electrolyte for SOFCs is yttria stabilised zirconia (YSZ) [85].

Typically, 10 mol.% yttria dopant is added [14] which stabilises the zirconia into the

cubic structure at high temperatures.

Anode The anode or fuel electrode provides reaction sites for the electrochemical

oxidation of the fuel. The anode must be stable against reduction, be electronically

conducting and must facilitate the counter flow of oxidation products away from

the interface. As for the electrolyte, the anode must be chemically and thermally

compatible with the other components at operating and fabrication temperatures.

Partially sintered metallic nickel is generally the preferred anode material, mainly

owing to its low cost when compared with other metals such as cobalt, platinum

and palladium. Prolonged use of pure nickel would lead to further sintering and

undesirable micro-structural changes. To overcome this, the nickel is coated with

yttria stabilised zirconia (YSZ) to give a better thermal expansion match and improve

adhesion to the electrolyte.

Cathode The function of the cathode is to provide a reaction site for the electro-

chemical reduction of the oxidant. The cathode must therefore be stable in an oxidis-

ing environment and have sufficient electronic conductivity and catalytic activity for
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the reaction to take place. The cathode, as always, must be chemically and thermally

compatible with the other components at operating and fabrication temperatures.

The favoured material is modified lanthanum manganate (LaMnO3+x) which has

the perovskite structure (Section 3.2.1). Pure lanthanum manganate is very stable,

although the thermal expansion coefficient is quite large. Strontium doping can be

used to reduce the expansion coefficient and simultaneously enhance the electronic

conductivity [14]. Unfortunately, the strontium component reacts with the YSZ elec-

trolyte. Experiments have also been performed with iron doping of lanthanum stron-

tium manganate/cobaltate [86, 87]. The chemical compatibility of lanthanum man-

ganate with other components is a concern, especially the YSZ electrolyte. Man-

ganese is mobile at high temperatures and can diffuse into the electrolyte, altering

the structure and electrical properties of both materials. Minimisation of this effect

is obtained by restricting fabrication temperatures to below 1400◦C.

Interconnect The interconnect couples the anode of one cell to the cathode of the

next cell in the electrical series. It also separates the fuel from the oxidant in ad-

joining cells of a stack. The interconnect must therefore be stable in both oxidising

and reducing environments, impermeable to gases and electrically conducting. As

with all other components, the chemical and thermal compatibility at operating and

fabrication temperatures must also be considered.

Lanthanum chromite (LaCrO3) has been used as an interconnect since the 1970s.

It exhibits the desirable features outlined above and can be doped to control its prop-

erties depending on the particular application. SOFCs operating at the lower end of

the temperature range (500◦-750◦C) can use stainless steel interconnects [14].

3.4.5 Modelling transport properties of ceramic materials

Catlow and Price [88] gave a comprehensive review of computational modelling of

solid-state inorganic materials nearly twenty years ago. More recently, there have

been reviews of SOFC modelling [89] and Djilali has examined the challenges and

opportunities of computational modelling of polymer electrolyte fuel cells [90].

Islam et al. used atomistic and quantum mechanical methods to model defects

and transport in perovskites [91] and Cherry et al. performed molecular dynam-

ics simulation of oxygen ion migration in perovskite materials [92]. Additionally,

Ali et al. [93] have recently investigated the structure-performance relationship of

SOFC electrodes using a finite element technique.
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Fick’s law states that when the concentration within a diffusion volume does not

change with respect to time:

J = −D∇φ (3.5)

where J is the diffusion flux, D is the diffusion coefficient, φ is the concentration and

∇ is the gradient operator. Fick’s law can be used to predict the diffusion properties

of ceramic materials [94].

Although the Popperian techniques described above can achieve excellent agree-

ment with experimental results, the models developed are often only applicable for

the particular material and structure studied. Model parameters and often even the

models themselves must be re-developed when new materials are studied; a pro-

cess which can rapidly become tedious and very time consuming when attempting

to perform combinatorial searches to design new materials. By contrast, Baconian

methods (Section 2.3.2) make no a priori assumption about the nature of the data

relationship and can operate on a wide variety of materials. However, care must

be taken not to extrapolate too far or inaccurate predictions are likely to result. An

additional benefit of Baconian predictive models is the ease with which new data

can be incorporated. Baconian models for the prediction of materials properties are

employed within the FOXD project and their development is discussed further in

Chapter 5. The next section contains a discussion of previous work in the develop-

ment of models for the design of fuel cells.

3.4.6 Design of solid oxide fuel cells

In addition to the vital transport properties, other features of fuel cell component

materials are important. Thermal properties are essential for extension of the life of

fuel cells and the atomistic, molecular dynamics and ab initio modelling techniques

described previously have been applied to investigate these features [95]. There has

also been considerable investigation into the prediction of overall fuel cell perfor-

mance using data mining techniques such as the artificial neural network described

in Chapter 5 [8, 70, 96, 97]. SOFC anode [98] and cathode [99] models have also

been developed. Experimental validation of such models is an area for future re-

search [89].

SOFC cathodes have stringent requirements. As noted above, the ideal mate-

rials should be stable in an oxidising environment, have a high electrical conduc-
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tivity, be thermally and chemically compatible with the other components of the

cell and have sufficient porosity to allow gas transport to the oxidation site. Criti-

cally, the cathode material must allow diffusion of oxygen ions through the crystal

lattice. The versatile perovskite structure of these materials allows doping, intro-

ducing defects into the lattice and facilitating the diffusion of ion species through

the material. Compounds currently under investigation include La1−xSrxMnyO3

(LSM) [100–102], La1−xSrxMnyCo1−yO3 (LSMC) [15, 52, 103, 104], La1−xCaxFeO3−δ

(LCF) [105], La2−xSrxNiO4+δ (LSN) [106] and BaxSr1−xCo1−yFeyO3−δ (BSCF) [107]

as well as other materials [108]. Much of the interest in these materials has stemmed

from the fact that they form with oxygen deficiencies which provide a mechanism for

fast oxygen ion transport through the defects in the crystal structure. Despite their

ion transport properties, many possible SOFC cathode materials suffer from thermo-

mechanical deficiencies such as cracking. Doping of strontium with other alkaline

earth metals and replacing Mn, Co and Fe with other transition metals permits a

wide range of possible materials allowing potential development of a material with

optimal ion transport and thermomechanical properties [106]. It is this vast range of

possible compounds that the combinatorial approach of the FOXD project sets out to

explore and is addressed in this thesis.

3.5 Dielectric properties and applications
Traditionally, ceramics were manufactured for their electrical insulation properties

which, together with their chemical and thermal stability, make them ideal for power

line and electrically resistive applications. Their use today is much more ubiquitous,

with applications in capacitors, electrodes, sensors and substrates.

This section discusses the response of dielectric ceramics to the application of an

electric field. In contrast with conducting ceramics discussed in Section 3.4, here we

consider dielectric ceramics in which an applied field induces a corresponding field

in the dielectric and little or no conduction occurs.

3.5.1 Dielectric materials

In contrast to electrical conductivity, which involves the long-range motion of charge

carriers, dielectric effects result from the short range motion of charge carriers under

the influence of an external electric field. When an electric field is applied to ceramic

materials, the electrons within each atom are polarised, producing a dipole moment.

When a dielectric material is placed between the plates of a capacitor, the capaci-
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tance of that capacitor is increased due to the polarisation of the medium. However,

there are also electrical losses in the material due to the (small) conductivity of the

dielectric. The ability of the material to “store” the applied electric field due to the

polarisation of the charged particles is measured by the dielectric constant or permit-

tivity. Relative permittivity εr is a measure of the performance of a material, relative

to the permittivity of free space and εr can be defined as the fractional increase in

the stored charge per unit voltage on the capacitor plates due to the presence of the

dielectric material between them [109].

3.5.1.1 Capacitors

The direct current (d.c.) resistance of a capacitor is infinite in the ideal case. In reality,

the finite resistance of a parallel plate capacitor RL is given by

RL = ρ
h

A
(3.6)

where ρ is the resistivity of the dielectric and A is the area of the plates. A charged

capacitor will discharge through its own resistance according to:

Q(t) = Q0 exp
(
− t
τ

)
(3.7)

in which Q(t) is the charge remaining at time t, Q0 is the original charge and τ =

RLC is the time constant of the capacitor.

In addition to resistance, which is the direct opposition to current flow, capacitors

also possess a “reactance” which can be thought of as opposition to a change in the

electrical current. A capacitor’s reactance is inversely proportional to the current

frequency f and the capacitance C:

Xc = − 1
2πfC

. (3.8)

At low frequencies, the reactance is large and no current flows in the dielectric. As

the frequency increases, the reactance decreases, resulting in current flow.

If a sinusoidal voltage (V = V0exp (iωt)), where ω is the frequency, is applied to

a capacitor, then, assuming that the dielectric is ideal (no losses occur), the current is

given by:

I = iωk′ Cvac V0 exp (iωt) (3.9)
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whereCvac is the capacitance assuming no dielectric is present, V0 is the peak voltage

and t is the time. Since exp(iωt) = cos(iωt) + i sin(iωt) and the voltage and current

are given by the magnitude of the vectors, the resulting current will be π/2 rad out of

phase with the applied voltage. Equation (3.9) is only valid for an ideal dielectric. In

reality, capacitors exhibit energy dissipation due to losses in the wires and electrodes,

d.c. resistance, dielectric losses and inertia of the charge carriers and the current is

not precisely π/2 rad out of phase with the applied voltage. The total current in a

non-ideal dielectric therefore leads the applied voltage by an angle of 90◦ - δ, where δ

is known as the “loss angle”. The tangent of the loss angle, tan δ, is known as the loss

tangent or “dissipation factor”, a dimensionless number which measures the losses

sustained by a capacitor. The dissipation factor can also be expressed as the ratio of

the resistive power loss to the capacitive power.

The “quality factor” Q given by the reciprocal of the dissipation factor is another

property of dielectric materials. Q measures the “quality” of the dielectric’s electrical

resonance and is given by

Q =
fr
∆f

(3.10)

where fr is the resonant frequency of the dielectric and ∆f is the range of frequencies

over which the resonance is greater than half the maximum. ∆f is also known as the

full width at half maximum (FWHM) height.

3.5.1.2 Dielectric loss

Real capacitors are subject to losses sustained by the dielectric material used in the

capacitor. Three mechanisms are responsible for such losses [110, 111]:

1. Perfect crystal losses due to an-harmonic lattice forces which mediate interac-

tions between the crystal’s phonons.

2. Losses due to deviations from perfect lattice periodicity (point defects, dopant

atoms, vacancies)

3. Losses due to other defects such as extended dislocations and grain boundaries

Dielectric losses result in the dissipation of energy which causes the dielectric to

heat up. If heat is generated faster than the rate at which the heat is dissipated then

the dielectric will increase in temperature. Sufficiently high temperature increases

can lead to dielectric breakdown. In addition, the increase in temperature can alter
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the dielectric constant, causing problems in finely tuned circuits where a precise,

stable dielectric constant is required.

There are several causes of dielectric loss:

1. Dielectric breakdown. The voltage applied to a dielectric material cannot be

increased without limit. Eventually, the polarisation of the ions/grains within

the material increase so much that a short circuit develops forming conducting

channels and permanently damaging the dielectric. The dielectric strength is de-

fined as the value of the applied electric field required to form the conducting

channels.

2. Intrinsic breakdown. The electrons in the conduction band are accelerated to

the point where they begin to ionise lattice atoms. More electrons enter the con-

duction band thereby ionising more ions. This process is known as an electron

avalanche and leads to a substantial current.

3. Electromechanical breakdown. The electrostatic attraction between the oppo-

sitely charged plates of a capacitor can cause compression of the dielectric ma-

terial. Normally, the compression is balanced by the smaller thickness of the

dielectric; however, if the elastic modulus is sufficiently small, then the mate-

rial can deform plastically until the dielectric breaks down.

4. Insulation ageing. The properties of a dielectric material are unstable over

time. As the material is subjected to thermal and mechanical stresses it may

develop structural defects. Exposure to radiation and other external condi-

tions such as humidity also affect the chemical structure and properties of a

dielectric.

Dielectric materials are used extensively in the telecommunications industry and

their particular applications are discussed in Section 3.5.5. The advent of high

frequency communications networks has been responsible for a growing need for

low loss insulators. Since power losses are proportional to the frequency of opera-

tion [71], the need for lower loss dielectrics is of critical importance.

3.5.2 Ferroelectric materials

Although certain materials are susceptible to polarisation under the application of

an external electric field, some materials are permanently polarised regardless of the

presence or absence of an applied field. Such materials are known as ferroelectrics.
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While dielectrics exhibit a linear dielectric response, the spontaneous dipoles present

in ferroelectrics give rise to a non-linear dielectric response when subjected to a elec-

tric field. Ferroelectrics generally display effective dielectric constants which are

orders of magnitude larger than those of dielectrics [112] and can have a relative

permittivity exceeding 1000. Despite the obvious advantages of a large dielectric

constant, they are more sensitive to temperature, field strength and frequency than

lower-permittivity dielectrics. Developments over the past 50 years have resulted in

improvements in material stability whilst retaining the desirable high-permittivity

features. Barium strontium titanate is probably the best known example [113, 114]

of a ferroelectric material. Indeed, Buchanan stated that “the discovery of ferro-

electric barium titanate opened the present era of ceramic dielectric materials” [115]

and its non-linear dielectric properties have been thoroughly investigated [116]. In

particular, the Ba1−xSrxTiO3 system is used extensively in electronic filters and an-

tennae [117].

Barium strontium titanate exhibits a varying crystal structure depending on the

temperature. Above approximately 130◦C, a crystal of barium titanate has a cubic

unit cell. The centre of mass of the cell falls on the titanium ion and there is no net

polarisation and no spontaneous dipole. Above 130◦C, therefore, barium titanate is

not ferroelectric. However, below 130◦C, the structure of barium titanate changes to

tetragonal (Section 3.2.1.1), the titanium ion is not located at the centre of mass, the

crystal is polarised, and ferroelectric. The temperature at which this occurs is known

as the Curie temperature.

From an applications perspective, it is important to reduce the dependence of the

relative dielectric constant on temperature (Section 3.5.1.2). One significant advan-

tage of ceramic ferroelectrics is the ease with which their properties can be adjusted

by slight changes to the composition. The dielectric characteristics of barium titanate

ceramics with respect to temperature, electric field strength, frequency and time are

very dependent on the substitution of minor amounts of other ions for Ba2+ or Ti4+.

Replacing Ti4+ by Sr2+ reduces the critical temperature whereas its substitution by

Pb2+ increases it. The following other effects have been observed:

1. Shift in Curie point and other transition temperatures;

2. Restriction of domain wall motion;

3. Introduction of secondary phases or compositional heterogeneity;



3.5. Dielectric properties and applications 60

4. Control of crystallite sizes;

5. Control of oxygen content and the valency of the Ti4+ ion.

Skulski et al. [118] used well known formulae involving the Poisson coefficient

and Burgers vector [119] to develop a computational model of the influence of edge

dislocations on the degree of phase transitions in barium titanate. Additionally,

Bakaleinikov et al., modelled domain wall motion in barium titanate [120].

In spite of the implication carried by the name, ferroelectric materials do not con-

tain iron but are named due to their similarities with ferromagnetic materials. Non-

linear dielectric and magnetic properties are linked due to the presence of perma-

nent electric and magnetic dipoles that respond to externally applied fields. When

the field is removed, the dipoles remain aligned, resulting in permanent or residual

polarisation. So, just as ferromagnets possess magnetic polarisation, an analogous

electric polarisation is present in ferroelectrics.

3.5.3 Classes of dielectric materials

Dielectric materials can be arranged into 4 classes:

Class I dielectrics include low- and medium-permittivity dielectrics. They offer

high stability and have dissipation factors less than 0.003. Medium permittivity cov-

ers the range 15 - 500 with temperature coefficients between -2000 and +100 MK−1.

Class II dielectrics produce stable capacitors, suitable for bypass or coupling ap-

plications or frequency discriminating circuits where Q and stability of capacitance

characteristics are not of major importance. Class II dielectrics are made from mate-

rials which are ferroelectric, yielding capacitors with lower stability.

Class III dielectrics are used in general purpose capacitors and are suitable for

applications in which high dielectric loss and stability characteristics are of little or

no importance. They are similar to class II dielectrics except for their temperature

characteristics. Class III dielectrics have εr values between 2000 and 20000 and their

dissipation factors are generally below 0.03 but may exceed this in extremes of tem-

perature or applied a.c. field.

Class IV dielectrics contain a conductive phase which effectively reduces the

thickness of the dielectric in capacitors by at least an order of magnitude. The dis-

advantages of these capacitors are their low working voltages (2 - 25V) and high

losses.
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3.5.3.1 Low permittivity dielectrics

Low permittivity (εr < 15) dielectrics are widely used for electrical insulation. Often,

their mechanical properties are more important than their dielectric properties and, if

large quantities are required, cost becomes an important factor in materials selection.

When used as substrates for electrical components, the dielectric properties be-

come more important. Low permittivity dielectrics are employed in capacitors for

use at high frequency where the required capacitance is lower, and also in high cur-

rent applications where a larger physical size is advantageous for heat dissipation.

3.5.3.2 Medium permittivity dielectrics

Medium permittivity ceramics are widely used as class I dielectrics. To be classed as

medium permittivity, the materials require low dissipation factors which precludes

most ferroelectric materials due to their high losses (tan δ < 0.003), particularly

under high a.c. fields.

It is possible to obtain low loss materials with εr exceeding 500 but these materials

exhibit high negative temperature coefficients. Most medium-permittivity ceramics

have a relative permittivity between 15 and 100.

Medium-permittivity dielectrics are used in three principal areas:

1. High power transmission capacitors. The frequency range of operation is 0.5 -

50 MHz and the main requirement is low loss.

2. Stable capacitors for general use. A stability of ±1% is required over opera-

tional conditions and the usual frequency range is 1 kHz - 100 MHz.

3. Microwave resonant devices. These operate between 0.5 and 50 GHz and re-

quire a stability of better than±0.05% over operational conditions and dissipa-

tion factors better than 2× 10−4.

The application of particular interest in the FOXD project is the third application,

that of microwave resonant devices used in communications equipment.

3.5.3.3 High permittivity dielectrics

Materials with high relative permittivity (>1000) are based on ferroelectric materials.

The most famous high-permittivity dielectric material, barium titanate (εr ≈ 2000−

10000), emerged in the late 1940s [14]. It has been used extensively in capacitors

for decades [121]. Developments since World War II have led to improvements in

stability whilst retaining the desirable high permittivity feature.
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The dielectric properties of barium titanate are very sensitive to the addition of

small amounts of other metal ions. Alexandru et al. [122] found that the addition of

Sr ions into the Ba lattice has a number of effects:

1. decrease of the paraelectric-ferroelectric transition temperature (Curie point);

2. substantial decrease of the permittivity and dielectric loss;

3. decrease of unit cell volume.

The use of isovalent dopants, such as strontium, have been used to move the

Curie point to the optimal location for the desired application. Thus, barium stron-

tium titanate (BST) (and its doped variants) is a very popular material for tunable

filters and oscillators [123].

The dielectric properties of BaxSr1−xTiO3 have been investigated over a range

of x (0.45, 0.5, 0.6, 0.65, 0.8, and 0.9 [121], 0.25, 0.50, 0.75 [113, 117, 122], 0.35 and

0.60 [124], 0.1 - 0.6 [114] and 0.95 [125]). However, many of these studies utilised tra-

ditional techniques of ceramic production and relatively large pellets were produced

(9mm diameter by 7.5mm thick [122]) rather than the small samples used within the

FOXD project (2mm diameter by 1mm thick). Some work has been carried out with

thin films [126, 127] which can be used to create very low inductance capacitors [128].

Additionally, Wu et al. recently investigated structure-property work electric prop-

erties of Mg doped strontium titanate [129] using a thin film technique.

One of the initial aims of the FOXD project was to ensure that measurements

of smaller samples, produced by LUSI, agree with already published results. Once

complete, work progressed to investigation of the BST system over a wider range of

composition and with a smaller step size. Results of this work have recently been

published [43, 130].

High-dielectric microwave ceramics have, more than any other factor, con-

tributed to the miniaturisation and thus cost reduction of modern wireless commu-

nication systems. Great potential for further progress remains [110].

3.5.4 Characterisation of dielectric materials

An Evanescent Microwave Probe (EMP, Ariel Technologies EMP2003, Figure 3.4) al-

lows non-contact scanning of samples to determine microwave dielectric properties

(2.3 GHz), conductivity and topography measurements [43, 130].
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Figure 3.4: The evanescent microwave probe for performing non-contact measure-
ments of microwave dielectric properties

The evanescent technique consists of a probe tip that is a high Q microwave coax-

ial resonator with a sharp tungsten metal tip at the centre conductor. A shield con-

tains the propagating far-field components and the tip acts as a monopole evanescent

wave antenna. When the tip is scanned over a sample, just above the material’s sur-

face, only these evanescent microwaves, with their high spatial resolving power, are

free to interact with the sample. The interaction between the evanescent microwaves

and the sample surface gives rise to resonant frequency and quality-factor changes

in the resonator that are recorded as signals. The permittivity (εr), dielectric loss

(tan δ), conductivity and electrical impedance results obtained are actually the dif-

ferences of the interactions between the tip in free space, and close (within 6µm) to

the sample surface. Therefore, only relative results are obtained from the equipment.

The absolute values are obtained during post-processing by using the results given

by a highly accurate, known sample.

A ferroelectric tuning element is used to keep the tip a constant distance from

the surface using a voltage feedback method and a Scanning Probe Microscope con-

troller (Intematix XC2016 SPM controller). This allows the entire surface of the sam-

ple to be measured automatically, provided that the surface is not too rough (±6µm).

An EMP has been used by Minami et al. [131] and Chang et al. [132] for the opti-
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misation of dielectric materials using a thin film technique; FOXD uses the EMP for

thick film characterisation. While individual sample measurements are possible, au-

tomated analysis of the thick films produced by LUSI cannot currently be performed

by the EMP, owing to a limitation of the automatic ferroelectric tip-surface feedback

mechanism. However, a software update from the manufacturers will solve this

problem.

Meanwhile, a HP 4263B LCR meter has been used to perform dielectric mea-

surements of the samples [130] which provide a benchmark for comparison with the

EMP results.

3.5.5 Dielectric materials applications

As stated by Moulson et al. “‘Ceramic dielectrics and insulators’ is a wide ranging

and complex topic embracing many types of ceramic, physical and chemical pro-

cesses and applications” [14]. These materials have been used in diverse applica-

tions over the past century, including electric power transmission, radio broadcast-

ing and radar technologies. The most significant impact has been made by computer

and telecommunications technologies. The development and improvements of sili-

con integrated circuits have driven the need for lower operating voltages, increased

frequencies and computing power. “Miniaturisation” has also accompanied these

trends and allowed the development of satellite and mobile communications. The

development of high permittivity ceramics has made such miniaturisation possi-

ble [110].

In a dielectric material, the permittivity ε and dissipation factor tan δ are of pri-

mary importance although other parameters may also be relevant, depending on

context. For example, power engineers are concerned with maximum efficiency,

thereby focusing attention on the loss factor. Electronics engineers are more con-

cerned with the quality factor which defines the quality of oscillator and filter circuits

that can be built from the dielectric by exploiting electrical resonance phenomenon.

Also, in the manufacture of a substrate, on which components are to be mounted, it

is the insulating properties of the dielectric which are paramount.

A wide range of properties is exhibited by dielectric materials; relative permittiv-

ity can range from 6 in steatite (soapstone) [14] to values greater than 20000 in com-

plex ferroelectrics. The principal use of dielectric materials is in capacitors which

are employed to fulfil various functions in electric circuits. Examples include block-

ing, coupling and decoupling, a.c.-d.c. separation, filtering and energy storage. The
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value of capacitance is chosen such that the reactance (1/ωC) is low at the frequency

of interest. Careful selection of the capacitance permits construction of devices which

pass signals at certain frequencies but block them at others, thus resulting in a “fil-

ter”.

During the fabrication of capacitors, characteristics other than dielectric proper-

ties can play an important part. Properties such as heat capacity, thermal conductiv-

ity and thermal expansion will affect the manufacture of capacitors. These properties

of barium titanate have been studied extensively [133].

3.5.5.1 Microwave ceramics

The rapid growth of satellite and mobile telecommunications systems over the last

decade has resulted in a requirement for narrow-band, frequency stable filters and

oscillators. The bandwidth and stability requirements are necessary to ensure that

signals are confined to closely defined frequency bands and prevent intrusion of

unwanted signals that could interfere with the operation of other equipment.

In the past, stable filters and oscillators were manufactured from bulky coax-

ial and cavity resonators. The dielectric resonator (DR) permits miniaturisation of

these devices. A simple DR consists of a cylinder of dielectric material having high

enough relative permittivity to permit a standing electromagnetic wave to be sus-

tained within it. The standing wave is present due to the reflection at the dielectric-

air interface and possesses a wavelength which is approximately equal to the diam-

eter of the cylinder of dielectric material.

The requirements for dielectric materials suitable for use in DRs are as follows:

1. High permittivity to allow standing wave formation, even when the material is

physically small. Relative permittivities are usually in the range 30 < εr < 100.

2. Low temperature coefficient to ensure stability against frequency drift.

3. High quality factor (which, from equation (3.10), implies low loss) which is

usually > 1000.

3.5.6 Modelling dielectric properties of ceramic materials

The Clausius-Mosotti relationship [64, 65] is valid for many ionic materials and per-

mits calculation of the relative permittivity from the polarisation of the material. It

is given by
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εr − 1
εr + 2

=
Nα

3ε0
, (3.11)

where εr is the relative permittivity of the material, α is the polarisability (dipole

moment induced per unit applied field), N is the density and ε0 is the permittivity

of free space. While the Clausius-Mosotti relationship can provide accurate calcula-

tion of the dielectric constant of many materials, its accuracy is dependent on “well

behaved” compounds. Such well-behaved compounds are ionic materials with high

symmetry structure which are non-polar and non-conductive [14]. Shannon [67] cal-

culated polarisabilities of many elements using established values of density and

permittivity and found that polarisabilities remain constant regardless of other ions

present. The elemental polarisabilities can therefore be used to obtain permittivity

predictions for complex materials.

Prume et al. [134] used finite element modelling of the electrical, mechanical and

thermal properties of multilayer ceramic capacitors to good effect. From impedance

spectra, they were able to use their model for simple, rapid, nondestructive failure

testing of ceramic capacitors.

Diniz et al. [135] performed atomistic simulation of electroceramic materials.

Through energy minimisation of the interatomic potential, they precisely calculated

dielectric constant, lattice energy, elastic constants and bulk modulus for twelve di-

electric ceramics of the form RE(TiTa)O6 (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y,

Er and Yb).

Albeit on a smaller scale than that attempted by FOXD, Dover et al. have per-

formed a “composition-spread” approach to dielectric materials design [136]. Their

work combines a thin film compositional-spread material with scanning Hg-probe

analysis to determine dielectric properties for use in Dynamic Random Access Mem-

ory (DRAM).

As stated previously in Section 3.4.5, such Popperian models for the prediction of

ceramic materials properties are very successful. However, their versatility when at-

tempting predictions for new compositional systems or generalisation to new prop-

erties is limited. Baconian models can be used to alleviate such problems.

3.5.7 Design of microwave dielectric materials

Guo et al. have previously investigated the use of artificial neural networks for the

prediction of the properties of dielectric ceramics such as BaTiO3 [137] etc. Their
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work concentrated on the effect of the addition of other compounds (lanthanum ox-

ide, niobium oxide, samarium oxide, cobalt oxide and lithium carbonate) to pure

barium titanate. Other work by Schweitzer et al. [138] attempted prediction of di-

electric data listed in the CRC Handbook and the Handbook of Organic Chemistry. This

work used molecular information such as topological (bond type, number of oc-

currences of a structural fragment or functional group) and geometric (moment of

inertia, molecular volume, surface area) descriptors in addition to the compositional

information as the input variables. Additionally, there has been considerable work

aimed at predicting the electrical properties of lead zirconium titanate (PZT) using

ANN techniques [7, 139, 140]. PZT is a piezoelectric ceramic material which finds

increasing application in actuators and transducers.

Kuzmanovski et al. [141] have employed self-organising maps (Section 5.3.4) for

structure classification. Effective ionic radii, electro-negativity and oxidation state

were used as input variables to predict the structural classification of perovskites

with only 4.2-6.4% misclassification rate.

3.6 Summary
Ceramic materials cover a vast array of compounds exhibiting widely varying prop-

erties. Of particular interest to the research reported in this thesis are microwave ce-

ramics which can be used in electronic filters and oscillators in telecommunications

equipment. Current research aims to maximise the quality factor of these devices,

whilst minimising the losses experienced. The properties of an optimal filter are

to permit signal propagation at the desired frequency and completely block signals

outside the required frequency range.

Also of interest here are ion transport ceramics used as a cathode material for

solid oxide fuel cells. Work on fuel cells aims to provide more efficient cheaper en-

ergy sources. Desirable properties for SOFC cathodes are good ionic conductivity

for oxygen ions and thermal expansion matching to avoid mechanical failure dur-

ing thermal cycling. Additionally, sufficient electronic conductivity is required to

facilitate transport of the ionised electrons.

Previous work using Popperian scientific methods has exhibited considerable

success, allowing accurate predictions of ceramic materials properties. Permittivity

can be accurately predicted using the Clausius-Mosotti relationship while diffusion

properties can be determined using Fick’s Law. However the domain of applica-



3.6. Summary 68

bility of such predictive models is, in practice, tightly circumscribed and often only

permits incremental advances. Baconian techniques can provide models of more

complex phenomena, allow development of more general prediction algorithms and

therefore permit discovery of completely new materials compositions. There is a vast

compositional search space which is simply too large to explore using conventional

methods. The focus of the FOXD project is to search through this compositional

space to determine new materials for the ever increasing application demands de-

scribed in this chapter. In particular, this thesis describes the development of predic-

tive Baconian models which can be used to guide the search. Before such models can

be developed, we require a dataset of experimental data. The next chapter discusses

the development of a relational database which stores data pertaining to ceramic

materials, and the various interfaces which facilitate access to the data.
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CHAPTER 4

Functional ceramic materials database,

informatics system and LUSI control

software

4.1 Introduction
This chapter contains details of the FOXD project’s materials database and infor-

matics system [6, 142]. The data relates to ceramic materials and their properties as

discussed in Chapter 3 and has been obtained from two sources. Pre-existing data

has been extracted from literature datasets and new data has been generated from

combinatorial experiments on the London University Search Instrument (LUSI). The

informatics system facilitates user access to the data.

The database contains data pertaining to two main groups of materials, both de-

scribed in Chapter 3. Permittivity measurements of electroceramic materials are the

first area of interest; ion diffusion measurements of oxygen ion conductors are the

second. The database has been designed to be generic and is not restricted to par-

ticular classes of compounds, properties or analysis techniques which permits other

data to be readily incorporated. The flexible nature of the design results in complex

relationships among the tables in the database which is, in general, not a suitable in-

terface for end users. The informatics system provides a more user friendly interface

allowing data entry and visualisation of the results.

There has been extensive work on the development of databases in combinatorial

chemistry and a vast literature is available, particularly pertaining to the pharmaceu-

tical industry [143, 144]. In addition, previous work has investigated the combina-

torial materials [145] and catalyst [22, 34, 146] optimisation fields. Several materials
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databases exist, including the WebSCD (Structural Ceramics Database) [147] at the

National Institute of Science and Technology (NIST) [148], the Dielectric Database

Online [149] based at the University of Utah and MatWeb [150], a commercial ma-

terials database. WebSCD is heavily based in structural data and physical proper-

ties and there is very little data pertaining to functional properties such as dielectric

and/or diffusion measurements. The Dielectric Database Online permits free text

searches of a collection of literature pertaining to dielectric measurements and is

heavily focused towards agriculture. MatWeb permits fine grained searching for a

wide range of materials. However, the materials are limited to those manufactured

by industry and the database contains the data found in manufacturers’ data-sheets.

Consequently, a database providing a repository for materials which are cur-

rently investigated and reported only within the original literature would be an ex-

tremely valuable resource for the academic community. Extraction of compositional,

synthesis and property data permitting fine grained searches will provide substan-

tial benefit to materials researchers. Recently, a materials database for fusion research

has been reported [151]; our work builds on these efforts through the development

of a ceramic materials database. As explained in Chapter 2, the combinatorial nature

of the FOXD project and the materials discovery cycle are critically dependent on the

existence of a central database.

An informatics system provides the essential user interface to the database and

permits control of the LUSI system. Desirable qualities for the design of informatics

systems for combinatorial research are variously discussed in [152] and [18]. Al-

though commercial software is available, both for data management [153] and de-

vice control [154], it is frequently costly and often additional work is required to

integrate it with specific instrumentation. Consequently, local solutions are often

developed [155] although these are typically customised for a particular applica-

tion and may suffer from a lack of generality. The remainder of this chapter pro-

vides an overview of the flexible architectural approach to the central database for

the FOXD project, along with data management and device automation systems de-

veloped to utilise the London University Search Instrument (LUSI). Access to the

system is gained via http://db.foxd.org which permits user registration. Once

registered, users gain access to the database described in this chapter, as well as an

artificial neural network based materials property predictor, described in Chapter 7.

http://db.foxd.org
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4.2 Database design
The FOXD materials database has been designed to handle a wide variety of exper-

imental data. Currently, the database contains data produced by LUSI along with

published data extracted from the literature. The database stores sample production

data, such as materials compositions and sintering temperatures, which are com-

plemented by sample meta-data including measurement method and measurement

parameter data. In addition, the database can store images of samples, data files and

documents relating to experimental results. This central repository, accessible via a

web-based interface, enables geographically separate sites to have access to accurate,

reliable, up-to-date information on sample production and measurement status and

helps to eliminate the redundancy which would be found were each site to record

its own data separately [155]. Furthermore, the use of a single, complete database

permits data mining algorithms to operate on the complete dataset, rather than on

separate sections.

4.2.1 Database structure

The FOXD project uses the PostgreSQL [156] (http://www.postgresql.org/)

database management system (DBMS) running on the Linux operating system. The

database server is a virtualised system running on a 4-core AMD Opteron host. Vir-

tualisation permits transparent migration between physical systems. If performance

requirements demand, the entire system (including both database server and oper-

ating system) can be transferred onto a more powerful system which occurs trans-

parently to the end user.

The PostgreSQL DBMS is a powerful, open source, relational database system

capable of handling the large quantities of data which are generated by combina-

torial materials discovery projects such as FOXD. A relational database is a collec-

tion of tables interconnected via relations. Data are created, retrieved, updated and

deleted using Structured Query Language (SQL), the standard language for database

management. SQL was designed specifically to query data contained in a relational

database and permits the building of complex queries.

Figures 4.1 and 4.2 illustrate the database schema/structure which shows the

complete database layout and relationships between the tables. Several tables con-

tain data which are relevant to both sections (LUSI data and literature data) of the

database; for example, element information such as atomic number and valency.

http://www.postgresql.org/
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The essential contents of the database are the tables containing compositional and

property data for each particular material. The differences between the two datasets

are found in the meta-data. The literature dataset contains meta-data pertaining to

the references from which the data are obtained, while the LUSI dataset contains all

of the sample production records, including a more detailed description of sample

manufacture and sample measurement.

Various tables are used to store data such as sample compositions, library syn-

thesis parameters, ink manufacturing details, ceramic powder information, sample

location data and even images associated with various stages of the manufactur-

ing/measurement process. This database layout is available in more detail on the

database website (http://db.foxd.org). Furthermore, by using tables to store

details of, for example, measurement techniques and types of analysis data, extra

measurements and parameters can be added without altering the underlying de-

sign. This static design approach is important in database systems since it allows the

database engine to store the data in the optimal fashion.

4.2.1.1 Literature and LUSI Datasets

The literature dataset contains composition and performance properties extracted

from peer-reviewed journals, and can be fitted into two broad categories: dielectric

ceramic materials, with compositional information and permittivity measurements,

and a dataset of ion-diffusion materials and measurements. The database includes

an index which relates each record back to its original article allowing users to deter-

mine the provenance of each record. The inclusion of this meta-data is particularly

important since different references often publish results on the same, or very simi-

lar, compositions.

In the case of the dielectric materials dataset, the data was extracted manually, re-

sulting in a spreadsheet containing columns for the chemical formula and property

measurements. The diffusion dataset was partially obtained using automatic meth-

ods, the “Digitize” V0.99 software package [157] being used to extract numerical

values from graphical figures. Tabular data was extracted manually and the result-

ing data from both automatic and manual extraction was entered into a spreadsheet.

Both the dielectric and diffusion spreadsheets were parsed using Perl [158] and in-

serted into the database. The Perl module “PerlMol” [159] was used to parse the

string containing the chemical formula to extract the individual elements and quan-

tities, permitting detailed compositional information to be recorded.

http://db.foxd.org
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Figure 4.1: Page 1 of the database schema. Data is stored within displayed tables
which each contain a number of fields. Record relationships, indicated by arrows,
are effected through key fields. A “primary key” which uniquely identifies a record
in one table is used as a “foreign key” in another. Any particular table may only have
one primary key, but may have as many foreign keys as desired.
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Figure 4.2: Page 2 of the database schema. Data is stored within displayed tables
which each contain a number of fields. Record relationships, indicated by arrows,
are effected through key fields. A “primary key” which uniquely identifies a record
in one table is used as a “foreign key” in another. Any particular table may only have
one primary key, but may have as many foreign keys as desired.
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The LUSI dataset contains meta-data associated with library sample composi-

tions and synthesis, related raw measurement data and subsequently derived data

for the samples synthesised by LUSI. It comprises details of the powders used to

manufacture the inks as well as records of the ink production parameters. The ink-jet

printing system automatically mixes the inks to generate the compositional ranges

which are printed onto slides. The composition of each sample, along with the sinter-

ing and other manufacturing conditions are also recorded. For production purposes,

slides are packed into batches of 100. This value respects a hardware limitation on

the maximum number of slides which may be printed and sintered simultaneously.

At the time of writing, the materials under investigation are similar to those found

in the literature datasets. As work progresses, however, the range of compositions

in the database will broaden, increasing the generality.

Measurement data may be associated with either entire library slides or indi-

vidual samples. Results arising from subsequent analysis can also be stored within

the system. In this instance, the relationship between the original and derived data

is also preserved. For data provenance purposes, all measurement and analytical

datasets are associated with the user responsible for their creation.

Frequently, the researcher may wish to record notes or observations concerning

some aspect of an entity which does not fit into any particular structure. To capture

this often valuable data, a facility is provided to associate a free-form text annotation

with any database entity. Client tools provide an electronic notebook function for

creating and reading these annotations.

4.2.1.2 Database schema design

In general, changes to the schema of the database become more difficult as the vol-

ume of data and the number of users increase. It is therefore important that the

database is designed such that new analyses, measurements and parameters, etc.

can be added into the database without modification of the structure. Analysis types,

measurement types and parameter names are recorded in individual tables, allow-

ing addition of measurements simply through the addition of a record to the relevant

table. “Pivot tables” are automatically generated tables which use rows from one ta-

ble as column headings in another and can be used to dynamically generate tables

containing a variable number of columns. In this way, when added to the measure-

ment table a new measurement type will automatically appear as a column in the

generated pivot table, permitting the addition of new analyses, measurements and
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parameters without modification of the underlying database schema.

4.2.2 Database access interfaces

In order to effectively use the system, the user requires a simple graphical or tex-

tual interface to the database. There are a number of interfaces available for access,

depending on the needs of the user. Originally, an informatics system, discussed in

more detail in Section 4.4, was developed in Java. The system allowed users to enter

production and experimental data quickly and efficiently [142] and was built into

the LUSI control software. However, significant alterations have been made to the

LUSI system and database, and this software has not yet been updated.

Currently, the primary method for data entry is through the use of software writ-

ten in Perl [158], which parses templated spreadsheets, and the data are inserted

into the database using SQL. A web-based front end to the database running the

Apache [160] web server software and employing the PHP [161] scripting language

is also available. The front end system allows users to obtain statistical information

about the data and permits data browsing, searching and filtering using a variety of

search methods (for example, according to composition, measurement values, and

production date). This search functionality will become richer as the user-base re-

quests more fine grained search and analysis capabilities. A screen-shot of a web

page allowing users to browse through the dielectric data is shown in Figure 4.3.

Other access methods include the ability to connect directly to the database from

within custom written C/C++ applications. This allows almost limitless application

of a wide range of tools. Data added to the database originates from two sources:

Data generated from LUSI samples can be entered automatically into the database

using instrument data files while external data, for expanding the literature dataset,

can be added manually.

4.2.2.1 LUSI analysis data

Analysis of the large numbers of samples generated by LUSI generates large quan-

tities of data. The analytical instruments used include an evanescent microwave

probe, X-ray diffractometer, impedance analyser and focused ion beam secondary

ion mass spectrometer.

With the exception of the impedance spectrometer, these devices are not co-

located with LUSI and are operated independently. Each device has provision for

automated high-throughput screening (HTS) and produces output electronically.
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Figure 4.3: The web interface to the dielectric database. The page allows users to
browse through the dielectric database and see the composition and permittivity of
the materials in the database. Other pages which permit searching for particular
permittivity values and elements are also available.

The public interface for the informatics system provides programmatic and man-

ual mechanisms for uploading measurements and associating them with sample

records.

Each measurement device produces data in a custom electronic file format, for

each of which a parser has been developed to extract the salient data1. This scheme

facilitates the automatic analysis of measurement data by incorporating the analysis

procedure immediately after the upload and parsing step.

4.2.2.2 External Data

Currently, external data submitted for inclusion in the database must be published

in a peer-reviewed journal. This is used as a basic safety net to ensure data quality.

Additionally, “data manager” appointments who will be responsible for particular

data are being considered. For example, the data relating to dielectric properties

will be assigned to a person who has the authority to approve or deny requests to

1For provenance purposes, the source files are retained in the file store
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add data when these are made. In this way, data from unpublished sources can be

accepted, provided that the data manager is satisfied that the submitted data has

been obtained using appropriate experimental methods and that the data is reliable.

Data modification is more problematic. Ideally, the reason for a discrepancy be-

tween two results will be contained within the experimental or measurement meta-

data and so the results constitute two separate data points. In practice, there may be

insufficient meta-data available to determine the reason for the discrepancy and so a

decision must be made. In such situations, either one result is invalid, in which case

the correct data is retained; or both are valid and the difference can be explained by

the experimental or measurement error, in which case the mean result is substituted.

In both cases, the original data is retained for archival purposes.

Within the web front end system, three categories of users are defined. The ad-

ministrator has access to the complete database and can make system wide changes

to the table structure and data. Other users have write access to the data and can

make alterations to the data, but they cannot alter the table structure. Finally, read-

only users can only read the data in the database, with no changes permitted. As

mentioned previously, a fourth user category, “managers” who will have the abil-

ity to approve/deny data addition/modification requests and will be responsible

for ensuring that the data contained within their section is accurate, is also being

considered.

4.3 Features and applications
By making materials data available in a logically ordered, well defined way, the

FOXD database system provides what is hoped will be a valuable resource to the sci-

entific community. The ability to browse through the data, and to perform searches

based on properties and/or compositional information enables users to rapidly de-

termine previous work completed and to identify “gaps” in current knowledge

which will help to prevent duplication of effort.

Additionally, data mining algorithms can be applied to the data to yield impor-

tant insights into composition-structure-property relationships [162]. To enable this

ability, the user must be able to generate datasets using flexible record selection rules

which are then exported from the database in a machine readable format.
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4.3.1 User requirements

In order to enable users to browse/search the available data, and also to enable ap-

plication of data mining algorithms, several requirements were identified. The user

must be able to:

1. Browse through the whole dataset. This view of the data permits the user to

view the composition and property information for the records in the database.

2. Select records based on a range of properties. The system allows the user to

enter a permittivity range which allows the user to select records which have a

particular permittivity.

3. Select records based on their composition. Compositional information can be

user to select records from the database. The system allows the user to enter a

desired element and the quantity required.

The selected records are displayed on the screen as shown in Figure 4.3. When

a user selects a particular record from this screen, another page is displayed. This

screen provides further meta-data and includes the original refereed publication

from which the data was extracted.

To facilitate data mining of the selected dataset, the data must be available in a

machine readable format. Two main formats are available: In the first case, comma

separated variables (CSV) are provided; in the second, XML based markup can be

exported.

4.4 LUSI control software
During the initial stages of the FOXD project, control software, written by M. J. Har-

vey, enabled automatic data capture from LUSI [142]. Unfortunately, due to the sig-

nificant changes which have been made to the LUSI system, which include the phys-

ical transfer of the equipment between academic sites, this software is not currently

in use. Nevertheless, the underlying software components are generic and can, in

the future, be updated to work with the modified LUSI system.

As a consequence of the design of the LUSI instrument, each constituent device

must be independently controlled via a vendor-specific interface or software pack-

age. In order to present a unified interface to the instrument, in which each device

may be treated as a constituent of a subsystem, it is necessary to construct a software
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system to manage each component. The design chosen is hierarchical, with each

layer representing increasing abstraction in device operation. Figure 4.4 exhibits a

block diagram of the individual tiers of the LUSI control software. Each layer is

described below in Section 4.4.1.

The logical control software has been developed in Java [163]. Java provides

a stable, high-level, object-oriented programming environment. Although designed

as a platform-independent environment and lacking functions for directly communi-

cating with hardware devices, Java provides the ability to programatically interface

with native C code or libraries (with C calling semantics). This capability is used

for interfacing with devices which require direct hardware control or which have

vendor software provided as native libraries.

4.4.1 Device control

The design of LUSI is inherently modular, each device within the instrument having

particular control interface requirements. For each device, a simple software compo-

nent is created which encapsulates implementation details of communicating with

and controlling the device. To permit control of the device by higher levels of soft-

ware, each component provides a network-visible interface.

The control software provides a single, unified interface to the instrument. It is

divided into subsystems which are defined in terms of:

1. Spacial extent. The volume of space, defined within the co-ordinate system of

the enclosing robot gantry, in which the subsystem is taken to exist (see Fig-

ure 4.5). Within this volume, the subsystem software component has exclusive

control of the picker which may be operated arbitrarily. This is necessary to

accommodate subsystems which exhibit interactions between constituent de-

vices: in the case of the printer, the print head obscures picker access to slide

locations and must be moved appropriately in order to access certain slide lo-

cations.

2. Transfer points. Points residing on the surface of the subsystem volume (grey

squares in Figure 4.5) which indicate the points at which picker control can be

acquired or relinquished by the subsystem software.

3. Slide capacity. Locations within the volume which are valid positions for a

slide. The subsystem software maintains records of the locations and serial

numbers of slides within the subsystem.
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Database

applications

Client

Public interface

Physical control

Logical control

Planner

Hardware

Figure 4.4: Block-diagram of LUSI device control/informatics software architecture.
Dotted box indicates separate administrative domains. Arrows between boxes indi-
cate direction of communication.
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4. Associated devices. The physical devices to which the subsystem software re-

quires access. Not all subsystems control physical devices: the loader subsys-

tem, for example, simply represents a location at which fresh library slides are

stacked.

Subsystems are interconnected via pre-defined routes between predetermined

way points (red lines and rectangles in Figure 4.5) which determine paths used by

the picker when transferring slides. Routes are defined such that movement between

adjacent way points requires picker movement along only a single axis, restricting

movement to specific loci.

The use of manually determined, static way points has the benefit of reducing

the likelihood of collision or other adverse interaction between the picker and equip-

ment at the expense of non-optimal routing. Since the printing and sintering dura-

tions dominate the synthesis time, this is considered a negligible cost.

4.4.2 Operation within a grid computing environment

The grid computing model [164] of distributed computing promotes transparent

use of computational resources which are distributed across administrative and ge-

ographical domains. The prevalent software model for grid computing is that of

the service-oriented architecture (SOA). Within a SOA environment, software com-

ponents comprise loosely coupled, highly interoperable application services (‘grid

services’). SOAs are predominantly implemented as web services: entities accessible

via SOAP [165] operations, the capabilities of which are described by Web Service

Description Language (WSDL) [166] documents.

The incorporation of the SOA methodology into the design of the public interface

to the LUSI software can facilitate the integration of the instrument into a larger sys-

tem of software components. This can have direct benefits when the instrument is

used as part of a complex workflow. For example, a virtual materials discovery cycle

(Section 2.3) can be implemented as a grid service which directly controls the oper-

ation of LUSI. In this way, we can combine virtual and physical materials discovery

cycles to accelerate the materials discovery process.

Integration of this database with other materials databases such as those de-

scribed in Section 4.1 may prove useful in the future. The integration of disparate

databases is a complex problem and several solutions have been proposed for life

sciences databases [23]. The suggested solutions are not application specific and can
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be applied to databases in materials science. In particular the OGSA-DAI project

aims to develop middleware to assist with access and integration of data from sep-

arate sources [167]. OGSA-DAI permits data resources, such as relational databases

to be exposed on a computational grid using “web services” [168]. Projects currently

using OGSA-DAI [169] are generally in the bioinformatics field.

4.5 Summary
The FOXD project database is a core component of the project. The strength of any

combinatorial project lies in the collection of the large quantities of data produced. In

this chapter, we have seen how the database layout has evolved into its current form

and also how various interfaces have been developed. The database schema takes a

generic form, facilitating the addition of new analyses and measurement parameters

thus allowing the database to expand and encompass new areas. The data interfaces

are decoupled from the database, allowing development of the database to occur

independently of the various data access methods.

Two datasets are contained within the database. Data gleaned from the literature

has been extracted, using both manual and automated techniques, and recorded in

the database. Additionally, data generated in the production of samples by LUSI

and their subsequent analysis is also recorded. In particular, the data pertains to

dielectric and ion diffusion fields; however, the generic nature of the database design

permits materials from other areas and with different measurement techniques to be

incorporated. Indeed, the expansion of the database into different fields of interest

is under construction at the time of writing.

In the next chapter, we discuss Baconian modelling techniques which are avail-

able to extract information from the database. Such algorithms can be used in the

development of new materials predictions which can be manufactured using LUSI,

thus completing the materials discovery cycle.
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CHAPTER 5

Baconian modelling methods

5.1 Introduction
The development of predictive models is a vital link in the materials discovery cy-

cle outlined in Chapter 2. As discussed towards the end of Chapter 3, conventional

Popperian prediction methods have often been shown to be remarkably effective.

Nevertheless such models are based on fundamental physical and chemical princi-

ples, and are computationally expensive to evaluate for bulk systems. By contrast,

Baconian models can be made as simple or as complex as required for a particular

problem.

Baconian predictive models are based on inductive learning [170] which attempts

to develop generalised relationships or patterns by statistical inference from a pre-

existing dataset. Provided that a fundamental relationship between the input pa-

rameters and output variables exists, and the model is able to model the relationship

and adequate training data is available, the trained model will be applicable to fu-

ture unseen examples. The domain of applicability of the model is directly related to

the available training data.

Breiman [68] provides an overview of the two “cultures” of statistical modelling

which he refers to as data modelling and algorithmic modelling. In general, statistical

modelling attempts to generate a functional relationship between input parameters

and output variables. The parameters within the model are obtained through a pro-

cess, often referred to as “training”, and can be as simple as least squares error min-

imisation used in linear regression, through to the back-propagation algorithm used

in artificial neural networks. In both cases, the training process requires an example

dataset containing “features” which are the input variables of the model, and out-

puts which are the usually experimentally measured outputs for which a prediction
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is attempted. Breiman’s data and algorithmic approaches to Baconian modelling are

separated based on the determination of the functional form of the data relationships

and each have their own strengths and weaknesses.

5.1.1 Data modelling

Data modelling commences by assuming a functional form for the model. The

archetypal data model is linear regression according to which the dependent vari-

able y is a linear combination of the independent variables xi

y = w1x1 + w2x2 + · · ·+ wmxm (5.1)

where wi are the parameters and m is the number of parameters to be determined.

The parameters are determined, generally using least squares regression which is de-

scribed more fully in Section 5.4.2. Traditional statistical techniques such as linear re-

gression are essential tools for the scientific examination of data and represent prob-

ably the oldest and most widely used approaches for statistical modelling of data.

Classical statistical models, while excellent for low-dimensional datasets having few

input parameters, become less useful when dealing with larger, high-dimensionality

datasets [171] which are increasingly becoming available. Additionally, regression

methods assume a pre-determined form of the functional dependency and thus do

not allow discovery of functional relationships not included in the model.

5.1.2 Algorithmic modelling

Algorithmic modelling does not assume a functional form for the input-output re-

lationship. The functional relationship between the input and output data is devel-

oped through a training process which adjusts the model to fit the training data. Ad-

vantages of algorithmic modelling over data modelling include the ability to accept

a larger number of input parameters and the absence of a requirement to pre-select

the form of the functional relationship. A disadvantage of algorithmic modelling is

that it can be subject to “over-training” effects where the existing data is memorised,

resulting in poor new predictions. However, this effect can be reduced through the

use of validation techniques.

5.1.3 Large datasets

A pre-requisite for any data modelling is the existence of a dataset. During data

collection, a dataset is built up by storing a number of features about a number of
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records. Several forms of data collection exist. Traditionally, the data is collected

manually and, usually due to the cost and time of manual methods, the number

of different inputs and the number of records is limited. Automated data collec-

tion such as that found in combinatorial projects (Section 2.1.1), however, generally

permits a much larger number of inputs and subjects to be collected, leading to a

rapid increase in the size of available datasets. Perhaps the most explosive growth

has occurred in bioinformatics where hundreds of databases are available [172, 173]

even reaching the point where a “database of databases” [174] exists. As discussed

previously in Section 4.1, only a relatively limited number of materials databases ex-

ist, including several at the National Institute of Science and Technology (NIST) [148]

and other academic and commercial sources. Consequently, the use of artificial intel-

ligence to perform data mining of the bioinformatics databases is much more mature

than in materials science [175].

Depending on the complexity of the collected data, a database is often used to

record the available data (Chapter 4) which records the data in numerous inter-

related tables. A typical tabular or spreadsheet view of a dataset consists of two

dimensions. The rows generally represent records in the dataset and the columns

provide the features, also known as attributes, and the output variables. In general,

large datasets are advantageous; it is much easier to choose a sub-dataset from an

existing large dataset than it is to collect more data. In a classical situation in which

data is scarce, a dilemma arises. Data is required to develop the prediction method;

however, sufficient data must remain for evaluation of the predictive performance.

A modest dataset size leads to the problem of maximising the effective use of the

data whereas a large dataset reduces this effect.

With large datasets, the small proportion of the data used for model performance

testing can still consist of a large number of cases. This is essential when performing

formal statistical significance tests of prediction model accuracy because confidence

in the results obtained is directly proportional to the number of test cases. A large

quantity of test data is reassuring since it increases confidence that the results ob-

tained are not due to coincidental dataset selection.

So, most prediction methods should improve as the size of the dataset increases.

Predictive data mining is an estimation based on previous data and so more train-

ing data provides a more accurate “map” of the patterns contained within the data.

Nevertheless, a large dataset does not guarantee more accurate prediction. A large
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dataset containing random numbers, no matter how big, will provide nothing of

value since there are no patterns to be discovered. Additionally, large datasets which

consist of a large number of features can suffer from a problem known as the curse of

dimensionality.

5.1.4 The curse of dimensionality

As the number of records in a dataset increases, the accuracy of models developed

from the data will, in general, increase. As the number of features increases, how-

ever, the effect on model development is not so clear. For each feature that is added

to the dataset, we must ensure that there is a sufficient number of records to ac-

curately model the input’s effect. Thus, if we assume that M records are required

to determine the effect of each input dimension, we require Md training patterns

for d dimensions. The number of records required for accurate modelling therefore

grows exponentially with the number of input dimensions and each additional input

requires M extra records to model its effect. This phenomenon is often referred to

as the curse of dimensionality [176] and we find that increasing the number of input

features rapidly leads to a point where the data is very sparse, providing a very poor

representation of the data relationships. Thus we can find ourselves in the somewhat

paradoxical situation where the removal of information from a dataset can lead to

enhanced performance of a developed model. Furthermore, addition of input pa-

rameters can result in a reduction in the quality of the model produced.

Dimensionality problems can be mitigated through the use of data compression

or feature selection. Often, input variables contain linear correlations, in which case

principal component analysis (Section 5.3.3.1) can reduce the input dimensionality

without significantly affecting the dataset.

5.2 Predictive models
Although data mining can be applied to almost any data, here we are primarily in-

terested in the development of predictive models in the field of materials science.

The Baconian approach to the development of predictive models is critically depen-

dent on existing data and the underlying assumption is that models which hold for

the existing dataset can be generalised to make predictions for new data.

Statistically speaking, the existing dataset only provides a sample of a hypothet-

ical larger group of records, known as a population. Such a sample is assumed to

contain a representative subset of the population and, hence, models obtained from
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the dataset sample will apply in the general case. The predictive model is developed

through mathematical operations on the data in the dataset. Hence, the data must

be represented by a numerical value, regardless of the physical meaning of the data.

5.2.1 Features and representation

Two standard feature types exist: continuous and discrete. Continuous variables

can be easily represented using their value; discrete variables can be encoded in two

ways: true-or-false variables and ordered variables. True-or-false variables permit a

binary encoding: 1 for true and 0 for false with the two states being mutually exclu-

sive. These variables can be generalised to more than two possibilities. There then

arises a choice whether to encode the variable as a single number having different

integer values for the different states or to encode the variable as m individual true-

or-false variables where m is the number of possible states of the single variable. In

ordered variables, the relative values of the records are important. So, data which is

discrete but has inherent order, such as chemical elements, which can be represented

by their atomic number is best represented by a single variable. Discrete data with

no inherent order, such as crystal structure, is best represented by using different

variables for each possible value.

5.2.2 Classification

A classification problem is one in which data is assigned to a discrete variable. The

problem can be a simple true/false classification, or can be generalised to many

classes. In materials science prediction of crystallographic class [141] is a common

example of a classification problem.

Performance of a classification algorithm is measured by the percentage of clas-

sifications which are correct. To ensure the validity of the model, prediction must

perform better than random classification. A common test is to ensure that the clas-

sifier’s prediction accuracy is higher than a simple predictor which always predicts

the most common output class.

5.2.3 Regression

Regression problems are also known as “function approximation”; the objective is

to predict the value of a continuous variable. Regression problems are usually more

difficult than classification, especially when the input data is discrete. A classifica-

tion result can be trivially obtained from a regression by definition of one or more
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“cut-off” values which determine the boundaries between the classes.

The performance of a regression problem is measured by calculating the “dis-

tance” between the predicted value and the true value for a particular record. Two

common performance functions are the root mean square (RMS) error (Equation

5.14) and the root relative squared (RRS) error (Equation 5.15). The RMS error com-

pares predictions with known values. However it is not normalised and must be

compared with the mean value of the pre-obtained data to determine the relative

performance. The RRS error determines whether the system is predicting “within

the mean” of the test data. It is a comparison between the predictor’s performance

and a “simple predictor” which predicts the mean output of the test data.

5.2.4 Measuring predictive performance

The predictive performance of a model is determined using an error function. In

classification, there is no “distance” between the classes and the error function is

based on the number of correct predictions made. In regression, however, there is

a “distance” between the model’s prediction and the known value and errors can

be weighted differently. In both classification and regression problems the key con-

cept is that the error function is determined by comparing the predicted and the

true values. An accurate calculation of the error function is a non-trivial problem

but is extremely useful for comparing the performance of different techniques. The

calculation of a non-biased prediction error is discussed in Section 5.8.

5.3 Data preparation
Whilst prediction methods have very strong theoretical capabilities in principle, in

practice, these techniques can be limited by a shortage of data relative to the often

seemingly unlimited parameter space under consideration. Prediction methods ben-

efit from any preparation or pre-processing which improves the quality of the dataset.

Pre-processing consists of three goals: cleaning, normalisation and feature extrac-

tion. In general, cleaning and normalisation are performed on both the input and

output data while feature extraction applies to the input data. However, it may also

be possible to perform feature extraction on the output data, depending on the cir-

cumstances. The three different types of pre-processing are now described in turn.
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5.3.1 Cleaning

The purpose of data cleaning is to ensure that the data forms an accurate represen-

tation of the real situation. Occasionally, data obtained from experimental sources

contains missing values. Commonly, this means that this value has not been ob-

tained for this record and a decision must be made to determine what to do. If the

dataset is sufficiently large, then the entire record can be removed from the dataset.

However, if data is scarce, then an appropriate value may be substituted. Selection

of the substituted value depends on several considerations; a value determined by

human judgement is a common technique, while using the mean of the other records

is another. Both techniques are simple although they can bias the sample.

If sufficient data is available, an input field with a large proportion of missing

data can be discarded from the model. This helps to improve the density of the

dataset, alleviating the curse of dimensionality. However, if insufficient data re-

mains, model development may be impossible.

5.3.2 Normalisation

In most practical situations, the real data which is used as the input and output is

unsuitable for application to data mining algorithms. The numbers may be extraor-

dinarily large or small and/or may vary over many orders of magnitude. The use of

such data in data mining algorithms can lead to problems with computational over-

or underflow which can be mitigated by transforming the data. The most common

transformation is to scale the data such that it has a mean of zero and a standard de-

viation of 1. In some cases, it is useful to use a logarithmic transformation of widely

varying data to reduce the range of numbers covered. If the input variables are of

similar magnitude, then the corresponding weights can be expected to have similar

values, provided that the input values are of similar importance. If normalisation is

not performed, network performance can be poor due to local minima effects caused

by network weights being initialised a long way from their optimal values [177].

5.3.3 Feature extraction

Feature extraction involves making linear or non-linear combinations of the original

data to create new inputs for the network. These processes result in a reduction

in dimensionality of the dataset and can help alleviate the curse of dimensionality

(Section 5.1.4).
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Optimally, the prediction programs would perform all of the work required and

discover all of the important relationships in the data. However, the specification

of features and goals is carried out by human(s) and, since feature and goal specifi-

cation plays a critical role in the performance of a prediction algorithm, even small

changes can produce significant improvements in performance. A relatively minor

feature transformation, such as calculating the ratio or difference between two fea-

tures can produce better results than the uncombined features [178]. Unfortunately,

there is no universal formula for selecting the optimal feature transformations and

a “domain expert”, a person experienced in the field, is required to determine the

most favourable feature refinements.

Feature extraction can be as simple as discarding a subset of the original inputs

or a more complex automated process such as principal component analysis which

is described in the following section. Returning to our spreadsheet model of the

dataset, reduction of data can involve any of the following: Deletion of a column

(feature), deletion of a row (record/case) and reduction of the number of possible

values of a column (feature smoothing). These operations attempt to preserve the

character of the original data, but remove data which is nonessential. Dimensionality

reduction pre-processing always involves a trade-off between the desire to reduce

the complexity of the dataset to facilitate learning, and reducing the data to the point

where learning is impossible because the relationship between the input and outputs

has been lost.

5.3.3.1 Principal component analysis

Principal Component Analysis (PCA) is a technique for transforming datasets so

that the most relevant inputs are highlighted [179]. In other words, it transforms the

data to display the principal components contained within the dataset. By selecting

only the most relevant components, the dimensionality of the dataset can be reduced

without significant loss of information. The following paragraphs explain how to

perform PCA on an array of data.

1. Obtain the data

The data should be arranged into an array:



5.3. Data preparation 93

D =



x0 y0 z0

x1 y1 z1
...

...
...

xi yi zi
...

...
...

xI yI zI


(5.2)

where X, Y and Z are vectors for each of the dataset features. The individual

elements of each feature vector contain the data elements for each record.

2. Subtract the mean of each feature

The mean of each feature is subtracted from each of the data values for that

feature. Each of the xi values have
−
x subtracted from them, all of the yi values

have
−
y subtracted from them, and so on. This produces a dataset with a mean

of zero.

3. Calculate the covariance matrix

Once the dataset is normalised, the covariance matrix must be calculated. The

covariance between two quantities is a measure of how much the quantities

vary with respect to one another. The covariance between two quantities is

given by:

cov(X, Y) =

n

Σ
i=0

(xi −
−
x)(yi −

−
y)

(n− 1)
(5.3)

the covariance is calculated between each pair of input dimensions and stored

in a covariance matrix. A 3x3 covariance matrix, for features X, Y and Z, is

shown below:

C =


cov(X, X) cov(X, Y) cov(X, Z)

cov(Y, X) cov(Y, Y) cov(Y, Z)

cov(Z, X) cov(Z, Y) cov(Z, Z)

 (5.4)

4. Calculate the eigenvectors and eigenvalues of the covariance matrix
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Once the covariance matrix has been obtained, the eigenvalues and eigenvec-

tors of the covariance matrix are determined. Each of the eigenvectors repre-

sents one of the “lines” which characterises the data. The eigenvalues give the

extent to which the data is represented by the corresponding eigenvector, with

the largest eigenvalue representing the principal (most significant) component.

The smaller eigenvalues represent components which contain redundant data

and can be ignored, thus removing dimensions from the dataset while retain-

ing the significant information.

Once the smaller eigenvalues are removed, we can produce a new dataset,

containing the same number of dimensions as there are remaining eigenvalues.

5. Derive the new dataset

To derive the new dataset, a “feature vector” is created. This vector is a matrix

containing the remaining eigenvectors. The eigenvectors are arranged in order,

by eigenvalue, from highest to lowest. The dataset is formed by multiplying

the transpose of the feature vector with the transpose of the normalised original

data.

The final dataset contains a transformation of the original data, represented in

terms of the eigenvectors that were retained. Since eigenvectors are orthogonal

(by definition), the data is represented in the most efficient form.

Principal component analysis is a useful feature extraction technique, permitting

the removal of redundant data from datasets. In materials science, linearly corre-

lated data can often occur. In a compositional spread of samples, the quantity of

one element is inversely related to the quantity of another element. For example, the

barium strontium titanate system (Section 3.2.1) contains the sample compositions

shown in Table 5.1. Since the quantities of barium and strontium are correlated, they

can be compressed into a single dimension. In more complex datasets, such a cor-

relation is unlikely to be so obvious, however, a high dimensionality dataset may

contain significant correlations which permit a large degree of compression.

The eigenvectors of a matrix A are defined as vectors which, when multiplied by

A result in a simple scaling λ of A. The eigenvalues and eigenvectors are calculated

from the determinant of the matrix A − λI where I is the identity matrix which

involves root searching in a polynomial equation. There is no analytic solution for

polynomials of order> 4 and a numerical solution is required. Press et al’s Numerical
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Compound Ba Sr
Sr1.0TiO3 0.0 1.0

Ba0.1Sr0.9TiO3 0.1 0.9
Ba0.2Sr0.8TiO3 0.2 0.8
Ba0.3Sr0.7TiO3 0.3 0.7
Ba0.4Sr0.6TiO3 0.4 0.6
Ba0.5Sr0.5TiO3 0.5 0.5
Ba0.6Sr0.4TiO3 0.6 0.4
Ba0.7Sr0.3TiO3 0.7 0.3
Ba0.8Sr0.2TiO3 0.8 0.2
Ba0.9Sr0.1TiO3 0.9 0.1

Ba1.0TiO3 1.0 0.0

Table 5.1: Quantities of barium and strontium in the barium strontium titanate sys-
tem. The system contains one titanium and three oxygen atoms per unit cell in addi-
tion to the barium and strontium quantities provided. The system contains a linear
correlation between the barium and strontium quantities permitting the removal of
one dimension by principal component analysis.

recipes in C: The art of scientific computing [180] offers several such numerical solutions

including inverse iterations, Jacobi iteration and QR decomposition.

5.3.3.2 Decision trees

A decision tree is another possible technique for feature selection. Decision trees are

predictive models which maps input to output data through a succession of if-then

tests, known as nodes. The inputs may be multivariate (testing on multiple inputs

simultaneously) or univariate (testing on a single input). To classify a particular case,

the condition at the first node is applied. Depending on the result, the case is passed

down the appropriate branch to the next node, and is repeated until an end point

is reached. Common algorithms used to develop decision tree models are C4.5 and

ID3 [181].

To use a decision tree for feature selection, the data is used to build a complete

tree and the major features are selected from the first decisions in the tree [171].

5.3.4 Kohonen self-organising networks

Kohonen’s self organising maps [182] (SOMs) are a type of artificial neural network

which is trained using unsupervised learning techniques to produce a low dimen-

sional representation of the training set. SOMs are useful for visualising high dimen-

sional data.

In a SOM a (usually two-dimensional) grid of “nodes” is associated with a ran-
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domised weight vector of the same dimensionality as the input data. Training pro-

ceeds by calculating the Euclidean distance between the input vector and the weight

vector and adjusting the weight vector of the closest node, and the nodes surround-

ing the closest node, towards the input vector. This process is repeated for each

input vector and for many iterations, until a map of the input space is developed.

Each record in the input dataset is associated with a node in the map and “similar”

input records will be clustered together. The SOM therefore provide a visualisation

of the input dataset. By selecting an N -dimensional grid of nodes, where N < the

initial dimensionality, the input dataset can be compressed into N dimensions.

5.4 Prediction methods
Once the data has been prepared, algorithms which make predictions can be de-

ployed. Many prediction methods are available which use the pre-processed data to

determine the values for the model parameters in a process known as training. Once

training is complete, the model is used to attempt predictions on new data, bearing

in mind that predictions made on pre-processed input data must be post-processed

to invert the pre-processing transformation. We begin this section by discussing the

two major types of training method and then proceed to consider some of the differ-

ent prediction techniques.

5.4.1 Training methods

All prediction methods use a training dataset which contains a sub-set of the data

that we wish to model. Two types of training can be distinguished, supervised and

unsupervised, which differ in that supervised training requires the use of the output

values during the training process whereas unsupervised training does not.

5.4.1.1 Supervised training

In supervised training, the training set contains the input features of the system and

also the output data which has been pre-determined by another method such as

experimental measurement or human decisions. The learning algorithm attempts to

find a functional mapping between the inputs and outputs by using the training data

to determine the parameters of the prediction technique.

During the training process, the model’s performance is monitored by the use

of a “performance” or “error” function (Section 5.2.4) which provides a comparison

between the model’s predictions and the actual output values. Several error func-
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tions are available and several examples are provided in Section 5.5.1.2. The training

process corresponds to an iterative decrease in the error function and continues un-

til a predetermined value is reached, when training is halted. The trained model is

evaluated by application of a “test dataset”, containing new data to determine how

well the model performs. A model which performs well when working on new data

is said to have good generalisation.

5.4.1.2 Unsupervised learning

In unsupervised learning algorithms, only the input training data is available. Un-

supervised training techniques are often faster than for supervised methods, but

unsupervised methods are often only the initial stage in a two (or more) stage train-

ing process, later stages involving supervised learning, e.g. for radial basis function

(RBF) networks (Section 5.7), the first training stage uses an unsupervised process to

determine locations and sizes of the basis functions.

5.4.2 Classical statistics

The archetypal data model is linear regression where the dependent variable y is a

linear combination of the independent variables xi (Equation 5.1)

In least squares regression, the aim is to find the parameter values that minimise

the sum of the squares of the residuals S:

S =
n∑
i=1

(ti − yi)2 (5.5)

where ti is the true output and yi is the output of the regression function. The method

of least squares regression selects the parameters wi etc. such that S is minimised.

This essentially reduces to a matrix inversion problem. Linear regression is a good

and simple method for numeric prediction and has been widely used for decades.

In particular, Kuzmanovski et al. used linear regression for the prediction of unit

cell parameters in perovskite materials [183]. Although powerful, linear regression

is a “data modelling technique” in the sense of Section 5.1.1 and is unable to model

relationships not explicitly included in (5.1). An “algorithmic modelling technique”

does not require pre-specification of the functional form allowing more complex re-

lationships to be modelled.
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5.4.3 Support vector machines and regression

Support vector machines (SVM) are a form of supervised learning method which

extend the generalised portrait algorithm developed by Vapnik and Lerner [184] to

allow development non-linear models. In a two class classification problem, SVM

attempts to find a “hyperplane” which separates the two classes. If the two classes

are not linearly separable, the input space is transformed into a high-dimensional

feature space in which the two classes can be separated using a linear classifier. Sup-

port vector regression [185] is similar to SVM although it introduces an additional

function which includes the distance between a particular record and the hyper-

plane [186].

Ivancuic [187] provides a comprehensive review of the extensive use of support

vector machines in chemistry. In particular, they have been used for materials op-

timisation by Xu et al. [188] and the prediction of lattice constants in perovskites by

Javed et al. [189]. Xu et al.’s work uses processing parameters such as SiO2, water,

dispersant and alumina additive content to predict the rupture strength of silicon

aluminium oxynitride (sialon) ceramic materials using SVR and artificial neural net-

works (ANN) (Section 5.4.4). The results indicate that SVR outperforms artificial

neural networks for four of the datasets used. In the remaining dataset ANN is

better than SVR. For Xu et al.’s work, SVR was selected for its performance when

working with small datasets [190].

5.4.4 Artificial neural networks

Artificial neural networks (ANNs) provide an elegant and powerful approach to

function approximation, come in many different forms [191] and are capable of ap-

proximating very complex functions. Whilst ANNs are remarkable for their learning

efficiency, they are limited in their interpretation capabilities [170] and it is difficult to

extract classification rules from the network structure. ANNs have been used previ-

ously in materials science and a discussion was provided in Sections 3.4.6 and 3.5.7.

This thesis reports work on the application of ANNs for ceramic materials property

prediction which is discussed more thoroughly in Section 5.5.

5.4.5 K-means clustering model

In many prediction models, sample cases are examined and a generalised model

is formed which allows prediction of new cases. For these models, the solution is
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independent of the sample data which can be discarded once the model has been

formed. An alternative view is to use the sample data as a look-up table. The sample

cases are stored and predictions are obtained by looking up the entry in the table to

retrieve the answer. In a high-dimensionality parameter space, it is extremely un-

likely that an identical case will be found. Instead of looking for an exact match,

distance measures are used to find “close” cases in the look-up table. In the simplest

situation, the answer could be taken to be the same as the single nearest neighbour.

Algorithms such as k-nearest-neighbours [192] work by finding the k-nearest neigh-

bours of a new case and the answer is calculated as a function of the answers of the

neighbours. K-means clustering is used in the initial unsupervised training stage of

radial basis function (RBF) networks (Section 5.7) to determine locations for the basis

functions.

5.4.6 Decision trees

Decision trees can be used for feature extraction (Section 5.3.3) as well as the devel-

opment of predictive models. A decision tree, developed using C4.5 or ID3 [181],

can make predictions when used as a complete tree, or perform feature extraction

when only a few nodes of the tree are used.

Decision trees can be used to extract “explanations” for predictions made by

other predictive models such as artificial neural networks. As explained in Sec-

tion 5.5, the “knowledge” of a neural network is contained within real-valued pa-

rameters and provides no natural language based explanation for the predictions

obtained. Decision trees, however, can provide meaningful explanations for the pre-

dictions made. Krishnan et al. [193] use a decision tree to extract meaningful rules

from artificial neural networks, thus combining the desirable features of both mod-

elling methods. Kazumi et al. [194] have developed a framework for extracting re-

gression rules from neural networks, thus permitting the development of compre-

hensible rules for the prediction of continuous output values.

5.5 Artificial neural networks
An ANN is a highly interconnected network of simple processing elements (neu-

rons) which can exhibit complex global behaviour. The original inspiration for the

technique came from examination of the central nervous system and the neurons

which form its constituent parts. In an ANN model, simple nodes (called variously

“neurons”, “nodes”, “processing elements” or “units”) are connected together to
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form a network, hence the term “neural network”. The complex behaviour which

can be exhibited by ANNs is due to the high degree of interconnection between the

processing elements. In this section, we are mainly concerned with a “feed-forward”

layered artificial neural network. A discussion of other types of artificial neural net-

works is provided in Section 5.5.4.

Mathematically, an ANN is a functional, non-linear mapping between an input

vector X = (x1, ..., xd)T and an output vector Y = (y1, ..., yn)T where d is the

number of input units and n is the number of output units. The overall network

structure generally consists of a layer of input nodes which are connected to one or

more layers of hidden nodes, finally connected to the output nodes.

The nodes contain weights which determine the relevance of each node during

processing and can be thought to contain the “knowledge” of the system. The deter-

mination of weight values is a non-trivial task and is carried out during the training

process. Training consists of the application to the network of a training dataset con-

taining example data records for which the correct output has been pre-determined.

The output of the network is compared to that provided by the training data set and

the difference is used to make adjustments to the network weights. This process

is carried out for each training record and the whole set of data is applied to the

network many times. Application of the complete training dataset is known as an

epoch; with each successive epoch, the prediction accuracy of the network iteratively

improves until a specified accuracy is attained and training is halted.

A trained network is able to make accurate predictions for records in the training

dataset. However, the ultimate aim in the development of a neural network is that it

yields a good generalisation, that is, the network is able to make accurate predictions

for data records which have not been used as part of the training process, that is,

they have not previously been “seen” by the network (Section 5.8).

It is generally accepted that ANNs provide more accurate predictive capabilities

than traditional linear or non-linear regression [195] and the superiority of ANNs

over regression techniques becomes more pronounced as the dimensionality and/or

non-linearity of the problem increases [196]. For certain datasets, however, partic-

ularly where a linear relationship exists or the data can be transformed to expose a

linear relationship, linear regression can out-perform ANN techniques [197].
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5.5.1 Feed-forward artificial neural network operation

An ANN used for function approximation operates by applying the input vector to

the input nodes and, through the application of a mathematical algorithm, produces

values at the output nodes. In general, the network is made up of many neurons

which operate in a standardised way.

A diagram of a general neuron is shown in Figure 5.1. Each node contains a

weight vector W which contains the same number of elements as the input vector

X. The applied input vector and weight vector are combined using a “combination

function” to give c:

c = C(X,W) + b, (5.6)

where b, is a constant value, known as the bias. In practice, to simplify operation,

the bias is implemented through the addition of an extra, constant input element,

of value 1 which allows the addition of the bias as an extra element in the weight

vector. The output of the combination function is used as the input to an activation

function g which provides the activation of the node and gives the output, z:

z = g(C(X,W)), (5.7)

Various types of ANN can be created through the application of different com-

bination/activation functions. Common forms of combination function which are

calculated for the input and weight vectors are the dot product, which is the key fea-

ture of the multi-layer perceptron (MLP) network discussed in Section 5.6, and the

Euclidean distance, which is used in radial basis function (RBF) networks, discussed

in Section 5.7.

5.5.1.1 Activation functions

The activation function can be any function. A linear activation function essentially

results in a neural network capable of generalised linear regression. Non-linear acti-

vation functions introduce non-linearity into the network, resulting in a key feature

of ANNs; approximation of non-linear functions. Additionally, differentiable activa-

tion functions are required since weight adjustments made during training are deter-

mined using gradient descent techniques. Examples of common activation functions

are given below:
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Figure 5.1: Schematic diagram of a neuron (PE). The input vector X is combined
with the weight vector W using the combination function C to give a. The output of
the element z is obtained by applying the activation function g to the output of the
combination function. The interconnection of many of these neurons results in the
formation of an artificial neural network and the use of different combination and
activation functions allows the creation of different network types.

hardlim(n) = 1 if n > 0, 0 otherwise (5.8)

hardlims(n) = 1 if n > 0,−1 otherwise (5.9)

purelin(n) = n (5.10)

radbas(n) = exp(−n2) (5.11)

logsig(n) = 1/(1 + exp(−n)) (5.12)

tansig(n) = 2/(1 + exp(−2 ∗ n))− 1 (5.13)

5.5.1.2 Error functions

The error function is a measure of a network’s predictive accuracy for a particular

dataset. All error functions are based on the error of the prediction, i.e. the dif-

ferences between the actual output values and the predicted output values of the

dataset. Common error functions include the root mean square of the prediction

error, the mean absolute (MA) error and the root relative squared error:
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εRMS =

√∑M
m=1(ym − tm)2

M
(5.14)

εMA =
1
M

M∑
m=1

|ym − tm| (5.15)

εRRS =

√√√√∑M
m=1 (ym − tm)2∑M
m=1 (tm − t)

(5.16)

respectively, where y are the predicted output values, t are the actual output values,

M is the number of records in the dataset and t is the mean actual output.

Both RMS and MA errors provide an indication of the “average” difference be-

tween the prediction and actual output values. The RRS error provides a comparison

between the predictive ability of the ANN and a simplistic predictor. The simplistic

predictor is the mean value of the test data and the RRS error determines whether

or not the ANN is performing better than this crude technique. This comparison

is equivalent to error measurements used in classification problems where perfor-

mances are compared to classifiers which always predict the largest class present in

the test data. It is helpful to consider this error function as a measure of whether we

are making “better than random” predictions.

5.5.2 Processing elements

Processing elements (PEs) are the component parts of which neural networks are

made. The two most popular forms of PE give rise to the multi-layer perceptron

(MLP) and radial basis function (RBF) neural networks. In MLP networks, the in-

dividual processing elements are known as perceptrons and consist of the scalar

product combination function and a non-linear activation function such as the tanh-

sigmoid function given by equation (5.13). The operation of the perceptron process-

ing element is now described.

The calculation of the output of a perceptron consists of two stages. Firstly, the

dot product of the input vector and the perceptron’s weight vector is calculated. Sec-

ondly, an activation function is applied to give the perceptron’s output. A perceptron

operates on an input vector X = (x1, x2, ..., xI) and weight vector W = (w1, w2, ..., wI)

as follows:
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a =
I∑
i=1

xiwi + w0 (5.17)

z = g (a) , (5.18)

where a is the output of the combination function, g is the activation function and

w0 is a constant value known as the bias. The bias can be incorporated into the sum

by the addition of a constant input x0 = 1 which gives:

z = g

(
I∑
i=0

xiwi

)
= g (X · W) , (5.19)

where I is the number of input variables plus one for the bias. Again, X is the input

vector (this time containing the constant input for the bias) and W is the weight

vector, both of size I .

RBF networks [198] use the Euclidean distance between the input and weight

vectors as the combination function and, typically, a Gaussian activation function

(5.21). An RBF PE operates with a similar two-stage process to a perceptron. Initially,

the Euclidean distance between the input vector X and the the RBF’s location, which

is stored in the weight vector W:

a =

√√√√ I∑
i=0

(xi − wi)2 (5.20)

z = exp
(
a2

2σ2

)
, (5.21)

where σ is a parameter known as the “width” of the basis function and the other

variables are as defined previously. RBF networks are discussed more thoroughly in

Section 5.7.

5.5.3 Single layer network training algorithm

Having described the operation of a single processing element, we now proceed to

discuss the development and training of a network of PEs. This section commences

by considering a network consisting of a single layer of perceptrons, shown in Fig-

ure 5.2.

The output of this network is given by a generalised version of equation 5.19:
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Figure 5.2: Schematic diagram of a single layer perceptron neural network. The
input vector X, which includes a constant input bias x0, is combined with the weight
vector W and transformed by the activation function g to give the output vector Y.
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zp = g

(
N∑
i=0

xiwip

)
(5.22)

J = g (XW) , (5.23)

where Zp is the output of the pth perceptron. W is a matrix containing I × P weight

elements, one for each input to each hidden node. The other symbols have been

defined previously.

When the network is first constructed and the weight vectors initialised with ran-

dom numbers, the network predictions will not be very accurate. The error function

(Section 5.5.1.2) provides an overall measurement of the network’s predictive accu-

racy and the network training process is equivalent to minimising the error function.

A standard error function is the sum-of-squares which is given by the sum over

all patterns in the training set and over all outputs:

E(W) =
1
2

M∑
m=1

C∑
c=1

{yc(Xm; W)− tmc }2, (5.24)

where yc(Xm; W) is the cth output of the network as a function of the input vector Xm

and the weight matrix w. M is the number of records in the training set and C is the

total number of outputs. tmc is the target value of the cth output for input Xm.

Since the output of the perceptron is a linear function of the weights, the error

function is a quadratic function and hence the derivative of the error function with

respect to the weights is a linear function. An analytical solution of the optimal

weight values is therefore possible using matrix inversion techniques.

The limitations of the single layer perceptron network become apparent when the

complexity of the functional relationship between the input and output variables

increases. To illustrate the problem, we can consider building a network capable

of representing the exclusive-OR (XOR) function illustrated in Figure 5.3. The input

vectors X = (0, 0) and (1, 1) give an output of 0 and are designated classC1 whilst X =

(0, 1) and (1, 0) give output 1 and are designated class C2. In general, the solution

to a problem is said to be linearly separable if the output values can be correctly

classified using a linear boundary. This is not possible for the four outputs of the

XOR problem; hence this problem is not linearly separable and therefore not solvable

using a single layer perceptron network [9]. The multi-layer perceptron network
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described in Section 5.6 can model the XOR function, provided that the MLP contains

more than two hidden nodes [199]. Nitta [200] developed a single layer perceptron

network which was able to model the XOR function using complex numbers in the

weight vectors.

x

y

C1

C1C2

C2

Figure 5.3: The exclusive-OR (XOR) function in two dimensions provides an exam-
ple of a problem which cannot be solved by a single layer perceptron neural network.
The points labelled C1 have a value of 0 and the points labelled C2 have a value of 1.
It is impossible to separate the solutions with a linear boundary, hence, it is impossi-
ble to solve this problem using a single layer perceptron network.

5.5.4 Types of artificial neural network

The architecture of a neural network is the way in which the individual processing

elements are connected. In general, it is possible to arrange processing elements into

limitless configurations but they can be classified into two main types: feed-forward

or feed-back (“recurrent”).

In a feed-forward network, the data processing passes directly through the net-

work, i.e. no feedback loops exist. Formally, we can define a feed-forward network

to be a network for which it is possible to assign successive numbers to each of the

PEs such that each PE receives inputs from PEs having smaller numbers than as-

signed to itself [9].

In a feed-back or neural network, the data processing does not pass directly

through the network. There are feedback loops in which the output of a process-

ing element is fed into the input of a processing element in the same or previous

layer. This means that the network processing is dependent on the previous state

of the network providing a memory. The memorisation of the previous state of the

ANN allows sequence prediction which is beyond the capabilities of standard feed-
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forward ANNs.

Perhaps the simplest example of a recurrent neural network is the Hopfield net-

work, invented by John Hopfield [201, 202]. In a Hopfield network, each neuron is

a binary threshold unit which means that the neuron provides one of two outputs,

depending on whether the input is above or below a threshold value. Each neuron is

connected to each other neuron which allows the network to be “executed” repeat-

edly since the outputs from one network execution form the inputs for the next. The

network can be trained to memorise certain patterns allowing recall when a partial

pattern is supplied to the inputs. Successive executions of the network will converge

towards the memorised state.

In the following section, we describe the multi-layer perceptron, a feed-forward

network which is trained using the back-propagation algorithm. This network is

used in Chapter 7 in the development of a predictive model for the prediction of

functional materials properties.

5.6 Multi-layer perceptron networks
A single layer perceptron network is limited in the range of functions that can be rep-

resented (Section 5.5.3). A more general mapping can be represented if we consider

a network consisting of two layers of perceptrons connected together (Figure 5.4). It

should be noted that, if the activation function of all of the hidden nodes is linear,

then the network can be simplified by removing them. This is because the com-

position of successive linear transformations is itself a linear transformation. We

therefore concern ourselves with multi-layer perceptron (MLP) networks containing

non-linear activation functions in the hidden layer. Hecht-Nielsen [203] showed that

MLP networks can be used to approximate any continuous functional mapping.

The output(s) of a layer of perceptrons is (are) given by a generalised version of

the formula for individual perceptrons given above.

zp = g(h)

(
I∑
i=0

xiwip

)
, (5.25)

where zp is the output from the pth perceptron, xi is the ith element of the input

vector X, length I , and g(h) is the activation function, the h indicating that this is for

the hidden layer. Later, owill be used it indicate the output layer activation function.

wip is the weight element for the ith input at the pth hidden node and generalises to
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Figure 5.4: Schematic diagram of a general three layer multi-layer perceptron net-
work. The input vector X is combined with the hidden layer weight vector W and
transformed by the hidden layer activation function g(h) to give the values at the
hidden nodes Z. The hidden node values are combined with the output layer weight
vector W’ and applied to the output layer activation function g(o) to give the output
vector Y. Z0 and x0 are the biases and are incorporated into the input and hidden
layer vectors for ease of notation.
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a 2-dimensional matrix. In full matrix notation, the outputs at the hidden nodes are

the elements of the vector Z and are given by:

Z = g(h) (XW) . (5.26)

The hidden node output vector Z becomes the input vector for a second layer of

perceptrons. The calculations for the second layer are processed in the same way as

the first layer. As for the first layer, there is a bias value which is incorporated into

the summation by adding a constant input. The weight vector contains different

values and the activation function has a different form, but both are incorporated in

the same way:

yk = g(o)

(
P∑
p=0

zpw
′
pk

)
, (5.27)

where yk is the output of the network, w′k is the second layer weight vector, go is

the output layer activation function and zp is the output from the pth node in the

previous layer. The matrix notation for the calculation is:

Y = g(o) (ZW’) . (5.28)

Combining equations (5.25) and (5.27), we obtain the full equation for the cth

network output:

yc = go

(
P∑
p=0

g

(
I∑
i=0

xiwip

)
w′pc

)
(5.29)

or, in matrix notation:

Y = g(o)
(
g(h) (XW) W’

)
. (5.30)

The network above contains two processing steps and is referred to as a three-

layer network, the layers being denoted input, hidden and output. As stated earlier,

MLP networks require non-linear activation functions to enable modelling of arbi-

trary functions and also require differentiable activation functions for training using

the back-propagation algorithm (Section 5.6.2). The output layer activation function

is dependent on the desired output. A linear activation function is a very popular

choice [9].
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5.6.1 Network architecture

Selecting the type (feed-forward, feed-back, radial basis function, etc) and architec-

ture/topology (number of nodes in each layer) of a neural network is a vital and

complicated problem. As explained previously, a three layer network is sufficient to

map any continuous function although additional layers can be used to simplify the

overall architecture. The number of nodes in each layer also plays a crucial role.

In materials science, there are many data relationships of interest; however, mod-

els which provide composition-function mapping provide great benefits in combi-

natorial materials discovery (Section 2.2). Additional examples of input parameters

used and output properties predicted are contained in the following subsections,

along with a information on selecting the number of nodes in each layer.

5.6.1.1 Input nodes

The input nodes provide the number of inputs to the network. In previous work

involving the use of ANNs in materials science, compositional information [10],

dopant quantity [137], topological and geometric material descriptors [138] and ex-

perimental parameters [183] have been used as inputs to neural networks. As de-

scribed in Section 5.1.4, selecting an optimal number of input nodes is essential. Too

few, and there may be insufficient data to model the input-output relationship. Too

many, and the curse of dimensionality comes into effect. Feature extraction, which

is usually performed as part of pre-processing, plays a key part in the selection of

input nodes (Section 5.3.3).

5.6.1.2 Hidden nodes

The hidden nodes provide the processing power of the neural network. Networks

having large numbers of hidden nodes are able to model more complex functions

than those containing fewer hidden nodes. However networks having more hid-

den nodes than required are prone to “over-fitting” (Section 5.8.1) and an optimal

number of hidden nodes exists for each particular problem. The optimal solution is

to choose the minimum number of hidden nodes required to accurately model the

data. Such a solution is an example of Occam’s razor [204], named after William of

Occam (1288-1347), which advocates that one should not multiply complexity un-

necessarily. The actual number of hidden nodes required depends on a number of

factors:

1. Number of input and output elements
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2. Number of records in the training set

3. Experimental errors in the training data

4. Complexity of input/output relationship

5. Activation functions used

6. Training algorithm

The optimal solution is to use the minimum number of hidden nodes required

to accurately describe the relationship between the input and output data. Various

attempts have been made to produce a theory for the optimal number of hidden

nodes including the use of evolutionary computing techniques such as a genetic al-

gorithm [205] and the use of a decision tree [206]. A common approach, such as

that used by Guo et al. [137], simply involves training several networks with differ-

ing numbers of hidden nodes and estimating the generalisation error of each. The

network having the smallest generalisation error is then selected.

5.6.1.3 Output nodes

The output nodes contain the predictions resulting from the model. Common out-

put nodes in materials science modelling include functional data such as dielectric

or ionic property predictions [10, 137], structural classification [141], unit cell param-

eters [183] and kinetic behaviour [69].

Selecting the number of output nodes is a much simpler problem than for hid-

den nodes. The number of output nodes is determined by the number of outputs

required. Depending on the characteristics of the output data, some pre- or post-

processing may be necessary; normalised input data results in normalised outputs,

which must be unnormalised in order to report final results.

5.6.2 Back-propagation

The back-propagation algorithm, developed by Rumelhart et al [207], is a training al-

gorithm which operates by propagating prediction errors back through the network,

using them to make adjustments to the network weights. The back-propagation al-

gorithm uses gradient descent techniques which require a differentiable activation

function (Section 5.5.1.1). This means that the activations of the output elements are

differentiable functions of the input variables, weights and biases. If we then define a

suitable error function, such as the sum-of-squares, which is also differentiable, then
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the error itself is a differentiable function of the weights. We can therefore evaluate

the derivatives of the error function with respect to the weights which can then be

used to adjust the weights and minimise the error function.

Once performed for one training record, the same process is repeated until the

entire training set has been completed. A complete pass through the training set is

known as an epoch which is repeated many times. With each epoch, the accuracy of

the predictions increase until the error function reaches a pre-determined value.

We now describe the back-propagation algorithm for an MLP network having

a logistic sigmoid activation function at the hidden layer and a linear output layer.

We use a standard steepest descent optimisation algorithm to minimise the sum-of-

squares error function. The MLP network uses a dot product combination function:

ap =
I∑
i=0

wpixi (5.31)

where xi is the input node value to the pth hidden node and wji is the weight of that

connection. The sum is performed over all inputs which send connections to element

p and the biases are included by introducing an extra, constant, input element and

do not need to be dealt with explicitly. The weighted sum is transformed by the

logistic sigmoid activation function g(h) to give the value at the pth hidden node:

zp = g(h)(ap). (5.32)

zp is then propagated to the output node where it is processed by a second percep-

tron:

a′c =
P∑
p=0

w′cpzp, (5.33)

where W’ is the second layer weight matrix. Since the output layer activation func-

tion g(o) is linear, output values are unaltered:

yc = g(o)(a′c) = a′c. (5.34)

and Y contains the network output values.

The training process aims to determine suitable values for the weights by min-

imisation of an appropriate error function such as those given in Section 5.5.1.2. The

sum-of-squares error function is used in this case:
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E =
1
2

C∑
c=0

(yc − tc)2 (5.35)

where yc is the response of output element c and tc is the corresponding target, for a

particular input pattern Xi and C is the number of output nodes.

Since we are attempting to minimise the error function E with respect to some

weight wij , we require the derivative of the error function with respect to the

weights. Also, we use the chain rule to expand the derivative with respect to the

summed input ap:

∂E

∂wpi
=
∂E

∂ap

∂ap
∂wpi

, (5.36)

for one particular training pattern. To simplify the notation we introduce another

variable

δp ≡
∂E

∂ap
(5.37)

where δ is often referred to as an error. If we differentiate ap we get

∂ap
∂wpi

= zi. (5.38)

Substituting (5.37) and (5.38) into (5.36), we get

∂E

∂wpi
= δpzi, (5.39)

which shows that the required derivative is obtained by multiplying the δ at the

output of the node by the value of z at the input to the node. For the output nodes,

δc are, by definition,

δc =
∂E

∂ac
= g′(o)(ac)

∂E

∂yc
, (5.40)

where g′(o) = ∂yc

∂a′c
from (5.34). To evaluate the δs for the hidden nodes, we again use

the chain rule for partial derivatives

δp =
∂E

∂ap
=

C∑
c=0

∂E

∂ac

∂ac
∂ap

. (5.41)



5.6. Multi-layer perceptron networks 115

where the sum runs over all output elements c to which p connect. If we combine

(5.31) and (5.32) and differentiate, we get

∂ac
∂ap

= g′(h)(ap)wcp (5.42)

which, inserted into (5.41) with (5.37), becomes the back-propagation formula

δp = g′(h)(ap)
C∑
c=0

wcpδc, (5.43)

and we see that the δ values for the hidden layer can be determined from the δ values

of the output nodes (5.40).

In summary, the back-propagation training algorithm operates in four steps:

1. Apply an input vector X from the training set and forward propagate through

the network using (5.31) and (5.32) to find the activations of all hidden and

output nodes.

2. Evaluate δk for all output elements using (5.41).

3. Back-propagate the errors using (5.43) to obtain the δj ’s.

4. Use (5.39) to evaluate the required derivatives.

5.6.2.1 Specific implementation

The above derivation permits general forms of the error function, activation function

and network topology. Below is an example which illustrates the specific case of

a two-layer network with logistic sigmoid hidden layer activation function, linear

output activation function and sum-of squares error function. The logistic sigmoid

function is given by:

zp = g(h)(ap) =
1

1 + exp (ap)
(5.44)

and the derivative of the logistic sigmoid activation function can be defined in a

particularly simple form

g′(h)(ap) = g(h)(ap)(1− g(h)(ap)), (5.45)

which is particularly useful in computational applications since the calculation of the

derivative of the activation can be efficiently calculated from the original activation
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function. By combining the sum-of-squares error function (5.35) with (5.40), and

remembering that we are using a linear activation function for the output layer, we

see that

δc = yc − tc. (5.46)

The back-propagation formula [9] is

δp = g′(aj)
C∑
c=0

wcpδc (5.47)

which, combined with (5.46) and (5.45), provides a formula for the hidden layer

errors:

δp = zp(1− zp)
C∑
c=0

wcpδc. (5.48)

Now that we have derived an expression for the errors, we need to create a learn-

ing algorithm by developing a method for updating the network weights. We use

the fixed-step gradient descent technique (Section 6.3) and we can choose to update

the weights either after the presentation of each pattern “on-line learning”, or after

presentation of the whole training set “batch learning”. The weight update formula

for on-line learning is

∆wpi = −ηδpxi, (5.49)

whilst the formula for batch training is

∆wpi = −η
∑
m

δmp x
m
i , (5.50)

where η is a parameter known as the learning rate. The second layer weights are

updated using analogous expressions:

∆wcp = −ηδczp, (5.51)

and

∆wcp = −η
∑
m

δmc z
m
p (5.52)
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The operation of the back-propagation algorithm involves the optimisation of

the weight values using the gradient descent algorithm and can be visualised as a

multi-dimensional “weight” landscape in which we attempt to find the lowest point.

In general, the error landscape will typically be a highly non-linear function of the

weights and there may exist many minima. The minimum for which the value of the

error function is smallest is known as the global minimum while the other minima

are called local minima. One of the problems with the steepest descent algorithm is

that the optimisation algorithm may become trapped in these local minima and be

unable to escape. There are several techniques for improving the steepest descent

algorithm which are discussed in Section 6.3.

5.7 Radial basis function networks
Whereas an MLP network computes a non-linear function of the scalar product of

the input vector and a weight vector, radial basis function networks compute func-

tions based on the Euclidean distance between the location of an input vector and a

basis function. The basis functions can have any form, but a Gaussian function is

by far the most common. The output of a RBF processing element is calculated by

determining the value the sum of all of the Gaussian basis functions at the location

of the input vector. As with MLP networks, RBF networks usually consist of one

layer of input nodes, one hidden layer containing the RBF PEs and an output layer

of linear perceptrons.

5.7.1 Exact interpolation

Radial basis function networks have their origins in techniques for performing exact

interpolation of a set of data points in multi-dimensional space [198]. The exact inter-

polation problem involves placing a basis function on each of the input vectors in the

training set and provides a convenient starting point for discussing RBF networks.

The radial basis function approach [198] introduces a set of N basis functions,

which take the form φ(||X − Xn||) where φ(·) is a non-linear function. The output

thus depends on the distance ||X − Xn||, usually taken to be Euclidean, between the

input vector and the basis function location. The overall output is given by a linear

combination of the basis functions

h(X) =
∑
n

wnφ(||X − Xn||). (5.53)
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Several forms of basis function have been considered, the most common being

the Gaussian (5.21). The Gaussian function contains a parameter σ which controls

the “width” of the function. A single “width” parameter gives a “circular” Gaussian

basis function which can be extended to more general “elliptical” or “ellipsoidal”

forms (Section 5.7.4).

5.7.2 Radial basis function training algorithms

An RBF network is trained using two stages. The first stage is used to determine

the RBF parameters using relatively fast, unsupervised methods. The second stage

involves the determination of the second layer weights, which requires the solution

of a linear problem, and is also fast.

The parameters associated with an RBF network are the location of the RBFs

within the parameter space, and the width of the RBF functions. A number of tech-

niques can be used for the first training stage. These range from simple algorithms

where the basis functions are located directly at the input data vectors to complex

algorithms which place basis functions at the centres of data-point “clusters”.

An illustration of the use of RBFs to approximate a function y(x) is shown in

Figure 5.5. The line y(x) represents the function to be approximated and the basis

functions are represented by the dots. In real situations, the optimal solution is to

locate basis functions with small widths at the points where the functions is varying

rapidly and to place widely spaced basis functions with larger widths where the

function is varying slowly.

5.7.3 Basis function location algorithms

The exact interpolation method simply places one basis function on each of the

records in the training dataset. This technique is a good starting point and has the

advantage of minimal training time but suffers from problems similar to an over-

fitted MLP network (Section 5.8.1). the network performs well for the training set

data, but generalises poorly since it is able to model the errors in the training data.

In this case, the RBF network has simply become a look-up table for the training

dataset.

To attempt to reduce the over-fitting, we can remove basis functions from the

exact interpolation method. This can be accomplished by measuring the network

performance using the sum-of-squares error function and remove the basis function

which results in the smallest increase in the error [208]. We can then re-calculate the
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x

y

y(x)

Figure 5.5: Graphical representation of a radial basis function network. yx is the
function to be represented and the dots show the locations of the basis functions.
The circles represent the “widths” of the basis functions and do not necessarily have
to be circular.

network performance and continue this process until a predetermined error value

is reached. Using this process, we can attempt to reduce the over-fitting problems

whilst still maintaining acceptable overall network performance. Alternatively, we

can perform training by beginning with an empty network and adding the basis

function which reduces the value of the error function by the largest amount. Ba-

sis functions are then added systematically and the algorithm terminated when the

desired performance is attained.

Another technique is to employ more a complicated algorithm to locate the basis

functions. An algorithm such as K-means clustering (Section 5.4.5) can be used to

cluster the input data which can then be used to locate the basis functions [209]. In

the K-means clustering algorithm, a fixed number of basis functions are chosen and

assigned random locations. The input vectors are assigned to a cluster based on

which basis function is closest and the basis functions are then moved to the mean

location of each cluster. This process is repeated until the all of the input vectors

remain in the same cluster for successive iterations of the algorithm. Once the basis

function locations have been determined, the second layer weights are determined



5.7. Radial basis function networks 120

in the normal way.

Finally, advanced statistical models such as Gaussian mixture models can be used

to determine the basis function locations. The basis functions of the network are

components of a mixture density model whose parameters can be estimated by an

expectation-maximisation algorithm [9].

5.7.4 Other radial basis function network parameters

In addition to the selection of the basis function locations, we must determine the

basis function width parameters. The most basic method for selecting the width

parameter (the “sensitivity” of the basis function) is simply to set all basis functions

to have a pre-defined value. A common formula for determining this value is:

σ =
dmax√

2n
(5.54)

where dmax is the maximum Euclidean distance between RBF locations and n is the

number of RBFs.

Several modifications can be made to the selection of the width parameter which

can aid generalisation. The most obvious is to choose a different width parameter

for each basis function. This allows the basis functions to be tightly packed in ar-

eas where the function is varying most quickly. A more general extension of this is

to define a separate width parameter for each input dimension of each basis func-

tion. This allows even more efficient coverage of the parameter space by the basis

functions since they can be concentrated along input dimensions which have more

effect on the output value. The addition of a width parameter for each dimension of

each basis function results in a large increase in the number of parameters used, but

allows the network to adjust the sensitivity of the network to the different inputs.

Single width parameter basis functions are known as “circular” since a contour of

the basis function is circular (hyper-spherical in N-dimensions). Having a width

parameter for each dimension of each basis function produces an elliptical contour

which in general is known as using ellipsoidal basis function [9]. Such modifications

result in an increase in the number of adjustable parameters and there is a trade-off

to consider between the number of parameters and a larger number of less flexible

functions.
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5.7.5 Comparison between RBF and MLP networks

Both MLP and RBF networks provide techniques for approximating arbitrary non-

linear mappings between multidimensional spaces. Mathematically, the operation

of the networks is similar, although important differences exist.

Whilst MLP networks calculate weighted linear summations of the input vectors,

RBF network outputs are determined by the distance between the input vectors and

the basis functions. Additionally, MLP networks employ activation functions such

as the logistic sigmoid whereas RBF networks use a Gaussian basis function.

The input-hidden layer weights in an MLP network are determined by perform-

ing non-linear optimisation using the supervised learning algorithm known as back-

propagation. This is generally a computationally intensive process and often re-

quires modification to the steepest descent algorithm to obtain reasonable training

times. The equivalent weights in a RBF network, which contain the locations of the

basis functions, are determined using unsupervised clustering algorithms which are

linear and much faster than performing the full non-linear optimisation required for

an MLP network. All of the parameters in an MLP network are usually determined

at the same time during a single global supervised training process.

RBF networks provide significant advantages over MLP networks in situations

where input data is plentiful, but output data is scarce. Records which contain input

data but do not contain corresponding output data are known as unlabelled records,

while records which contain both input and output values are known as labelled

data [9]. The unlabelled data can be used during the first, unsupervised, training

stage to determine the optimal locations for the basis functions. The labelled data is

used to complete the second, supervised, training stage.

MLP networks, however, perform better than RBF networks when there are input

variables which have a large variance but have little effect on the output variables.

Studies by Hartman et al. [210] show that MLP networks can learn to ignore uncor-

related inputs whereas RBF networks require the addition of a large number of extra

basis functions to achieve training convergence.
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5.8 Learning, generalisation and use of artificial neu-

ral networks
So far, we have concentrated on the operation of ANNs. We next consider the ap-

proaches used during training and discuss some of the techniques used to overcome

the problems which are encountered during training. Learning algorithms employ

example datasets to make adjustments to the weights and biases in the model such

that data relationships are learnt and can be applied to new data. Most learning

algorithms can be viewed as optimisation algorithms and many employ the popu-

lar gradient descent algorithm, or variations thereof. Artificial neural networks are

prone to over-training; the following sections discuss the causes and effects of over-

training, along with some techniques which can be used to prevent it.

5.8.1 Over-training

Tetko et al. [211] defined over-training as the situation that arises in an ANN which has

been trained for so many iterations that the generalisation is poor. Over-fitting has

been defined as a network model which is too flexible (i.e. there are too many hidden

nodes) resulting in a network which models the errors in the training dataset and

also generalises poorly. Whilst both over-training and over-fitting are consequences

of different parameters, their symptoms are the same and the two phenomena can

be considered together.

Over-training or over-fitting of a neural network occurs when the network is

trained to such an extent that the data in the training set is memorised by the net-

work. The network has memorised the records contained within the training set and

has lost its general understanding of the input-output relationship, resulting in poor

generalisation performance.

Over-training occurs due to a combination of parameters: A network is more

likely to over-train if it is more flexible. i.e. an MLP network with a large number of

hidden nodes is more likely to over-train. Datasets with large errors or which are too

small to allow learning of general relationships can also contribute to over-training.

Often, when training, it is tempting to set the stopping criteria to a low value, to

achieve high accuracy. Unfortunately, this typically results in over-training.

The introduction of a bias-variance trade-off [9] can provide considerable insight

into the generalisation problem. A network which is too simple to represent the data
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(a) Well trained neural network - generalises well
to new data points
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y

(b) Over-trained neural network. The training
data has been memorised by the system and the
predictions for new data are poor

Figure 5.6: Example of over-training. The black samples represent records in the
training dataset and the red circles are records in the test dataset. In (a), the network
is well trained and generalises well when presented with new data. In (b), the net-
work is over-trained and while the test data predictions are more accurate than in
(a), the generalisation performance is much worse.



5.8. Learning, generalisation and use of artificial neural networks 124

is said to have a large bias, whereas a network which is too complicated is said to

have a large variance. The optimal network state is obtained when the conflicting

requirements of small bias and variance are optimally selected. In addition to net-

work complexity affecting generalisation, over-training is less likely to occur when

the size of the training set is far larger than the number of parameters in the network.

However, some techniques are available for reducing over-training. They are early

stopping and regularisation and are discussed next.

5.8.2 Early stopping

Early stopping refers to a technique which attempts to halt the training algorithm

when the network has learnt the general features of the input-output relationship

and thus prevents the network from learning the details of any errors contained

within the training dataset.

Early stopping is implemented through the use of a second dataset, in addition

to the training dataset, known as the validation dataset. This dataset is used to mon-

itor the progress of the training algorithm. As training progresses, after each pass

through the training dataset, the error functions (Section 5.5.1.2) of the two datasets

are calculated. Since the training dataset is used to make the network weight ad-

justments, this error will always decrease 1. The error function of the validation

dataset, which is not used to make weight adjustments, will initially decrease as the

network learns the general features of the input-output relationship. However, once

the network has learnt the general data relationships, and begins to memorise the

training data, the error of the validation dataset will begin to increase. The value of

error function of the validation dataset can be used to monitor the training process.

If training is stopped when the error function value of the validation set begins to

increase, then the resulting network is likely to have the best generalisation perfor-

mance. Figure 5.7 depicts the values of the error function of the training and vali-

dation datasets during a typical network training process. In practice, as mentioned

previously, the error function values are more complicated and may increase tem-

porarily due to momentum and/or variable learning rate effects. In these situations

it is useful to modify the early stopping criteria. For example we could choose to al-

low the error function of the validation dataset to increase for a short while to see if

the error function subsequently decreases again. After a specified number of epochs

1This is not entirely true since, when training optimisations such as momentum are used, the error can
actually increase initially for a short time. In general, however, the error will decrease overall.
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with no decrease in error function, the network reverts to the state which provided

the optimal network performance.
E
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Figure 5.7: The error functions of the training and validation datasets during a typi-
cal training process. The error function of the training dataset continually decreases
as training progresses. The error function of the validation dataset initially decreases
along with the validation dataset error function. Over-training occurs when the er-
ror function of the validation dataset begins to increase. x illustrates the minimum
value of the validation dataset error function and the weight values of the network
at this point are likely to produce the network with the best generalisation.

Prechelt [212] recognises the need for careful selection of the early stopping cri-

terion and defines complex functions on which to base the early stopping decision.

By altering the early stopping criterion, Prechelt was able to achieve a 4% increase

in generalisation performance of the network, at the cost of a factor of 4 longer in

training time.

When using early stopping, a large number of hidden nodes is required to avoid

local minima [213] and there may even be no limit to the number used [211], other

than one imposed due to bounds on the computational processing available.
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5.8.3 Regularisation

Another method for improving generalisation is regularisation [214]. This involves

modification of the performance or error function which is normally the RMS of the

network errors (5.14). Since a network which is too flexible is prone to over-fitting,

we encourage smoother network mappings by the introduction of a penalty term Ω

to the error function

Ẽ = E + νΩ, (5.55)

where E is one of the standard error functions discussed in Section 5.5.1.2 and ν

controls the extent to which the penalty term Ω influences the total error Ẽ. Training

is performed by minimising the total error, which requires that the derivative of Ω

with respect to the network weights can be calculated. Thus, the minimum total

error occurs when a function y(x) gives a good fit to the data (low E) and is also

very smooth (low Ω).

One of the simplest forms of regulariser is called “weight decay” and is simply

the sum-of-squares of the adaptive parameters in the network [9].

Ω =
1
2

∑
i

w2
i (5.56)

where the sum runs over all weights and biases. Since over-fitted networks require

relatively large values for the weights, (5.56) penalises over-fitting of the network.

5.8.4 Estimation of generalisation error

Since the goal of ANNs is to develop a network having good performance on new

and/or previously unseen data, a simple approach for selecting the best network is

to evaluate the error function of a dataset which is not used in the training process.

The technique known as hold-out is performed by removing a subset of the complete

dataset and using the remainder for training of several networks. It is important

that the dataset used to evaluate the generalisation error of the network has not been

employed for any purpose during the training process. Even the use of the validation

set introduces bias since the training process is halted based on the evaluation of the

error function of the validation dataset.

The error function value of the withheld data is evaluated and used to select the

best network. However, this technique can lead to over-fitting of the withheld data.
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Due to the often limited availability of data, and the desire to maximise the size of

both the training/validation datasets and the test dataset it is difficult to be sure

that the withheld dataset forms a representative sample of the complete dataset and

that the estimation of the generalisation error is unbiased. An alternative procedure,

known as cross-validation aims to provide an accurate, unbiased estimation of the

generalisation error whilst maximising the use of all available data. Cross-validation

is a common technique, described in several textbooks [9, 16].

5.8.5 Cross-validation

Cross-validation (CV) is a method which attempts to avoid the possible bias which

can be introduced if only one dataset is used for testing [215]. The method involves

the division of the random dataset into m subsets. The network is trained, using

m−1 of the subsets for the training/validation datasets and the performance is then

evaluated using the remaining subset. This process is repeated m times, omitting a

different subset each time. The error function values of each of the trained networks

are averaged, giving an overall estimation of the generalisation error. This technique

allows the use of a large proportion of data for training, and uses all data points to

evaluate the error. A slight disadvantage of this technique is that m network train-

ings are required which may be problematic if the training procedure requires large

amounts of processing time. A typical value for m may be m = 10 [16], although,

with smaller datasets, a value of m = N for N data records may be chosen. In this

limit, the technique is known as leave-one-out cross-validation [9].

5.8.6 Repeated cross-validation

Cross-validation is an excellent technique allowing the use of large training datasets

whilst permitting all of the data to be used for testing. However, there still exists

a possibility that the performance of the ANN is due to the order of records in the

dataset. To further increase confidence that the ANN results are due to the modelling

of input/output relationships and not due to coincidental dataset selection, cross-

validation can be performed numerous times, randomising the dataset between each

CV execution. This technique is known as repeated cross-validation and if we per-

form n repetitions ofm-fold cross-validation, then we perform n×m trainings. Stan-

dard procedure is to perform 10 repetitions of 10-fold cross-validation [16], resulting

in 100 trained ANNs and we can be confident that the mean of the test dataset error

function values of these networks is a good estimation of the generalisation error. 10
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repetitions of 10-fold cross-validation has been used by Xu et al. [188] in the develop-

ment of a MLP network for the prediction of the mechanical properties of sialon ce-

ramics science. Additionally, 10-fold cross-validation is used for the work presented

in Chapter 7.

5.8.7 Using the trained ANN

A well trained artificial neural network can be used to generate predictions for any

supplied input. As with traditional linear regression, and any other statistical tech-

nique, interpolated results are much more likely to be accurate than those which are

extrapolated. ANNs are able to model much higher dimensionality datasets [195]

and it is much harder to determine whether interpolation or extrapolation is occur-

ring. A “distance” vector between data used for training and the supplied input data

can provide a measure of the “reliability” of the prediction obtained.

The back-propagation training algorithm is a complex process involving the non-

linear optimisation of the network weights and is relatively computationally expen-

sive. However, once trained, the execution of a neural network for forward pre-

dictions is fast, involving only the calculation of scalar products and summations

(Section 5.6).

5.9 Practical considerations
Many practical considerations must be addressed when using ANNs. Owing to the

continued increase in data digitisation assisted by increases in computational storage

capacity and corresponding reduction in cost, the size of the available datasets is also

increasing. Computational power required to sort and process this data thus also

increases; fortunately, computational power itself increases year on year [216].

Popperian modelling techniques are generally computationally expensive, often

requiring many thousands of CPU hours, and operate within a tightly circumscribed

domain of applicability (Section 2.3.1). In contrast, a trained artificial neural network

such as that described in this chapter, operates rapidly in the forward direction. A

network having ten input nodes requires ten multiplication operations and one eval-

uation of the activation function to obtain the hidden node value. If ten hidden nodes

are used, 100 operations are required to calculate the hidden node values values for

the entire layer. A further ten multiplication operations and one activation function

evaluation are required to obtain the value at the output node. 110 mathematical

operations are required to evaluate the entire network which is performed almost
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instantaneously on a modern 1-3GHz desktop PC. As we shall see, the speed with

which we can obtain predictions is of critical importance when we attempt to “in-

vert” the the prediction algorithm, thus obtaining materials predictions which are

predicted to exhibit desirable properties. Such “optimisation” algorithms are the

subject of Chapter 6 and rely on rapid forward execution for their operation.

5.9.1 Software toolkits

A large number of data mining software packages are available, both free and com-

mercial. Tool-kits are available in a variety of languages depending on user require-

ments. Matlab [217] is a numerical computing environment and scripting language.

It allows easy matrix manipulation and provides many “toolboxes” for rapid proto-

typing. The Matlab Neural Network Toolbox [218] extends Matlab providing tools for

designing, implementing and simulating ANNs.

Netlab [219] is a collection of Matlab routines and scripts which implement many

of the techniques described in Bishop’s Neural Networks For Pattern Recognition [9].

Also available is the accompanying textbook Netlab: Algorithms for Pattern Recogni-

tion [177] which contains detailed descriptions of the algorithm implementation.

The Comprehensive Perl Archive Network (CPAN) [220] contains many data

mining modules such as the artificial intelligence (AI) module [221] which contains

sub-modules for fuzzy logic (AI::Fuzzy), decision tree (AI::DecisionTree) and neural

network (AI::NNFlex, AI:NeuralNet) algorithms.

Finally, the Fast Artificial Neural Network Library (FANN) [222] is an ANN library

written in C with bindings for a wide variety of languages.

The artificial neural networks described in this thesis were developed and trained

using the Matlab Neural Network Toolbox. While Matlab provides a fast prototyping

environment, meaning that it is easy to test different network types and architec-

tures, its execution speed is not as good as a network written using C. Therefore,

once Matlab had been used to obtain a working ANN, the data required for pre-

processing and the weights and biases were transferred to an ANN using the FANN

library.

5.9.2 Parallel computing

With the continued growth of datasets available for data mining, the computational

requirements for processing such datasets also increase. The use of parallel comput-

ing to process these large, complex datasets is becoming widespread [223].
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Since each neuron in one layer of a neural network operates independently of the

others, the operation of a neural network is a parallel task and the use of parallel

computer hardware for the implementation of ANNs has yielded extremely satisfy-

ing results [224]. Depending on the complexity of the combination and activation

functions and the time taken to process/train ANNs on serial processor machines

it may be advantageous to use parallel computer hardware to develop ANN sys-

tems [225]. If we consider the typical MLP network (Section 5.6), we can parallelise

the algorithm in several ways [226]: The first option is to spread the elements/layers

amongst the processors. This can be efficient for large numbers of elements/layers

although there will be a large quantity of data passing between the processors. The

second possibility is to represent each neuron with a processor. Whilst very efficient

for small networks, this method will scale poorly as the interconnection between the

processors grows rapidly as the number of neurons increases. Finally, a third op-

tion is to divide the training patterns into groups which are all trained on separate

processors and the results merged together. For obvious reasons, this method only

works for large datasets, or where the combination/activation function are particu-

larly complex.

If we consider the statistical analysis performed in repeated cross-fold validation

which involves the training of many individual ANNs, we see that each network is

independent and can be trained and evaluated individually. If we perform n ×m-

fold cross-validation, we can perform the training in parallel on n × m processors

and the overall compute time is a function of the training of the slowest individual

network. Problems which can be trivially parallelised in this way are said to be

“embarrassingly parallel” [224, 226]. In the work presented in later Chapters 7 and

9, the computational requirements were relatively low and parallel processing was

not required.

5.10 Applications
ANNs have wide ranging applications and have been used in many areas. As such,

research using ANNs is an extremely interdisciplinary field and there is a vast ap-

plication area. In many cases where scientists are attempting to extract knowledge

from data, the amount of available data has become such that it is impossible for hu-

mans to examine and understand. Even in situations where the available data is not

large, the relationships can be so complex that humans are incapable of determining
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their form and advanced data mining techniques are required to process the data.

As explained previously (Section 2.3.1), the traditional Popperian scientific method

may prematurely restrict the functional form of predictive algorithms resulting in

oversimplified models. Baconian methods can help to overcome these limitations.

Financial institutions have a large interest in the development of data mining al-

gorithms for fraud detection [227], loan applications [228] and stock market predic-

tions [229]. The rules which form the basis of loan applications are well understood;

however, correctly classifying the marginal cases is extremely difficult and there is a

large financial reward for even a small reduction in the number of defaulted loans.

In loan application predictions, ANNs have achieved a high level of agreement with

human experts, and disagreements are only found in marginal cases where experts

themselves would also disagree [230].

ANNs have been used to classify the vast quantities of data available on the

World Wide Web [231, 232] and there have also been attempts to use Internet news

information to predict interest rates [233]. The Internet contains an unimaginable

quantity of data and any techniques which can help to filter and classify the vast

knowledge available will be immensely useful. Other difficult problems which

ANNs have been employed to solve include text and numeral recognition [234] and

prediction of cement performance [235]. Additionally, they have been used exten-

sively in microbiology [196] and chemistry [236].

The use of ANNs for physical property prediction is fairly common.

Koker et al. [237] developed an MLP network for the prediction of bending strength

and hardness behaviour of particulate reinforced Al-Ga-Si-Mg metal matrix compos-

ites (MMCs) and obtained a test set MSE of 22.42. Additionally, Huang et al. [238]

obtained predictions “well in agreement” with measured values for the mechan-

ical properties of ceramic tools. Unfortunately, a numerical value for the pre-

dicted/measured agreement is not available.

Guo et al. [7, 137] employed an ANN to predict the dielectric constant, loss, and

maximum and minimum temperature coefficient of capacitance properties of barium

titanate (BaTiO3) doped with Nb2O5, La2O3, Sm2O3, Co2O3 and Li2CO3. The result-

ing ANN was able to predict the functional properties considerably better than mul-

tiple non-linear regression although a numerical measurement of the performance

was not provided. The prediction of the dielectric properties of ceramic materials

was discussed previously in Section 3.5.6.
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ANNs have been used to model solid oxide fuel cell (SOFC) performance. Arria-

gada et al. [70] have developed an ANN to model the operational parameters (gas

flows, operational voltages, current density) of an SOFC. Especially interesting in

this work is the use of a Popperian, finite element, model which had already been

validated through independent means [239], to generate the training, validation and

test data. The ANN is used to provide a considerable increase in the speed of pre-

diction. The technique of using a Popperian model to provide data for a Baconian

approach permits computational experiments to be performed in isolation from real

experimental work. The ANN agrees well with the physical model, having an av-

erage error of less than 1%. Popperian models of diffusion properties have already

been discussed in Section 3.4.5.

Jemeı̈ et al. [240] developed an ANN to aid the design of proton exchange mem-

brane fuel cells (PEMFC). The ANN used the electrode gas flow values, stack tem-

perature and delivered current to estimate the voltage produced by the cell and was

able to do so with an accuracy of less than 1.5%. Ogaji et al. [8] extended Jemeı̈’s

work using inlet pressure, current density, fuel and oxygen utilisation, and anode

and cathode temperatures as ANN inputs to various different network architectures.

The network containing two hidden layers of 30 nodes each obtained good standard

deviations in output predictions: temperature (0.01), deliverable cell potential (0.16),

power (0.18) and thermal efficiency (0.17).

ANNs have been found to outperform multiple linear regression (MLR) tech-

niques in the prediction of dielectric materials properties. In Guo’s work [137], the

authors found that an ANN was able to predict permittivity with a root mean square

(RMS) error of 19.34 compared with a RMS of 382.78 for MLR. Other work, also by

Guo et al. [139] attempted to model the electrical properties of piezoelectric lead zir-

conate titanate, finding that an ANN outperformed multiple non-linear regression

(unfortunately, their results are only illustrated graphically and no numerical com-

parison is available).

Kuzmanovski et al. [183] used an ANN to model structural data, finding that the

ANN obtained an RMS error of 0.0331 for the a-site ionic radius prediction compared

with 0.0370 for MLR.

When attempting prediction of ceramic materials properties, compositional in-

formation has formed the core of the ANN input data for much of the previous

work. However, the use of other descriptors has been used to help improve per-
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formance [138, 241].

Tompos et al. [242] performed a “virtual optimization experiment” in which

composition-activity relationships of catalyst materials were established using

ANNs. Sha [243, 244] critiques Tompos’s work, emphasising caution in the use of

ANNs as statistical models, particularly when there are more network weights than

there are training records. However, care must be taken to ensure that the model

is sufficiently flexible to enable data relationships to be determined (Section 5.6.1.2).

Both of Sha’s critiques are refuted by the authors of the original papers [245, 246]

since early stopping (Section 5.8.2) was used to prevent the over-training effects

which commonly occur with overly flexible models.

5.11 Summary
The development of predictive Baconian models is a large field covering a wide

range of techniques and algorithms. In this chapter, we have discussed several of

the available models and concentrated in particular on artificial neural networks.

Whilst linear statistics can provide excellent models of certain data relationships,

their ability to form accurate predictions decreases as the dimensionality of the data

increases. Additionally, the development of conventional statistical models with

non-linear data relationships requires explicit assumptions of the functional form.

More advanced data mining techniques described here, in particular artificial neural

networks, allow creation of data models without prior knowledge of the form of the

input/output relationship and are more easily able to handle high dimensionality

datasets. The downside of ANNs is that they do not provide any understanding of

the reasons behind the predictions made. Rule induction, such as the common ID3

and C4.5 algorithms, can be applied to ANNs to determine comprehensible rules for

the reasoning behind the predictions.

Many different types of ANN exist, of which, the MLP trained using the back-

propagation algorithm is probably the most popular. With this in mind, the back-

propagation MLP network is employed for the work described in this thesis (Chap-

ter 7). Furthermore, the use of ANNs in materials science is a relatively new field

and the well-known MLP, capable of modelling the complex non-linear composition-

function relationships found in ceramic materials, is ideally suited for this purpose.

The development of MLP neural networks is a complex task requiring selection

of network architecture, including number of layers and hidden nodes, form of the
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activation functions, learning and momentum parameters, and selection of error

function. With the non-linear interactions between these variables, it is extremely

difficult to determine that optimal values have been obtained for all available pa-

rameters. Nevertheless, good models can be developed and are finding increasing

use in materials science for the prediction of both structural and functional proper-

ties. In Chapter 7, we discuss the development of an artificial neural network for the

prediction of dielectric and ionic properties of ceramic materials.

Genetic algorithms can be used in combination with ANNs in a virtual materi-

als discovery cycle (Section 2.3) for the development of novel materials designs. In

Chapter 6 we will describe the operation of genetic algorithms and discuss examples

of the application of genetic algorithms in the field of materials science, including

their use in the inversion of ANNs for materials design. This then leads naturally on

to Chapter 9, where we discuss the application of this materials design algorithm.
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CHAPTER 6

Optimisation algorithms for the inversion of

materials property predictors

6.1 Introduction
The term optimisation refers to the study of the problem of the minimisation or max-

imisation of a function. While simple problems can often be optimised analytically,

complex functions, especially those with high-dimensionality inputs, are often im-

possible to solve analytically and numerical algorithms are required. This chapter

discusses some of the optimisation algorithms available, including, in particular,

gradient descent and genetic algorithms.

The techniques described in the previous chapter (Chapter 5) can be used to de-

velop algorithms for the prediction of materials properties. Whilst the ability to de-

velop such predictions is extremely useful, the “inversion” of such algorithms can

provide even more interesting and useful results. Inversion of property predictors

permits researchers to determine materials which are predicted to exhibit desirable

functional properties. The optimisation algorithms described in this chapter form

the second half of the “virtual materials discovery cycle” described in Chapter 2;

used for innovative materials design.

Section 6.2 contains an overview of the process of optimisation. Section 6.3 pro-

vides a discussion of gradient based optimisation which is used for the training of

neural networks. Materials design is performed using evolutionary optimisation,

described in Section 6.4. The application of evolutionary algorithms for materials

design is discussed in Section 6.6.
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6.2 Optimisation
“Optimisation” is concerned with finding, from many possibilities, the “best” solu-

tion to a particular problem. Sometimes, it is simply the “objective” which we are

concerned with, i.e. it is the predicted property of the material which we are attempt-

ing to optimise. Alternatively, the solution to the optimisation problem is to obtain

the input values which provide the optimal output, i.e. the material composition for

which the optimal property prediction occurs. The term “parameter space” is used

to describe all of the different input variables and forms a hyper-surface in multi-

dimensional space. Optimisation of materials designs cat, therefore, be viewed as

a search through compositional parameter space to determine optimum materials

compositions and associated functional properties.

Single-objective optimisation problems are the simplest and it is often possible to

determine a single solution which solves the problem. Multi-objective optimisation

problems, however, involve two or more, often conflicting objectives. Trade-off sit-

uations arise where a solution which is optimal for one objective is not necessarily

optimal for the other objectives and there is no single-best solution. Section 6.4.5

discusses multi-objective optimisation in more detail.

The difficulty of solving optimisation problems varies considerable. Some are

trivial, involving simple analytic inversion. Some, however, are extremely difficult,

if not impossible to solve. The amount of time required to develop a solution is

directly related to the “algorithmic complexity” of the problem [247].

6.2.1 Tractability and algorithmic complexity

Although it may be possible to solve a problem in principle, even the fastest comput-

ers may be unable to do so in a realistic time frame. This is the issue of “algorithmic

complexity” which concerns the amount of time required to solve a problem. The

number of calculations, expressed in terms of “floating point” operations, indicates

the amount of work required to solve a given problem.

Algorithms used to solve computable problems can be divided into two classes,

based on the time required to find a solution. For a problem of size N , “tractable”

or “polynomial” problems are those that scale with an algebraic power of N (N2,

N3 etc.); the time required to solve such problems does not become unbounded as

N increases. Polynomial problems are said to be in the class P . The other class,

known as “intractable” problems, scale in an exponential or factorial fashion (cN or



6.2. Optimisation 137

c!, where c is a constant). Such problems are said to be in the class NP and the

time required to solve them rapidly spirals out of control as the size of the problem

increases. The NP -complete class is a subset of the NP class which contains the

most difficult problems in NP . An NP problem is NP -complete if every problem

in NP can be reduced to the NP problem under consideration. Probably the most

famous example of an NP problem (which is also NP -complete) is the “travelling

salesman problem”.

6.2.2 Travelling salesman problem

The travelling salesman problem (TSP) is the canonical example of an NP hard prob-

lem. The TSP is a real-world problem which asks for the lowest cost route to visit

each one of a collection of cities once and return to the starting point [248]. Although

simply expressed, a travelling salesman who has to visit N cities has

C =
(N − 1)!

2
(6.1)

permutations and no one has been able to develop a deterministic algorithm that can

find a solution in polynomial time.

For small numbers of N , the problem can be solved completely, by examining all

possible permutations and selecting the shortest. However, as the number of cities

grows, the problem rapidly expands, requiring ever more computational power. For

5 cities, 12 possible combinations exist and an exhaustive search can be performed.

With 10 cities, however, there are 181,440 combinations, requiring far more com-

putational power. For just 25 cities, there are 3 × 1023 combinations requiring an

unimaginable amount of time to process. The problem is further complicated by the

difficulty of determining whether any particular solution is the best; only by com-

parison with all other solutions can we be sure.

Attempts to solve the TSP have been attempted using simulated annealing [249,

250] and genetic algorithms [12]. Both are stochastic optimisation algorithms which

use random processes to search for solutions and are discussed further in Sec-

tions 6.4.1 and 6.4.2 respectively.

A large number of other problems fall into the NP hard category, many con-

cerned with similar optimisation problems [251]. In this thesis, we are concerned

with the inversion of artificial neural networks for materials design.
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6.2.3 Inversion of neural networks for materials design

Neural networks, described in the previous chapter, provide forward predictions,

such as the prediction of materials properties from compositional information

(Chapter 7). The reverse problem, that of obtaining a compositional design exhibit-

ing a desired property, is intractable, requiring similar computational effort to the

TSP.

A material containing N different elements and containing m possible values for

each element has

C = mN (6.2)

possible combinations. This is an exponential dependency on the number of elements,

making the inversion of a neural network an NP hard problem.

6.2.4 Optimisation surfaces

Mathematically, an optimisation problem can be defined as finding a vector P which

minimises a function f(P). It is useful to visualise the optimisation process by view-

ing f(P) as an optimisation surface, sitting in parameter space, as shown in Figure 6.1.

In general, the surface is a highly non-linear function of P and there may exist

many minima which satisfy

∇f = 0 (6.3)

where∇f denotes the gradient of f in parameter space; any vector P which satisfies

this condition is known as a stationary point. The stationary point which presents

the smallest value of the objective function is called the global minimum while other

minima are called local minima. There may be other stationary points such as local

maxima or saddle points. In Figure 6.1, the global minimum is located at C although

there may be another minimum, which is more optimal, outside the shown parame-

ter space. Point A is a local minimum and point B could be either a local maximum

or saddle point. Point D is a potential starting point.

In general, optimisation algorithms involve a search through parameter space

consisting of a succession of steps of the form

P(τ+1) = P(τ) + ∆P(τ) (6.4)
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Figure 6.1: An optimisation surface. Optimisation is the process of determining the
parameters P which provide the minimum of the objective function f(P). Point C is
the global minimum of the function while point A is a local minimum. Point B could
be either a local maximum or saddle point and D is a possible starting point for the
optimisation process. The gradient at D is also indicated.

where τ labels the iteration step. With each step, an adjustment ∆P(τ) is made to the

current location P(τ) to provide the next location P(τ+1) which results in a smaller

value of the function f(P). Different algorithms involve different choices for the

parameter vector increment ∆P(τ).

6.2.5 Algorithm termination

Determining when to halt an optimisation algorithm is a non-trivial problem which

has several possible solutions. In practice, several termination conditions are used

in combination. Common triggers are:

1. A fixed number of iterations - difficult to know in advance and may vary for

different functions.

2. Error function falls below some specified value - may never be reached and so

a hard-wired external limit on iterations may be required.

3. Relative change in error function falls below some specified value - May lead

to premature termination if the error function falls below some specified value.
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Can also cause algorithm termination at saddle points where the gradient ap-

proaches zero but does not change sign.

6.2.6 Constraints

Often the input parameters to the optimisation process are dependent on some ex-

ternal constraint, which may be due to a number of factors. In such situations, a

constrained optimisation is performed and the algorithm searches objective values

which simultaneously satisfy the constraints. The distinction between constraints

and objectives can become blurred and it is not always obvious whether a particu-

lar requirement is an objective or a constraint. For example, in the case of ceramic

materials optimisation, a particular property may be required, and the search can be

constrained to only those materials with properties predicted to lie above a certain

value. If a property is an objective, however, the optimisation attempts to obtain

materials which are predicted to maximise or minimise the particular property. In

general, if a particular feature is desirable, then it should be an objective. If the pres-

ence of absence of a particular feature is absolutely required, then it is a constraint.

6.2.7 Types of optimisation

There are several different techniques which can be used to determine the optimal

solution for a problem. The techniques generally fall into two classes: gradient or

derivative based and Monte Carlo or stochastic.

Gradient based optimisation uses gradient information to locate to the optimal

point. This technique requires that the objective function is continuous and differen-

tiable at least once. Direct gradient optimisation operates by determining stationary

points (where the derivative equals zero) while indirect optimisation uses an itera-

tive technique to make movements based on the local gradient information. Direct

methods become very difficult when using complex objective functions, especially

as the dimensionality of the function increases when it becomes increasingly diffi-

cult to determine analytic solutions. Indirect methods, however, can scale to many

dimensions and use numerical algorithms to evaluate the gradient. Steepest descent

algorithms standard derivative based techniques and are discussed in Section 6.3.

The back-propagation algorithm used in the training of artificial neural networks

(Section 5.6.2) uses a gradient based technique to determine optimal weights and

biases to minimise the error of the records in the training set.

Monte Carlo or stochastic methods use random numbers. In contrast with gradi-
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ent based algorithms, their stochastic nature means that they are “non-deterministic”

and therefore cannot guarantee to obtain identical results each time that the algo-

rithm is executed. However, if the results are similar enough for different executions,

then the same optima have likely been obtained. Simulated annealing is stochas-

tic optimisation method and is discussed in Section 6.4.1. Evolutionary algorithms

(EAs) are also stochastic methods and are discussed further in Section 6.4.2.

There are advantages and disadvantages to both gradient and stochastic opti-

misation. Often, gradient based techniques are computationally expensive, making

it prohibitively time consuming to perform an optimisation using solely this tech-

nique. A combination of optimisation methods can be used to circumvent this prob-

lem. An EA can be used to obtain near-optimal solutions relatively quickly. The EA

results are then used as the starting point for the more computationally expensive

derivative based methods.

We now proceed with a discussion of gradient based optimisation algorithms.

6.3 Gradient descent
One of the simplest minimisation algorithms is gradient descent which proceeds by

iteratively stepping along the direction of steepest descent of the function. Gradient

descent can be used whenever the derivative of the optimisation function is avail-

able and is used in many situations [178] including the back-propagation algorithm

for training artificial neural networks (Section 5.6.2). There are several modifications

which can be made to the steepest descent algorithm, mainly to improve conver-

gence speed; they are described in the following sections.

6.3.1 Step size

A parameter, known as the step size, determines the fraction of the adjustment made

to the input variables during a steepest descent step. Obviously, a larger step size

will require fewer minimisation iterations to reach the solution. However, if the step

size is too large, then the algorithm can become unstable. This instability is due to

the algorithm overshooting the minimum and can result in oscillatory behaviour. The

optimal choice of step size is a trade off between the fastest convergence and minimal

oscillation.
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6.3.2 Variable step size

In standard steepest descent, the step size is constant throughout the training pro-

cess. This often results in trial and error approaches where the training is performed

many times until the optimal step size is selected. The use of a variable step size [252]

can improve the performance of the standard steepest descent technique by automat-

ically adjusting the step size as optimisation progresses. In this way, we can attempt

to keep the convergence rate as fast as possible whilst avoiding oscillatory behaviour.

The variable step size training algorithm requires the addition of several more

parameters which determine the operation of the training process. These param-

eters determine how the step size is adjusted. If the new optimal value exceeds

the previous value by a certain amount, then the new weights and biases are dis-

carded because the algorithm is beginning to oscillate. Additionally, the step size

is decreased by a fraction, to help prevent further oscillation. If, however, the new

value is lower than the previous value, the new inputs are kept, and the step size is

increased.

In this way, the step size increases as the algorithm proceeds towards a mini-

mum along smooth areas of the function landscape. When the algorithm encounters

sharply changing areas of the landscape, the optimisation value increases, and the

step size is decreased to help navigation through the domain.

6.3.3 Momentum

The addition of “momentum” [253] to the gradient descent algorithm permits the

algorithm to ignore local features of the function landscape and follow the general

direction of minimisation. The technique works by adding a fraction of the change

to the inputs made during the previous iteration to the current input change calcu-

lation. The fraction is known as the momentum constant (MC) and can help prevent

the algorithm becoming stuck in local minima. As with the step size parameter, the

optimal setting for the momentum constant is a trade-off. If the MC is too small,

then the momentum cannot help prevent trapping in local minima. If it is too large,

then the algorithm takes a long time to adjust to the correct direction, and long con-

vergence times are obtained.
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6.3.4 Conjugate gradient

The steepest descent algorithm adjust weights in the direction of steepest descent,

the conjugate gradient algorithm [254] uses gradient history to calculate the direc-

tion for the line minimisation. While the direction of steepest descent gives the di-

rection in which the performance function is decreasing most rapidly, this does not

necessarily produce the fastest convergence. This can be illustrated by considering a

long, narrow “valley” in the performance function (Figure 6.2). The steepest descent

algorithm oscillates between the two sides of the valley, eventually converging to

the minimum. The conjugate gradient algorithm, however, achieves the same feat

in fewer minimisation iterations. It works by retaining a proportion of the gradient

direction from the previous line minimisation and so the direction for the descent is

given by the combination of the current steepest descent, and the previous search

direction. This technique uses the optimal gradient direction to find the minimum.

Minima

Steepest descent
Conjugate gradient

Figure 6.2: The advantage of the use of the conjugate gradient algorithm over steep-
est descent. The conjugate gradient algorithm uses gradient history to find minima
using fewer line searches. The steepest descent algorithm is prone to “oscillation” in
long, narrow valleys, requiring many iterations to find the minima.

6.3.5 Disadvantages of gradient optimisation

Real-world optimisation surfaces contain discontinuities and multi-modal, noisy

search spaces making it difficult to obtain derivative information which is required

for gradient optimisation algorithms. Gradient descent methods also suffer from

“trapping” where the algorithm correctly finds a local minimum, but is unable to
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escape and find other minima which may provide a better solution. Since the algo-

rithm has found a local minimum, the local gradient information provides no way

for the algorithm to climb out and find other, possibly better minima. Additionally,

gradient descent algorithms rely on the existence of a derivative. Even allowing for

numerical approximation of derivatives, noisy and discontinuous parameter spaces

cause problems for derivative based optimisation. Monte Carlo optimisation tech-

niques can escape local minima through the introduction of random data and are the

subject of the next section.

6.4 Monte Carlo optimisation
Monte Carlo optimisation algorithms use stochastic elements to develop optimal so-

lutions to problems. In contrast with gradient descent methods which are “deter-

ministic” and can repeatedly obtain the same result, the random nature of Monte

Carlo optimisation means that their results are “non-deterministic” and identical re-

sults cannot be guaranteed if/when the algorithm is repeated. Simulated annealing

and evolutionary algorithms are common Monte Carlo optimisation techniques and

are the main focus of this section.

6.4.1 Simulated annealing

Simulated annealing is a stochastic optimisation algorithm which is inspired by an-

nealing in metallurgy. The study of spin glasses by Sherrington and Kirkpatrick [255]

initiated the development of simulated annealing. Spin glasses consist of a few iron

atoms scattered in a lattice of copper atoms. Although their crystalline structure is

not “glassy”, the disorderly arrangement of the spinning electrons gives rise to mag-

netic effects which have an amorphous, glassy, structure. Within the lattice, there is

a constant “battle” between the randomising effects of heat, present at any tempera-

ture above absolute zero, and the organising influence of the microscopic magnetic

dipoles which attempt to align in an anti-parallel sense. This competition leads to

a structure containing patches of stability where the dipoles are anti-parallel mixed

with unstable regions with energetically unfavourable parallel alignment. By co-

incidence, as well as sparking the development of simulated annealing, there is a

mathematical mapping between the Sherrington-Kirkpatrick spin-glass model and

John Hopfield’s neural network [202] (Section 5.5.4).

The formation of spin-glasses is a complex process and there are many local min-

imum energy configurations which can exist. If we attempt to mathematically model
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such a system to determine the most stable configuration using a gradient descent

technique, there is a great risk that the method will lead to the nearest valley, finding

a local minimum. Kirkpatrick’s simulated annealing [256] overcomes this problem.

Simulated annealing can be thought of as a guided random search. Each step

taken is assigned a probability based on a parameter known as the “temperature”.

Initially, the simulation is “hot” and steps are taken in either an upwards or down-

wards direction. As the simulation “cools”, the temperature parameter T is reduced,

and downward steps have a higher probability of being accepted. During the initial

stages of the simulation upwards steps are more likely and we can escape from local

minima, increasing the chances that the global minima is found. As T is decreased,

the steps move progressively downwards until a minimum is reached. Simulated

annealing can be thought of as a special case of the genetic algorithm, described in

the next section.

6.4.2 Genetic algorithm

Evolutionary algorithms use concepts from Charles Darwin’s (1809-1882) evolution-

ary biology [257] to develop optimal solutions to a problem [258, 259]. Through ar-

tificial equivalents of individuals, populations, breeding, mutations and the concept

of “survival of the fittest”, EAs evolve optimal solutions to a problem. Evolutionary

algorithms can be thought of as “algorithmic” (Section 5.1.2), “Baconian” models,

since they make no assumptions about the underlying problem landscape and re-

quire no knowledge of the function gradient. They provide an additional benefit

over gradient descent techniques since they do not necessarily remain trapped in

local minima of the function landscape. There are many textbooks which describe

the operation and implementation of GAs [12, 258–262] and so only a summary is

provided here. The most popular evolutionary algorithm is the original genetic al-

gorithm (GA) developed by Holland [262].

The mechanics of Holland’s [262] genetic algorithm are utterly simple, involving

nothing more complex than manipulation of bit strings. Genetic algorithms borrow

directly from biological evolution and begin with the creation of “individuals”. In-

dividuals are described by an array of numbers which represent the genes of the

individual and provide possible solutions to the optimisation problem. A group

of individuals is called a population. The “fitness” or “objective” of each individ-

ual is evaluated using a “fitness function”. The fitness function determines the best

individuals from within a population of putative solutions which are selected for
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recombination or “crossover”. Crossover is the exchange of genetic information be-

tween two individuals resulting in one or more “offspring” and is reminiscent of

sexual reproduction in living organisms. A random, low-probability adjustment to

each of the genes is also included and is used to introduce new genetic material into

the population. Known, as “mutation”, this process also has its equivalent in bio-

logical evolution. The mutations are the cause of the stochastic nature of the search

and help prevent the algorithm becoming trapped in local minima. A favourable

interchange/mutation produces an individual solution closer to the optimum of the

target function; a poorer interchange/mutation results in a less optimal individual.

Repeated iterations of the selection and crossover processes result in an improve-

ment in the collective fitness of the population. The algorithm can be terminated in

a number of ways which have been described previously (Section 6.2.5).

6.4.3 Implementation

There are two main encodings which can be used for GAs: binary and real. Binary

coded GAs are simpler to manipulate computationally, due to the inherent binary

representation of numbers (bit strings) in a computer. However, real-valued GAs are

simpler to visualise.

6.4.3.1 Binary Implementation

If we imagine a simple “black box system” in which there are five binary inputs

which can be viewed as switches. There is an output signal f(s) which depends on

the status of the input switches s. The objective of the problem is to determine the

switch combination which provides the maximum output f(s). Since we have no

knowledge of the internal workings of the system, gradient optimisation techniques

are not possible and we require another technique such as a genetic algorithm. To

develop a GA to solve the problem, we begin by encoding the switch inputs as a

binary string where ’0’ represents off and ’1’ represents on. We generate a random

population of strings to provide the starting point for the GA. A population of n = 4

is shown below:

01101

11000

01000

10011
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From this initial population, successive populations are generated using the GA.

With each generation, the individuals exhibiting the maximum output value are

used for reproduction and the poorer individuals are discarded. Reproduction is

a process in which individual strings are copied according to their objective function

values, f(s). Strings with higher objective function have a higher probability of con-

tributing to offspring in the subsequent generation. Algorithmically, reproduction

may be implemented in a number of ways. By far the most common [261] is to create

a biased roulette wheel where each individual’s segment is sized in proportion to its

objective function value. We assume that the sample population shown earlier has

objective values as shown in Table 6.1.

No. String Objective % of total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9

Total 1170 100.0

Table 6.1: Sample strings, objective values and percentages of the individuals. The
string forms the input to the black box, resulting in the objective appearing at the
output. The percentage of the contribution to the total is shown in the final column.

The total value of the four outputs from the individuals is 1170. The percentage

of each individual is calculated and provides the probability that each particular in-

dividual is used to create offspring in the subsequent population. Thus, there is a

49.2% chance that individual 2 will be a parent. To determine the parent individ-

uals we create a roulette wheel which is divided into segments corresponding to

the probabilities given in Table 6.1. The “mating pool”, a temporary new pool for

further genetic operations, is selected by spinning the wheel four times. In a real

GA, a typical population is much larger than four, 100 being a common population

size [12, 263].

The crossover operator is applied to the individuals in the mating pool. First two

members are selected at random. Second, the two individuals undergo crossover

as follows: an integer k which is a random location along the string (length l) is

chosen at random. Two new strings are created by swapping all characters between

positions k + 1 and l inclusively. For example, if k = 4:

A1 = 0 1 1 0 | 1

A2 = 1 1 0 0 | 0
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become

A′1 = 0 1 1 0 | 0

A′2 = 1 1 0 0 | 1

The resulting crossover yields two new strings A′1 and A′2 where the prime (’)

means that the strings are part of the new generation. The operation above is an ex-

ample of “single point crossover” which is performed around a single point. More

complex operators can use two or more points for crossover and are known as “multi

point crossover”. Despite the simple nature of the crossover operator, the informa-

tion exchange obtained from the operation provides GAs with much of their power.

Finally, the mutation operator is applied. With low probability, one of the bits in

the string is “flipped”. i.e. changed from ’0’ to ’1’ and vice versa. By itself, mutation

is simple a random walk through parameter space. When used sparingly with repro-

duction and crossover, however, it helps to prevent the irrecoverable loss of genetic

information that may occur during crossover.

Other reproduction, crossover and mutation operators have been investi-

gated [12, 261]. In particular, real-valued GAs use different algorithms for these

operations. However the essential principles for reproduction, crossover and muta-

tion are common for all GAs.

In its classic form, an individual solution can be represented as an array of binary

numbers which are concatenated to form a genotype. The crossover and mutation

operations are then trivially performed on the complete string - crossover by select-

ing a crossover point and exchanging the bits on one side of the point between two

parent strings, and mutation by randomly selecting a location for the mutation to

occur and then bit flipping the element at that location with a random probability.

This binary GA explains the main concepts of the algorithm. Real-valued GAs, in

which the individual genes are represented by a real-valued number employ equiv-

alent operators. The next section contains a description of a real-valued GA and the

algorithms used to implement the genetic operators.

6.4.3.2 Real-valued Implementation

Real-valued GAs use operations equivalent to those for binary GAs for selection,

crossover and mutation [261]. However, the specific implementation is different.

A real-valued GA is used when the genotype is represented in terms of real val-

ues. Real valued GAs can use simple mutation operators such as scaling the value

by a particular amount or more complex operators using probability distributions.
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Crossover operators have similarly varying complexity. A simple operator simply

takes the mean of the two parent values while more complex operators use probabil-

ity distributions. Simulated binary crossover (SBX) [264] is one of the most popular

recombination algorithms and uses a random probability of crossover occurring and

a probability distribution index to determine the child values.

SBX is based on the search features of single point crossover used in binary coded

algorithms and attempts to generate child individuals “near” to the parents. Dur-

ing the initial stages of the optimisation, the population is spread, and the children

are diverse, resulting in a coarse-grained search. As the optimisation progresses,

the population converges, resulting in clustering of the children and a fine-grained

search emerges.

6.4.4 Constraints

Constraints are usually classified as equality or inequality conditions. Algorithmi-

cally, constraints are usually incorporated into a GA by evaluating the constraints

during the reproduction process. Solutions which violate the constraints are not per-

mitted for selection into the mating pool and so are eliminated from the population.

This process, while simple, suffers from a practical problem which occurs when the

problem is highly constrained. In this case, finding a feasible solution is almost as

difficult as finding an optimal solution. This problem can be surmounted through

the use of a penalty method. In a penalty method, the constrained problem is trans-

formed into an unconstrained method by associating a cost or penalty with the con-

straint violation. The penalty is included in the objective function evaluation, thus

leading to solutions which do not violate the constraints. This technique is easily in-

corporated in multi-objective genetic algorithms discussed in the following section

where the constraint simply becomes another objective for optimisation.

6.4.5 Multi-objective optimisation using genetic algorithms

The optimisation problems discussed so far reduce to a single objective. This ob-

jective is used as the key parameter in deciding which individuals are selected for

crossover. A single objective works well for many problems; however, there are

times when multiple objectives are required to be optimised simultaneously. Such a

problem is known as multi-objective optimisation and there are some specific features

of multi-objective optimisation which we must now discuss [261].

While it is trivial to determine the optimal solution in a single-objective prob-
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lem by simply selecting the individual having the best objective value, the optimal

solution to a multi-objective problem depends on the relative importance of each

objective. Often in real-world design problems the objectives are conflicting and

trade-offs exist between them; as the fitness of one objective improves, the fitness

of another is reduced. Perhaps the simplest technique for solving a multi-objective

problem is to give each objective a weight and combine the objectives into a sin-

gle objective, allowing the problem to be solved in the normal way. However, it is

extremely difficult to select the weights without favouring one particular objective.

Given the difficulties encountered when transforming a multi-objective problem into

a single-objective problem, it is often best to perform a full multi-objective optimisa-

tion.

In contrast with single-objective optimisation, owing to the presence of trade-offs

no “single best” solution exists for multi-objective optimisation. Multi-objective EA

techniques are well suited to this problem since they operate on a population and

result in a group of solutions, each satisfying the objectives to varying degrees. Final

candidate solutions are obtained from the final EA population by human selection,

often using high-level knowledge of the problem domain. In the instance where the

objectives are simultaneously attainable, the population reduces to a single point.

Otherwise, a trade-off surface results. Several possible “overall” optimal solutions

to a double objective problem are shown in Figure 6.3. Points A and E represent so-

lutions which are optimal in one objective, with no regard for the value of the other

objective. The best overall solution is likely to be found at point C; however, the

relative importance of the two objectives comes in to play. If one objective is more

important than the other, then we may be willing to accept a reduced value for one

objective if we can obtain a better value for another objective. As the number of ob-

jectives increases, the number of combinations increases and the selection of an op-

timal solution becomes even more difficult. The major problem with multi-objective

optimisation is that none of the solutions is optimal with respect to all objectives and

we must pick the solution which provides the most optimal overall solution.

Figure 6.3 displays a set of “non-dominated” individuals in an optimisation prob-

lem. A particular individual is said to be non-dominated if there exists no other in-

dividual in the population which is more optimal in all objectives. Formally, when

minimising all M objectives, with objective values fi, design a dominates design b

if [261]
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Figure 6.3: An optimisation problem with two conflicting objectives. An improve-
ment in one objective leads to a less optimal value for the other objective. Individu-
ally, the two optimal solutions are A and E, however, when considering both objec-
tives C is likely to be the optimal solution. Depending on the relative importance of
the two objectives, B or D may be the best solution. Commonly, there is no “true”
solution and two or more solutions may be equally good.

fi(a) ≤ fi(b), i = 1, . . . ,M and ∃i ∈ (1, . . . ,M), fi(a) < fi(b). (6.5)

A group of non-dominated individuals is known as a non-dominated set or

“Pareto-set”. For a particular population, the first non-dominated set is given a

“rank” of zero and the entire population of solutions can be further ranked by tem-

porarily ignoring the first non-dominated set and calculating the non-dominated set

of the remaining solutions. This process, which can be repeated until the entire pop-

ulation is categorised, is used during the selection process to determine suitable par-

ents for crossover. Within each non-dominated set, it is desirable that the solutions

remain well spread along the “Pareto-front”, the continuous line passing through all

of the points in the Pareto-set. This can be accomplished through “diversity preser-

vation” [12, 263] algorithms which order solutions within a non-dominated set such

that the diversity of the solutions is maintained even when few solutions are selected.
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6.4.5.1 Constraints

In addition to the dominance relationships which are used to determine which indi-

viduals are selected for recombination, constraints, which determine the legality of

solutions can be applied to the genotype. Solutions may be illegal for several reasons,

possibly due to real-world constraints or the genotype representation. Constraints

can cause a significant problem for GAs since the mutation and crossover operators

will in general result in solutions which are not permitted by the constraints. Several

approaches to solving this problem exist. These include using genotype represen-

tations which do not permit illegal solutions, defining crossover and mutation op-

erators which preserve the legality of solutions, adding penalty terms to the fitness

function for illegal solutions and adding a selection penalty to solutions which are

not permitted. Constraints can be defined as “hard” or “soft” [261]. Redefined geno-

type representations and crossover and mutation operators result in the hard appli-

cation of constraints; the GA will never find a solution which violates a constraint.

Fitness and selection penalties are known as soft constraints because it is possible,

though unlikely, that a solution which violates the constraints may be found.

6.4.5.2 Genetic Algorithm Parameters and Operation

Several parameters control the crossover and mutation operations. pc is the proba-

bility that crossover occurs between two variables while ηc is the width of the prob-

ability distribution function used in SBX and can be thought of as the “strength” of

the crossover operation. Similarly, pm is the probability of a mutation occurring to

each variable and ηm is the width of the probability distribution function used.

The algorithm operates as follows.

1. A random population is created.

2. The objective functions are evaluated and the population is sorted based on the

non-domination of the individuals.

3. Elitism is introduced by combining a previous population, if available, with the

current population and selecting the optimal solutions to form a population for

crossover.

4. Selection, crossover and mutation are performed to generate a new population.

5. The objective function evaluation, population combination, crossover and mu-

tation are repeated for a number of generations.
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The resulting population of the GA should find solutions which are close to the

true Pareto-front and are also well distributed among the multiple objectives. A final

selection from the resulting population provides the ultimate solution(s).

6.4.5.3 Final Selection

When considered carefully, each of the trade-off solutions corresponds to a specific

order of importance of the objectives. In Figure 6.3, solution A assigns more impor-

tance to objective y while solution E assigns more importance to objective x. Thus,

if we know the order of importance of the objectives, then we can easily choose

the optimal solution. Such a process can be implemented mathematically by per-

forming a weighted sum of the objective functions. The more important objectives

have larger weights and are thus preferred over lower weighted objectives. Such a

process transforms the multi-objective optimisation into a single objective optimisa-

tion and is known as preference based multi-objective optimisation [12]. By weighting

the objectives after the optimisation has taken place, the user can examine different

members of the resulting population to determine the best result. Often, it is only

once the optimisation has been performed, and the user has examined the resulting

population, that the “best” results can be determined. “Domain experts” can also

provide useful information at this stage; the use of higher level information which

cannot be quantified can be used to select the ultimate results.

6.5 Practical considerations
There are many practical considerations which must be addressed when develop-

ing and running optimisation algorithms. Although computational power increases

year on year [216], there is continued demand for more efficient optimisation algo-

rithms so that larger problems can be solved. Intractable problems (Section 6.2.1) are

the worst case, requiring ever more computational power for even modest increases

in problem size. Although they cannot guarantee the best solution to intractable op-

timisation problems such as the travelling salesman problem or the inversion of an

artificial neural network, the stochastic algorithms described in this chapter can pro-

vide “good” solutions in reasonable wall-clock time. With a fitness function which

can be calculated almost instantaneously (such as the predictions obtained by an

ANN), the execution of several thousand generations of a population of hundreds

can be performed in several minutes on a single processor PC.
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6.5.1 Software toolkits

Several proprietary GA software packages are available as well as a number of public

domain and General Public License [265] codes from various research groups. Mat-

lab provides the Genetic Algorithm and Direct Search Toolbox [266] which contains ge-

netic algorithm and simulated annealing capabilities. Additionally, the CPAN [220]

AI::Genetic [221] allows development of GAs using the Perl [158] scripting language.

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [263] is another

popular example and is the software used here. In a comparison performed by

Zitzler et al. [267], the Strength Pareto Evolutionary Algorithm (SPEA) [268] out-

performed the original NSGA [269]. However, the addition of “elitism” was found

to improve the performance of NSGA [263]. The NSGA-II algorithm’s strength lies

in its elitist selection strategies in selection for survival and selection for breeding.

“Elitism” is a technique which has been found to enhance the convergence of multi-

objective EAs [267] and operates by retaining a group of optimal solutions between

generations, thus reducing the risk that good genetic information might be lost by

chance. The NSGA-II algorithm uses a constraint-dominance relationship to deter-

mine the selection order of solutions. Individuals are first selected on the basis of

constraint validity, and then for their non-dominance as determined by their ob-

jective values. In this way, legal solutions always have a better non-domination

rank than illegal solutions. In combination with diversity preservation algorithms,

the NSGA-II’s constraint-dominance selection strategy ensures that legal solutions

which are spread along the Pareto-front are most likely to be selected to create the

next generation.

NSGA-II is a well-known algorithm, quickly converging to solutions which are

spread along the Pareto-front [263]. Furthermore, code implementing the algorithm

is freely available under GPL [265], making it ideally suited to the problem encoun-

tered here; that of inverting a neural network to develop desirable materials designs.

6.6 Applications
Rose [145] provides a review of statistical design in combinatorial chemistry and em-

phasises that combinatorial experiments for drug design have resulted in libraries

which, although containing a great number of compounds, contains redundant in-

formation and poor diversity. Rose’s “non-combinatorial” methodology extends the

combinatorial approach through the use of virtual drug design by computer soft-
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ware.

Solmajer et al. [270] discuss the use of genetic algorithms and neural networks

for drug design while Lobanov [271] describes how artificial neural networks have

been developed for virtual screening of pharmaceuticals. In particular, the Kohonen

neural network (Section 5.3.4) is popular in drug design [272].

Gillet et al. [273] describes the use of multi-objective EAs for combinatorial drug

library design. The algorithm used molecular weight, rotatable bond parameters and

hydrogen bond donors as fitness measures to develop virtual libraries for synthesis.

Farrusseng et al. [274] used artificial neural networks and classification trees for the

virtual screening of catalysts for the oxidation of propene. Brown et al. [275] provide

a case study of an inverse quantitative structure-property relationship (QSPR) work-

flow which successfully develops novel chemical entities with optimal molecular

polarisability and aqueous solubility using a genetic algorithm.

Monte Carlo methods have also been used in materials science for various pur-

poses. Harris et al. [276] used a Monte Carlo algorithm similar to simulated an-

nealing to determine the crystal structure of p-CH3C6H4SO2NHNH2 using powder

diffraction data. Hanson et al. [277] discuss an enhanced algorithm which uses a GA

to determine the molecular crystal structure of peptides from powder XRD data.

Although the use of GAs in materials science is fairly common, there has been

less work on materials design by GAs in this field. Caruthers et al. [278] discuss the

use of a GA for the inversion of forward prediction models for catalyst design. Ad-

ditionally, Sudarsana Rao et al. [279] use genetic algorithms to train ANNs for the

prediction of the mechanical properties of ceramics. This technique is not uncom-

mon [205, 280].

Here, instead of using a genetic algorithm for ANN training, we are interested

in the use of GAs for ANN inversion. This technique has been employed previously

in various fields. Heckerling et al. [281] employed ANNs in combination with GAs

to predict relationships between symptoms and infection of the urinary tract. Addi-

tionally, Anijdan et al. [282] designed an aluminium-silicon casting alloy using GA

inversion of an ANN. Bio-molecular science contains several examples of the EA in-

version of ANNs. Burden et al. [283] used the technique to develop optimal physico-

chemical properties of diaminodihydrotriazines. Burden et al.’s work used molecular

descriptors as inputs to an 5:8:1 (number of layers) back-propagation MLP network

for forward prediction which was then inverted using the GA.
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EA inversion of ANN predictors was mentioned in passing by Coveney et al.

more than 10 years ago in unpublished work in the design of cementitious ma-

terials using infrared spectra [235]. It has since been used in capacitor design by

Yang et al. [284] who developed a back-propagation MLP to predict the performance

of multilayer ceramic capacitors (MLCCs) from the screen-printing process machine

parameters. GA inversion of the MLP resulted in optimal MLCC designs. However,

GA inversion of ANNs for the design of dielectric and diffusion materials described

in Chapter 3 is unprecedented.

6.7 Summary
In this chapter, we have seen how the two main types of optimisation algorithms,

gradient and stochastic techniques, can be used to solve arbitrarily complex optimi-

sation problems.

When the optimisation function is differentiable, gradient descent is a well-

known powerful technique and a good choice for solving the optimisation problem.

The back-propagation algorithm, used during the training of neural networks (Sec-

tion 5.6.2) employs a gradient optimisation algorithm to minimise prediction errors.

With complex, high-dimensionality functions, gradient information may not be

available. Additionally, gradient techniques only examine local gradient informa-

tion, sometimes becoming trapped in local minima. Evolutionary techniques such

as the genetic algorithm use methods based in Darwinian evolution to develop a

population of individuals which are potential solutions to the problem. Through re-

peated iterations of selection, crossover and mutation, a genetic algorithm evolves

an initial random population to develop individuals which minimise the objective

function. The genetic algorithm can be used for the inversion of artificial neural

networks (Chapter 5) providing, in particular, optimal materials designs.

Having completed a discussion on the background of the techniques used, we

now move on to describe the specific application of an ANN to the prediction of

material properties (Chapter 7). The subsequent inversion of such a neural network

may be used do develop novel materials designs and is described in Chapter 9.
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CHAPTER 7

Artificial neural networks for electroceramic

materials property predictions

7.1 Introduction
This chapter describes the development of artificial neural networks (ANN) for the

prediction of the properties of ceramic materials [10]. The ceramics studied here are

discussed in detail in Chapter 3 while the ANN technique employed is described in

Chapter 5.

Multi-layer perceptron ANNs are trained using the back-propagation algorithm

and use data obtained from the literature and stored within the FOXD project

database described in Chapter 4 to learn composition-property relationships be-

tween the inputs and outputs of the system. The trained networks use compositional

information to predict the relative permittivity and oxygen diffusion properties of

ceramic materials.

Section 7.2 contains the details of the ceramic datasets used in this work while

Section 7.3 details the reasoning behind the selection of the prediction algorithm

used. Section 7.4 provides the exact implementation of the ANN employed, Sec-

tion 7.5 gives the results obtained and the conclusions are provided in Section 7.6.

7.2 Ceramic materials datasets
The dielectric dataset [285] was extracted from the literature and contains 700 records

on the composition of dielectric resonator materials and their properties. Manufac-

turing parameters and physical properties of ceramics such as porosity, grain size,

raw materials, processing parameters, measurement techniques and even the equip-

ment used to manufacture them can all affect the dielectric properties. Since all mate-
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rial properties can be affected by such parameters the inclusion of such information

may increase our ability to predict ceramic material properties.

The majority of materials found in the dataset are Group II titanates, and Group

II and transition metal oxides. Also included are some oxides of the lanthanides and

actinides. The dataset contains relative permittivity values and Q-factors for 99% of

the records. Resonant frequency and temperature coefficient of resonant frequency

data are also listed, but are only available for 58% and 83% of the records respec-

tively. The 700 records in the training dataset contain 53 different elements of which

these materials may be comprised (Ag, Al, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er,

Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, La, Li, M, Mg, Mn, Mo, Na, Nb, Nd, Ni, O, P, Pb, Pr,

Sb, Sc, Si, Sm, Sn, Sr, T, Ta, Tb, Te, Ti, Tm, V, W, Y, Yb, Zn, Zr). It is the proportion

of each of these elements found in the ceramic material which forms the input to the

network. Oxygen is a ubiquitous element, being present in all materials. Barium,

Calcium, Niobium, and Titanium are present in > 200 compounds while tantalum is

present in 150. The remaining elements are present in < 100 compounds. The mean

number of elements per compound is 4.2.

In addition to the full dataset described above, an “optimised” dielectric dataset

was obtained. This consisted of a subset of the data which was hand-selected by

Neil Alford through removal of all glass material and all materials containing un-

usual dopants. The optimised dataset consists of 90 records containing 37 different

elements (Al, Ba, Bi, Ca, Ce, Co, Cu, Eu, F, Fe, Ga, Gd, Ge, Hf, La, Li, M, Mg, Mn, Na,

Nb, Nd, Ni, O, Pb, Pr, Si, Sm, Sn, Sr, T, Ta, Ti, V, W, Zn, Zr). Again, the compositional

information forms the input to the neural network and the dielectric properties the

output.

The ion-diffusion dataset contains 1100 records of oxygen diffusing materials and

their properties. The input data used for mining of the ion-diffusion data mainly con-

sists of the compositional information of each material as in the dielectric dataset.

The materials consist of Group II, transition metal, lanthanide and actinide oxides

and contain 32 different elements (Al, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Fe, Ga, Gd,

Ho, In, La, Mg, Mn, Nb, Nd, Ni, O, Pr, Sc, Si, Sm, Sr, Ti, V, Y, Yb, Zr). The propor-

tion of these elements, along with the temperature at which the diffusion coefficient

was measured form the network inputs. This dataset was collected from published

sources.

Unlike the records contained in the dielectric dataset, the ion-diffusion data con-
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tain many records which are measurements of the same material composition, per-

formed at different temperatures. Such records would be appear identical to the

ANN, if only composition was considered, resulting in inaccurate predictions. To

alleviate this problem, the measurement temperature is included as an additional

input to the network, thus differentiating the different records.

7.3 Selection of prediction algorithm
MLP networks have been use previously in the prediction of materials properties [7]

and are flexible, well understood learning algorithms capable of developing models

of the complex data relationships found in ceramic materials. Other algorithms such

as Bayesian networks, support vector machines and decision trees were also consid-

ered as possible techniques to employ. Here, we employ MLP networks since they

are a well known, simple technique and there is no need to unnecessarily complicate

the problem by using other, possibly less well understood methods. Additionally,

RBF networks were of interest since they have been shown to produce more accu-

rate predictions in some cases [9]. However, we were unable to obtain accurate pre-

dictions using this technique despite considerable effort involving several different

training methods and basis function modifications. Had time permitted, the inves-

tigation of numerous other predictive methods such as those mentioned above and

described in Chapter 5 would have been an interesting exercise. Since we have ob-

tained excellent predictive results using the MLP neural network, the MLP is used

for the prediction of materials properties for the work described in this chapter.

7.4 Implementation
Pre-processing of training data improves training stability and helps to prevent com-

putational over- or underflow. All of the data are scaled so that the mean value is

0 and the standard deviation is 1. In addition to the scaling algorithms, a technique

called principal component analysis (PCA) is performed to remove any linear de-

pendence of the input variables. PCA is a statistical technique which can be used to

reduce the dimensionality of a dataset and is described fully in Section 5.3.3.1.

For the dielectric data, PCA was used to reduce the dimensionality of the dataset

from the original 53 elements to 16 by removing 2% of the variation of the data.

Similarly, for the optimised dielectric dataset, PCA reduced the dimensionality from

37 to 21. PCA of the ion-diffusion data allowed the dataset to be reduced from 33
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inputs (32 different elements and the measurement temperature) to 16 by removing

2% of the variation of the data. The datasets used are randomly selected from the

available data. The full set of data was split into three datasets: training, validation

and test. As part of the cross-validation analysis, the data were divided into 10 equal

size sub-datasets. One of the datasets is used for testing and the remainder is used

for training and validation.

7.4.1 Parameter selection and computational requirements

The number of hidden nodes was determined by trial and error and was chosen

to be 15 for all three networks (dielectric, optimised dielectric and diffusion). 15

hidden nodes is a reasonable number considering that there are 16 inputs after pre-

processing has reduced the inter-correlation in the original data. Figures 7.1 and 7.2

illustrate how the training time and RMS training set error is related to the number

of nodes used during network training.
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Figure 7.1: The number of epochs required before early stopping halts the training
process for networks with 5 - 30 hidden nodes. Networks with fewer hidden nodes
train faster since they have fewer parameters however, they do not generalise as well
as networks with a greater number of hidden nodes (Figure 7.2).

Figure 7.1 illustrates the effect of the number of hidden nodes on the epochs re-

quired before network training is halted due to early stopping. Figure 7.2 mean-

while shows how the error functions of the training, validation and test datasets are
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Figure 7.2: The error functions for the training, validation and test datasets for net-
works with 5 - 30 hidden nodes. Networks with a greater number of hidden nodes
tend to perform more accurately than those with fewer. However, networks with
more hidden nodes take longer to train since there are more parameters to optimise
(Figure 7.1).

effected by differing number of hidden nodes. Networks with 15 hidden nodes gen-

eralise well, but do not require significantly more epochs to converge. 15 hidden

nodes were therefore used in all MLP networks. It should be noted, however, that

the number of hidden nodes does not have a large effect on the performance of the

network and so the number of hidden nodes used is less critical than it would first

appear for this particular problem.

The momentum constant is another parameter which requires optimisation. Fig-

ures 7.3 and 7.4 show how the momentum constant affects the number of epochs

required for convergence and the error functions of the datasets. As you can see, if

the momentum constant is too small, the convergence is slow due to flat areas of pa-

rameter space. If it is too large then convergence is also slow due to overshooting of

the optimal values. The momentum constant does not appear to greatly effect the re-

sulting error functions of the networks indicating that the momentum constant does

not effect the generalisation of the network. This is most likely due to the adaptive

learning rate which dynamically adjusts the learning rate during training, permit-

ting optimal weight values to be obtained, even when the momentum constant is
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suboptimal. Therefore, the momentum constant is only of importance in optimising

the training speed of the network.
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Figure 7.3: The number of epochs required before early stopping halts the training
process for networks with momentum constant between 0 and 1. If the momentum
constant is too small, then the network takes a long time to train due to becoming
trapped in flat areas of parameter space. A large momentum constant also leads to
long training times due to “overshooting” the optimal weight values.

The learning rate is another parameter which effects the training process. An

“adaptive learning rate” is a technique to automatically adjust the learning rate dur-

ing the training process to optimise the training speed. If the weight adjustments

made during an epoch result in an increase in the error function then the learning

rate is reduced. Weight adjustments which lead to a decrease in the error function

lead to an increase in the learning rate. Using this technique, the network automati-

cally optimises the learning rate as training progresses.

The non-linear relationships between the different model parameters make it ex-

tremely difficult to determine optimal values. The optimal number of hidden nodes

can be completely different when the learning constant and/or momentum constant

is altered. This is overcome in part through the use of dynamic values, i.e. the value

of the parameter is adjusted during the training process. Optimally selecting val-

ues for the model parameters is itself a complex optimisation problem and has been

discussed elsewhere [9]. Since good convergence has been obtained with the values
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Figure 7.4: The error functions for the training, validation and test datasets for net-
works with different momentum constants. The momentum constant does not ap-
pear to have a large effect on the resulting performance of the trained network. This
is probably due to the adaptive learning rate which allows the network to converge
to the optimal weight values eventually, even if the momentum constant is too large
or small to converge in the most efficient way.

employed, further investigation of optimal values for all parameters has been left as

a subject for further work.

The computational requirements of the training process are low; on a 1.6GHz

single processor machine, the training of a 700 record dataset was completed in

3600 epochs and took approximately 1 minute. The ANNs were developed in Mat-

lab [217], making extensive use of the Neural Network Toolbox [218] (Section 5.9.1).

The code is provided in Appendix A.

7.4.2 Data modifications required to obtain good convergence

Initial attempts to train the neural network using the dielectric dataset resulted in

poor generalisation. The dataset contains records with relative permittivities in the

0-1000 range. Especially poor results were obtained when attempting prediction of

materials with permittivity greater than 100. Investigation revealed that the number

of records with permittivity greater than 100 is far fewer than that in the range 0-100:

91% of the records are in the 0-100 range and the remaining 9% in the range 100-

1000. This resulted in the network being unable to accurately learn which material
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compositions produce relative permittivities greater than 100.

Records associated with materials which exhibit relative permittivity greater than

100 were removed from the dataset. When network training was restarted, the per-

formance of the network improved considerably, allowing accurate generalised pre-

dictions of the relative permittivity. Nevertheless, as mentioned previously, statis-

tical techniques are more reliable when interpolating and so, whilst the predictive

ability in the 0-100 range increased, extrapolation, predicting relative permittivity

greater than 100, is likely to be relatively inaccurate.

The diffusion coefficients of the data in the ion-diffusion dataset vary over a wide

range (∼ 4 orders of magnitude) and initial training attempts resulted in extremely

poor accuracy. The data were pre-processed by taking logarithms of the diffusion

coefficients which reduced the absolute range of the output data and resulted in

much improved ANN performance.

7.5 Results
The trained neural networks were used to predict the properties of the materials

in the test datasets which were compared to the experimental results. In addition,

we carried out cross-validation analysis of the data. The tables show data from 10

repetitions of 10-fold cross-validation analysis. To measure the overall network per-

formance, we have calculated both RMS and RRS error functions of the test datasets

of the 10-fold cross-validation analysis and then calculated the mean of these error

functions. The dataset was then re-randomised, and the 10-fold cross-validation per-

formed again. Once 10 randomisations were completed, the mean of the error func-

tions of each cross-validation was determined. The tables in this section show the

results from each cross-validation and the overall mean and standard deviation of

these results. The cross-validation ensures that the results are generalised through-

out the entire dataset and the multiple randomisations ensure that the results are not

due to coincidental randomisation. The overall “mean of mean” values of the error

functions give a good indication of the generalisation error and provide the expected

accuracy of predictions made using the neural networks.

Finally, some analysis of the materials in each of the cross-validation datasets has

been performed. We have attempted to provide a measure of the difference of the

test dataset from the training/validation datasets. To calculate this figure, the mean

composition of the test dataset and the combined training/validation datasets were
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calculated. We then calculated the RMS of the difference between the two mean

values to show how the materials in the test dataset compare to the materials in

the combined training/validation dataset. Test datasets which have a low mean

composition difference from the training/validation datasets are more similar to the

training/validation data and thus likely to perform better than test datasets with a

large mean composition difference.

7.5.1 Prediction performance of the network trained using the

full dielectric dataset

The full dielectric dataset was divided into three sub-datasets (training, validation

and test) and training was performed until halted by early stopping. The trained

network was used to predict the (dimensionless) permittivity of the test dataset; the

correlation between the experimentally observed permittivity and the predicted per-

mittivity is shown in Figure 7.5 which demonstrates the accuracy of the predictions.

The RMS error of the predicted data compared with the experimental data is 0.61.

Figure 7.5 is a plot of the results obtained from the second dataset combination from

the cross-validation analysis.
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Figure 7.5: The performance of the back-propagation MLP neural network used to
predict the permittivity of the test dataset from the full dielectric dataset. This plot
illustrates the performance of the second dataset combination in the cross-validation
analysis (See Table 7.1). An ideal straight line with intercept 0 and slope 1 is also
shown. The RRS error of the predictions is 0.61.
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Statistical analysis of neural networks developed from the dielectric dataset was

obtained by performing 10 repetitions of 10-fold cross-validation analysis. Results

of this analysis are provided in Table 7.1 which shows the RMS and RRS error val-

ues, the parameters of a straight line fitted using least squares regression and the

RMS of the mean compositional difference between the test dataset and the train-

ing/validation dataset. Also included are the the mean and standard deviation of

these values. The values obtained are very similar as indicated by the standard devi-

ation which confirms that each of the datasets contains a good representation of the

whole dataset. This demonstrates that each sub-dataset is well randomised and the

neural network performance is not simply due to the selection of the sub-datasets.

Also shown is a repeated cross-validation analysis of the dielectric dataset with

ionic radii data included (Table 7.2). Shannon’s ionic radius data [286] was included

by calculating the sum of the ionic radii of the elements in the corresponding mate-

rial, in proportion to their fractional composition. The inclusion of ionic radius data

leads to no change in the prediction performance of the network trained using the

full dielectric dataset. The RRS error of the predictions remains at 0.6.

7.5.2 Prediction performance of the network trained using the

optimised dielectric dataset

The optimised dielectric dataset was examined in a similar fashion to the full dielec-

tric dataset. The dataset was divided into three, and training carried out using the

early stopping technique to prevent over-training. Relative permittivity predictions

of the test dataset were again obtained and the networks performance is summarised

in Figure 7.6. This figure shows the accuracy of the neural network predictions com-

pared to those obtained by experiment. The straight line shows the ideal correlation.

As before, network training was performed using cross-validation analysis. The

results of this are summarised in Table 7.3. Again, since the statistical data are similar

for each of the trained networks, the datasets each contain a good representation

of the whole dataset and the result obtained in Figure 7.6 is not simply due to the

random selection of the datasets.

Also shown is a repeated cross-validation analysis of the optimised dielectric

dataset with ionic radius data included (Table 7.4). As before, the ionic radius data

were included by calculating the sum of the ionic radii of the elements in the mate-

rial, in proportion to their fractional composition within the material. The inclusion
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Figure 7.6: The performance of the back-propagation MLP neural network used to
predict the permittivity of the test dataset from the optimised dielectric dataset. This
plot illustrates the performance of the first dataset in the cross-validation analysis
(See Table 7.3). An ideal straight line is shown as in the previous figure. The RRS
error between experimental and predicted data is 0.63 (dimensionless).

of ionic radii data results in an increase in prediction performance as indicated by

the RRS error decrease from 0.71 to 0.65.

Whilst the ANN’s predictions agree well with the experimental values in the

dataset, it should be remembered that the network uses the experimental results

as part of the training process and is therefore itself subject to the error in this ex-

perimental data. An ANN will never be able to provide predictions of properties

which are more accurate than the error in the experimental measurements. Unfortu-

nately, we do not have any error information for the dielectric data. Since the neural

network uses experimental data in the training algorithm, the experimental error

represents the intrinsic accuracy of the network. However, measurements made on

the LUSI samples will contain error information and therefore error analysis will be

possible in the future. Overall, the network performs better when using the complete

rather than the optimised dataset. When only compositional information is included,

the RRS error of the cross-validated system is reduced from 0.71 to 0.60 when the en-

tire dataset is used. The standard deviation of the RRS error function obtained from

the optimised dataset is larger than for the full dataset, possibly indicating that there
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is insufficient data for training the network when using the optimised dataset.

As stated earlier, we expect the developed networks to perform well in inter-

polation, but less reliably in extrapolation. We can attempt to gauge the probability

that the prediction of the properties of a material are accurate by measuring the “dis-

tance” of a material’s composition from the hypothetical mean material. If a material

is within, say, one standard deviation of the mean, the network is operating close to

known parameter space and the predictions obtained are more likely to be accurate

than materials which are “further away” in parameter (here composition) space.

7.5.3 Prediction performance of the network trained using the

ion-diffusion dataset

Analysis of the ion-diffusion dataset was performed using the same method as the

dielectric dataset. The dataset was randomised, divided into the three sub-datasets

and training carried out until halted by the early stopping technique. The trained

network was used to predict the logarithm of the diffusion coefficient (cm2s−1) of the

records in the test dataset. The comparison between the predicted and experimental

values is shown in Figure 7.7 and the RMS error of the predicted data compared to

the experimental data is 2.12 (dimensionless since we are working with the logarithm

of the diffusion coefficient).

As for the dielectric dataset, it should be remembered that the network uses the

experimental results as part of the training process and is subject to the error in this

data. The ANN will never be able to provide predictions of properties which are

more accurate than the error in the experimental measurements. Unfortunately, the

ion-diffusion dataset only contains errors for about 3% of the records. Due to the lack

of error information, we are unable to perform comparisons between the ANN and

experimental data and determine whether or not the ANN predicts values within ex-

perimental error. As usual, repeated cross-validation analysis was performed. The

results of this are summarised in Table 7.5. The low standard deviation of the mean

values shows that each of the datasets contains a good representation of the whole

dataset and the result obtained in Figure 7.7 is not simply a coincidence of the ran-

domisation and selection of the datasets. Again interpolated predictions are more

likely to be accurate than extrapolated results and we can use compositional dis-

tances from the mean composition to attempt to predict the expected accuracy of

our predictions.
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Figure 7.7: The performance of the back-propagation MLP neural network used to
predict the diffusion coefficient (cm2s−1) of the test dataset from the ion-diffusion
dataset. The RMS error between experimental and predicted data is 0.34 (dimen-
sionless, since the network is trained using the logarithm of the diffusion data).

7.5.4 The use of structural/oxidation state information to in-

crease predictive performance

Since many functional properties of ceramics are related to the structure of the com-

pound, we have attempted to include structural data in the prediction algorithm.

This is accomplished through the use of the ionic radius of the elements in each ma-

terial.

In a perovskite material, the ionic radii can be related using the following for-

mula [14]:

RA + RO = t2 (RB + RO) (7.1)

where RA and RB are the ionic radii of the ions on the A and B sites of the crystal

and RO is the ionic radii of oxygen. t is known as the tolerance and is typically in

the range 0.95 < t < 1.06 for perovskite materials. Bearing in mind this formula,

we have attempted to include structural information into the prediction algorithm

by including the sum of the ionic radii of the metal ions. Ideally, the calculation

of the tolerance would be included exactly, however, the database does not contain
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crystal site information and significant manual effort is required to input this data.

Unfortunately, time did not permit this to be performed.

Additionally, we would have liked to perform investigations using other struc-

tural data. WebSCD (Structural Ceramics Database) [147] at the National Institute of

Science and Technology (NIST) contains a large database of structural ceramic data

and the results obtained from linking the WebSCD and FOXD databases may have

provided interesting results. Unfortunately, time constraints prevented such investi-

gations. Nevertheless, the results obtained here illustrate that it is possible to obtain

remarkably accurate predictions of dielectric properties without the use of structural

data.

Many of the metal ions considered can exist in multiple oxidation states. The

investigation so far has considered that each metal ion exists in only one oxidation

state. If we were to consider multiple oxidation states, the number of inputs would

increase significantly and therefore reduce the area of parameter space covered by

the training data. Attempting predictions using multiple oxidation states would

likely reduce the accuracy of the predictions obtained. Unfortunately, as before,

inputting oxidation state data into the database requires significant manual effort

which time did not permit.

7.5.5 Web interface to the artificial neural network

Web services “provide a systematic and extensible framework for application-to-

application interaction, built on top of existing Web protocols and based on open

XML standards” [287]. Here, we have employed a Representational State Transfer

(RESTful) approach [168] using Hypertext Transfer Protocol (HTTP) [288] to provide

a web-based interface to the ANN predictors. Access to the system can be obtained

via http://db.foxd.org where the user can enter a material composition into a

web form which is then submitted to the prediction system. The system executes the

ANN and the predicted result is returned to the user.

Although the system will attempt a prediction for any entered material, the ANN

is trained using the data contained within the database and will likely provide more

accurate predictions for materials which are similar to those contained within the

database. Statistics are generated for the materials contained in the database and

these are displayed to the user, along with a calculation called a “reliability index”,

which help the user gauge the accuracy of the predictions made. Further information

on the calculation of the reliability index is included in Section 9.2.3.

http://db.foxd.org
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Web services provide a means for running applications over the Internet. The

approach allows the separation of web and application servers which is more flexible

and secure than a monolithic system. The web server is responsible for handling the

user interface and displaying the results, allowing the more CPU intensive work

required to obtain the prediction, to be performed by the application server. The

architecture of the web services based web interface to the artificial neural network

is illustrated in Figure 7.8.

The FOXD project web site is just one of many sites served by the web server

based at UCL. By moving the relatively intensive processing which occurs when the

neural network is executed to another server, known as the application server, we

ensure that predictions do not adversely affect the performance of the web server.

Additionally, the application server can be changed or upgraded independently of

the web server if required. This can be particularly useful if a sudden increase in

demand for the service appears.

The use of web services to separate the web server and application server also

increases security. Since the application server is behind a firewall, it is only acces-

sible internally and less vulnerable to attack. This means that the application server

is only accessible via the web server and does not permit connections from other

machines.

7.5.5.1 Operation

The web server provides the web pages for the user. Initially, the user browses to

the web interface page which contains a text box to enter the material composition.

The form data is submitted and sent back to the web server. The data is accepted by

the web server, validated and sanitised and then converted into an XML message as

shown in Figure 7.9.

The XML message is sent to the application server which can be hosted any-

where; on a completely separate server, or on the same server as the web server

itself. The application server receives the XML message from the web server which

contains all of the required information for the application server to perform the

prediction. The application server parses the XML to extract the data and transfers

execution to the ANN code which performs the actual prediction.

The ANN code returns the material prediction which is then inserted into another

XML message to be returned to the web server. The server also makes a connection

to the database to determine the “distance” information which is returned in the
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<materialpredictor>
<material>La0.6Sr0.4Fe0.8Ni0.2O3</material>
<temperature>500</temperature>
<predictor>diffusion</predictor>

</materialpredictor>

Figure 7.9: The XML message which is created from the user’s form entries and sent
from the web server to the application server. The message contains details of the
material entered and the prediction that is required.

XML message, along with the property prediction value. An example of a returned

XML message is shown in Figure 7.10.

The web server, which has been waiting for the XML message to be returned from

the application server, receives and parses the XML message to extract the relevant

data. The web server creates the XHTML markup required to display the results to

the user and sends the completed web page to the user where it is displayed on their

screen (Figure 7.11).

Although the computer time required to obtain the prediction is small (<1s),

there are many potential users on the Internet and simultaneous prediction requests

by many users will require large quantities of computing power. By using web ser-

vices to separate the web and application server, we can host the web server on a

separate machine, allowing the web server to perform adequately even when the

application server is servicing many requests. Despite this, there is still a limit to

the number of users who can be serviced simultaneously. Web services permit us

to reduce the effects that the computationally expensive ANN execution has on the

web server.

7.6 Conclusions
Through application of artificial neural networks to pre-existing datasets culled from

the literature, we have seen that we can predict the permittivities and diffusion co-

efficients of ceramic materials simply from their composition and, in the case of the

diffusion coefficient, experimental measurement temperature. A three layer multi-

layer perceptron network was trained using the back-propagation algorithm and

cross-validation analysis of the data gave a mean root relative squared error of 0.6

for prediction of the dielectric constant of materials in the full dielectric dataset com-

pared with 0.71 for the smaller optimised dataset. The inclusion of ionic radius data
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<prediction>
<data>7.48439e-12</data>
<overallreliability>0.271915</overallreliability>
<element>
<name>Fe</name>
<mean>0.157908</mean>
<stddev>0.331871</stddev>
<value>0.8</value>
<distance>1.93477</distance>

</element>
<element>
<name>La</name>
<mean>0.59502</mean>
<stddev>0.628187</stddev>
<value>0.6</value>
<distance>0.00792784</distance>

</element>
<element>
<name>Ni</name>
<mean>0.164866</mean>
<stddev>0.54701</stddev>
<value>0.2</value>
<distance>0.0642288</distance>

</element>
<element>
<name>O</name>
<mean>3.21922</mean>
<stddev>1.18235</stddev>
<value>3</value>
<distance>-0.185407</distance>

</element>
<element>
<name>Sr</name>
<mean>0.177384</mean>
<stddev>0.232962</stddev>
<value>0.4</value>
<distance>0.955586</distance>

</element>
<element>
<name>ExpTemp</name>
<mean>774.445</mean>
<stddev>184.646</stddev>
<value>500</value>
<distance>-1.48633</distance>

</element>
</prediction>

Figure 7.10: The XML message which is created from the results of the ANN predic-
tion and then sent from the application server to the web server.
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Figure 7.11: The results of a prediction made using the ANN. The screen-shot
shows the web page returned when a user requests a permittivity prediction for
La0.6Sr0.4Fe0.8Ni0.2O3 screen also shows “reliability” information which indicates
the likely accuracy of the prediction to the end user. Fine-grained reliability infor-
mation for each element in the predicted material is also shown.

results in no change to the prediction accuracy for the full dataset, although a de-

crease in root relative squared error of 0.06 was found when the ionic radius data

were included in the optimised dielectric dataset. The same network trained using

the ion diffusion dataset was able to predict the logarithm of the oxygen diffusion

coefficient with a RRS error of 0.35.

Reliable Baconian methods for the prediction of the properties of ceramic materi-

als are likely to become powerful tools for the scientific community whose accuracy

will increase as more data becomes available. In the next chapter, we discuss the

use of radial basis function neural network for the prediction of materials proper-

ties. Prediction algorithms such as the MLP neural network described here, and

the RBF networks described in the following chapter can be combined with evolu-

tionary optimisation techniques such as the genetic algorithms of Holland [262], to

develop optimal materials designs and complete the materials discovery cycle. Such

techniques are described in Chapter 9.
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CHAPTER 8

Radial basis function networks for

electroceramic materials property

predictions

8.1 Introduction
This chapter describes the development of radial basis function networks (RBF) for

the prediction of the properties of ceramic materials. The ceramics studied here are

discussed in detail in Chapter 3 while the RBF technique employed is described in

Chapter 5.

The training process for RBF networks involves placing basis functions in a mul-

tidimensional space and use literature data stored within the FOXD database (Chap-

ter 4) to learn composition-property relationships. The trained network uses compo-

sitional information to attempt to predict the relative permittivity of ceramic materi-

als.

Section 8.2 contains the details of the ceramic datasets used in this work while

Section 8.3 provides the exact implementation of the RBF network employed. Sec-

tion 8.4 gives the results obtained and the conclusions are provided in Section 8.5.

8.2 Ceramic materials datasets
The dataset used is identical to the dataset used for the multi-layer perceptron net-

work described in Section 7.2. The dataset contains 700 records on the composition of

dielectric resonator materials and their properties. Permittivity values are available

for 99% of the materials. The majority of materials found in the dataset are Group II

titanates, and Group II and transition metal oxides. Also included are some oxides
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of the lanthanides and actinides. Oxygen is a ubiquitous element, being present in

all materials. Barium, Calcium, Niobium, and Titanium are present in > 200 com-

pounds while tantalum is present in 150. The remaining elements are present in <

100 compounds. The mean number of elements per compound is 4.2. The mean

relative permittivity of the materials in the dataset is 35.8.

8.3 Implementation
The data is preprocessed in an identical manner to that used during the training of

MLP networks. The data is scaled such that the mean value is 0 and the standard

deviation is 1. PCA is again used to reduce the input dimensionality of the data from

53 to 16 by removing 2% of the variance.

As before, the datasets are randomly selected from the available data. The full

set was split into three datasets: training, validation and test. As part of the cross-

validation analysis, the data were divided into 10 equal size sub-datasets. One of the

datasets is used for testing and the remainder is used for training and validation.

RBF networks consist of three layers, as described in Section 5.7. Training of

RBF networks is different from MLP networks and has also been described previ-

ously (Section 5.7.2. Here, three different training processes are attempted, which

differ in their initial RBF placement methods. The “Exact” RBF network is trained

by placing an RBF directly on the location of the records in the training dataset. The

second method involves iterative placement of basis functions in locations which

provide the most improvement to network performance and is dubbed the “itera-

tive improvement” method. In the final training method, K-means clustering is used

to cluster the training data into K clusters and the basis functions are placed at the

centre of the clusters.

The basis functions are circular Gaussian functions (5.21), with a spread parame-

ter determined using standard techniques (Section 5.7.4). The use of ellipsoidal and

“rotated” ellipsoidal basis functions are discussed later.

8.4 Results
As before, 10 repetitions of 10-fold cross validation analysis was performed and the

materials in the test datasets were compared with the experimental results. The

tables show data from the cross-validation analysis. To measure the overall net-

work performance, we have calculated both RMS and RRS error functions of the
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test datasets of the 10-fold cross-validation analysis and then calculated the mean of

these error functions. The dataset was then re-randomised, and the 10-fold cross-

validation performed again. Once 10 randomisations were completed, the mean of

the error functions of each cross-validation was determined. The tables in this sec-

tion show the results from each cross-validation and the overall mean and standard

deviation of these results. The cross-validation ensures that the results are gener-

alised throughout the entire dataset and the multiple randomisations ensure that

the results are not due to coincidental randomisation. The overall “mean of mean”

values of the error functions give a good indication of the generalisation error and

provide the expected accuracy of predictions made using the neural networks.

For each network, the correlation between the experimentally measured results

and the predictions made by the network is determined. A straight line is fitted to

the data and the intercept and gradient are provided in the cross validation tables.

Also provided is the RMS and RRS error functions between the experimental and

predicted results.

Finally, some analysis of the materials in each of the cross-validation datasets has

been performed. We have attempted to provide a measure of the difference of the

test dataset from the training/validation datasets. To calculate this figure, the mean

composition of the test dataset and the combined training/validation datasets were

calculated. We then calculated the RMS of the difference between the two mean

values to show how the materials in the test dataset compare to the materials in

the combined training/validation dataset. Test datasets which have a low mean

composition difference from the training/validation datasets are more similar to the

training/validation data and thus likely to perform better than test datasets with a

large mean composition difference.

8.4.1 Prediction performance of the exact radial basis function

network trained using the full dielectric dataset

The full dielectric dataset was divided into three sub-datasets (training, validation

and test) and training performed using the exact method. The trained network was

used to predict the (dimensionless) permittivity of the test dataset and the correlation

between the experimentally observed permittivity and the predicted permittivity is

shown in Figure 8.1 which demonstrates the accuracy of the predictions.

As you can see, it does not appear that the network was able to predict the per-
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Figure 8.1: The performance of the exact RBF network used to predict the permit-
tivity of the test dataset from the full dielectric dataset. This plot illustrates the
performance of the third dataset combination in the cross-validation analysis (See
Table 8.1). The RRS error of the predictions is 1.43.

mittivity of the materials. Results for each of the 10 repetitions of 10-fold cross val-

idation are shown in Table 8.1. The parameters of a straight line fitted using least

squares regression, the RMS and RRS error functions and the RMS of the mean com-

positional difference between the test dataset and the training/validation dataset are

also shown.

The results illustrate that the fitted line has a mean gradient of 0.19 and a mean

intercept of 28.53. The RBF network makes near constant predictions of 28.53 regard-

less of the input supplied. The mean permittivity of the dielectric dataset is 35.80 and

so it appears the that RBF network is simply predicting the mean value of the train-

ing dataset. Furthermore, the mean RRS error is 2.01 indicating that the predictions

made are worse than those that would have been obtained using a constant “mean

value” predictor.
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8.4.2 Prediction performance of the iterative improvement ra-

dial basis function network trained using the full dielectric

dataset

The full dielectric dataset was divided into three sub-datasets (training, validation

and test) and training performed using the iterative improvement method until the

RMS error reached the goal value, which was chosen to be 1. The correlation between

the experimentally observed permittivity and the predicted permittivity is shown in

Figure 8.2 which demonstrates the accuracy of the predictions.
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Figure 8.2: The performance of the iterative RBF network used to predict the per-
mittivity of the test dataset from the full dielectric dataset. This plot illustrates the
performance of the third dataset combination in the cross-validation analysis (See
Table 8.2). The RRS error of the predictions is 1.43.

As you can see, it does not appear that the network was able to predict the per-

mittivity of the materials. Results for each of the 10 repetitions of 10-fold cross val-

idation are shown in Table 8.2. The same statistical data as provided for the exact

RBF networks is provided.

The fitted straight line with mean gradient of 0.27 and intercept of 25.89 provide

similar results to those found using the exact RBF. No correlation is found between

the predicted and experimentally measured results meaning that the RBF network

was unable to learn the data relationships. The RRS error of 1.56 is slightly better
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than that found with the exact network, however it is still worse than a mean value

predictor.

8.4.3 Prediction performance of the K-means clustering radial

basis function network trained using the full dielectric

dataset

The full dielectric dataset was divided into three sub-datasets (training, validation

and test) and training performed using the K-means clustering method. The net-

work was unable to achieve the target goal value of 1, even when 50 clusters were

employed. Given that there are approximately 300 records in the training dataset,

50 clusters would provide 6 records per cluster. Increasing the number of clusters

beyond 50 would be unlikely to improve performance, particularly when consider-

ing that the exact and iterative improvement RBFs have been unable to extract data

relationships when using up to 300 hidden nodes.

The correlation between the experimentally observed permittivity and the pre-

dicted permittivity for the 20-means clustering network is shown in Figure 8.2 which

demonstrates the accuracy of the predictions. As you can see, it does not appear that

the network was able to predict the permittivity of the materials. Similar results were

obtained for 10-50 clusters, performed in 5 cluster increments.

Results for each of the 10 repetitions of 10-fold cross validation are shown in

Table 8.2. The usual statistical results are also provided.

As before the fitted straight line has a small gradient (0.20) and intercept (28.39)

near to the mean value of relative permittivity found in the materials dataset indi-

cating that a mean value predictor has been obtained. Again, the RRS error of 1.72

indicates that a simple predictor would have performed better.

8.4.4 Further improvements to the radial basis function net-

works

Attempts to improve the predictive ability of the RBF networks were made through

the use of ellipsoidal and “rotated ellipsoidal” basis functions. In contrast to the

“circular” basis functions used here, ellipsoidal basis functions contain a spread pa-

rameter for each dimension in the input data, resulting in ellipsoidal basis functions.

“Rotated ellipsoidal” basis functions further extend the shape of the basis functions

by permitting the basis functions to be rotated, such that they are aligned with the
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Figure 8.3: The performance of the 20-means clustering RBF network used to predict
the permittivity of the test dataset from the full dielectric dataset. This plot illustrates
the performance of the third dataset combination in the cross-validation analysis (See
Table 8.3). The RRS error of the predictions is 1.43.

function mapped.

Unfortunately neither the use of ellipsoidal nor rotated ellipsoidal basis functions

showed any improvement in the predictive ability of the network and the results

obtained were very close to those obtained above. In addition, such improvements

to the RBF’s learning ability result in increased computational power and wall-clock

time, thus offsetting one of the advantages of using RBF networks.

A final improvement which was considered was the use of Gaussian mixture

models [9] for basis function location. However, such a modification requires signif-

icant investment in software development and there was insufficient time available

to continue investigations in this direction.

A possible reason for the failure of RBF networks to predict the materials proper-

ties in this study is that RBF networks perform poorly when there are input variables

which have significant variance, but which are uncorrelated with the output vari-

able [9]. MLP networks learn to ignore the irrelevant inputs whilst RBF networks

require a large number of hidden units to achieve accurate predictions (Section 5.7).
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8.5 Conclusions
Attempts to develop radial basis function networks for the prediction of ceramic

materials properties resulted in poorly generalising networks. Despite efforts to im-

prove the predictive ability of RBF networks using iterative improvement and K-

means clustering for basis function location and ellipsoidal and rotated ellipsoidal

basis functions, no improvement in the predictive ability was observed. For all net-

works attempted, the RRS error was> 1 meaning that a mean value predictor would

have performed better.

Despite using the same dataset as that used for training multi-layer perceptron

networks, RBF networks were unable to make accurate predictions of permittivity

data. One major advantage of RBF networks over MLP networks is the decreased

training time due to the use of linear training methods. However, the improvements

listed here (K-means clustering, ellipsoidal and rotated ellipsoidal basis functions

offset the benefits enjoyed by RBF training. Accurate predictions may have been

possible using RBF networks, possibly through the use of Gaussian mixture mod-

els and the use of different basis functions. However, the improved training times

would have been offset by the increased processing power required by these more

advanced techniques. Furthermore, such modifications would have required signifi-

cant time investment in the software development process. These factors, along with

the excellent predictive performance obtained using MLP neural networks resulted

in the decision to use the MLP neural network predictors for the optimisation of ma-

terials designs. In the next chapter, we discuss the use of evolutionary optimisation

techniques such as the genetic algorithms of Holland [262], which can be used to

invert neural network predictors. This inversion provides the ability to search for

and design materials with desirable properties which can then be synthesised using

LUSI, thus completing the materials discovery cycle.
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CHAPTER 9

Materials design using artificial neural

networks and multi-objective evolutionary

algorithms

9.1 Introduction
This chapter describes the development of new materials designs through the ap-

plication of an evolutionary algorithm to the prediction algorithms described pre-

viously (Chapters 7 and 8). Since the RBF networks were unable to discover

composition-property relationships they are unsuitable for use here and the discus-

sion that follows is based solely on the use of MLP predictions. Evolutionary algo-

rithms (Chapter 6) employ stochastic search techniques to invert the MLP network,

thus providing predictions of materials suitable for laboratory examination. Such

predictions complete the materials discovery cycle described previously in Chapter 2

and are used to suggest materials for automated production by LUSI. By repeating

this cycle, iterative improvements to the materials designs can be obtained until an

optimal composition results.

The primary objective of the evolutionary algorithm is the permittivity of the

material, as predicted by the neural network. The other objectives optimised include

the reliability of the prediction and the overall electrostatic charge of the material.

The evolutionary algorithm searches for materials which simultaneously have high

relative permittivity, minimum overall charge and good prediction reliability.

This chapter is structured as follows. The three objectives and the implementa-

tion of the multi-objective EA are discussed in Section 9.2. The results are presented

in Section 9.3 and are discussed in Section 9.4. Section 9.5 concludes the chapter and
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contains a consideration of future research directions.

9.2 Genetic algorithm implementation
This section describes the implementation of the “forward” ANN composition-

property predictor which is then inverted using a GA. First, the MLP ANN described

in Chapter 7 is used to develop a system which provides permittivity predictions

from composition information [10]. By inverting the permittivity predictor with a

genetic algorithm, materials designs with specific properties, such as high permit-

tivity, can be discovered. However, since the ANN provides permittivity predictions

for any material containing the permitted elements with no regard for the likely ac-

curacy or the stoichiometry of the prediction, two further objectives for the opti-

misation are included. The reliability of permittivity predictions and stoichiometry

constraints are used along with the actual permittivity prediction as the three ob-

jectives. This section describes the implementation of the objectives, along with the

constraints imposed on the solutions. The section concludes by discussing the per-

formance of the algorithm.

9.2.1 Problems encountered during initial investigations using

the genetic algorithm

Initial investigations with the GA only involved the use of the ANN predictor as

an objective. The results obtained from the GA were incredibly complicated, often

containing contributions from each of the 52 possible inputs. Furthermore, many of

the elements contained the maximum quantity permitted by the GA. Such material

are impossible to manufacture and further constraints/objectives were required in

order to develop a manufacturable material. The first constraint employed was to

require that, at most, three different metal ions were present in the material. After

implementing this constraint and re-executing the GA it was found that, as before,

the maximum quantity of each element was present. A technique for developing a

more realistic material prediction was required.

Since the ANN’s predictions are derived from experimental data contained

within the materials dataset, we know that ANN predictions of materials which are

similar to those contained within the dataset are likely to be accurate. Furthermore,

materials which are similar to those in the materials dataset are likely to be manufac-

turable, since they are similar to real materials. Therefore, the concept of a “reliability
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index” was added to the GA. By calculating a measure of the “similarity” between an

arbitrary material and the “average” material in the dataset we can simultaneously

steer the GA towards materials which are accurately predicted and also likely to be

manufacturable. The reliability index is explained more thoroughly in Section 9.2.3.

Even once the reliability index was employed to improve the quality of the re-

sults obtained from the GA, the problem of stoichiometry remained. The current

GA has no knowledge of the stoichiometry of the materials, a vital factor in ensur-

ing a manufacturable material. Therefore an additional objective was added to the

GA. The charge calculation considers all possible oxidation states of the elements

in a material and calculates the minimum possible charge. In this way the GA is

steered towards materials which have the minimum possible excess charge, i.e. they

are stoichiometric. The excess charge calculation is discussed more thoroughly in

Section 9.2.4.

9.2.2 Objective 1: Artificial neural network permittivity predictor

The first GA objective is the prediction of the relative permittivity of the material.

From the materials database (Chapter 4), comprising N = 700 records of ceramic

materials which contain composition, manufacturing and property data, an ANN

has been developed which is capable of predicting the relative permittivity εr of a

material from its composition. The ANN development has been thoroughly dis-

cussed in Chapter 7, although there is a significant difference related to the scaling

of the chemical formula to ensure unique representation. A summary of the ANN

development is provided here.

The output of the ANN is the prediction of the permittivity for the requested

composition. The materials in the database contain relative permittivities (dimen-

sionless) from 1.7 - 100.0 with a mean of 35.8 and a standard deviation of 22.2. The

dataset used to train the ANN, which consists of data extracted from the literature,

also contains data pertaining to the sintering conditions for the sample. Sintering

temperature is recorded for approximately 65% and the sintering time is available

for only 15% of the records in the dataset. While processing conditions can have a

large effect on the properties of ceramic materials [14], their inclusion in the ANN

would result in a reduction in the number of records available, likely reducing the

ANN’s performance. Consequently, only the sample’s compositional information,

that is, the individual quantities of each element, are used as inputs to the ANN.
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9.2.2.1 Normalisation of the chemical formulae to prevent duplicate materials

discovery

Ceramic material formulae are commonly scaled for ease of notation. Thus, for ex-

ample, Ba0.2Sr0.8TiO3 is denoted as BaSr4Ti5O15. Although these materials are chem-

ically identical, they would be considered different compounds by an ANN and GA.

During initial investigations, it became apparent that the GA was developing

materials which were chemically identical, but appeared distinct to the GA. The re-

sulting populations of such GAs consisted of a single material, containing elements

which had all been scaled by the same factor.

To eliminate this problem, all of the materials are normalised relative to

the oxygen content. Using this convention, the material above is expressed as

Ba0.07Sr0.27Ti0.33O, thus ensuring that all materials, regardless of notation, are

treated consistently. Although the ANNs presented previously still contain valid

results, they cannot be used with the GA, since the predictions made are depen-

dent on the scaling of the composition of the materials supplied. Final populations

obtained with non-normalised GAs generally consist of materials which are chem-

ically identical but are scaled by differing amounts, thus appearing distinct to the

GA. Therefore, a new ANN was trained, in which all materials are normalised such

that GA predictions are consistent. Details of the new ANN are provided here.

As before (Section 7.4), principal component analysis was used to pre-process the

input data, reducing the input dimensionality from 52 to 16. No momentum terms

were required since training was very fast, the fastest requiring 261 and the slowest

1754 generations before early stopping halted the training process. Table 9.1 shows

the repeated cross-validation analysis of the neural network. Of the 100 networks

trained, the mean εRRS = 0.76 with a standard deviation of 0.03 and the network

selected for this work has an εRRS = 0.71. A RRS error of 1 means that the ANN

performs as well as a simple “mean value” predictor; a RRS error of 0 means that the

ANN predicts the values in the test dataset perfectly. A RRS error of 0.71 therefore

means that the ANN predicts 29% better than the simple mean value predictor.

The 0.71 RRS error can be compared with 0.60 obtained previously (Section 7.5).

The difference between these values is attributable to the normalisation performed

on the dataset. The materials present in the database contain differing oxygen quan-

tities, which can provide an indication of the crystal structure, and hence properties.

Normalisation of the materials loses the information provided by the oxygen con-
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tent, reducing predictive ability.

The root mean square difference between the predicted and experimentally mea-

sured values for the ANN is 16.0. This is compared with the mean value of the per-

mittivities in the dataset, which is 35.8, to show that the ANN is capable of predict-

ing permittivity values within 50% of the experimentally measured value. Figure 9.1

illustrates the ANNs prediction accuracy compared with experimental results. A

RRS error of 0.71 and RMS prediction accuracy within 50% are reasonable consid-

ering the range of materials available in the ANN training data. Additionally, this

is a “screening” technique and the results obtained are used to provide directions

for new research. Although more accurate predictions are always desirable, a wide

range of materials does not prematurely restrict the search. Hence, the ANN should

be sufficiently accurate to determine new material compositions for high throughput

manufacture by LUSI.
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Figure 9.1: The performance of the back-propagation MLP neural network used to
predict the permittivity of the test dataset. An ideal straight line with intercept 0 and
slope 1 is also shown. The RRS error of the predictions is 0.71.

The ANN’s predictions are more likely to be accurate when attempting predic-

tions for materials similar to those found in the training dataset and so we have also

included a reliability index to assess the accuracy of the ANN predictions. This is

described in the following subsection.
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9.2.3 Objective 2: Reliability index for network predictions

The second of the GA objectives addresses the “reliability” of the predictions pro-

duced by the ANN. The dataset used to train the ANN consists of clusters of ceramic

compounds that correspond to the types of ceramics that are of current interest to

researchers, for example the barium strontium titanate (BST) system [124] (Chap-

ter 3). Additionally, particular elements, such as oxygen and titanium, occur more

frequently in the database, hence predictions made using these combinations of el-

ements and materials which are similar to those found in the database will be more

accurate. This feature is encapsulated via a “reliability index” which assesses the

reliability of predictions made using the ANN. The algorithm operates by compar-

ing the input material with the “average material” within the ANN training dataset

to give a distance vector R. Specifically, the algorithm compares the proportions of

each element in the input with the mean and standard deviation of the elements in

the training dataset. The overall reliability is given by the magnitude of the distance

vector:

|R| =

√√√√ N∑
i=1

(
xi − ei
σi

)2

, (9.1)

where xi is the amount of the ion present in the ith material and ei and σi are the

mean and standard deviation of the amount of the same element in the ANN training

dataset respectively. N is the number of elements present, which is 52 in this case.

The reliability index provides a measure of the distance of the entered material

from the average material in the dataset. For any two materials, that with the lower

|R| is likely to be more reliably predicted. A reliability of zero indicates that the

quantity of each element present is equal to the mean quantity of that element in the

database and the prediction is likely to be reliable. However, the material may not

exist in the database since the elements may not be present in the particular com-

bination entered. Nevertheless, the reliability index provides a valuable assessment

of the likely accuracy of the prediction and forms the second objective of the GA.

When the reliability index is used in combination with the first objective, the ANN

permittivity prediction, the GA will search for materials which exhibit high permit-

tivity whilst remaining “close” to the materials present in the training dataset, thus

increasing the likelihood that the ANN prediction is accurate.

Although these objectives may produce some excellent theoretical solutions, such
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a GA contains no information about the physical constraints on the compounds. The

third objective directs the search towards electrically neutral materials, a necessary

constraint if a compound is to be manufactured.

9.2.4 Objective 3: Excess charge calculation

Stoichiometric compounds can be represented using a ratio of well defined natural

numbers. If the quantities of each element, when multiplied by the oxidation state of

the element, sum to zero, then the material is electrically neutral, as required for a sta-

ble ceramic compound. A compound which contains an excess or deficiency of one

or more elements due to defects in the crystal lattice is said to be non-stoichiometric.

Although the perovskite crystal structure is very versatile, and can tolerate a de-

gree of non-stoichiometry, each defect decreases the stability of the crystal: there is a

limit to the amount of non-stoichiometry which can be tolerated before a compound

becomes unstable [289] and therefore stoichiometric or near-stoichiometric material

designs are required. The development of stoichiometric materials is accomplished

by the addition of a third objective to the GA which is the minimisation of the overall

electrical charge carried by the compound.

Since elements can have multiple oxidation states, a charge calculation is per-

formed for each combination and the one which provides the minimum excess

charge is taken to be the excess charge of the compound. Additionally, some ma-

terials contain elements in more than one oxidation state. Such materials are less

common than materials in which all of the element is in the same oxidation state

and here we do not consider these materials. The presence of elements in multiple

oxidation states can also cause electrical conduction, diminishing the dielectric prop-

erties. In the charge calculation formula, all of the element is assumed to be in the

same oxidation state. The excess charge calculation forms the third objective of the

GA: compounds with a lower excess charge are selected in preference to those with

a higher excess charge during the GA selection process.

The 52 elements present in the dataset, on average, provide two oxidation states

which would result in 252 ≈ 4.5× 1015 combinations to evaluate, which would take

an unfeasibly long time to perform. Since we are only interested in materials which

contain four or fewer elements, the excess charge calculation is only performed for

materials which contain ten or fewer elements. Thus, the excess charge objective

begins to contribute to the search only once the compound has been reduced to a

reasonable number of different elements. For materials with more than 10 different
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elements, the excess charge objective is fixed to a value of 10.

9.2.5 Genetic algorithm implementation

The GA code used in this paper is the Non-Dominated Sorting Genetic Algorithm

II (NSGA-II) [263] (Chapter 6). We use a real representation, a vector of real values

which represent the different elements available for materials design. The database

used to train the ANN contains 52 different elements and, therefore, the ANN can

accept 52 different elements at the input. Among the 52 input elements are several

which are unsuitable for materials design and so we remove these from the GA’s

genotype (Section 6.4.3). Recently introduced legislation [290] prevents the use of

lead and cadmium in materials research and so these elements are not present in

the genotype. Hydrogen and fluorine are valid inputs for the ANN, since they are

present in the training dataset; however we do not plan to use these elements in any

future synthesis and so they are also absent from the genotype. Finally oxygen is

present in all ceramics and has a fixed quantity in the resulting material designs. As

explained in Section 9.2.2, the material formulae are normalised with respect to the

oxygen content; this means that oxygen can be removed from the genotype since it

is a constant quantity in the materials. The resulting genotype consists of a vector

which contains 47 elements: 52 are required for the ANN input, while 5 have fixed

quantities and so are not present in the GA. When calculating the value of the ANN

objective function, the fixed quantities are inserted into the genotype to ensure the

correct form of the ANN input vector. Lead, cadmium, hydrogen and fluorine are

entered with zero contribution and oxygen is inserted with a contribution of one.

9.2.6 Constraints and objectives

The GA attempts to optimise three objectives simultaneously:

1. Maximisation of the relative permittivity: The relative permittivity εr as pre-

dicted by the neural network is maximised.

2. Minimisation of the reliability index: The reliability index, which provides an

assessment of the accuracy of the ANN prediction, is minimised to identify

reliably predicted materials.

3. Minimisation of the overall charge: The overall charge of the compounds

searched is minimised, resulting in manufacturable designs of stoichiometric

or near-stoichiometric compositions.
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Figure 9.2 shows the (normalised) minimum and maximum values of the quan-

tities of the elements present in the database and gives an indication of the range of

each element present. Since ceramic material formulae are often scaled for notational

convenience, a consistent representation of the materials is ensured by normalising

the elemental quantity of each compound with respect to the oxygen content. The

constraints on the 47 metal ions in the genotype were set to have a minimum of zero

and a maximum of one.

The number of elements ne present in the material is also constrained. Ceramic

compound compositions typically consist of six or fewer elements; here, we set a

constraint that the GA must obtain results which consist of four elements. This num-

ber was chosen in consultation with domain experts for ease of manufacture.

The smallest non-zero element contribution to a material in the database is 0.0095

(normalised), and so 0.001 would be a reasonable choice to determine the presence

of an element. This is a very stringent constraint, and reliable convergence could not

be obtained even when running the algorithm for 50000 generations. Furthermore,

the LUSI system which is intended to produce the resulting material predictions can

only reliably produce compositions with precision 1-3% [51] for the sample sizes that

we are examining. Therefore, we choose 0.01 (1%) as a tolerance value to determine

the presence of an element. The number of elements is evaluated by counting the

number in the genotype with composition values greater than a threshold of 0.01, el-

ements with a contribution≤ 0.01 being ignored. The database contains 10 materials

with a contribution of less than 1% so we are not eliminating a significant region of

the search space by choosing this threshold.

The constraints are implemented during the selection process. Designs are se-

lected based on their feasibility (lack of constraint violation) and objective values.

For two designs a and b with number of elements ne(a) and ne(b):

1. If a and b are both feasible (ne(a) ≤ 4 and ne(b) ≤ 4), then a dominates b in the

usual Pareto-optimal sense (Equation 6.5), otherwise

2. If a is feasible (ne(a) ≤ 4) and b is not (ne(b) > 4), a dominates b, otherwise

3. If neither a nor b is feasible (ne(a) > 4 and ne(b) > 4), if ne(a) < ne(b), then a

dominates b.

In this way, designs are first selected for their feasibility and then for their objec-

tive value. A feasible design will always dominate an infeasible design regardless of



9.3. Results 202

the objective values.

The resulting 4 elements are combined with the fixed oxygen contribution and

scaled by a factor of three to obtain a material composition. Thus, for example, if the

GA produces a result which contains Ba0.1Ca0.1Sr0.13Ti0.33, the resulting material is

obtained by adding the O1 contribution and scaling by 3: Ba0.3Ca0.3Sr0.4Ti1O3. In fu-

ture research, the 4 element constraint could be relaxed, thereby permitting materials

with a greater number of elements to be explored.

9.2.7 Running the evolutionary algorithm

Deb’s code [263], written in C, was used to develop the GA. The only modifica-

tions made were the code additions required to calculate the objectives, which are

included in Appendix B. The GA was run using a randomly generated starting pop-

ulation of size 100. The initial population contained 100 different materials contain-

ing a contribution from each of the 47 elements in the genotype which satisfied the

constraints, i.e. the contribution from each element was a randomly generated num-

ber between zero and one. A mutation probability rate of pm = 0.025 ≈ 1/47 and

recombination probability of pc = 0.9 were used [263, 264]. Optimisations were per-

formed with a range of values to determine the mutation strength and recombination

strength indices. ηc and ηm values of 5, 10 and 20 were considered and a value of

10 for both parameters was found to give consistent convergence with no measur-

able difference between final populations. The algorithm was executed for 5000 and

20000 generations with 20000 generations required for consistent convergence with

a run-time of approximately 5 minutes on a 1.6GHz PC. Deb et al. [263] used 25000

generations in their work, here 20000 generations were found to be sufficient.

9.3 Results
Figure 9.2 shows the elemental compositions from the final GA population. In addi-

tion to oxygen, by far the most common elements are chromium, lithium and sodium

although iron, indium, cerium, niobium and molybdenum are also present, albeit

only in a small number of materials.

The results from four separate GA runs are shown in Figures 9.3 and 9.4. Fig-

ure 9.3 shows the evolution from the initial population of solutions to the non-

dominated sets in terms of the permittivity, reliability index and excess charge objec-

tives. The first is maximised while the last two are minimised. The figure contains

some negative values for the permittivity which are physically meaningless. These
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values occur within the initial population of randomised solutions, before the re-

liability and stoichiometry objectives are used to optimise the population towards

realistic, manufacturable material compositions.
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Figure 9.3: Three-dimensional non-dominated set, showing the three objectives be-
ing simultaneously optimised. The figure shows the results of four different runs of
the GA (dots, crosses, open circles and asterisks) which are indicated in the legend
and demonstrates that the resulting populations have very similar characteristics.
As the GA progresses the population moves from the top of the figure, where the
initial populations are shown, to the bottom of the figure which shows the final re-
sulting populations. The figure contains negative permittivity predictions present
within the initial set of solutions; these are physically meaningless but are due to
extrapolation performed by the neural network predictor. Figure 9.4 provides an en-
larged view of the Pareto set, which is the primary area of interest for the GA results.

Figure 9.4 shows an enlarged view of the resulting populations; the trade-offs be-

tween all three objectives are visible. The figure effectively consists of three different

sections. The left hand side of the figure shows a trade-off between reliability and

excess charge. Initially, the excess charge decreases as the reliability becomes worse;

however the excess charge eventually begins to increase again, indicating predicted

compounds which have poor charge and reliability attributes.

The central section indicates a trade-off between permittivity and reliability with

the excess charge remaining constant. Compounds with higher permittivities have
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Figure 9.4: An enlarged view of Figure 9.3 containing four three-dimensional non-
dominated sets (dots, crosses, open circles and asterisks) which are indicated in the
legend and illustrating the three objectives being simultaneously optimised. The
four resulting populations are all extremely similar, confirming that the final pop-
ulations have very similar characteristics and contain similar materials. Due to the
stochastic nature of the search method, the resulting populations are unlikely to be
identical.

a worse (higher) reliability index since these solutions correspond to compounds

which are unlike most of those stored in the database and used to train the ANN.

Finally, on the right hand side, the permittivity and excess charge trade-off while

the reliability remains constant. In general, the charge increases (gets worse) as the

permittivity increases. However, various solutions in the non-dominated set exhibit

near-zero charge along with high permittivity values (εr 120-140).

Table 9.2 shows some of the compounds predicted within the final population.

Table 9.3 lists both hand-selected materials from the final GA population ((a)), as

well as similar materials residing in the database ((b)). The quantities of each element

have been scaled by a factor of three to obtain the real chemical formula. The con-

stituent elements are listed in alphabetical order and not in ABO3 perovskite form.

This is because the site occupation cannot be determined until the materials are man-

ufactured and crystallographic analysis is used to determine the structure. Table 9.2
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shows a selection of compounds with extreme objective values from the final popu-

lation. Examination of these materials provides a good qualitative understanding of

the trade-offs. Two of the results display the highest predicted permittivity, two have

the best reliability and the remaining two contain the best charge attributes. Gener-

ally, these materials are optimal in one of the three objectives and their remaining

two attributes are poor. However, the 4th compound displays good reliability and

minimal excess charge while the permittivity is average. In another case, the 5th

compound exhibits high permittivity, minimal excess charge and poor reliability.

The materials outlined in this table are the most unusual of the final population,

containing some of the less common elements found in the predicted compounds.

Table 9.3 shows hand-selected materials from the final GA population ((a)) along

with similar results from the database ((b)). The materials provided in Table 9.3a

combine the best permittivity, reliability and charge attributes. Since the excess

charge calculation must be near zero for a compound to be manufacturable, the

selected materials were first chosen to have extremely small excess charge. Then,

materials with good reliability and high permittivity predictions were chosen. The

permittivity and reliability of these materials are not as good as for the materials

shown in Table 9.2; however, these results combine a high permittivity prediction

with good reliability. These results illustrate one of the key benefits of the multi-

objective evolutionary algorithm approach to materials design. “Reliable” materials

are most similar to those found in the database, are likely to have accurate permittiv-

ity predictions and therefore serve to validate the technique of using a GA to invert

the ANN. High permittivity materials are less reliably predicted and thus contain the

most interesting materials, opening new research directions. Multi-objective evolu-

tionary algorithms result in a population of solutions which can be hand-selected by

domain experts to obtain candidates for manufacture.

9.4 Discussion
The hand-selected results shown in Table 9.3a have been compared to records con-

tained in the ceramic materials database. Table 9.3b displays materials from the

database which contain chromium, the most prevalent element in the GA results.

Lead is present in two of the materials but is not found in the GA results because

it was eliminated from the genotype owing to safety legislation [290], as previously

discussed. Two of the materials from the database contain niobium in addition to
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Compound Permittivity Reliability Excess charge
Cr0.8(III)Li2(I)Na1.6(I)O3(-II) 135.63 6.41 0.00
Cr1(III)Li2.6(I)Na0.5(I)O3(-II) 112.69 3.40 0.00
Cr1(IV)Li1.6(I)Na0.4(I)O3(-II) 112.13 2.35 0.01

Cr0.7(V)Na0.5(I)Nb0.6(III)O3(-II) 73.85 0.71 0.01
Cr0.7(VI)Li1.3(I)Na0.5(I)O3(-II) 114.28 1.62 0.01
Cr0.7(V)Li1.5(I)Na0.9(I)O3(-II) 123.48 3.19 0.01

(a) Human selected material designs of interest from the optimised GA population. These materials
have been hand-selected as possible candidates for manufacture. Materials with near-zero excess
charge were selected to ensure that the compounds were near- or fully-stoichiometric; this set was
further reduced by selecting materials with a good combination of high permittivity prediction and
good reliability.

Compound Permittivity
CrNbO4 22 [291]
CrTaO4 9.7 [291]

Pb0.75Ca0.25(Cr0.5Nb0.5)O3 48 [292]
Pb0.5Ca0.5(Cr0.5Nb0.5)O3 43 [292]
Pb0.5Ca0.5Na0.25Nb0.75O3 72 [293]

Sm0.5Na0.5TiO3 80 [294]
LiNb3O8 34 [294]

CaLi0.33Nb0.66O3 29.6 [295]

(b) A selection of chromium, lithium and sodium contain-
ing materials from the database. These materials can be
compared to selected materials from the optimised GA
population shown in Tables 9.2 and 9.3a.

Table 9.3:

chromium and several compounds containing both elements are present in the opti-

mised GA population; an example is shown in Table 9.3a.

The permittivities of the database materials are not as high as those predicted

for the GA results. However, one of the GA predictions, Cr0.7Na0.5Nb0.6O3,

has a relative permittivity of 73.85, much closer to the database material

Pb0.75Ca0.25(Cr0.5Nb0.5)O3, which has an experimentally measured permittivity of

48. The reliability index of the predicted material is also significantly lower than the

other hand-selected materials, meaning that the permittivity prediction is likely to

be accurate. By contrast, the predicted materials in Table 9.3a combine high permit-

tivity with good reliability and are possible candidates for laboratory manufacture

and measurement.

In a perovskite material, the element(s) on the A site are +2 ions and the ele-

ment(s) on the B site are +4 ions; giving a neutral material when combined with three

O2− ions. Examination of the compounds shown in Table 9.2 reveals that none of
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the materials conform with the A1xA21−xB1yB21−y03 perovskite formula. However,

the versatility of the perovskite structure means that it is very difficult to determine

whether a material will crystallise in the perovskite structure prior to synthesis. Al-

though not done here, we could impose further constraints on the GA to promote the

selection of materials with this structure although this may prove to over constrain

the discovery process. Additionally, the “Megaw tolerance” [296] compares the ionic

radii of elements to determine the likelihood of perovskite structure formation and

could be included as an additional constraint.

The charge calculation is currently performed using many possible oxidation

states of the elements. Some oxidation states are more stable than others, so some of

the compounds predicted by the GA may be chemically unstable. To alleviate this

problem, we could in future improve the reliability index algorithm by weighting

the GA search space in favour of more stable compounds.

The quality factor, ‘Q’, mentioned in Section 3.5.1.1 is also an important property

for dielectric resonators. The addition of ‘Q’ factor prediction and optimisation to the

materials design algorithm presented here is a logical modification to the algorithm

and is left as a subject for further research. With such a modification, we would be

able to develop materials predictions which simultaneously optimise permittivity

and ‘Q’ factor properties.

9.5 Conclusions
In this chapter, we have seen that it is possible to design new materials using Baco-

nian methods. Through combination of a neural network trained with data gleaned

from the literature and an evolutionary algorithm a powerful materials design tool

has been developed. Moreover, any number of constraints can be included in order

to explore the compositional search space in arbitrary ways. Materials with a lower

reliability index are similar to existing materials and may be useful for improvement

of already well understood materials. Materials predicted with less reliability are

unlike materials contained within the database; whilst the neural network predic-

tions are likely to be less accurate, such materials compositions are a possible source

of innovative designs.

Three objectives were used. Two pertain to physical properties of interest - the

permittivity and the overall charge - while the reliability index provided an indi-

cation of the accuracy of the results found. The use of a multi-objective genetic al-
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gorithm resulted in a final population containing a non-dominated set of potential

designs which primarily conflict in permittivity and reliability. Human selection is

used to identify compounds of modest permittivity, but very good reliability, along

with new compounds exhibiting high permittivity, which are candidates for future

manufacture and analysis. The development of more sophisticated constraints may

help guide the evolutionary process to more practical designs. Of particular impor-

tance is the satisfaction of stoichiometric constraints; this is crucial not only here but

in the general class of problems where we are designing chemical compounds.

The development of a web-based materials design interface is planned for the

future. Such a system would operate equivalently to the web-based property pre-

dictor described in Chapter 7. The system would permit a user to enter parameters

such as the number of different elements and the desired permittivity which are then

used as constraints/objectives in the GA. GA execution would be performed using

the same web services architecture as the property predictor and would return the

final population to the user. As for the results presented above, the user would most

likely hand-select final candidate solutions which can then be manufactured using

any desired method.

A full evaluation of the predictive capabilities of the technique presented can only

emerge from a combinatorial approach, such as that being pursued by the FOXD

project using LUSI, in order to programme the synthesis and testing of large num-

bers of proposed materials. Synthesis and characterisation of the materials designs

presented here “closes the loop” of the materials discovery cycle and represents work

in progress at the present time. The resulting data can be used to improve the overall

predictive performance of the model, thus permitting more accurate GA searches to

commence. An ultimate aim is to be able to steer automated searches through the

compositional search space to discover novel materials designs.
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CHAPTER 10

Conclusions and future directions

As we have seen, materials research is a complex field, covering many different

applications. For many years, the traditional, serial processing of samples was em-

ployed to discover new materials designs, compositions generally being similar to

those already known. The FOXD project’s combinatorial materials discovery pro-

cess combines high-throughput parallel synthesis and characterisation of ceramic

samples with advanced data mining algorithms to develop novel materials designs

in a more efficient manner than attempted previously. The materials discovery cy-

cle applies repeated iterations of synthesis, screening, analysis and data mining to

iteratively improve materials designs until optimal compounds emerge.

In Chapter 4, we described the development of a ceramic materials database con-

taining literature and LUSI data. Such a database is a valuable resource for the sci-

entific community. As LUSI continues to synthesise and process new materials, the

database grows ever larger, permitting the development of more general data min-

ing algorithms and recording progress made. Eventually, it is hoped that the FOXD

database can be expanded to contain data on other electroceramics, progress into

other ceramic materials and eventually become a definitive resource for materials

science. Furthermore, integration with other materials databases, particularly those

which contain structural information will enable the development of centralised data

store for the whole of materials science research. The web-based front end to the

database [6], permits researchers from around the globe to access the data and will,

eventually, allow them to submit their own new results and improve the quality of

existing data. Such distributed collaboration will further accelerate advances in ma-

terials science research.

Chapter 7 describes the development of artificial neural networks for prediction

of materials properties. A neural network containing 16 input, 15 hidden and one
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output node was trained using the 700 records in the dielectric dataset and was able

to predict the dielectric constant of the records in the test dataset with a root relative

squared error of 0.71. Similarly, the 1100 records in the diffusion literature dataset

were used to train a neural network for the prediction of the diffusion coefficient.

A multi-layer perceptron network, also having 16 input, 16 hidden and one output

node was able to predict the diffusion coefficient of the records in the test dataset

with a root relative squared error of 0.34.

The application of RBF networks to the dielectric dataset is described in Chap-

ter 8. The RBF networks were unable to extract composition-property relationships

from the data, despite considerable effort in the use of several different training

methods and modifications to the basis functions employed. Further effort in this

area may yield useful results. In particular, the use of other learning methods, such

as Bayesian networks, support vector machines and decision trees may provide use-

ful insights into the data relationships and can provide meaning behind the predic-

tions obtained. While the ANNs have provided accurate predictions, they operate

as a black box and provide no indication of the reason for a particular prediction.

Decision trees can provide this information and are an interesting area for further

work.

Other prediction algorithms may also provide more accurate predictions. Now

that our ability to provide accurate predictions of composition-structure relation-

ships using a MLP network has been proved, we look to the use of other algorithms

such as Bayesian networks, support vector machines and decision trees. Such algo-

rithms may provide more accurate predictions. Decision trees in particular provide

rules for the predictions made, allowing a deeper understanding of the results ob-

tained.

Despite the lack of structural data which was available in the literature datasets

used here, accurate predictions have been made. The inclusion of structural data is

likely to improve the accuracy of materials properties predictions. Such information

can be included through collaboration with other databases which contain such data,

or through the inclusion of XRD data which can be obtained by high-throughput of

the LUSI samples. It would be interesting to observe the effects of the inclusion of

such data on the accuracy of the predictions obtained.

The materials in the literature datasets contain metal ions in many different oxi-

dation states. A possible modification to the prediction algorithm would be to con-
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sider elements in different oxidation states to be distinct inputs, in contrast to the cur-

rent situation where they are treated identically. Such a modification would require

significant manual work to identify the different oxidation states present. Addition-

ally, the number of different inputs would be significantly increased. In general,

increasing the number of inputs, without increasing the number of records available

leads to a decrease in predictive accuracy. Nevertheless, such an investigation would

be an interesting exercise to confirm our thinking.

As more samples are characterised, and additional property data is entered into

the database, the development of neural networks for the prediction of many differ-

ent properties can be attempted. Examples of such properties include the Q-factor

and temperature coefficient of frequency, important properties in the development

of dielectric resonators. Additionally, the diffusion and temperature characteristics

of ion transport materials are important in the development of fuel cell cathodes.

The advantages of such predictive ability become more apparent when attempting

materials design - more accurate materials property prediction will lead to the de-

velopment of more accurate materials designs. Chapter 9 details the use of genetic

algorithms for this purpose where the design of a material exhibiting high relative

permittivity was successfully attempted. The development of more powerful predic-

tive algorithms can only increase the performance of the materials design algorithm.

Multiple properties can be optimised simultaneously, leading to designs which can

be specifically tailored for particular applications. Furthermore, the development

of more specific constraints can guide the design process to develop realistic, man-

ufacturable materials. For example, materials with optimal permittivity, Q-factor

and temperature coefficient properties which are constrained to particular compo-

nent materials can be developed, once suitable prediction algorithms and constraints

have been implemented.

A web-based interface to the neural network prediction algorithms was devel-

oped (Chapter 7). An equivalent interface to the GA based materials design algo-

rithm would be a useful resource for the scientific community. Such an interface

would allow a user to enter desired property values and obtain a set of potential

compositions. As the ANNs and GAs become more sophisticated, the search ca-

pabilities of the tool would correspondingly increase. Eventually a suite of many

different prediction algorithms is envisaged, allowing prediction of many different

properties. Furthermore, the materials design algorithm would permit entry of sev-
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eral desired properties and the number and type of component elements and would

result in a population of materials which are predicted to exhibit such requirements.

A full evaluation of the predictive capabilities of the materials design algorithm

can only emerge when the prediction system is combined with combinatorial syn-

thesis and characterisation, such as that currently being performed by the FOXD

project. The resulting population of materials designs from the GA is ideally suited

to the combinatorial synthesis performed by LUSI. If high-throughput analysis and

characterisation of the samples can be integrated into LUSI, progress can accelerate

through the iteration of multiple materials discovery cycles, allowing convergence

to any desired material. Furthermore, the additional data provided by the combina-

torial method can be used to improve the prediction algorithms, resulting in more

accurate searches. Two main avenues for progress are suggested. Firstly, iterative

improvements to existing materials are proposed to permit enhancements to exist-

ing applications. Secondly, completely new avenues of research are suggested by the

more unusual members of the final GA population.
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APPENDIX A

ANN Training

The Matlab code used for training and cross-validation of the artificial neural net-

work is provided below. The code reads in the training, validation and test datasets

from an external file and then performs network training which is halted using early

stopping. The trained network is used to make predictions for the test dataset and

the results compared with the actual values to obtain the generalisation performance.

This code is used for the development of the artificial neural networks described in

Chapters 7 and 9.

if isempty (num datasets)

error (’num datasets not specified!’);

end

for cross validation number = 1:num datasets

orig data = split datasets (orig data, cross validation number, num datasets)

preprocessing data = preprocess data (orig data, pca variance)

test = preprocessing data.normtest;

training dataset size = floor (size (preprocessing data.normdata.P, 2)/2);

training.P = preprocessing data.normdata.P (:, 1:training dataset size);

training.T = preprocessing data.normdata.T (:, 1:training dataset size);

validation.P = preprocessing data.normdata.P (:, training dataset size:end);

validation.T = preprocessing data.normdata.T (:, training dataset size:end);

net = newff (minmax (training.P), [num hidden nodes num outputs], {’logsig’,

’purelin’}, ’traingda’);

net.trainParam.epochs = 3000;

net.trainParam.goal = 0.0001;

net.trainParam.show = 25;
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net.trainParam.lr = 0.1;

net.trainParam.mc = 0.2;

net.trainParam.max fail = 200;

net.trainParam.lr dec = 0.5000;

net.trainParam.lr inc = 1.0100;

net.trainParam.max perf inc = 1.0100;

[net, tr] = train (net, training.P, training.T, [], [], validation, test);

validation = run network (validation, net, preprocessing data);

save data (validation, ’validation’, cross validation number, num outputs);

test = run network (test, net, preprocessing data);

prediction data = save data (test, ’test’, cross validation number,

num outputs);

error value = 1; % Percentage error

% Calculate ’mean’ material

material data.trainingvalidation mean = mean (preprocessing data.normdata.P,

2);

material data.testmean = mean (test.P, 2);

rootmeansquarediff = sqrt (mean ( (material data.trainingvalidation mean -

material data.testmean).ˆ2));

[regression line, current regression data, fit line] = perform regression

(test, num outputs);

% Populate mean material data

current regression data (5) = rootmeansquarediff;

regression data (:, cross validation number) = current regression data

error data = generate error data (regression line, error value, num outputs);

save output data (prediction data, ’output’, regression line, error data,

cross validation number, num outputs);

save convergence data (tr, cross validation number);

training = run network (training, net, preprocessing data);

save data (training, ’training’, cross validation number, num outputs);

end

% Get statistical analysis of each network’s performance

regression data (:, num datasets+1) = mean (regression data (:,
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1:num datasets), 2);

regression data (:, num datasets+2) = std (regression data (:,

1:num datasets), 0, 2);

regression data = rounddec (regression data, 2);

regression data

regression data filename = strcat (’regression data’, ’.’, int2str

(randomisation), ’.out’);

dlmwrite (regression data filename, regression data, ’ ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Functions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Splits the data into training, validation and test datasets.

% 0 = abc, 1 = acb, 2 = bac, 3 = bca, 4 = cab, 5 = cba

function data = split datasets (data, order, num datasets)

if 1 == num datasets

num datasets = 2;

end

dataset size = size (data.input, 2)

test dataset size = floor (dataset size/num datasets)

start test dataset = (test dataset size* (order-1))+1

end test dataset = start test dataset + test dataset size - 1

data.test.P = data.input (:, start test dataset:end test dataset);

data.test.T = data.output (:, start test dataset:end test dataset);

data.trainingvalidation.P = data.input (:, 1:start test dataset);

data.trainingvalidation.P (:, end:dataset size - test dataset size + 1) =

data.input (:, end test dataset:end);

data.trainingvalidation.T = data.output (:, 1:start test dataset);

data.trainingvalidation.T (:, end:dataset size - test dataset size + 1) =

data.output (:, end test dataset:end);



218

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Preprocessing

function preprocessing data = preprocess data (data, pca variance)

[preprocessing data.stddata.P, preprocessing data.meanp,

preprocessing data.stdp, preprocessing data.stddata.T,

preprocessing data.meant, preprocessing data.stdt] = prestd

(data.trainingvalidation.P,data.trainingvalidation.T);

[preprocessing data.transdata.P, preprocessing data.transMat] = prepca

(preprocessing data.stddata.P,pca variance);

%transinput = stdinput; transMat = [0];

preprocessing data.normdata.P = preprocessing data.transdata.P;

preprocessing data.normdata.T = preprocessing data.stddata.T;

% Preprocess test data

preprocessing data.stdtest.P = trastd (data.test.P, preprocessing data.meanp,

preprocessing data.stdp);

preprocessing data.stdtest.T = trastd (data.test.T, preprocessing data.meant,

preprocessing data.stdt);

preprocessing data.normtest.P = trapca (preprocessing data.stdtest.P,

preprocessing data.transMat);

preprocessing data.normtest.T = preprocessing data.stdtest.T;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function data = save data (dataset, name, dataset order, num outputs)

for i = 1:num outputs

data (:, 2) = dataset.predicted outputs (:, i);

data (:, 1) = dataset.actual outputs (:, i);

dlmwrite (strcat (name, ’.’, int2str (dataset order), ’.’, int2str (i),

’.out’), data, ’ ’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function dataset = run network (dataset, net, preprocessing data)

dataset.actual outputs = poststd (dataset.T, preprocessing data.meant,

preprocessing data.stdt)’; %’

normvalresults = sim (net, dataset.P);

dataset.predicted outputs = poststd (normvalresults,

preprocessing data.meant, preprocessing data.stdt)’; %’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [output data, regression data, regression line] = perform regression

(test data, num outputs)

dataset size = size (test data.P, 2)

for i = 1:num outputs

% Regression

X = [ones (size (test data.predicted outputs (:, i)))

test data.predicted outputs (:, i) ];

a = X\test data.actual outputs (:, i);

regression data (1, i) = a (1); % Intercept

regression data (2, i) = a (2); % Gradient

% Correlation coefficient (Rˆ2)

regression data (3, i) = a (2)ˆ2/ (std (test data.actual outputs (:, i))/std

(test data.predicted outputs (:, i)))ˆ2;

% RMS Error

regression data (4, i) = sqrt (mean ( (test data.predicted outputs (:,

i)-test data.actual outputs (:, i)).ˆ2))’; %’

regression data (5, i) = 0;

% RRS Error (Root relative squared)

% Sum error squared/sum diff from mean squared

% sum ( (p-a).ˆ2)/sum ( (p-mean (a)).ˆ2)

regression data (6, i) = sqrt (sum ( (test data.predicted outputs (:,

i)-test data.actual outputs (:, i)).ˆ2)/sum ( (test data.actual outputs (:,
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i)-mean (test data.actual outputs (:, i))).ˆ2))

mean actual = mean (test data.actual outputs (:, i));

squareddiff = (test data.predicted outputs (:, i)-test data.actual outputs

(:, i)).ˆ2;

squareddifffrommean = (test data.actual outputs (:, i)-mean actual).ˆ2;

minoutput = min (test data.predicted outputs (:, i));

maxoutput = max (test data.predicted outputs (:, i));

range = maxoutput - minoutput;

xrange = (minoutput:range/ (dataset size-1):maxoutput)’; %’

Y = [ones (size (xrange)) xrange]*a;

regression line (:, 1) = xrange;

regression line (:, 2) = Y;

data (:, 2) = test data.predicted outputs (:, i);

data (:, 1) = test data.actual outputs (:, i);

output data (:, 1) = data (:, 1);

output data (:, 2) = data (:, 2);

output data (:, 3) = error data (:, 1);

output data (:, 4) = error data (:, 2);

output data (:, 5) = error data (:, 3);

output data (:, 6) = error data (:, 4);

output data (:, 7) = error data (:, 5);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function output data = save output data (prediction data, filename,

regression data, error data, dataset order, num outputs)

for i = 1:num outputs

output data (:, 1) = prediction data (:, 1);
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output data (:, 2) = prediction data (:, 2);

output data (:, 3) = regression data (:, 1);

output data (:, 4) = regression data (:, 2);

output data (:, 5) = error data (:, 1);

output data (:, 6) = error data (:, 2);

dlmwrite (strcat (filename, ’.’, int2str (dataset order), ’.’, int2str (i),

’.out’), output data, ’ ’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function save convergence data (training data, dataset order)

trainingdata (1, :) = training data.epoch;

trainingdata (2, :) = training data.perf;

trainingdata (3, :) = training data.vperf;

trainingdata (4, :) = training data.tperf;

trainingdata = transpose (trainingdata);

dlmwrite (strcat (’convergancedata.’, int2str (dataset order), ’.’, ’out’),

trainingdata, ’ ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function error data = generate error data (regression data, error value,

num outputs)

for i = 1:num outputs

error data (:, 1) = regression data (:, 2) * (100+error value)/100;

error data (:, 2) = regression data (:, 2) * (100-error value)/100;

error data (:, 3) = linspace (min (regression data (:, 2)), max

(regression data (:, 2)), size (error data (:, 2), 1))’; %’

error data (:, 4) = error data (:, 3) * (100+error value)/100;;

error data (:, 5) = error data (:, 3) * (100-error value)/100;;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX B

GA Execution

The C++ addition to Deb’s NSGA-II code. This code evaluates the fitness function

for the GA. It takes the genome of an individual as an input and evaluates the artifi-

cial neural network prediction, the reliability index and the excess charge objectives.

It also evaluates the constraints and returns both objectives and constraints to the

GA. This code is used for the development of novel materials designs, as described

in Chapter 9.

#include <cassert>

#include <iostream>

#include <fstream>

#include "FitnessFunction.h"

using namespace std;

CeramicDesignFitnessFunction :: CeramicDesignFitnessFunction() {

system = "sb";

if("sb" == system) {

num inputs = 52;

num elements = 52;

} else if("ic" == system) {

num inputs = 28;

num elements = 27;

}

GAMaterial = NNInput(num inputs, 1, system + " trained network data/meanp.out",

system + " trained network data/stdp.out", system + " trained network data/transmat.out");

NN = nnFitnessFunction(system + " trained network data/hidden layer details T.txt",
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system + " trained network data/output layer details.txt");

GAMaterialOutput = NNOutput(1, system + " trained network data/meant.out",

system + " trained network data/stdt.out");

material = MaterialProperties(system, 3, 1);

}

void CeramicDesignFitnessFunction :: evaluate(double* genotype, double*

objectives, double* constraints) {

evaluate version 1(genotype, objectives, constraints);

}

void CeramicDesignFitnessFunction :: evaluate version 1(double* genotype,

double* objectives, double* constraints) {

GAMaterial.ReadInGenotype(genotype, num inputs);

GAMaterial.normalise data();

GAMaterial.calc reduced data();

int n NN inputs = 15;

int n NN outputs = 1;

float* NN input = new float[n NN inputs];

for(int i=0; i<n NN inputs; i++) {

NN input[i] = (float)GAMaterial.get reduced data(i,0);

}

float* NN output = new float[n NN outputs];

NN.evaluateNN(NN input, n NN inputs, NN output, n NN outputs);

GAMaterialOutput.add data(0, NN output[0]);

GAMaterialOutput.unnormalise data();

if("sb" == system) {

objectives[0] = (double)-1.0*GAMaterialOutput.get unnorm data(0); // Max-
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imise the permittivity

} else if("ic" == system) {

double diffcoeff = exp(GAMaterialOutput.get unnorm data(0));

objectives[0] = (double)-1.0*diffcoeff;

}

material.ReadInGenotype(genotype, num inputs);

objectives[1] = material.rms input distance(); // Minimise the distance

material.calc min charge(); // Minimise the non-stoichiometry

objectives[2] = abs(material.get min charge()); // Minimise the non-stoichiometry.

Absolute value required since we’re aiming for ”closest to zero”.

delete[] NN input;

delete[] NN output;

const double materialTolerance = 0.01;

int nMaterials = 0;

for(int i=0; i<num elements; i++) {

if( genotype[i] >= materialTolerance ) {

nMaterials++;

}

}

constraints[0] = -fabs(4.0 - (double)nMaterials);

}
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