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Abstract 

In this paper, we present a geographically explicit agent-based model, loosely 

coupled with vector GIS, which explicitly captures and uses geometrical data and 

socio economic attributes in the simulation process.  The ability to represent the 

urban environment as a series of points, line and polygons not only allows one to 

represent a range of different sized features such as houses or larger areas portrayed 

as the urban environment but is a move away from many agent-based models 

utilising GIS which are rooted in grid-based structures.  We apply this model to the 

study of residential segregation, specifically creating a Schelling (1971, 1978) type 

of model within a hypothetical cityscape, thus demonstrating how this approach can 

be used for linking vector-based GIS and agent-based modelling.  A selection of 

simulation experiments are presented, highlighting the inner workings of the model 

and how aggregate patterns of segregation can emerge from the mild tastes and 

preferences of individual agents interacting locally over time.  Furthermore, the 

paper suggests how this model could be extended and demonstrates the importance 

of explicit geographical space in the modelling process. 

 

Keywords: Agent-Based Modelling, GIS, Residential Segregation, Repast 

 

1: Introduction 

Agent-based modelling (ABM) enables us to simulate the individual actions of 

diverse agents and measure the resulting system behaviour and outcomes over time.  

This means that agent-based models can be useful tools for studying the effects of 

processes that operate at multiple scales and organisational levels (Brown, 2006). 

Furthermore, as with computer modelling in general, such models allow us to test 

different ideas and theories of urban change in the safe environment of the computer, 

therefore allowing scientists to understand urban phenomena through analysis and 
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experimentation, a traditional goal of science.  Although agent-based models have 

been developed for a diverse range of applications (see Castle and Crooks, 2006 for a 

recent review), the use of ABM for experimenting and exploring geographical 

phenomena, specifically linking it to geographical information systems (GIS) is still 

in its infancy (see Gimblett, 2002; Benenson and Torrens, 2004; Parker, 2005 for 

some recent applications).  The advantage of linking the two allows agent-based 

modellers to simulate agents related to actual geographic locations, thus allowing us 

to think about how objects or agents and their aggregations interact and change in 

space and time (Batty, 2005a).  It also provides the ability to model the emergence of 

phenomena through the individual interaction of features within a GIS over space and 

time (Najlis and North, 2004).   

 

Many of the applications linking GIS and ABM focus on representing space as a 

series of discrete cells (e.g. Gimblett et al., 2002), and while these agent-based models 

have provided valuable insights into urban phenomena especially as they can capture 

geographic detail, they miss geometric detail.  This area is critical to good 

applications but is barely touched upon in the literature (Batty, 2005b) with a few 

exceptions (e.g. Benenson et al., 2002).  The ability to represent the world as a series 

of points, lines and polygons allows the inclusion of geometry into the modelling 

process, thereby allowing for different sizes of features such as houses and roads, for 

example, to be portrayed and how these features might effect the simulation outcomes 

depending on the processes being modelled.  Additionally the inclusion of geometry 

allows us to make agent-based models more realistic than as series of discrete regular 

cells when representing the urban environment. 

 

This paper presents an agent-based model loosely coupled with a vector GIS which 

explicitly captures and uses geometrical data and related attributes in the simulation 

process.  To highlight this, the model is applied to the study of segregation.   The 

remainder of this paper is as follows: first there is a brief description of segregation 

and a discussion of agent-based models that have been created to study and explore 

this phenomenon.  Second, the basic model is then introduced focusing on the 

underlying mechanisms and the use of vector-based GIS data.  Third, results from 

various experiments are presented highlighting not only the inner workings of the 

model but how the creation of such geographically explicit models helps with our 
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understanding of such phenomena.  This is then followed by discussion and 

conclusions concerning this particular modelling approach with respect to the study of 

urban phenomena. 

2: Issues Involving Residential Segregation 

People become geographically separated along many different lines and in different 

ways.  There is segregation by gender, sexual orientation, age, income, language, 

colour, taste, comparative advantage, and accidents of historical location.  Some 

segregation is organised, some is economically determined, some results from 

specialised communication systems, and some results from the interplay of individual 

choices that discriminate (Schelling, 1969).  It is not just residential groups that 

segregate for segregation can take many other forms.  Types of land-use such as 

residential, commercial, and agricultural are segregated in space.  Types of businesses 

and industries are also segregated, often in clusters that indicate how their economic 

functionality relates to one another.   

 

Segregation is all too clear in most urban areas, where there are clear clusters of 

economic groups and residential groups based on ethnicity or social class.  Residential 

segregation has particular significance for cities as it can impact on the level of 

joblessness, out-of-wedlock birth, level of criminality, low educational achievement, 

income inequality and poverty traps (see Conejeros and Vargas, 2007).  While we are 

able to quantify the degree of segregation within neighbourhoods (e.g. Reardon and 

O’Sullivan, 2004) which is much influenced by the choice of spatial units used 

(Bjornskau, 2005), this tells us little about the behaviour that leads to, or from 

particular outcomes, and without this knowledge, trying to prevent such a process or 

phenomena becomes challenging.  For example, one might think that individuals must 

have strong preferences for these racially or economically homogeneous 

neighbourhoods to emerge.  However, this is often not the case.  Empirical evidence 

suggests that individuals do not have strong racial preferences but have rather mild 

preferences (e.g. Clark, 1991, Antonovics et al., 2003).  To find clear examples of this 

segregation process taking place is difficult, because it only becomes noticeable when 

it is clearly underway, and by then a detailed chronology becomes impossible to 

reconstruct (Batty et al., 2004).  To understand this behaviour, we have to examine 

how the process of individual choice leads to these outcomes.  Schelling (1969) was 
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one of the first to highlight the logic of how geographical segregation along racial 

lines can result from mild discriminatory choices by individuals.   

 

Schelling presented his hypothesis using a two-dimensional checkerboard model and 

through the use of simple logic he illustrated how segregation could emerge 

(Schelling, 1971).  He imagined this large checkerboard to be a city, with each square 

of the board representing a house or a lot, in which he placed equal numbers of two 

types of agents representing two groups in society.  The types can be used to represent 

different social classes, racial groups, sexes etc.  Initially these are placed at random 

across the board, with no more than one per square and a small number of squares are 

left vacant so that people can move.  The rule of the model involves whether an agent 

decides to move or not.  The agent decides to move from its square to an empty one if 

less than a specified percentage of its neighbours are of the same type as itself.  The 

game progresses in a series of steps, where at each step, an agent is chosen and can 

decide whether or not to move.  If the agent decides to move, the agent moves to the 

nearest vacant square that meets its demands (Schelling, 1971).  As the simulation 

progresses, the two types of agents divide themselves up into sharply segregated 

groups.  The model shows that segregation emerges through mild preferences to 

locate amongst like–demographic or economic activity groups where strict 

segregation emerges unknowingly.  Subsequent researchers have endorsed his 

conclusions (see Clark, 1991).  However his work has also received criticism; for 

example, Massey and Denton (1993) correctly point out that the ‘residential-tipping’ 

point model is not sufficient in itself as an explanation of segregation for many 

reasons.  They comment that while it accurately captures the dynamic effects of 

prejudice, it accepts as a given the existence of racial discrimination.  But what really 

matters is that individuals have preferences for both place and people (Bjornskau, 

2005). 

 

Unknowingly, Schelling was one of the pioneers in the field of ABM (Schelling, 

2006).  He emphasised the value of starting with rules of behaviour for individuals 

and using simulation to discover the implications for large scale aggregate outcomes 

through the interactions of these individuals.  This key feature of the model arises 

because the decisions of any one individual can impact in unexpected and 

unanticipated ways upon the decisions of others.  A group of individuals can be 
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perfectly happy in a neighbourhood.  Unexpectedly, an agent arrives to fill an empty 

space.  The newcomer may tip the balance -‘residential tipping’ - so the agents who 

were previously content now decide to move.  In turn, their moves may disrupt settled 

neighbourhoods elsewhere and so the effects percolate through the system.  No single 

individual intends this to happen or even necessarily desires this overall outcome.  

They are only concerned about what happens in their own local area where they are 

content to integrate, but local interactions between them produce global segregation.   

 

Not only is the model one of the best known agent-based models, it has additionally 

continued to inspire theory and research into the segregation phenomena (e.g. Clark, 

1991; Bruch and Mare, 2005; Pancs and Vriend, 2007).  For example, Bruch and 

Mare (2005) compared Schelling’s model with stated preference data on residential 

choice for various race-ethnic groups (e.g. Asians, Hispanics, whites and blacks) 

within American cities.  The preference data showed that most people were unwilling 

to live in neighbourhoods in which their own race-ethnic group is the minority.  Of 

course, the world is more complicated than that described in the model.  In reality, for 

example, not everyone has the ability to move (residential mobility) and people are 

not initially scattered randomly across the city.  However, this does not undermine 

Schelling’s central insight: marked segregation can arise from rather mild individual 

preferences for living amongst one’s own kind.  

2.1: Agent-Based Models of Segregation 

As noted above many agent-based models have been inspired by Schelling’s (1971) 

model or can be seen as extensions to its original insights and in this section, we will 

briefly explore some of these.  Various neighbourhood shapes and sizes have been 

investigated to explore their impact on segregation outcomes.  For example, Flache 

and Hegselmann (2001) have studied the Schelling model using a Voronoi partition of 

space which vary the structure and size of neighbourhoods, where they demonstrate 

that the model results are robust to such variations in grid structure.  Laurie and Jaggi 

(2003) along with Fossett and Waren (2005) used variations of neighbourhood sizes 

(termed vision) and discovered that with larger von Neumann-like neighbourhoods 

and stronger preferences to be with like groups, more extreme patterns of segregation 

would emerge.  O’Sullivan et al., (2003) developed a model which considered both 

local Moore neighbourhoods (with eight surrounding cells) which they termed 
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continuous and larger bounded neighbourhoods (e.g. five by five cells) within a 

regular lattice structure.  Household agents consider their continuous neighbourhood 

as well as the aggregate information from the bounded neighbourhood that contains 

their residential location when deriving their satisfaction from a particular area.  If an 

agent is on an edge cell of one of the bounded areas, it would take information from 

its continuous neighbourhood which may overlap more than one bounded area but 

only the aggregate information from the bounded area it falls within.  Agents only 

move if they are dissatisfied, in which case the agent moves to an area where it is 

satisfied with both the local and bounded neighbourhood.  The study showed that if 

the bounded neighbourhoods increased in size, the model takes longer to stabilise.   

 

Others have extended the Schelling model to incorporate other factors into their 

models rather than just preferences for social/racial groups, such as the inclusion of 

preferences for neighbourhood status and housing quality, and differing levels of 

socio-economic inequality within and between ethnic populations (see Fossett and 

Senft, 2004).  Benenson (1998) explored how a theoretical city evolved when agents 

have both economic and cultural preferences.  Bruch (2006) explored the relationship 

between race and income, and how both interact to produce and maintain segregated 

neighbourhoods within Los Angeles.  Within the model, agents were given a race and 

an income, and the model examined the probability of an agent moving into a 

neighbourhood of a given racial and economic composition. 

 

Researchers from Tel Aviv University have been particularly active in using ABM to 

simulate segregation and residential dynamics.  They have investigated residential 

dynamics using agent-based models from abstract systems to real-world examples 

(see Benenson, 1998; Portugali, 2000; Benenson et al., 2002; Omer, 2005).  Omer 

(2005) extended the Schelling model to include a further hierarchical level; that is, the 

agents’ ethnic identities are organised in a two-level hierarchy where each agent 

belongs to an ethnic group and a subgroup.  For example, the British Asian 

community is multi-differentiated in terms of nationality, country of origin, religion, 

caste, class and language.  Extending the Schelling model to include an additional 

hierarchical level allows for further research dealing with the role of ethnic 

preferences on residential choice.  Like the Schelling model, it is based on an abstract 

city using cells to represent houses.  An agent’s decision to move is dependent on the 
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properties of the agents living in its current as well as potential destination 

neighbourhoods.   

 

Of special interest here is the study of fine scale residential segregation using 

individual census records and GIS data representing streets and buildings (see 

Benenson and Omer, 2003). Benenson et al. (2002, 2003) have used this kind of 

detailed dataset to simulate ethnic residential dynamics between 1955-1995 in the 

Yaffo area of Tel Aviv.  The model itself consists of two interacting layers, one layer 

representing mobile agents comprising of three cultural groups - Jews, Arab Muslims, 

and Arab Christians, located on a physical environment layer representing streets and 

buildings.  Each house is converted into a Voronoi polygon and the agents’ residential 

behaviour is affected by the ethnic composition of the neighbourhood defined using 

these polygons.  A neighbour is a Voronoi polygon that has a common boundary 

(roads act as barriers between these neighbourhoods) while another difference 

between this and other segregation models is that there are more than two types of 

agents interacting within the system.   

 

The examples presented in this section can be viewed on a continuum between 

abstract demonstrations to real-world applications.  Each one brings something new to 

the basic insights Schelling first presented.  There are those that apply the Schelling 

model to empirical data (e.g. Bruch and Mare, 2005), those that explore the effect of 

differing neighbourhood sizes (e.g. O’Sullivan et al., 2003) or shapes (e.g. Flache and 

Hegselmann, 2001), those that extend the Schelling model to incorporate subgroups 

(e.g. Omer, 2005) and those that introduce other determinants of segregation (e.g. 

Fossett and Senft, 2004).  Benenson et al.’s (2002) work is the exception in that it 

directly relates to actual places and includes more than two types of agent. 

 

As noted in the introduction, ABM and simulation has long been dependent on 

rectangular grids to represent both spatial and social relationships.  While this has 

been productive for many kinds of simulation, researchers have started using irregular 

spaces (see Semboloni, 2000; Shi and Pang, 2000; O’Sullivan, 2001; Flache and 

Hegselmann, 2001; Benenson et al., 2002), and have discovered that many models are 

sensitive to variations in the structure and size of neighbourhoods between locations 

in the grid (e.g. O’Sullivan, 2001).  This is also seen by those developing Schelling-
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like models.  The majority of the Schelling models described above use a regular 

cellular partition to represent space.  Each cell is often used to represent a single 

home, with one agent being allowed to occupy the cell at any one time (e.g. 

O’Sullivan et al., 2003; Omer, 2005).  However, it is argued that this is unrealistic 

especially within cities; for example, within a block of flats there can be numerous 

people but their geographical footprint would be the same and would be missed by 

restricting one agent to one cell.  Most of these models and to a similar extent 

empirical analysis exploring segregation, employ a featureless plain, playing little 

attention to physical barriers.  Noonan (2005) showed empirically how physical 

barriers (such as parks, railroads, major roads and industrial corridors) have impacts 

on neighbourhoods.  For example, gated communities present a sharp example of the 

use of physical features to insulate against neighbours (see Helsley and Strange, 

1999).  However, while including basic geometrical properties, all these models do 

not allow for overlap between areas.  The remainder of this paper will present how 

individual entities can be created and located within space where movement is not 

restricted by cells as the model contains no cells.  Furthermore, more than one agent 

can be located in the same area, and clusters of residential groups can bridge different 

areas. 

3: A Vector Based Geographically Explicit Segregation Model 

As discussed above, there are many types of segregation which are a product of many 

factors.  The model presented in this paper only explores one such hypothesis, that of 

Schelling’s (1971, 1978) original model where with agents of mild tastes and 

preferences to locate amongst like social-groups, segregation will emerge.  The model 

is therefore uncluttered with additional variables that might affect segregation such as 

how economic factors may contribute to racial segregation based on systematic 

income differences across groups as well as price and quality of life arising from lot 

size and other amenities.  The purpose of this model is to simply extend this well 

known model so we can explore the impact of space and geometry on such a process; 

it is a pedagogic demonstration to simply articulate a way of thinking about modelling 

the built environment in the particular context of segregation.  The following section 

will outline the basic model, while further details of the model, including the source 

code, a complete description and animations of simulation runs can be found at 

www.casa.ucl.ac.uk/abm/segregation. This supplementary material is provided to aid 
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in understanding the model, to demonstrate how patterns of segregation develop over 

time, and to allow for replication and extension (i.e. the inclusion of other variables) if 

desired, all of which are advocated by Axelrod (2007).   

 

The model itself is loosely coupled to geographic information systems (GIS) 

especially the vector data structure, written in Java and extends a number of basic 

operating classes from the RepastJ library, an open source Java based agent-based 

toolkit
2
 (Repast, 2008).  Within the model, Repast is primarily used for its display, 

scheduling, the import of GIS vector data (in the form of ESRI shapefiles), along with 

its recording change classes.  The model additionally utilizes other Java based 

libraries, namely the Java Topology Suite (JTS, 2008) which provides general 2D 

spatial analysis functions such as professionally developed line intersection and 

buffering algorithms, and OpenMap (2008) which provides a simple GIS display with 

pan and zoom, and query functions with respect to GIS layers.   

 

Typical of most ABM, the development of the model involved an iterative process 

where model verification was based on many iterations of the system.  Each iteration 

extends the basic model providing greater realism and functionality.  Unit testing was 

undertaken after every adjustment/iteration to the programming code.  This unit 

testing allowed for confidence to be gained in the model, specifically in terms of 

model processes taking place at the right time, and each process occurring in the 

manner in which it was intended.  This permitted the identification of unexpected 

outcomes of the model itself as opposed to errors (‘bugs’) in the code (Gilbert and 

Terna, 2000). 

 

                                                
2
 A toolkit is a simulation / modelling system that provides a conceptual framework for organising and 

designing agent-based models.  It provides appropriate libraries (a collection of programming classes 

grouped together, termed packages i.e. classes with similar purpose) of software functionality that 

include pre-defined routines / functions specifically designed for ABM.  Toolkits provide reliable 

templates for the design, implementation and visualisation of agent-based models, allowing modellers 

to focus on research (i.e. building models), rather than building fundamental tools necessary to run a 

computer simulation (Castle and Crooks 2006). 

 

In particular, the use of toolkits can reduce the burden modellers face programming parts of a 

simulation that are not content-specific (e.g. a Graphical User Interface, GUI, data import-export, 

visualisation / display of the model).  Toolkits also increase the reliability and efficiency of the model, 

because complex parts have been created and optimised by professional developers, as standardised 

simulation / modelling functions.  However, there are limitations of using simulation / modelling 

systems to develop agent-based models, for example: a substantial amount of effort is required to 

understand how to design and implement a model in some toolkits (Castle and Crooks 2006). 
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Within the model, we consider agents as virtual households with the ability to search 

the virtual world and make residential choices.  These agents possess an ethnic status 

which we denote for example as red and blue with these labels of course arbitrary.  

These households have preferences for co-ethnic contact specified in terms of the 

percentage of co-ethnic households found in their ‘neighbourhood’ in which the 

household lives or to where it is considering moving.  Preferences can be the same or 

different between different ethnic groups.  Unlike many models exploring segregation 

(e.g. Laurie and Jaggi 2003; Fossett and Waren, 2005), these households are not 

restricted to discrete cells and can move to areas which are already occupied by other 

agents.  The boundaries of the virtual world act as physical boundaries.  Instead of a 

‘wrapping-around’ to meet each other, often called an edgeless torus’ (e.g. the Laurie 

and Jaggi (2003) model), the boundaries or ‘edges’ are analogous to those of ‘real’ 

urban areas.  

 

Translating GIS methods into agents and their environment, the model is comprised 

of two vector layers – the urban environment which is represented as a series of 

polygons created directly from the shapefile, and agents which are represented as 

points.  It is the information held within fields of the environment layer that is used to 

create the point agents.  The distribution of the types of point agents (representing 

ethnic groups, say) as observed through aggregate census population counts form the 

initial starting conditions for the model.  For example, Figure 1A represents four 

wards in the City of London each with their own attribute information stored in a data 

table where each row relates to a specific ward (e.g. ward 1 has a population of ten 

red, five blue, four green and two white agents).  The model reads this data and 

creates an environment polygon for each ward and for the desired agent population 

based on data held in the fields as shown in Figure 1B.  Note that the underlying 

colour of the polygon (ward) always represents the predominant social group in the 

area (accomplished by counting the number of agents of different types within each 

polygon).  The agents are initially randomly placed within each polygon.  This 

provides a city landscape that is integrated at initialisation.  However these agents 

could be placed in precise locations if they were known (see Crooks, 2007 for further 

details).  The basic model is designed to work on many different geographical scales 

(e.g. boroughs, wards, output areas, and OS MasterMap TOIDs
®
) without the need for 

its reconfiguration as we indicate in Figure 2.  This was considered important as most 
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socio-economic data for example, census and geo-demographic data comes in this 

format.  This functionality was created so that the model could be easily replicated in 

other areas in the quest to allow the modeller to see if the same rules can be applied to 

different areas and at different scales.   

 

The ability to represent the urban system as a series of spatial objects – points, lines 

and polygons each with a spatial reference describing the location of the object rather 

than just as a series of cells, leads to conceptual problems in defining neighbourhoods.  

Secondly it makes definitions of the ways in which agents move and search their 

environment difficult.  To overcome these problems, the model relies on a series of 

spatial analysis operations specifically, buffering, union, line intersection and 

point(s)-in-polygon analysis utilizing the JTS library.  It is to these we now turn. 

 

 
 

Figure 1: Reading in the data and creating the agents 
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Figure 2: Spatial representation within the model 

A: A street section with building footprints. B: London composed of boroughs. 

Agents are shown as dots. 

 

Unlike that of cellular space models where neighbourhoods are often calculated using 

Moore or von Neumann neighbourhoods or variations of these (Batty 2005b), 

representing agents as points mean different tools are needed to calculate 

neighbourhoods, specifically when incorporating physical boundaries (e.g. rivers and 

motorways) into the modelling process.  For the point agents, buffers are created to 

calculate neighbourhoods.  This involves the creation of a circular region around a 

point.  The radius of the circle is defined by the analyst using Euclidian distance.  

Buffers are often used in GIS to reflect notions of accessibility or proximity to 

geographical features.   

 

Figure 3A highlights how a geographical feature (such as a river) can be incorporated 

into the model when calculating neighbourhoods for point agents.  Within Figure 3A, 

the black circle represents the point agent of interest.  This agent wants to know which 

agents are within a specified distance of itself and in the same geographical area.  A 

buffer is created at this specified distance based on the centroid of the agent.  

However, in this case, the buffer crosses the river.  Therefore agents on the other side 

of the river (yellow squares) are not neighbours as there is no way for them to move 

directly to the agent; however, they are within the buffered region (green line).  Those 

agents (red squares) which are on the same side of the river as the agent and are 

within the agents’ defined buffer (red line) are classed as neighbours, and any agents 

outside this area would not be classed as neighbours.  This creation of buffers also has 
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the advantage of calculating local statistics such as population density of small areas.  

However, if there was a bridge connecting the two areas, say by loading a new 

shapefile into the simulation, the agents on the other side of the river would be 

considered neighbours as demonstrated in Figure 3B.   

 

Agent-based models create worlds populated by agents where these agents are free to 

explore this world.  However, such worlds often have boundaries.  Within a cellular 

world, this is based on a matrix of cells, for example, a 10x10 regular lattice of cells, 

say.  However, as one moves to a representation of space using irregular cells, this is 

no longer the case.  One has to define the boundary of this world.  To accomplish this 

task, the model uses the spatial analysis operation known as union.  Simply stated, 

union combines the polygons and returns one extent of the whole area.  This is then 

used as the boundary for the model which retains the original geometry and restricts 

agents’ movement to within it.   

 

 
 

Figure 3: A: Defining neighbourhoods with the inclusion of geographical features 

(constrained buffer). B: Defining neighbourhoods where the two areas are connected 

by a bridge. 
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As each agent class is represented as a separate layer, one needs to relate objects in 

one layer to objects in another.  This is achieved through a point-in-polygon analysis.  

This allows the model to determine whether a given point lies inside a specific 

polygon.  The ability to carry out point-in-polygon operations, with as for example, 

the number of point agents that are contained within a polygon, allows the model to 

be generative.  In this sense, entities at higher levels of geographic representation such 

as population counts are derived from the bottom-up, through interactive dynamics of 

collections of animate objects observed at the micro-scale.   

 

The above GIS operations allow an agent-based model to be created where space and 

geometrical relationships are explicitly incorporated into the simulation.  Each type of 

agent knows its position and can use the operations such as buffering and point-in-

polygon to find out more about its neighbourhood as we show in the basic model 

structure in Figure 4.  Once the environment and the agents have been created, each 

agent users its neighbourhood function to query the surrounding neighbours, 

calculating if it is currently satisfied with its current neighbourhood environment 

taking into account physical features of the urban environment.  Figure 4 highlights 

this process, where an agent is selected at random and it ‘evaluates’ the ethnic mix in 

its immediate neighbourhood.  If the agent is satisfied based on its preferences, it does 

nothing.  On the other hand if it is dissatisfied with its current neighbourhood, the 

agent moves to the nearest location where its preferences are met.   

 

Before discussing this movement in more detail, the dynamics in the model need to be 

briefly addressed.  As with other segregation models, the time frame within the model 

is purely hypothetical but could be considered as yearly intervals.  At each time step 

(iteration) of the model, all the agents are given the option to move if they are 

dissatisfied with their current neighbourhood configuration.  The order in which an 

agent is chosen is random but if it does decide to move, the movement process 

involves two stages which we show in Figure 5.  First, the agent randomly searches its 

local area for a given number of moves, each time moving to a new location, 

calculating the neighbourhood composition using the buffering mechanism. If the 

agent is still dissatisfied after a given number of random movements, it moves to the 

nearest neighbour of the same type based on Euclidian distance from its initial 

location.  Once the agent has moved to its nearest agent of the same type, it locally 
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searches this new area for a neighbourhood composition that satisfies its needs.  If the 

agent cannot be satisfied, it moves to the next nearest agent and so on until all the area 

has been searched, if the agent is not satisfied then, it is removed from the system.  

Once all the agents have had the option to move, the model advances one iteration and 

again all agents who are dissatisfied with their neighbourhood have the option to 

move.  This process continues until all the agents are satisfied with their current 

neighbourhood configuration or the model is stopped by the user.   

 

 
 

Figure 4: Basic model structure 

 

Finally this model is highly visual.  In Figure 6, we highlight the graphical user 

interface (GUI) to the model which provides an essential lens for viewing the 

operation of the model and judging its results.  Clockwise from the top left is the 

control bar for the simulation, the GIS display utilizing OpenMap which shows the 

agents and the urban environment (i.e. wards in the City of London), graphs for 

aggregate outputs, a legend for interpretation of the GIS interface, model output in the 

form of text, and the model parameters all of which utilizing and extending Repasts 

inbuilt functions for GUI and data analysis.  Furthermore the model is loosely coupled 

to ArcGIS in terms of its inputs and some outputs in terms of shapefiles through the 

linkage between Repast and GeoTools
3
 Java libraries. 

                                                
3
 http://geotools.codehaus.org/ 
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Figure 5: An example of searching for one point agent.  From the initial location, this 

shows the random search path before moving to its nearest neighbour and carrying out 

a local search. 

 

 
 

Figure 6: The Segregation Model User Interface. The pattern of segregation 

dimensioned to the geography of wards in the City of London. 
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4: Results from Selected Experiments 

The following section will briefly present several simulation results.  However, before 

presenting these experiments, a caveat is needed.  While numerous experiments, 

variations or extensions of the model are possible, the following subsections only 

highlight how certain assumptions affect the outcome of the model and how changes 

can easily be made to the basic principles of segregation.  First we will present how 

different degrees of segregation arise from different preferences of neighbourhood 

composition with two types of agents.  Then we explore how the pattern of 

segregation is affected by different neighbourhood sizes, the role of geographical 

features, the result of different types of agents with a small minority population and 

lastly the result of the addition and removal of agents in the system.  Not only do 

these demonstrate the structure of the basic model but these emphasise the rationale to 

why such features where included into the model. 

 

Each simulation was run multiple times and the results shown below represent 

average outcomes.  As with Schelling’s original model, the simulations result in 

segregation emerging but the precise spatial pattern varies with different model runs.  

Not only do these simulations allow one to see the sensitivities of the model through 

its inner workings but also how the use of vector-based geometries can be 

incorporated into the simulation process.  The data files and the model source code for 

each simulation can be found at www.casa.ucl.ac.uk/abm/segregation which allows 

for replication of the simulation, thus aiding verification of the model.  Furthermore 

the website provides a medium for the visualisation of the dynamics within the model 

and the sharing of knowledge by providing detailed documentation of the model 

implementation, a modelling strategy advocated by Axelrod (2007).  Many model 

details are hard to easily share or portray in the confines of a publication and readers 

are urged to consult the site for more details. 

4.1: The Role of Preferences 

As with Schelling’s (1971) original model, agents only have preferences for their own 

group and it is this preference that causes agents to seek out different areas in the city.  

Clarke (1991) provides some empirical evidence to support Schelling’s abstract 

formulations based on the fact that neither Black nor White households in several 
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American cities would relocate into areas where they are the minority.  However in 

his work, preferences for specific composition of a neighbourhood varied among 

cities.  This section will therefore explore how the degree of segregation changes due 

to different preferences and explore how the preferences of individuals for their own 

group influence the degree of segregation seen within an area.   

 

The only model parameters that change within the model were the agents’ preferences 

for the percentage of their same type to be located within their neighbourhood.  

Agents are satisfied in an area if their preferences are achieved.  For example, a red 

agent may have a preference parameter for 40% of their neighbours to be of the same 

type as itself.  Therefore if 40% or more of its neighbours are of the say type as itself, 

it is satisfied with its current location.  When calculating this satisfaction, the agents 

do not count themselves during the process.  Within these simulations, the world the 

agents occupy is a 1.5km by 1.5km square polygon which could be considered as 

representing a cityscape.  One could imagine this as the checkerboard that Schelling 

originally used.  However, neither agents’ neighbourhoods nor their movement was 

restricted to a cell-based environment and multiple agents can occupy one area.  As 

with Schelling’s original model, we have equal numbers of two types of agents, 2000 

of each colour placed randomly within the area.   

 

Figure 7 highlights the typical patterns of segregation that emerge from different 

preference parameters for neighbourhood composition.  As the percentage of 

neighbours of their same type increases, the pattern of segregation becomes more 

noticeable.   It is only when preferences rise above 80%, that agents are forced to 

leave the system as a result of their preferences being unable to be matched as 

indicated in Table 1.  Not all the agents are removed for as the system becomes less 

populated, the number of agents in different neighbourhoods changes releasing 

spaces.  Where agents have been removed from the system, this removal only happens 

in the first iteration and for the first agents that move.  These agents are unable to find 

a suitable neighbourhood due to their initial random placement and mixed 

neighbourhoods at the start of the simulation.  As these agents are removed, the area 

becomes less populated and the resulting agents can find neighbourhoods where their 

preferences can be satisfied.  While it is possible to add these removed agents back 

into the system at the end of the simulation, it was felt to be simpler to leave them out, 
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as this reflects the idea that as an area changes, residential groups are actually 

excluded from those areas.   

 

 

 

Figure 7: Typical patterns of segregation with different percentage preferences for 

neighbourhood composition. 

 

Table 1 also highlights that by increasing the percentage of neighbours of the same 

type within the agents’ neighbourhood, more agents are forced to move at least once 

during the course of a simulation.  For example when preferences are low (e.g. >= 

20%), little movement occurs.  However, as the preference for a minimum 

neighbourhood increases, so does the total number of agents that move (e.g. >= 40%) 

and the resulting pattern of segregation increases as highlighted in Figure 7.  The 

frequency of movement is not often analysed in previous models exploring 

segregation and thus it is interesting to note how often agents move throughout the 

course of a simulation.  Agents only move to areas which they are satisfied with, and 

therefore for an agent to move more than once suggests, that ‘residential-tipping’ is 

occurring. 

 

Although patterns can be deceiving and it is useful to have some measure of 

segregation, one possible measure is the average proportion of neighbours of like or 

opposite colour.  By counting the total number of neighbours of different types for 

each of the agents remaining when all are satisfied with their neighbourhood, a greater 
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understanding of the degree of segregation can be gained.  At the same time, this 

allows for testing if neighbourhood and preference functions in the model are working 

correctly.   

 

Table 1: Comparison of neighbourhood preferences and model runs. 

 

 

Table 2 presents the average neighbourhood composition in terms of the percentage 

and number of agents at the end of each model run when all the agents have their 

preferences satisfied.  As one would expect as the agents preference for a certain 

composition of a neighbourhood increases, the degree to which neighbourhoods are 

segregated (percentage composition and number of the same type) also increases (e.g. 

from 40% onwards).  The most noticeable variation is at 50% where the degree to 

which neighbourhoods are segregated rises the most.   

 

Table 2: Comparison of mean percentages of neighbourhood compositions for 

different preferences when all agents are satisfied. 

 

 

4.2: The Effect of Different Neighbourhood Sizes 

Neighbourhoods mean different things to different people.  Some may perceive a 

neighbourhood as houses that are directly attached to their home (e.g. Benenson et al., 
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(2002) model), while others may consider a street, or a collection of streets as their 

neighbourhood.  Schelling (1971) presented two models with regard to 

neighbourhoods: one based on their immediate eight surrounding cells (Moore 

neighbourhood) and a second on a larger area – his ‘bounded neighbourhood’ model.   

 

As the model does not operate on cellular space, neighbourhoods are not calculated 

using the traditional Moore or von Neumann neighbourhoods or variations of these.  

As already stated, neighbourhoods within the model are calculated using a buffer at a 

specified radius around the agent.  To test the influence of neighbourhood size (which 

some class as vision e.g. Laurie and Jaggi, 2003; Fossett and Waren, 2005) on the 

resulting pattern of segregation that emerges, various neighbourhood sizes were tested 

ranging from a radius of 50m to 1000m.  All the other parameters within the 

simulations were kept the same: 4000 agents were randomly placed, 2000 of each 

colour within a 1.5km
2
 area.  All agents desire to be in a neighbourhood where 50% 

or more of their neighbours are of the same type.  Increasing the neighbourhood size 

could be considered as a way of exploring both of the models that Schelling (1971) 

presented.  As the smallest neighbourhood would only encompass the agents 

immediate neighbours, if an agent was dissatisfied with the area, this would reflect the 

composition of the agent’s immediate neighbours.  For larger neighbourhoods, agents 

would consider larger areas with the agent not considering its immediate neighbours 

per se but its overall neighbourhood composition. 

 

Typical patterns of segregation resulting from different neighbourhood sizes are 

presented in Figure 8 which clearly shows the influence of neighbourhood size on the 

outcome of the pattern of segregation.  Smaller neighbourhood sizes result in small 

segregated areas and larger neighbourhoods result in larger segregated areas in 

proportion to the size of the buffer used.  Another feature of the model is that at the 

boundary of these neighbourhoods, agents appear to be more clustered than those in 

the centre of the neighbourhood.   

 

From an examination of the summary statistics from these model runs shown in Table 

3, the total number of moves agents made during a simulation, while being dependent 

upon the initial neighbourhood configuration, increases with neighbourhood size.  

This is especially the case for the number of agents that do not move during the 
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course of the simulation and those agents that move more than once.  As agents only 

move to areas in which they are satisfied, for agents to move more than once, their 

neighbourhood would have to have changed.   

 

 

Figure 8: Example patterns of segregation when all agents are satisfied for different 

neighbourhood sizes. 

 

Table 3: Comparison of neighbourhood size, number of iterations and number of 

moves until all agents are satisfied. 
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4.3: The Impact of Geographical Features 

Areas within cities are bounded by features such as highways, railway lines, rivers, 

lakes, and parks which can act as boundaries between residential groups.  For 

example, Rabin (1987) observed that highways formed effective boundaries between 

the predominant white and minority groups in residential areas in most U.S. cities.  

The model presented in this paper was designed to explore the effect these features 

have on the outcome of a particular simulation.  Thus the segregation model is not 

only capable of exploring segregation but also examining the effect geographical 

features have on the pattern of segregation that emerges (i.e. the ability of 

geographical features to separate neighbourhoods).  The following section will 

therefore demonstrate how neighbourhoods can be influenced by the geometrical 

features of the urban environment.  To achieve this, the segregation model will be 

compared to a variation that does not include geographical features (geometry) when 

neighbourhoods are being calculated.   

 

An arbitrary area was used to represent the urban space as shown in Figure 9.  The 

grey area represents locations which agents can be inhabit while the blue area 

represents areas where the agents cannot be located and could be considered void 

areas such as water features.  The region was manipulated so that there are 

geographical areas where agents can be located directly opposite each other but are 

separated by void areas which act as barriers in the neighbourhood calculation in the 

basic segregation model where buffers are created and constrained by geographical 

features as we noted in Section 3 and highlight in Figure 9.  They would only be 

included in the variation of the model where geometry is not considered when 

calculating neighbourhoods (i.e. the buffer is not constrained by geographical 

features/areas and can cross this void space as we show in Figure 9).  The entire grey 

area contained 4000 agents, 2000 of each type which are randomly placed at the start 

of the simulation.  Agents within the model have the same preference, all want to be 

in an area where 50% or more of its neighbours are of the same type.  Neighbourhood 

size was set to 200m to allow for agents on the fringes of geographical features to 

consider as neighbours agents on the other side of these fringes in the model where 

geographical features are not considered in neighbourhood calculations (i.e. buffers 

are not constrained by void area).   
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Figure 9: The area used to test how geographical features impact on the pattern of 

segregation and an example of constrained and unconstrained buffers used in 

neighbourhood calculations. 

 

Figure 10 shows two final patterns of segregation, one from the basic segregation 

model and one from the model where geometry was not included.  The patterns look 

quite similar suggesting the influence of geometry in neighbourhood calculations is 

quite subtle.  The influence of geometry is most obvious at the fringes of geometrical 

boundaries, specifically the top left and centre of the images as shown in the two 

zoomed in areas of Figure 10.  In the segregation model where geometry is not 

included in neighbourhood calculations and therefore the buffers are not constrained 

by the void space, one can clearly see agents are considering as neighbours, agents 

across the void on opposing spits and thus agents of different types are located in 

close proximity to each other while each others’ preferences are met.  Where 

geometry is considered, it can be seen that agents of different types are not located in 

the same areas as they would not consider agents on the opposite side of the void as 

neighbours and thus their preferences could potentially not be met which forces them 

to locate in more homogeneous neighbourhoods.  The examination of the summary 

data presented in Table 4 highlights that the runs which included geometry stabilised 

more quickly than those without.  However, the mean number of moves and the 

number times the agents moved are quite similar.  From these simulations, one can 
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see the effect that geometry has on neighbourhood formation which is not normally 

explicitly included in Schelling-type models. 

 

 

 

Figure 10: Screen captures of the final patterns of segregation when all agents are 

satisfied for different geometrical and non-geometrical segregation models. 

 

Table 4: Comparison of geometrical and non-geometrical models: number of 

iterations and number of moves until all agents are satisfied. 

 
 

4.4: Small Minority Populations 

The simulations presented above have presumed 50/50 populations, which is rarely 

the case within cities.  Often within populations, there are small minority groups 

which cluster in specific areas of the city; for example within London, the 

Bangladeshi population made up 2.1% (153900) of London’s population (7172091) in 

2001 (Greater London Authority, 2005) but of all the Bangladeshi population, 43% 

(65553) live within the Tower Hamlets municipality (Greater London Authority, 

2004).  The ability to model more than two groups thus allows one to explore 

differences between the numbers of dominant and subdominant groups within a 

population and we will extend to model this way here. 
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The following section explores a population of 4200, comprised of 37% red, 34% 

blue, 24% green and 5% white agents in 7 polygons as we show in Figure 11 where 

the white agents are only located in one area as highlighted.  The background colour 

of the polygons represents the predominant social group of the area.  For example, if 

the polygon is shaded red, there are more red agents in this area than any other type of 

agent, while a polygon shaded grey has equal numbers of at least two types of agents 

for example, red and blue.  The first experiment was to see how this minority 

population group can change over a course of a simulation run.  The experiment was 

carried out several times to explore how the pattern of segregation develops as the 

agents search for neighbourhoods where 50% or more of their neighbours are of the 

same types as themselves.  Figure 12 highlights a typical simulation run with the 

majority of the white population staying in the same area when all agents are satisfied 

with the same areas they originated in.  The number and type of predominant social 

groups in the area are on average the same as the model when first initialised as we 

indicate in Table 5.   

 

 
 

Figure 11: Initial starting conditions for the simulations where 5% of the population 

are white and agents are distributed randomly within their areas. 
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Figure 12: A typical simulation portraying the initial, first and last iteration until all 

agents are satisfied when only 5% of the population is white. 

 

Table 5: Average iterations until all agents are satisfied when only 5% of the 

population is white. 

 

 

The next experiment was to explore how new agents affect this pattern of segregation.  

As with the previous experiment, the same initial conditions and preferences are used.  

However, within this experiment, 200 new agents were added at the end of each 

iteration and the model was run for 50 iterations (see Section 4.5 for a description of 

how the agents were added).   
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By the end of 50 iterations, the average land-use was red having the largest 

percentage in three areas where the blue and white agents make up the largest 

percentage in two areas each as we show in Table 6.  It is noticeable that when the 

model was first initialised, there were two green areas.  However, over the course of 

the simulation run as new agents are added, the green agents’ dominance declines as 

white agents occupy the areas where the greens were once predominant.  The white 

areas tended to be in the top right polygon where the initial white population was 

concentrated and in one of the adjacent polygons as its population grew.  Figure 13 

highlights a typical simulation run showing how clusters develop during the 

simulation where generally the addition of new agents reinforces these clusters.  This 

is particularly the case where the white agents are clustered in one area.  This area 

attracts new white agents forcing the area to grow and spill over to adjacent areas, 

reinforcing the predominant social group in that area and specifically forcing the 

green agents to lose their dominance in these areas. 

 

 

 

Figure 13: A typical simulation portrayed at every five time intervals where agents 

are being added when only 5% of the initial population is white. 
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Table 6: Average results when the initial population only contains 5% white and 

agents are added for 50 iterations. 

 

 

4.5: Addition and Removal of Agents 

All cities and regions change both by growth and decline.  However, Fossett and 

Waren (2005) note that there is no mechanism for population turnover within 

Schelling’s basic model, households are ‘immortal’ and thus a satisfied household can 

reside in the same location for ever.  The previous simulations were designed to study 

how established groups participate in constructing the city’s social-spatial pattern.  

The following section highlights how an extra layer of dynamics can be added to the 

more traditional Schelling-type model, through the addition and removal of agents.  

The ability to add new agents and the death (removal) of older agents is not discussed 

in Schelling’s original work for the topic is not heavily researched, as most Schelling-

like models operate in cellular space where only a finite number of agents are possible 

depending on the size of the grid used.  However within the model developed here, 

agents are not restricted to one agent per cell.  This variation therefore allows one to 

explore how an area’s social-spatial pattern might change through adding and 

removing agents, especially how new agents affect the composition of the area.  This 

could be considered as immigration and aging and the death of populations in urban 

areas.  It has similarities to the work of Portugali (2000) who simulated how agents 

could be added to the system and how neighbourhood patterns change due to the 

additions of agents.   

 

The model itself varies from others presented thus far in a number of ways.  Firstly all 

the agents are given a new attribute: ‘age’.  This age is determined randomly between 

1 and 50 using a random number generator when the agent is first created at the 

beginning of the simulation.  At the end of each step (iteration) of the simulation, the 

agent’s age increases by one.  In the previous version of the model, agents were only 

removed from the system if they could not find a suitable neighbourhood.  In this 

version, agents are also removed from the system when their age reaches 50.  The 
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second variation to the model is the addition of new agents at the end of each step.  

These new agents are given a random social class and an age of 0 and placed 

randomly in the urban area when first created.  The new agent then evaluates its 

neighbourhood and if dissatisfied, it moves to an area where its preferences are met.  

If the new agent cannot become satisfied with the area, it is removed from the system. 

 

Within this test, agents are both added and removed from the system either because 

they are dissatisfied or die.  The initial population was 700 agents (390 of type red 

(55.7%) and 310 of type blue (44.3%)).  These agents were spread over several 

polygons as highlighted in Figure 14.  Within the area, there were 3 areas where the 

predominant social group was red (i.e. 70% of the population was red), 1 area where 

the predominant social group was blue (70%) and 3 areas were classified as mixed 

(population composed of 50% of both groups).  100 new agents are added to the 

system at the end of each iteration and removed (when they reach the age of 50).  As 

in previous models, each agent wanted to be in an area where 50% or more of its 

neighbours are of the same type.  Neighbourhoods were defined as 100m radius 

around each particular agent. 

 

 
 

Figure 14: Initial starting conditions for the simulations with agents distributed 

randomly within their areas. 
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By 100 iterations, the percentage of both red and blue agents becomes approximately 

equal as shown in Table 7 and remains roughly constant.  However the degree to 

which one group dominates one area varies over the course of each simulation as 

agents are added and removed due to death for in no instances are agents removed 

because they could not become satisfied with an area.  Figure 15 traces a typical 

simulation, from the initial starting conditions and the pattern at every 50 iterations 

thereafter to the pattern at the end of the simulation is shown.  As agents are added 

and removed from the system, the predominant social group of each area changes as 

can be seen from the underlying polygon colour in Figure 15.  Red represents areas 

where population is 51% or more is red, blue areas where 51% or more of the 

population are blue, and grey areas represent equal numbers of red and blue agents.   

 

Additionally Figure 15 highlights how clusters of groups do not stop at boundaries of 

areas.  So while the aggregate data suggests that the area is predominantly of one 

type, clusters of distinct groups appear throughout the area and cross the boundaries 

between areas.  These clusters would have been lost by purely using aggregate 

information. Even in the case where one area contains equal numbers of red and blue 

agents, distinct patterns of segregation are noticeable. 

 

 

Table 7: Results from simulations where agents where both added and removed. 
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Figure 15: The effect of adding and removing agents to the system and the resulting 

patterns of segregation. 

 

5: Discussion 

The model presented in this paper is tightly bound to the vector GIS data model, and 

was developed due to certain limitations of representing space as a regular partition of 

squares akin to the traditional raster approach linking GIS and ABM.  The model thus 

resolves specifically the lack of geometry, and the inability to represent objects of 

various shapes and sizes.  We have also demonstrated that the environment and agents 

can be derived from GIS features by using the co-ordinate representation of each 

feature.  Second, most relationships between agents can be evaluated within vector 

GIS using standard overlay operators such as point-in-polygon, buffering, intersection 

etc., making it possible to determine where agents are situated in relation to other 

agents and their environment.  More specifically neighbourhood rules are available 

for evaluating adjacency, distance and so on.  Third, GIS is an excellent tool for 

visualising and querying the outcomes of agent-based simulation.  However, this is 

not to say that vector rather than raster representation is more appropriate for 

modelling.  For example, Landis (2001) changed from vector-based polygons to 

raster-based grid cells in the representation used in the Californian Urban Futures 
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(CUF) models so that computation could be simplified.  Additionally Benenson et al. 

(2005) comment that while vector GIS can represent urban objects in spatially explicit 

models, for theoretical models the points of a regular grid usually suffice.  Therefore 

the purpose of the model needs to be considered.   

 

The experiments not only highlight how individual actions can lead to more aggregate 

patterns emerging but how agents can be linked to geographic locations and how 

geometry can be incorporated directly into the simulation process.  Furthermore the 

experiments allow for sensitivity testing of the model and to highlight the effect of the 

underlying model assumptions. This exploration provides a detailed understanding of 

the implications of each assumption but also allows one to evaluate the logic behind 

the model.  This includes the influence of the size of neighbourhoods, the influence of 

geographical features and the degree to which segregation changes when agent 

preferences for neighbourhood composition change.  These explorations showed that 

the geometry of an area can act as a physical barrier to segregation and that by 

increasing agents’ preferences to reside in a specific group, marked segregation can 

emerge but not in a linear progression.  A distinct shift in the degree of segregation 

occurs when agent preferences increase from 40% to 50% of their own type. As with 

the more ‘traditional’ segregation models, this model also highlights how with mild 

tastes and preferences to locate amongst ‘like’ demographic groups, segregation will 

emerge.  Adding agents and removing agents from an existing population alters 

existing patterns but for new groups entering the system.  The model illustrates how 

small minority groups cluster in areas and how these clusters remain persistent over 

time, outcomes which are well beyond what Schelling showed in his initial model. 

 

The analysis of the results from the simulations in sections 4.4 and 4.5 demonstrate an 

important issue relating to the scale of analysis of segregation phenomena.  In 

particular as we aggregate, we can unwittingly change the kinds of processes that 

agents enable.  Aggregation can confuse our identification of coherent patterns that 

make sense in terms of basic human decision making.  For example, in Figure 16A, 

we show a representative simulation outcome where all agents are satisfied with their 

current neighbourhood locations.  While areas may have a predominant type of one 

agent within them (e.g. a polygon shaded red, say, has more red agents than any other 

type), there are areas where there are equal numbers of two or more groups (grey 
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areas).  However closer inspection of these mixed areas in Figure 16B reveals distinct 

micro clusters of different types of agents. Moreover it is also clear that clusters do 

not stop at boundaries but cross them as well and these clusters would be lost if we 

were only to consider aggregate level data without the ability of agents to move in 

free space.  

 

 

 

Figure 16: Segregation within areas and across boundaries. 

A: The entire area, B: A Zoomed in section of A 

 

Furthermore, this paper addresses one of the most important challenges facing ABM 

which is the need to share, communicate and disseminate not only model results but 

also to engender understanding of such models as well as their operation through an 
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interactive environment for directly manipulating such models (Crooks et al., 2007).  

In this, we are aided by advances in computation, particularly visualisation and 

networked communications.  To reiterate the model, the source code and animations 

of the simulations are available at www.casa.ucl.ac.uk/abm/segregation.  The models 

presented in this paper were purposely kept simple, mainly to explore how space and 

geometry impact on Schelling’s segregation model and to highlight how this approach 

can be used to study urban phenomena.  It is envisaged that the models can easily be 

extended from the source code by for example, including extra variables in the agent’s 

choice of location such as economic preferences about an area.  

 

Therefore the model can be considered as a representation and simulation of the urban 

environment as a series of points, lines and polygons.  However, potentially it allows 

one to gain a greater understanding of small scale residential dynamics through the 

use of fine resolution data at the individual perspective, thus furthering our 

understanding of this complex issue.  ABM is inherently suited to such a study as it 

allows the representation of an heterogeneous population with individual agents 

having different behaviours and characteristics.  The ability to represent the world as a 

series of points, lines and polygons allows the inclusion of geometry into the 

modelling process, therefore allowing for different sizes of features such as houses, 

roads and so on to be portrayed.  Linking people to place can be potentially achieved 

in the United Kingdom (UK) through the utilisation of the fine scale data sets, for 

example, using the national mapping agency’s MasterMap TOIDs
®
 to represent 

individual buildings, MasterMap’s address layer to populate these building with a 

number of units, and assigning individual agents to each of these units.  The agents 

ethnicity can be potentially extracted from the UK Electoral Role dataset (see Mateos 

et al., 2007). 

6: Conclusions 

The model presented in this paper demonstrates how the representation of individuals 

through simple rules governing their behaviour and interaction at the macro-scale, can 

result in recognisable patterns at the macro-scale.  The model highlights how theories 

and concepts pertaining to urban phenomena can easily be abstracted within 

geographically explicit agent-based models, helping further our understanding of how 

processes within cities operate.  Furthermore, the model raises the importance of 
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incorporating space and geometry when modelling urban systems.  Additionally the 

approach the model takes allows us to relate closely to ‘real’ urban form while many 

other agent-based models use stylised forms to represent the urban environment.   

 

The model departs from other typical models of segregation based on Schelling’s 

ideas in a number of ways.  To reiterate, most research in ABM pertaining to 

segregation has been carried out using the regular partition of space or using polygons 

to represent the location of households.  However to date, little research has been 

carried out in relation to the importance of how the geometry of the environment 

affects the model outcomes.  The model presented in this paper allows agents to move 

freely within the urban environment where their movement is not restricted to discrete 

empty cells or areas through the use of continuous representation of space – vector 

rather than raster space.  The model focuses on the changing nature of segregation 

over space and time as agents move to new locations, and how segregated areas grow 

and decline over time.  In this sense, it makes Schelling’s model much more explicitly 

geographical than any other applications to date but it is easy to replicate and is an 

ideal basis for experimentation.  The fact that it can be demonstrated using a whole 

range of media from pencil and paper to a variety of types of computation – on the 

desktop, the web etc., illustrates its pedagogic quality and the ease with which the 

model can be shared amongst non-experts as a demonstration of how complex, 

unexpected, and surprising patterns emerge from simple foundations. 

 

We have also clearly outlined how the model has been implemented, making explicit 

the components of the model and the key mechanisms that drive the model findings.  

Clear description of how the model is implemented along with the source code helps 

with verification of the model, thus furthering our ability to model urban systems.  

The model provides the essential ingredients for cumulative scientific inquiry with a 

clearly specified model that facilitates replication and extension which is the key 

mission of traditional science.   
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