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ABSTRACT 

 
We study the distribution of sizes in the Israeli system of cities, using a rank-size 

representation of population distributions from 1950 to 2005. Based on a 

multiplicative model of proportionate growth, we develop a quantitative comparison 

relating the change in the rank-size curves to the change in the real data of Israeli 

cities during this period. At the level of macro dynamics, there is good agreement 

between the model and the real data. At the micro level, however, the model is less 

successful as the mean variation of the cities’ rank during the period studied is much 

larger in the model than in the real data. To illustrate this difference, we use the rank-

clock representation.   
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1 INTRODUCTION 

 

The statistics of sizes is a topic studied in many disciplines across the natural and the 

social sciences [1-6]. One of the key problems is how to describe mathematically the 

function which describes the sizes of the objects or entities that compose such 

distributions. The two most common distributions in the literature are the power law 

and the lognormal distribution [7, 8, 9] but it is clear that in many cases, both of these 

distributions do not replicate the shape or form of functions in a satisfactory way. In 

fact, more accurate distributions lie somewhere between these two options [9, 10].  

 

Among the difficulties concerning the choice of distribution is the problem of the 

lower tail. In the past, many applications have simply dealt with the largest entities 

usually because data has been available only for the largest, or sometimes because it 

is assumed that the most important entities are those that are the largest. The lower 

tail, or long tail as it sometimes called, of the frequency distribution of sizes is often 

disregarded –  cut off, and it is clear that by changing the size of the lower tail of the 

entities’ size distribution, the function which fits the distribution will also change. It is 

not easy to choose a criterion to define the cut off for the lower tail and very often it is 

chosen arbitrarily.  

 

It is thus a major problem in exploring size statistics to relate the properties of a 

particular set of entities (for example, incomes, stock market values, populations of 

cities, frequencies of words and letters that comprise languages etc.) to a function that 

describes accurately their size distribution. Several models attempt to solve this 

problem by relating the entities’ size distributions to some hypotheses concerning 

their behavior [10]. These models, however, usually examine the size distribution at a 

particular time, thus grounding the analysis in comparative statics, often beginning 

with some arbitrary initial distribution as the starting point for simulation and iterating 

the model until some equilibrium state is reached. 

   

The purpose of this paper is twofold; in the first part, we investigate the dynamics of 

the size distribution (without searching for an equilibrium) and show how it is 

possible to relate the change in the distribution to the properties of the entities. For 

that, we use an approach which defines a distribution using a new exponent α  [8] 
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presenting a simulation based on a model we have recently developed [9, 10]. In the 

second part, we study the dynamics of the Israeli system of cities, first at the macro 

level and then at the micro, comparing the micro-dynamics in the real data with that in 

the simulation. 

 

Most of the existing work in the field looks for an agreement between the empirical 

distributions and that given by the models through measures of the accuracy of the 

model. This, in fact, seems sufficient in the case of a static model. When adding 

dynamics to the model, however, one has to consider not only the change in the 

distribution but the temporal variation of the entities as well. Recently, Batty [12, 13] 

proposed the rank-clock representation to study the micro dynamics of systems with 

entities that appear to generate homogeneous rank size distributions at the macro 

scale. This representation follows the dynamics of individual entities within the 

system and here we use it to check the validity of our work in terms of micro 

dynamics.   

 

In this paper, we use the Israeli system of cities as our case study in examining the 

validity of our simulation. In the first part of the paper, we compare the macro 

dynamics of the Israeli system of cities from 1950 to 2005 at three snapshots of time – 

1961, 1983 and 2005 – showing that the temporal change in the distribution is related 

to the variation of the number of cities in Israel through time. In the second part of the 

paper, we compare the micro dynamics of the simulation with the Israeli system of 

cities from 1950 to 2005. Sections 2–6 concern the macro dynamics of the simulation 

and the real system of cities while section 7 presents their micro dynamics. 

 

In the next section, we present the new exponent α  and its correlation with the 

distributions. In section 3, we then cover the data concerning the cities of Israel 

followed by an outline of the model (in section 4) and its application to Israeli cities 

(in section 5). In section 6, we present the results of the model at the macro level 

while section 7 concerns the micro dynamics of the simulation in comparison to the 

real system of Israeli cities. Finally we discuss the results of the model, introducing 

the rank clock analysis which makes comparisons between the model and the real 

data. Surprisingly, the model provides a rather good description of the distributions at 
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the macro level, but fails to give a sufficiently accurate analysis of the individual 

changes in the entities at the micro level.   

 

 

2 A NEW EXPONENT 

 

Recently, we proposed a phenomenological approach [9] when analyzing the size 

distribution of entities. We based our approach on the three equivalent representations 

of the size distribution [11]:  

 

• The density function )(SD  which gives the number of entities with size 

between S  and dSS + .  

• The cumulative function )(SP  which gives the number of entities with a size 

larger or equal (or smaller) than a given S . These two functions )(SD  and 

)(SP  can also be expressed in relative terms. The two relative functions do 

not give the number of entities but rather the percentage (or probability) of the 

total number of entities.  

• The rank size representation which is transformed into the logarithm of the 

size ( Size ) and plotted as a function of the logarithm of the rank 

( Rank ). The function 

y ln=

lnx = ( )xy  is called the rank-size curve. When the 

relationship between the size and rank of the entities can be expressed by the 

function ny~x where n  is a power of the function, the distribution is referred 

to popularly as Zipf’s law after Zipf [14] who presented a graphical and rather 

forceful summary of such relationships. This relationship is represented 

pictorially by a linear equation plotted as a double logarithmic graph . 

 

Our proposed equation concerns the function ( )xy . We propose to analyze the rank-

size curve for a system of entities using the following expression: 

 

( ) ( )[ ααμα xHbHyy −+−−= 110 ]  ,    (1) 
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where  ).(xyy = ( )α−1H  is the Heaviside function, equal to -1 if 1<α  and to 1 if 

1≥α . μand,,0 by  are parameters and the exponent α  can be smaller, equal or 

larger than 1. In the case 1=α , Zipf’s law is recovered, i.e. there is a linear relation 

between x  and . When y 1≠α , the curve ( )xy  has different shapes following the 

value of α  which we call the “shape exponent”. This means that each value of α  

defines a particular distribution.  

 

 

3 THE CITIES OF ISRAEL 

 

We have analyzed the rank size distribution of all the settlements in Israel from 1950 

to 2005 [15] and found that qualitatively, they all have the same shape. In Fig.1 we 

present the rank-size curve of all settlements in the years 1961, 1983, and 2005. These 

three curves have the same shape and the only observed differences are the shifts of 

the curves upwards with time. The distribution demonstrates discontinuity around the 

value of population equal to 1,000. In other words, the distributions can be divided 

into two parts around this value. Based on the above, we defined the lower tail of the 

distribution for all settlements with population smaller than 1,000 for the entire 

period. The inset of Fig.1 presents the rank size curves for the years 1961, 1983, and 

2005, after the exclusion of their lower tails (based on settlements with populations 

smaller than 1,000).   

 

Similar to several other cases [9], the fit of the distributions to equation (1) is very 

good as demonstrated in Fig.1. Fig.2 presents the variations of the exponent α  with 

time. The exponent α  is larger than 1 in 1961 and changes to values lower that 1 in 

the following years. In Fig.3 we show the change in the number of cities (settlements 

with population larger than 1000) as a function of time. The data fits a quadratic 

equation with good precision. 

 

4 THE MODEL 

 

The model we have used is based on a computer simulation that we have recently 

presented [9, 10]. We begin with  cities with population equal to 1. At the first 0N

 5



stage, each city grows by random multiplicative growth: one city is chosen at random 

and its population is changed from step T  to step 1+T  as: 

 

 ( ) (TSTS )γ=+1           (2) 

 

where γ  is a random variable uniformly distributed between 1<mγ  and 1>Mγ  such 

that the mean 2/)( Mm γγ +  is fractionally larger than 1. At the second stage, if the 

population of a city decreases below 1, the city disappears from the system. At the 

third stage, a new city is added to the system with the population equal to 1 after K  

steps. As for the initial cities, if the size of the new city decreases below 1, it 

disappears from the system. 

                       
Figure 1: The rank-size distribution of all the settlements in Israel in the years: 1961, 
1983, and 2005. In the inset: the rank size distribution of all the settlements in Israel 

with populations larger than 1,000. 

 
Figure 2: The variation of the ‘shape exponent’ α  between the years 1961 and 2005 

for the Israeli system of cities.
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The distributions that this model yields are dependent on the number of steps T  (or in 

other words, the total growth time) and on the rate of introducing new cities K  (for a 

given γ  distribution). If  and is constant, the exponent 300>K α  changes as a step 

function when, for small T , it is smaller than 1 and for large T it changes to values 

larger than 1. For smaller values of K , the exponent α is larger than 1 for small T  

and becomes equal to 1 for larger T . A significant property of the model involves its 

statistical basis. For given values of T  and K , the results of the model do not always 

yield the same parameters. When fitting the resulting rank size curves of the model to 

equation (1), a distribution of such parameters emerges.   

 

An important issue in the model is the definition of the time t . It is not equal to the 

number of steps  since the number of steps (on average) separating two 

consecutive choices of the same city in the growth process is dependent on the 

number of cities. The unit of time is chosen as the mean number of steps separating 

two consecutive choices of the same city. For a number steps 

)(T

TΔ , the interval of time 

 is equal to tΔ
N
TΔ  or if we consider the continuum limit:  

 

 
N
dTdt =     .     (3)  

     

If we add to this the rate of creating new cities, we get: 

 

 
KdT

dN 1
=    .     (4) 

 

If K  is constant, it is not difficult to show from equations (3) and (4) that the 

variation of the number of cities with time is exponential, and is given by 

⎟
⎠
⎞

⎜
⎝
⎛= p

K
tNN s exp0  where  is the probability of a new city surviving, with  

approximately equal to 0.27.  

sp sp
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5 APPLICATION OF THE MODEL TO ISRAELI CITIES 

 

In this section, we show how we use the model to interpret the system of cities in 

Israel. Our goal is to use the model in order to determine the city size distribution or 

more precisely the rank-size function for Israel’s real system of cities. Since we know 

the function  is quadratic, we have to find the function  which fits this 

result. For that, the following system of equations needs to be solved: 

)(tN )(TK

 

NdT
dt 1

=     ,     (5a) 

KdT
dN 1

=    , and                          (5b) 

( 2
110 ttNNN −+= )   .     (5c) 

 

Analytic solutions to this system of equations is complicated, and thus we propose to 

find an approximate solution using a heuristic approach. After some systematic trial 

and error iteration, we generated the following expression: ( ) 3/1
10 TKKTK += , 

which yields good results, as indicated below. Based on this expression, it is possible 

to show that  is given by:  )(tN
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where  is an integration constant. Considering that the log term in equation (6) 

changes very slowly in its dependence on 

N ′

T , it is possible to add it to the constant 

term and get a good approximation using the following simple expression for : N

 

 ( )
2

3
1

1
3
1

10 ⎥
⎦

⎤
⎢
⎣

⎡
−+= TTNNN   ,    (7) 
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where . The constants  and  in equation (7) are dependent on the 

coefficients  and  and also on the integration constant. 

10
3/1

1 / KKT =

0K

0N 1N

1K

 

 To find the relation between the time  and the number of steps t T , we integrate 

equations (5a) and (7) to get: 

 

 ( tuNNC
N
NuB

N
ut ′+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= − 2

10
0

11

1
lnθ )  ,     (8) 

 

where 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= 3

1

1
3
1

TTu . In equation (8), t ′  is an integration constant, and the 

coefficients B  and C  are dependent on . 1010 ,and, NNK , K

 

It is possible to consider the second and third terms on the right hand side of equation 

(8) as constants: the log term because it changes very slowly in its dependence on  

and hence on 

N

T ; and the  term because its argument is larger than 1 (considering 

the real values of the parameters). The final result suggests that t  is linearly 

dependent on 

1−θ

3/1T . One can choose the integration constant such the model can be 

written as follows:  

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= 3

1

1
3
1

TTDt   .     (9) 

 

From equations (7) and (9), it can be deduced that the dependence of  on t  is indeed 

the quadratic equation we expected. 

N

 

In the following steps, we consider K  as constant, choose an initial state for which 

the number of cities is roughly 150 (see Fig.3) and select the exponent α  as 

approximately 1.6 (see Fig.2). We found that this corresponds to a state with 50 initial 

cities,  steps and 000,45=T 80=K . For larger values of T , we used the following 

function to describe K  as a function of T :  such that the value of 3/1T10 KKK +=
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( 3
101 / KKT = )  is near the value of T  in the initial state. Then, we ran the simulation 

for several values of T  where for each T  we found the value of . We also 

determined the time by graphical integration of the function  versus 

N
1−N T , and we 

plotted the rank-size curve determining the shape exponent α  by fitting the curve 

using equation (1).   

 
Figure 3: The change in the number of cities (with populations larger than 1000) 

between the years 1961 and 2005 for the Israeli system of cities. 
 

 

6 MACRO ANALYSIS OF THE MODEL:  

THE RANK SIZE CURVE AND THE NUMBER OF CITIES 

 

The outputs of the model are presented in figures 4–8; Fig. 4 presents the relation  

versus 

N
3/1T  where it is clear that the relation in equation (7) is indeed verified. The 

relation  versus t 3/1T  is presented in Fig. 5 where a linear relationship between time 

and 3/1T  is also verified with the same value of  found in Fig.4. Fig. 6 shows  

versus  where the quadratic relation is also found. Note that the values of  and of 

the coefficients  and  found in the model, are very close to the ones in the real 

data. In Fig. 7 we present the exponent 

3/1
1T N

t N

0N 1N

α  versus t . Here too, there is a very good 

quantitative agreement between the model and the real data. Finally, we show the 

rank-size curves of the model in Fig.8. These curves are qualitatively very similar too 
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to the ones that result from the real data. Based on the above, we think the model 

provides a good description of the evolution of the Israeli system of cities (but clearly 

only when considering cities with populations larger than 1,000). More particularly, 

the qualitative change in the distribution (i.e. in the exponent α ) is a direct 

consequence of the variation in the number of cities with time.   

 
3/Figure 4: Results of the model: the number of cities  versus N 1T , where T  

represents the number of steps. 
 

 

 
Figure 5: Results of the model: time t  versus 3/1T , where T represents  

the number of steps. 
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Figure 6: Results of the model: the number of cities  versus the time t . Note that 

the data fits a quadratic equation. 
N

 
Figure 7: Results of the model: the ‘shape exponent’ α  versus the time  t

 
Figure 8: Results of the model: the rank size distribution of the cities in the model on 

a log-log graph. 
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7 MICRODYNAMICS: THE RANK-CLOCK ANALYSIS 

 

So far, we have focused only on the macro dynamics of the Israeli system of cities. 

This means that we ignored the changes that appear within the positions (or ranks) of 

individual cities with time, and looked only at the rank size distribution of the entire 

system. In this section, we follow Batty [12, 13] and present an initial analysis of the 

micro dynamics of both the Israeli system of cities and the above simulation model.  

 

We start with the real data of Israeli cities (and settlements) with populations larger 

than 5,000 from 1950 to 2005 [14]. The number of these settlements increased from 

34 in 1950 to 172 in 2005. Fig. 9 presents the rank clock of Israeli cities for these 

years. The cities are colored according to their rank and the time they first entered the 

system with red representing cities which enter first through a spectrum of colour – 

red to yellow to green to blue – for the cities that enter last. The micro dynamics of 

this system of cities presents little irregularity, is mostly stable in structure and shows 

a system that is rapidly growing with cities rising rapidly up the ranks but few cities 

falling out. We can conclude all this in rather impressionistic terms by simply viewing 

the colour balance of the clock and comparing this to a system like the US where 

there is much greater volatility into and out-of of the top ranked cities [12]. There are 

only a few cases where cities move toward the center of the rank clock over this 

period while the cities that existed in the early stages of the development from 1950 

remain the largest cities in the system (with cities entering earlier nearer the center of 

the rank clock). Few cities that were introduced in later years manage to increase 

significantly and move to the center of the clock. We can define a number of 

measures or parameters that characterize the clock, hence the system of cities. First, 

the rank shift is a parameter which indicates the stability of the dynamics of individual 

entities in the system. It is defined [12] as: 

 

)1()()( −−= trtrtd iii   ,   (10) 

 

where represents the rank of city i  at time , and )(tri t )1( −tri represents the rank of 

city i  at time . Obviously, this expression is valid only if the examined city is in 

the system at both times t  and 

1−t

1−t . The average shift for the entire system is: 
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N

td
td i i∑
=

)(
)(   ,    (11) 

 

where  is the number of entities in the system. The average shift for the entire 

period studied is defined as: 

N

 

 
T

td
d t∑= )(

   ,    (12) 

 

where the sum is the average shift of the system at different times and T  is the entire 

period. 

 

(a) 
 

(b) 

 
Figure 9: The rank clock representation of the Israeli system of cities (a) between the 

years 1950 and 2005 and (b) with some specific cities also plotted. 
 

In the Israeli system of cities, was found to be 5.4 which resembles the values of the 

same parameter for the USA and the UK [12]. This means that on average, each city 

in the system changes its location in the rank list by 5.4 places during the studied 

period. When analyzing these changes in rank, we can see that most cities in Israel 

presented very few changes in their ranks (see Fig. 9), while a small number of cities 

changed their ranks considerably. These cities can be divided into 3 groups, based on 

the reasons for their growth; the first group consists of orthodox-religious settlements, 

characterized by high annual growth rates (approximately 10%), which can be 

d
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explained by the high volume of birth in the orthodox community. El’ad is an 

example for such a settlement. It was introduced to the system only in the year 2000 

and within the next 4 years changed its rank from 144 to 64 ( ( ) 20=tdi ). 

 

The second group includes several settlements that were united (by government 

decision) into one municipality. Following this unification, some of these settlements 

disappeared from the system, while others increased systematically and moved 

towards the center of the rank clock showing rapid change reflected in the steepness 

of their slope. Zoran which was united with Qadima in the year 2003, changed its 

rank from 152 to 87 within one year ( ( ) 65=tdi ). Lastly, the third group consists of 

the city of Modi’in, the only city in Israel which was completely planned (in terms of 

its located population) to be a large city between Tel Aviv and Jerusalem. Modi’in’s 

rank changed from 88 to 23 between the years 1997 and 2005( ( ) .9=tdi 3). 

 

 
 

Figure 10: The rank clock representation of the model results at equivalent time 
points to the real evolution in Figure 9.  

 

When analyzing the results of the model for the Israeli system (see section 5), one 

finds  which is considerably larger that the value of  for the real data 

describing the Israeli system of cities. Fig. 10 presents the rank clock for this model. 

and based on this, the findings suggest that the model does not provide a good 

description for the micro dynamics of the system. Even before calculating the value of 

, we can see that the rank clock is different from the one of Israel’s real data as the 

8.14=d d

d
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colors in the clock are mixed and present no organized pattern. However, the 

calculated value of  is similar to the case of the top city populations in the 

world data set from classical times to the modern day [12]. This value is relatively 

high and indicates that the individual entities of the system presented great changes in 

their sizes and ranks over time.  

8.14=d

 

The importance of this comparison is that it shows that even though the model 

provides a very good description for the macro dynamics of the Israeli system of 

cities, it does not explain their micro dynamics. It appears that further work needs to 

be done in order to develop a model that will provide a good description for both the 

macro and micro dynamics of a system and this would probably have to include many 

more specific spatial factors which characterize the urban development of Israel 

during these years. The reason for that lies in the fact that the micro dynamics of the 

Israeli system of cities is affected by various factors (such as government regularities, 

as described earlier) that cannot be imitated in the current model. The model, which is 

a complex system, is based on many random variables that are all dependent on one 

another. In its current version, it is very difficult to depict the exact variable that 

controls each aspect of the changes in the micro level of the system. Thus further 

work is needed in order to calibrate the model to fit the micro dynamics of this system 

of cities.   

 

8 CONCLUSIONS 

 

We have presented an adaptation of a simulation model for the growth of entities in 

the Israeli system of cities so that we might examine the dynamics of the distribution 

through time. Our approach is different from most other approaches to city size 

distributions in particular and size distributions in general in that our focus is upon the 

micro dynamics as well as the macro statics of cross sectional city size distributions. 

We also applied our multiplicative growth model to the cities of Israel and were 

partially successful. When considering the ensemble of cities at the macro scale, i.e. 

their rank size distributions, we get a convincing explanation of the time variation of 

these distributions which is dependent upon the rate of creating new cities. However, 

when studying the micro dynamics of the system, i.e. the evolution of individual cities 

over time, using the rank-clock representation, it is clear that the relative variation in 
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size and rank of the cities (average shift) is considerably larger in the model than in 

the real data. Moreover, the general pattern of this dynamics reveals considerably 

more irregularity than the real system. Hence, we believe there is an inconsistency 

between the macro and micro aspects of the analysis.  

 

We believe the model presents good results for the description of the macro dynamics 

of the system but fails to describe its micro dynamics, and thus it needs to be 

extended. One option, suggested by Havlin [16], is to consider the growth of cities 

with interactions or correlations among themselves. Such extensions would take the 

model to one dealing with systems of cities and their interactions which have meaning 

in terms of trade and other transportation flows. In the current model the growth of 

each city follows equation (2) alone, i.e. each city grows independently of every 

other. The proposal which we will follow in future research is to introduce enough but 

not too rich a set of interactions between cities such that the growth of any one city 

will be dependent on the growth of others.  

 

Finally, we wish to emphasize that even the known “static models” present some 

evolution until they obtain the desired distribution. Until recently [12, 13], the 

evolution of the individual entities was hardly investigated at all but it seems 

necessary to do so in order to understand the evolution of systems of entities as a 

whole. In other words, we believe that dynamics has to be introduced in all models 

that study the distribution of sizes.  
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