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Abstract 

A key area in the analysis of the evolution of urban structure through modelling is identifying phase 
transitions. At these critical points, the structure changes radically. In planning terms, effective analysis 
would allow us to work towards or away such transitions depending on whether it was a beneficial or 
detrimental change. A simple aggregate retail model is used here to illustrate the argument. Such 
explorations have been carried out in the past. Here we present more powerful visualization methods 
that facilitate the exploration of phase changes in more depth. This prototype offers a good foundation 
for the development of more realistic systems in the future. 

1. The problem 

 The aggregate urban retail model can be taken as a simple example to illustrate the task 
of modeling the evolution of urban systems. The model, with a mechanism for dynamics – 
system evolution - was articulated by Harris and Wilson (1978). Define Sij as the flow of 
spending power from residents of i to shops in j; let ei be spending per head and Pi the 
population of i.  Wj is a measure of the attractiveness of shops in j and in our illustrative model 
here we take this to be measured by floorspace 1 . The vector {Wj} can be taken as a 
representation of urban structure – the configuration of Wjs. If many Wjs are non-zero, then 
this represents a dispersed system. At the other extreme, if only one is non-zero, then that is a 
very centralised system.  

In the following specification, α and β are parameters: high α implies consumers valuing 
attractiveness (measured by size) highly – a proxy for scale economies, range of choice etc; and 
low β implies higher ease of travel  - consumers more likely to go to a more distant centre to 
collect their ‘size’ benefits.  

                                                            
1 It should be emphasised that these simple assumptions are being made to  illustrate the problem. They can be 
made more realistic in straightforward ways but to do this here would obscure the key points being made. 
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We will see below that the model representation of system evolution involves nonlinear 
simultaneous equations that cannot be solved analytically. This makes computer simulation and 
visualization of outputs essential to achieve an understanding and this is particularly the case in 
the search for, and analysis of, phase transitions. The purpose of this paper is to offer such an 
analysis system. Contemporary visualization software enables substantial progress from earlier 
work (for example, Clarke and Wilson, 1985) and, as we will show, can deepen our 
understanding of phase transitions. 

The usual model of flows (Wilson, 1967, 1970), measured in money terms, from 
residential zones, i, to shopping centres, j, is 

   Sij = AieiPiWj
αexp(-βcij)      (1) 

where  

   Ai = 1/ ΣkWk
αexp(-βcik)      (2) 

to ensure that 

   ΣjSij = eiPI        (3) 

with  

   Dj =  ΣiSij =   Σi[eiPiWj
αexp(-βcij)/ ΣkWk

αexp(-βcik)]   (4) 

as the total revenue attracted into shopping centre j from all residential zones {i}. A suitable 
hypothesis for change – the dynamics – is 

   dWj/dt = ε (Dj - KWj)Wj      (5) 

where K is a constant – the cost per unit of floorspace - so that KWj can be taken as the cost 
of running the shopping centre in j. This equation then says that if the centre if profitable, it 
grows; if not, it declines. The parameter ε determines the speed of response to these signals. 
These equations can be written out in full as 

  dWj/dt = ε (Σi{eiPiWj
αexp(-βcij)/ΣkWk

αexp(-βcik)}- KWj)Wj   (6) 

This shows that we have a system of nonlinear simultaneous differential equations. They can 
only be solved by simulation and for these purposes, we shift to difference equation form 
[building on equation (5)]: 

   ΔWj(t, t+1) = ε [Dj(t) - KWj(t)]Wj(t)     (7) 

for the period (t, t+1). Then 



   Wj(t+1) = Wj(t) + ΔWj(t, t+1)     (8) 

The equilibrium position is given by 

   Dj = KWj        (9) 

which can also be written out in full as 

 Σi{eiPiWj
αexp(-βcij)/ΣkWk

αexp(-βcik)} = KWj        (10)  

showing these are nonlinear simultaneous equations in the {Wj}. 

 It is well known that for non linear systems  

o solutions are dependent on the initial conditions – ‘path dependence’; 
o there are phase transitions: that is, there are critical values of the parameters – such as 

α and β, but in fact any exogenous parameter or variable – at which the structure 
changes suddenly. 

We have also remarked that the equations can only be ‘solved’ by simulation methods. 
What is needed therefore is an analysis system with the following properties: 

o single model runs with a wide range of outputs – including measures that characterise 
the structures generated – the ‘order parameters’2; 

o the model can be run over a range of α and β values to generate a ‘results grid’  
o explorations of varying initial conditions; 
o phase transitions in the results grid can be identified and investigated closely;  
o evolution of the system over time can be studied. 

2. Model simulation: generating equilibrium patterns.  

The equilibrium pattern – the solutions to equation (9) [or (10)] - can be obtained by 
iterating the equations (7) and treating the time steps t to t+1 as iterative steps n to n+1 hence 
solving the equations (9) at a fixed time. We need to specify a set of initial conditions – starting 
values for the {Wj} and the {eiPi} – and of course the {Wj} will not be equilibrium values. When 
(and indeed, if) the iteration converges, the equations (9) will be satisfied and hence, by 
summing both sides over j, we will have 

   ∑jDj = ∑jKWj        (11) 

                                                            
2 This is the term used in physics – as phase transitions are usually from a less ordered to a more ordered state, or 
vice versa. 



If K is fixed, this means that the total floorspace will have been adjusted by the iterative process 
to ensure that (10) is satisfied. Denote this by equilibrium model 1. If, however, for comparative 
purposes, we want to find equilibrium {Wj} for which  

   ∑jWj(t+1) = ∑jWj(t)       (12) 

that is, keeping the total floorspace, (∑jWj), constant, we can do this by amending equation (8) 
by adding a normalising factor λ to ensure this. Call this equilibrium model 2. (8) becomes 

   Wj(t+1) = λ[Wj(t) + ΔWj(t, t+1)]     (13) 

Summing both sides over j: 

   ∑jWj(t+1) = λ(t+1)∑j[Wj(t) + ΔWj(t, t+1)]    (14) 

so that 

            λ(t+1) = ∑jWj(t+1)/∑j[Wj(t) + ΔWj(t, t+1)]   (15) 

We will assume below that we will use model 2 for illustrative purposes in exploring phase 
transitions between equilibrium states. 

3. Investigating phase transitions. 

 Consider the task of finding critical parameter values. It is argued in Wilson (1981), pp. 
128 et seq., that there will be a curve of critical values in (α, β) space (and it will be interesting 
to try to generate these curves explicitly). We can follow the argument of Wilson (1981) to 
explore what might be happening at a particular centre in relation to criticality. It can be shown 
that the heart of the structural criticality problem is whether, at the location of a particular 
centre, conditions permit a non-zero value. If there are many locations where it is permitted, 
then this will be a distributed retail system; and vice versa. Another task for the analysis system, 
therefore, is to simulate that analysis. 

 It is difficult to isolate what is happening in a particular retail centre because as the 
equations show, each Wj-equation shows a Wj-dependence on {Wk}, k ≠ j3. To make progress, 
we have to make an heroic assumption: that we can plot Dj against W assuming that all the 
{Wk}, k ≠ j are fixed4. Equation (4) can be written 

   Dj(Wj) = Wj
αΣi[eiPiexp(-βcij)/ {Σk≠jWk

αexp(-βcik)+Wj
αexp(-βcij)}] (16) 

to show explicitly the dependence of Dj as a function of Wj assuming all the other Wk are fixed.   

                                                            
3 These difficulties were articulated in Wilson (1988) 
4 In practice, they will all be varying simultaneously   



The cost is KWj which is, of course, a straight line when plotted. At equilibrium, the D(Wj) 
curve and the KWj line will intersect. It was shown analytically in Wilson (1981) that there are 
three cases – shown in Figure 1. It is interesting within the analysis system to attempt to 
simulate these cases for some zones where it has already been shown that there is a system 
phase change in the neighbourhood.   

 

Dj, KWj 

Wj 

Dj, KWj  Dj, KWj 

Wj Wj 

α < 1 α = 1 α > 1 

 

Figure 1.                   (a)                                   (b)                                             (c) 

 

In Figure 1(a), α < 1, in 1(b), α = 1 and in 1(c), α > 1. In 1(a), the gradient of the Dj(Wj) 
curve is infinite at the origin and so there is always an intersection with the cost line and that 
can be shown to be stable. Thus for α < 1, we would expect a dispersed system. In the 1(c) 
case the cost line either intersects the curve twice (excluding the origin) or only at the origin. 
In the former case, the upper intersection is stable and a non-zero Wj is possible; in the latter 
case, Wj will be zero. More centralized patterns will have many such zeros. α = 1 is a special 
case. The Dj curve has a finite gradient at the origin and the possibilities of intersection 
generating a stable point are like the 1(c) case. We should therefore always expect a phase 
transition at α = 1. 

 

 

 

 



4. System outputs. 

4.1. Single model runs 

 

 

Figure 2. Single model run mode 

 

The single model mode provides the following features: 

o 3D graphic presentation of structure with detail available from drop-down menus 
o Animation of {Wj} structure evolving through the iterative procedure 
o Visual indicators of total money flow in and size change for each retail centre 



o At each iteration a readout of 
o R2 comparison to starting {Wj} values 
o Largest percentage size change in a retail centre 

o Background shapefile  
o The facility to restart model with new parameters: 

o Alpha 
o Beta 
o Epsilon 

o Alternative floor space models: 
o equilibrium model 1 
o equilibrium model 2 (which we use for all the results below) 

o Alternative rent models 
o flat rate rents  
o declining rents from the centre 

o Size of retail centres 
o Log of all outputs to a CSV file 
o Visualisation of flow from each population centre to each retail centre 
o Retail centre detail 

o Name 
o Floorspace 
o Rent 
o Total money flow in 

o Population centre detail 
o Name 
o Spending Power 

o Graph plotting 
o zonal analyses (based on Figure 1) 
o rank-size distribution 
o network analyses through significant link counts  
o histograms  
o rank size 
o {Wj} histogram 

 

 

 

 

 



4.2. The results grid 

Multiple model run mode generates a results grid with the following features: 

• Run a set of models within a user specified (α, β) grid to equilibrium  

 

Figure 3. Results generator mode 

The user specifies the following parameters: 

o Alpha: start / stepping / end 
o Beta: start / stepping / end 
o Epsilon  
o Maximum updates per model 
o Equilibrium conditions: maximum percentage floorspace change for N updates  
o Floor space model: 

o equilibrium model 1 
o equilibrium model 2 

o Rent model 
o flat rate rents  
o declining rents from the centre 

The results are saved to a file and can be loaded in and viewed using the results explorer mode 
explained in the next section. 

 

 

 

 

 

 

 



4.3. The results explorer 

The user can load a pre-generated (α, β) grid of models that have run to equilibrium or 
a linear sequence representing system evolution through time. 

 

 

Figure 4. Results explorer mode 

This mode is useful for phase change explorations. 

 

 



The following features are available: 

• 3D graphics representing the {Wj} structure at equilibrium for each model on the grid 
• Visual indication of R2 value comparison with the starting Wj values for each model’s 

equilibrium state 
• 3D Parameter surface generation for: 

o order parameter:  total retail centres > user specified threshold 
o R2 

• User can select a model on the grid for more detail: 
o Last Largest percentage size change  
o R2 
o State: converged or not converged 
o Total updates before reaching equilibrium state 
o Option to open any model on the grid in Single model run mode to see it in 

more detail. 
o Select any retail centre in any model to view its name and Wj value at 

equilibrium 

5. The data 

 Rather than use purely hypothetical data as has been common in the past, the 
simulations in the next section are based on London data5. 

The population centre data was derived from a combination of ward-level population 
data from the 2001 census and CACI Paycheck which provided income data at postcode level.  
For each ward we found an average income level from all the post codes inside that ward 
(except those with zero population) and then multiplied this together with the resident 
population for the ward to give a spending power. The ward centre points were used as the 
location of each population centre.  

The retail centre data comes from the Town Centres Project 2002, which provides 
statistics for each town centre in London. We used the name, easting, northing and retail floor 
space fields.  

 
 

 

                                                            
5 Clarke and Wilson (1985) did a version of this analysis – generating the (α, β) grid for a hypothetical system. 



 

 

6. Some results 

6.1. Single model run 

 

Figure 5. The initial conditions for the London test 

The model was run for the London data described in section 3 and shown in Figure 5. 
Comparable output of the model run itself is shown in Figure 6 and the extent to which there 
is more detail available is shown in Figure 7 and Figure 8. 



 

Figure 6 (a). Model output 

 

Figure 6(b) Model output in 3-D 



The ring above a 
retail centre  is 
proportional to the 
total money flowing 
in

Retail centres are 
represented as 
three dimensional 
blocks:
•height is 
proportional to floor 
space
•colour indicates 
whether they are 
growing (green), 
stable (yellow) or 
shrinking (red)

Population centres 
are shown as blue 
circles

 

Figure 7. Revenue and dynamics 

When the user 
selects a retail 
centre the 
population centres 
are displayed at a 
size proportional to 
the amount of 
money they are 
sending to the 
selected retail 
centre

 

Figure 8. Flows to a centre. 

 

 



So far, we have assumed a flat rent across the city. An obvious alternative assumption is 
to show rents declining from the city centre as shown in Figure 9 and it is straightforward to 
run the model in this mode though for the remainder of these illustrative results, we retain the 
assumption of a constant K. 

Flat Rent Falloff from centre

 

Figure 9. 

Define N(W) to be the number of centres within a size band, W. A histogram of N(W) 
vs W in size bands is shown in Figure 10 (a) and a corresponding log-log plot in Figure 10 (b).  

 



 

Figure 10                       (a)                                                          (b) 

 

Figure 11.                            (a)                                               (b) 

 

In Figure 11(a), we plot {Wj} by rank with the corresponding log-log plot in 10(b). This 
is a characteristic log normal distribution. 



In Figure 12, we offer a rudimentary network analysis by counting the links at each node 
on which the flow exceeds a certain size. This is a characteristic scale-free plot. 

 

Figure 12. 

 

 

 

 

 

 

 

 

 

 



6.2. The (α, β) results grid: phase change explorations 

The next step is to begin to explore a series of runs for different parameter values and 
in Figure 13, we show an (α, β) grid.  

Each model result is 
displayed in a 
position on the grid 
that indicates its 
alpha and beta 
parameters

The user can load a 
pre‐generated grid 
of results from 
models that have 
been through a 
large number of 
simulation updates. 
Some models have 
reached  
equilibrium
while others remain 
in a chaotic state

The value of alpha 
and beta under the 
cursor are displayed 
to aid navigation

 

Figure 13. The grid. 

 

As an order parameter, we take N(Wj›x) – the number of centres with floorspace 
greater than some parameter, x. This is then plotted as a surface as shown in Figure 14. We 
initially set x= 1,000,000 sq ft. The ringed area in Figure 14 might represent a phase change and 
so we investigate this further. 



 

Figure 14. The grid with the order parameter plotted as a surface. 

 

Zooming in closer we can identify two result maps, one on either side of the possible phase 
change – see Figure 15 and then the two maps that follow in Figures 16 and 17. 

 

Figure 15. 

At equilibrium, we generate Figures 16 and 17. 



 

Figure 16. Alpha=1.00, beta=0.221 

 

 

 

Figure 17. Alpha=1.00, beta=0.201, converged after 548 updates 

 

In this case, there are no obvious differences. After comparing the two maps in details, 
we note that: 

• Central London changes from 529,061 sq ft in Map 1 to 1,017,853 sq ft in Map 2 



• Twickenham changes from 58,590 sq ft in Map 1 to 2,054 sq ft in Map 2 
• Teddington changes from 14.70 sq ft in Map 1 to 0.51 sq ft in Map 2 
• Kensington High Street changes from 744,763 sq ft in Map 1 to 555,566 sq ft in Map 

2 
• Wood Green changes from 323,584 sq ft in Map 1 to 186,729 sq ft in Map 2 

When we examine the zonal maps, we can say that while there are some large changes, 
these may not be phase changes of the Figure 1 type. It remains a matter for future 
investigation as to whether they are phase changes of another type. (The Central London 
change comes about because in this simple version of the model, ‘Central’ absorbs ‘West Ednd’. 
In later versions, a constraint can be added to prevent this happening.)  

If we look at the two histograms of the Wj-distributions, they are broadly the same 
shape (see Figure 18). 

 

  

Figure 18. (a) Wj Histogram for Figure 15 

 

Figure 18 (b). Wj Histogram for Figure 16 

(100 bins of 10,000) (100 bins of 10,000 

For a second exploration, we examine a section of the grid crossing α = 1 where we 
have greater expectation from the theoretical analysis (as well as the appearance of the grids), 
of finding a phase change.  We generate a surface showing the order parameter with threshold 



set at 1,000,000 sq ft. The ringed area should be a good place to look for a phase change (see 
Figure 19). 

 

 

 

Figure 19. 

Zooming in closer – see Figure 20 - we can identify two result maps, one on either side 
of the possible phase change – Figures 21 and 22. 



 

Figure 20. 

 

 

Figure 21. Alpha=1.00, beta=0.221 

 



 

Figure 22. Alpha= 1.05, beta= 0.221 

 

There are now obvious differences between the two maps. The only retail centres that 
survive in Figure 22 are: 

• Central London: 7,036,082.66 sq ft 
• Ilford: 1,722,372.37 sq ft 
• Bromley: 901313.99 sq ft 
• Wimbledon: 1,227,640.95 sq ft 
• Ealing: 1,426,393.72 sq ft 
• Harrow: 305,546.30 sq ft 

Most retail centres drop to zero floor space in Figure 22 including Barking. This is illustrated by 
the image in Figure 23. 



 

Figure 23. 

We can then examine the zonal Dj-Wj plots for Barking in Figure 24. 

 

The graph goes up to 400,000 sq ft, so the 
lines intersect at about 250,000 sq ft. 

 

The graph goes up to 2,000,000 sq ft. There 
is no intersection. 

Figure 24 (a) 

Dj-Wj plot for Barking from Figure 21 

Figure 24 (b) 

Dj-Wj plot for Barking from Figure 22 

 



This shows that the results follow the theoretical analysis of Figure 1 with an 
intersection of line and curve in Figure 24 (a) and no intersection in Figure 24 (b). The 
histograms in Figure 25 also show striking differences. There is an interesting observation that 
comes to light through this computer plot being available: when α is close to 1, as in these runs, 
the Dj curve runs very close to the KWj line. This can easily be checked by reference to 
equation (16). 

  

Figure 25(a). 

Log(Wj) Histogram for Figure 20 

(40 bins of 0.5) 

Figure 25(b). 

Log(Wj) Histogram for Figure 21 

(40 bins of 0.5) 

 

 

 

 

 

 

 

 

 

 



6.3. Evolution through time 

 

Alpha=1 line 

Increasing time 

Figure 26. A timeline through the (α, β) grid 

 

By taking a diagonal slice through the (α, β) grid, we can simulate the evolution of the 
system in time, and an artificial illustration is offered in Figure 26. This shows a shift to a small 
number of outlets in the first step, and then a gradual change through to one centre. The most 
significant change comes at α=1. 

 

 

 

 

 



6.4 Varying initial conditions 
We can vary the starting Wj structure in the model using two parameters: 

delta: controls the distribution of floor space in the retail centres relative to the centre of the 
map. A positive value gives large W values close to the centre using the following rule: 

Wj = (distance_from_map_edge)delta 

 and a negative value gives large values close to the edge: 

Wj = (distance_from_map_centre)delta 

A zero value gives an equal distribution of floorspace. 

tau: controls the number of retail centres that have non-zero floorspace. How those centres 
are chosen depends on the sign of the value: a positive value selects the largest centres first 
while a negative value selects the smallest centres first. For example: a value of -20 would select 
the 20 smallest centres while a value of +20 gives the 20 largest centres. 

Delta and Tau can be used together or separately and always take the London data as their 
starting point before modifying the Wj values. If used together delta is applied first. 

We can plot the starting structures that are generated using the above method on a (tau, delta) 
grid as shown in Figure 27. 

 

Zero Tau (real Wj values) 

Zero delta (even distribution)

(Increasing  number  of  centres
chosen smallest first) 

Positive Tau  

(Increasing number of 
centres chosen largest first) 

Positive Tau  (Wj distributed more to the edge) 
Negative Delta  

(Wj distributed more centrally) 
Positive Delta  

Figure 27. varying starting Wj structure 



We can then choose constant values for alpha and beta and generate a (delta, tau) grid 
that shows how the equilibrium state varies as these two parameters change. Error! 
Reference source not found. shows the results for alpha = 1.1, beta = 0.25. 

 

 

Negative Tau 
(Increasing number of centres 

chosen smallest first) 

Zero delta (even distribution)

Negative Delta   Positive Delta 
(Wj distributed more to 
the edge) 

(Wj distributed more 
centrally) 

Zero Tau (real Wj values) 

Positive Tau  
(Increasing number of centres 

chosen largest first) 

Figure 28. 

 

We can also introduce a third variable to generate a three dimensional grid of models. Figure 
29 varies delta and tau on X and Y while varying alpha on Z. The difficulty comes in interpreting 
the results because the multiple layers get in each other’s way and so it is less clear than the 
two dimensional grids shown previously. 
 

 



 

alpha

delta 

tau 

Figure 29. Three dimensional (tau, delta, alpha) grid 

 

6.5 Adding a hypothetical retail centre 
A more realistic way to vary the initial conditions of the model is to modify the London 

data by adding a new retail centre to the map. To keep the model consistent we scale all the 
retail centres in the model after this addition to maintain the same total floor space. We can 
vary the position and size of the new centre to see how this affects the equilibrium state of the 
model. 

Figure 30 shows a grid of models where a new centre has been added to the starting Wj 
structure. The easting and northing of the centre are varied over the model runs in the x and y 
axes while the total floor space of the new centre is varied over the z axis. 

The parameters used to generate this grid were: 

• Alpha=1.1 



• Beta=0.25 

• Easting ranges (in metres) from 517500 to 547500 in steps of 10000 

• Northing ranges from 172100 to 182100 in steps of 10000 

• Floor space ranges (in square feet) from 0 to 2,000,000 in steps of 1,000,000 
 

 

Floor space 

EastingNorthing 

Figure 30. Three dimensional (easting, northing, floor space) grid for a hypothetical retail 
centre 

Generally the new centre survives to equilibrium when located on the outskirts of London but 
has zero size when placed near central London.  

We can zoom into the grid and compare two models more closely to try and identify a phase 
change. Taking the case when the new centre is located in south west London we look at the 
change that occurs as the new centre is introduced (i.e. its size changes from 0 to 1,000,000 sq 
ft). The new centre obviously takes floor space away from other retail centres and we can see 
that three centres are pushed to zero size, including: 

• Kingston upon Thames: from 181,713.44 sq ft 

• Ealing: from 1,705,415.87 sq ft 

• Bexleyheath: from 45,304.02 sq ft  



Harrow seems to benefit from the new centre as it increases in size from 229,562.08 sq ft to 
1,034,782.25 sq ft. These changes are shown in Figure 31.  This is obviously all very artificial, 
but illustrates in principle the kinds of investigations that can be carried out with the system. 

 

Harrow

Bexleyheath

Kingston  
upon Thames 

Ealing

Figure 31. 

 

7. Concluding comments. 

 We have demonstrated a rich visualisation system which has enabled us to identify phase 
transitions in retail model runs based on semi-realistic data. This paves the way for the development of 
more realistic tests with the retail model, with other kinds of urban model, and indeed with other 
related systems that can be modelled using this kind of methodology (cf. Wilson, 2008). The adjustment 



of single zones in the initial conditions also shows how the system could be used i9n a variety of 
planning applications.  
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