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Abstract 
 

Many aggregate distributions of urban activities such as city sizes reveal 
scaling but hardly any work exists on the properties of spatial distributions 
within individual cities, notwithstanding considerable progress on their 
fractal structure. We redress this here by examining scaling relationships in 
a world city using data on the geometric properties of individual buildings. 
We first outline Gibrat’s (1931) model which gives rise to lognormal 
distributions and show how we use power laws to approximate their form. 
We illustrate this for population densities in Greater London and we then 
extend this analysis to allometric relationships between buildings in terms of 
their different geometric size properties. We present some preliminary 
analysis of building heights from the Emporis database which suggests very 
strong scaling in world cities. The data base for Greater London is then 
introduced and we extract 3.6 million buildings whose scaling properties we 
explore. We then examine key allometric relationships between these 
different properties illustrating how building shape changes according to 
size, and we then extend this analysis to the classification of buildings 
according to land use types. We conclude with an analysis of two-point 
correlation functions of building geometries which supports our non-spatial 
analysis of scaling. 
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Introduction 

 

Cities are structured according to the rules of spatial competition which manifest 

themselves in self-similar patterns which are fractal. Populations tend to cluster 

around market locations which reflect a hierarchy of needs from the essential to the 

specialist, ordered spatially according to the strength of demand while densities tend 

to reflect economies of agglomeration which generate a small number of very high 

density locations and a large number of lower ones. The patterns that emerge are 

sustained by transportation routes that tend to fill space in the most economical way, 

minimising length and maximizing capacity, whose spatial organization is usually 

hierarchical and tree-like. Cities are thus composed of fractal-like clusters on many 

spatial levels whose order appears to follow well-defined numerical rules of scaling. 

 

Most demonstrations of such order in fact pertain to systems of cities rather the spatial 

organization of the city itself, focusing on size distributions in which spatial order is 

implicit (Berry, 1964). The size distribution of cities in fact is scaling with Zipf’s 

(1949) rank-size rule acting as the bench-mark against which many other spatial 

distributions are compared and contrasted. Most of the work to date on city size 

distributions throws away any spatial structure that exists. Cities measured by their 

populations, incomes or employment, are considered as dimensionless points with the 

argument always turning on the competition between cities rather than the 

competition between their component parts. In essence, the fact that there are a small 

number of large cities and a large number of small and that this distribution manifests 

a regularity which appears persistent through time, reflects the consequence of 

competitive processes under resource limits: there is simply never the supply of 

resources or demand to sustain large numbers of large cities, and thus most cities 

remain small. The same mechanisms clearly exist at the more local scale, within cities 

with the competition perhaps being less fierce but regular ordering of populations and 

other activities by size being the norm rather than the exception. 

 

Inside cities, the predominant theory of ordering is based on microeconomics that 

suggests that densities of population, rent, and employment decline with increasing 

transport costs from intensive hubs or clusters of economic activity (Anas, Arnott, and 
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Small, 1998). As we will show later, it is easy to speculate that such order is 

consistent with a regular size distribution of population densities for hypothetical 

models where transport cost or distance from any point is equated with the rank order. 

But such research has never been attempted with work on scaling distributions barely 

touching the spatial structure of the city where the focus has been much more on 

fractal patterns rather than their scaling structure (Batty and Longley 1994). In this 

paper, we will extend the study of size distributions to the internal structure of cities 

first throwing away spatial structure, demonstrating that scaling orders are as strong 

within cities as between, and then reintroducing space to show its relative importance.  

 

There is an additional twist here to our analysis of intra-city size distributions. 

Although we will begin by examining the distribution of population densities, our 

focus here is on geometric rather than economic or demographic attributes of the city. 

We consider that scaling in cities is strongly related to the constraints that geometry 

imposes on density and nearness and thus we will examine the size distributions of 

buildings in terms of their Euclidean footprint – area, perimeter, height and so on – 

making the rather loose argument that these sizes reflect demand for population and 

employment. Moreover, as buildings grow in size, their shape must change to enable 

them to function and thus their scaling can be linked to their allometry. In fact a sound 

theory of urban allometry should relate social and economic activity to building 

geometry and in this paper, we hope to set the agenda for further work in this area.  

 

To date, work on the scaling of activities in cities has been sparse. As remarked, the 

study of rank-size distributions across cities has been extensive and work on urban 

density profiles has been significant. But there has barely been any work on building 

geometries with the exception of Bon (1973) and Steadman (2006). There has been 

some on transport and infrastructure supply networks (Carvalho and Penn, 2004; 

Kuhnert, Helbing and West, 2006; Lammer, Gehlsen and Helbing, 2006) and some on 

the allometry of transport networks (Cowan and Fine, 1969; Bon, 1979; Samaniego 

and Moses, 2007). However West, Brown, and Enquist (1999) are beginning to apply 

their theory of metabolic scaling to cities and social systems (Bettencourt, Lobo, 

Helbing, Kühnert, and West, 2007; Isalgue, Coch, and Serra, 2007), thus providing a 

marker for a better understanding of the way cities scale as they grow. 
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In the next section, we will introduce the idea of scaling as an approximation to some 

underling order in the size of things, relating this to ways of representing this order as 

densities and distributions, and illustrating this with the distribution of population 

densities in Greater London. We follow this with a statement of the key allometric 

relationships that characterize building geometry in terms of their volume, the area of 

their footprint, their height and their perimeter. Our first foray into analysis looks at 

scaling in the height of buildings world-wide and in three cities – London, Tokyo and 

New York from the Emporis data base (http://www.skyscraper.com/). We show quite 

conclusively that these distributions can be well approximated by rank-size 

distributions that imply power laws. We then outline the main database that we are 

working with for Greater London which contains some 3.6 million building blocks. 

Analysis of this data then proceeds, first for rank-size scaling of building geometries, 

then for allometric relationships. We finally introduce two-point correlation measures 

of the spatial distribution of these building geometries demonstrating that the strong 

scaling relations already detected, are not completely destroyed in terms of their 

spatial extent. 

 

 

Approximating Urban Order Through Rank-Size Scaling 

 

One of the simplest models generating a size distribution that accords to the way 

agglomeration economies and competitive effects play themselves out is a process 

whose the elements of growth are proportionate but random. This is Gibrat’s (1931) 

law which generates a lognormal distribution which is skewed to the left and whose 

mean is greater than its mode. It is worth repeating a simple demonstration of how 

this arises as there is substantial evidence that many such size distributions are 

lognormal (at least when not in their steady state) and therefore any scaling that is 

present in such distributions is an approximation. We first define population density 

in location i  at time t  as )(tpi  and the change in density from time 1−t  to t  as 

)1( −Δ tpi . The growth dynamic is thus 

 

)1()1()( −Δ+−= tptptp iii       (1) 
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with the succession of changes in density from 1=t  to Tt = , that is from 0 to T , and 

0)1( >−tpi . Change is hypothesized as being proportionate. Thus from (1) 

 

)1()1()1()()1( −−=−−=−Δ tpttptptp iiiii ε    (2) 

 

where )1( −tiε  is the variation around the unit rate that simply reproduces the 

population. Combining (1) and (2), the growth rate is defined from 

 

)1()]1(1[)( −−+= tpttp iii ε       (3) 

 

where 1)1(1 <−<− tiε  to ensure that the total population is never negative. The rate 

)1( −tiε  is random but clearly proportionate as equations (1) to (3) imply, that is 
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If we sum the increments or decrements of growth, and if we assume that each is 

small which is likely to be the case in a well-specified growth process, we can 

approximate their sum as follows (Aitchison and Brown, 1957) 
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The integral in (5) simplifies to  
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from which the growth equation is 
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∑
−

−+=
T

t
iii tpTp

1
)1()0(log)(log ε   .   (7) 

 

)(Tpi  is clearly a variate whose logarithm is normally distributed by the central limit 

theorem. We can easily show that there is a class of models whose growth rates are 

random but proportionate to the size of the population generated so far, that is 

)1()1( −∝− tpt iiε  and these lead to much more skewed distributions than the 

lognormal. Although there is no explicit competition between locations in this model, 

the model is still valid if each population is placed on a lattice composed of points 

around which there is local diffusion mirroring a degree of spatial competition or 

trade (Batty, 2006). 

 

To illustrate the lognormality of urban distributions, we use population density 

defined as )2005()2005()2005( iii APp =  where iP  is the population at time 

2005=t  in each ward i  in Greater London and iA  is the land area. We have scaled 

the densities so that they sum to 1000 over 633=N  wards, and we order the 

locations from the smallest to the largest densities and thus change the index from i  

to k . The density and distributions that we plot are thus based on kp  where 

∑ =
=N

k kp1 1000 . To plot the probability density function (PDF), we need to bin the 

data, choosing 50 bins of width 0.1 units where the first bin is from 1.00 ≤≤ kp  and 

the last from 0.59.4 ≤≤ kp . In Figure 1(a), we plot these densities as a histogram 

where the frequencies on the vertical axis are approximated by )( kpf . It is clear that 

the density is skewed to the left; its mean is 1.579, its median 1.365, its mode by 

inspection is about 1, its minimum 0.037 and its maximum 4.793. We have not tested 

this data to derive the closeness of its fit to the lognormal or any related distribution 

for our purpose here is only to show skewness and the fact that such distributions 

have asymmetric tails.  

 

The cumulative distribution function (CDF) defined as )( kK ppF ≤  can be computed 

from the raw data as ∑ =
K
k kp1  without binning and it is thus preferable to work with 

the data in this form. This is equivalent to the integral of the continuous density and 
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we show the plot in Figure 1(b) where compared to the classic ‘S’ shaped distribution 

function of the normal variate, this shows a high degree of lognormality. In fact, the 

normal practice in examining such size distributions is to use the counter or 

complementary-cumulative distribution function (CCDF) which we define here as 

)()( kKkK ppFNppFr ≤−=≥=  shown in Figure 1(c). The CCDF is none other 

than the rank-size distribution defined by Zipf (1949) and used extensively in 

approximating the fat tail as a power law. Note that henceforth r  will be used to 

define rank in terms of the ordered sizes defined by k . 

 

To illustrate how we assume scaling in such distributions, we plot the CCDF on a 

logarithmic scale as in Figure 1(d). This form of plot gives greater visual weight to the 

larger values of density and it is intuitively clear that the relationship can be 

approximate rather well by a straight line which is the signature of a power law. In 

fact examining Figure 1(a), the right tail which is often called the fat or heavy tail, so 

called because it defines densities that are not exponentially bounded, can clearly be 

approximated by a power law. For the CDF and the CCDF in Figures 1(b) to 1(d), we 

show the area of the curve which we ‘intuitively’ judge to be the best approximation 

to such a power law in black with the excluded set of observations in grey. We now 

approximate the power law in Figure 1(a) as a continuous density suppressing the 

index k  as 

 
α−ppf ~)(         (8) 

 

where α  is the power of the density. The cumulative (and counter-cumulative which 

has the same functional form) is the integral of (8) and is  

 

 1~)( +−αppF         (9) 

 

which we can also write explicitly in rank-size terms as  

 

 )1()(~ −− αrpr   .      (10) 
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The usual form however is as in Figure 1(c) where population density is written as a 

function of rank. Then from (10) 

 

βα −−
−

= rrrp 1
1

~)(   ,      (11) 

 

where we now define β  as the (inverse) power.  

 
a) b) 

c) d) 

  
 

Figure 1: Approximating Lognormal Distributions as Power Laws: The Distribution 
of Population Densities in Greater London 

 
a) The probability density function as a binned histogram; b) the cumulative distribution function 
from the data in a); c) the counter-cumulative (Pareto) or rank-size distribution formed by twisting 
b) through 90 degrees; d) the rank-size distribution in c) plotted on logarithmic scales. Note that 
range of these distributions that can be approximated by a power law are drawn in black with the 

excluded portions of the curves in grey 
 

 
From equations (8) to (11), it is clear that if such an approximation is warranted, then 

the parameter of the density function α  must be greater than 1 for the cumulative 
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distribution function to be defined. If we logarithmically transform (11), we produce 

the linear equation 

 

rGrp loglog)(log β−=       (12) 

 

which can be estimated in a straightforward manner using regression. The linear 

scaling implied in those observations in Figure 1(d) shown in black yields a 

correlation of 0.869 and a parameter 345.0=β . The parameter 898.311 =+= βα  

which implies that the slope of the heavy tail is rather flat with relatively modest 

competition between the locations relative to what we see in city size distributions 

where β  is often greater than unity. We will say more about this later but a note is 

warranted on approximating heavy tails with power laws and methods of estimation. 

In various applications, we have used the Hill maximum-likelihood estimator favored 

by Newman (2005) although here we have kept to the traditional method of regression 

because as we will see the scaling for the Greater London building geometries is so 

clear than we consider regression quite robust. We have not tested either the degree to 

which these distributions are lognormal or scaling but Clauset, Shalizi, and Newman 

(2007) have introduced a series of tests to enable this. In future work, we will follow 

this best practice but as this paper is simply to explore the extent to which scaling 

might be present in building geometries and allometry, we stick with current practice. 

 
 

Figure 2: Population Densities in Greater London with respect to Distance from the 
Central Business District (CBD) 

 
The grey curve shows the distribution and the black line shows an approximate non-linear fit of density 

to distance which ‘resembles’ a lognormal signature 
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The way we have ordered population densities as }{ kp  destroys the spatial-locational 

organization which is contained in the initial distribution of densities }{ ip . It is in 

fact usual to examine the density with respect to the distance or travel cost order from 

the CBD (central business district) and in urban economic models, densities decline 

monotonically with distance from the CBD (Clark, 1951). These models imply size 

distributions that at least would co-vary with their equivalent rank-size distribution 

although the usual specification is to assume densities decline as a negative 

exponential with distance rather than a power function. If we assume that distance 

(radius) from the CBD is defined as R , then we hypothesize that γ−RRp ~)(  where 

γ  is the parameter on distance. We have plotted the same data set with respect to 

distance in Figure 2 where it is immediately clear that there are considerable 

departures from this scaling. The value of γ  is 0.531 which is the same order of 

magnitude as β , the correlation-squared is 0.228 and the trend in the data in Figure 2 

appears lognormal. There are many important links between density scaling by size 

and density by location contained in these data but these remain unexplored and thus 

represent an important area for future research. 

 

 

Allometry in Urban Size Distributions 

 

The focus of this analysis however is not on population density but on the geometric 

properties of buildings. One reason why the analysis of size distributions within cities 

is much more complicated than between cities is that the unit of analysis for 

population is not stable. Populations are composed of individuals and when they are 

spread out over an area, a critical issue is the spatial unit in which they need to be 

composed for appropriate analysis. As populations are aggregated, then their relative 

distribution changes. In the last section, we used 633 wards but had we used a finer 

scale of unit, the density profile and size distribution would certainly have changed, 

perhaps becoming more peaked but eventually being destroyed entirely once the data 

is represented at individual level. When we turn to buildings, this problem changes 

because the objects in question are distinct. There are still definitional problems but 
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buildings are individual objects that vary in their size whereas individuals in a 

population do not do so in the same way. 

 

It is hard to argue from the population density profile in Figure 2 that the profile of 

building sizes containing the same population would follow the same distance or rank 

order. Population is grouped into buildings and it is likely that the more intense the 

demand for space, the higher the population density of an individual building with a 

possible consequence that the higher the density, the greater the volume of space in 

any building. Any speculation of this kind however is obscured by the fact that 

overall, we do not make any distinction between type of use of a building. In the 

sequel, we will deal with different land uses but our first analysis will be for all 

buildings and thus it is not possible to speculate in advance what the overall scaling 

might be. In fact, before we began this analysis, we differed between ourselves as to 

whether or not we considered scaling to be likely in the buildings data with some of 

us arguing that this would be unlikely. In the event, the scaling is strong and regular 

as we will see. 

 

We now need to define the geometric properties of buildings that we will use to 

measure their size. Each building is a rectangular block defined in terms of the lengths 

of its three dimensions. For each building, height jH , the area of its footprint jA , the 

perimeter of this area jL , and the building volume jjj HAV =  can be calculated 

directly although volume which is probably the best measure of size, is a product of 

all three dimensions, in turn a function of the area and height measures. Each of these 

has a rank order r  which we will test for scaling using power law approximations 
HrrH β−~)( , ArrA β−~)( LrrL β−~)( and VrrV β−~)( . However what is of particular 

interest is the way these geometric measures relate to one another as their overall sizes 

change. This is allometry. The critical hypothesis is that as the size of the typical 

elements change, these relations may well depart from the standard geometric 

relations that characterize length, area, and volume. The allometric hypothesis 

suggests that there are critical ratios between geometric attributes that are fixed by the 

functioning of the element in question and if the element changes in size, these ratios 

need to remain fixed for the element to still function. Often the geometry has to 

change if these ratios are fixed (Thompson, 1917). A good example relates to natural 
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light penetrating buildings. As natural light depends on the surface area, then to 

preserve a given ratio of natural light for the volume of the building, the shape of the 

building has to change if the building is increased in size. In short, the surface area 

does not change at the same rate as volume and if the ratio has to be fixed to make the 

building function, then the volume has to change. This implies a change in shape as 

the building increases in size. 

 

As yet there is no well worked out theory of urban allometry; indeed there is no 

complete theory of size in biological systems from whence these ideas arise (Bonner, 

2006) although there are various theories in the making (West, Brown and Enquist, 

1999). We will begin by stating basic geometric relations assuming the building to be 

a cube with its basic linear unit as L . L  first determines the area A  as 2L  and then 

volume V  as 3L  from which it is clear that LAV = . Standard allometric relations 

first proposed by Huxley (1932) can be immediately derived which imply changes in 

the volume, area or length relative to each other of these measures. For our cube 

(which can be easily generalized to a less uniform geometry), 3/2VA = , 2/1AL = , and 
3/1VL = . These imply that as the volume grows, the area grows at a rate 2/3rd’s the 

rate of volume growth. This can easily be seen in the relative growth rate or ratio of 

AdA /  to VdV /  (assuming a unit of time) as follows 

 

V
A

V
VV

dV
dA

3
2

3
2

3
2 3/2

1)3/2( === −    .   (13) 

 

Rearranging terms in (13), we get the ratio, the relative growth of AdA /  to VdV / , as 

 

3
2

=
V
dV

A
dA   ,      (14) 

 

which can be easily generalized for any scaling parameterλ . The general allometric 

relation relating some physical property y  of an object to another x  is thus 

 
λxGy =  ,       (15) 
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where the scaling parameter is the relative growth rate of y  to x   

 

x
dx

y
dy

=λ   .      (16) 

 

λ  is also the elasticity as defined in economics. (15) and (16) can thus be applied to 

any relationship which might be scaling with respect to different measures of size 

where these sizes imply differential relative growth (Von Bertalanffy, 1973). 

 

To simplify our treatment, we assume that the entire array of buildings can be 

represented as rectangular blocks. In fact this is the case as we will see in our 

buildings data base where buildings are constructed from plot area and mean height 

and where more complex buildings are glued together from simpler rectangular 

blocks. Then in terms of building blocks, linear dimension will involve heights jH  in 

the (z) dimension and vector lengths in the (x, y) plane from which the area of the 

plot jA , its perimeter jL , and its volume (or mass) jV  can be computed. We will not 

compute surface area of the building, or any internal measures of circulation or areas 

of interior space for these are not possible although currently the databases are being 

augmented to deal with such complexities. These four measures are defined for each 

building which is located at a point or centroid (toid) j . We are interested in their 

scaling with respect to rank-size which we have hypothesized above but we are also 

interested in how they scale with respect to each other, allometrically. The following 

scaling relations are stated: 
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where the *Z  are the constants of proportionality and the power symbols are the 

appropriate allometric parameters – relative rates of change.  
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Our key interest in urban allometry is to find out whether the scaling between area 

and volume implies changes in the shape of buildings. In terms of the relations in (9), 

we would expect the volume to scale as the cube of height and perimeter, and as the 

square of the plot area. Plot area is likely to scale as the square of height and 

perimeter while perimeter and height scale with each other linearly and these are the 

baseline allometries that we might expect. However if there are changes of shape, 

then these will reflected in the parameter values that are estimated from the equations 

in (9). In fact, as it is likely that there will be considerable variation around these 

forms for all buildings, we will disaggregate the set of all buildings into different land 

use types which should reveal differences, particularly between buildings in 

commercial and residential use.  

 

Currently we are not able to measure the surface area of building from the database 

and this is unfortunate as this may scale quite differently from the 2/3rd’s ratio that 

pertains to the standard pure allometric equations. This is because the skin of the 

building is the conduit for light and energy and buildings cannot maintain their 

volume indefinitely through increasing their floor areas because such areas cannot be 

serviced through natural light and other forms of externally supplied energy. Thus 

there are limits on shape in this regard. This is why it is likely that as buildings 

increase in size, they expand vertically rather than horizontally which are the kind of 

deviations from standard allometry that we are seeking. Our ultimate concern in this 

work is to count the number of buildings types by land use and to link these counts 

and their shapes to energy emission in buildings as well as issues involving 

circulation both within and between buildings. 

 

 

Building Data and the Preliminary Analysis of Heights 

  

To show that scaling exists in the size of buildings, we begin by selecting height data 

for the top 200 buildings worldwide and compare these with the same number for 

London. These data are from the Emporis database (http://www.skyscraper.com/) 

which contains quite detailed information about the largest buildings in 50,000 cities 

worldwide with up to 3000 of the largest buildings from the largest cities. We will 
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also examine three cities in more detail – London, New York and Tokyo – as a 

prelude to our work with the Greater London buildings database which as we will 

outline below, is taken from our Virtual London model which consists of building 

blocks constructed from digital data sources. In Figure 3(a), we show Zipf plots of the 

top 200 buildings by height worldwide, for London from the Emporis database and 

for London from our own database. We have also graphed the top 200 cities by 

population in the year 2006 taken from UN sources (http://unstats.un.org/unsd/) to 

show that scaling in population is a little more extreme than for high buildings. In all 

the Zipf plots that we introduce henceforth, we normalize the data in the following 

way. We normalize the rank r  by dividing by its maximum maxr and for the size 

variable, height jH  say, we divide by its mean >< jH . Our plots are then based on 

graphing >< jj HH  against maxrr , thus enabling us to directly compare data by 

collapsing all the plots onto one another. 

 
a) b) 

 
Figure 3: Initial Analysis of Building Heights  

 
a) Top 200 Buildings by Height in the World and London, and Top 200 City Populations b) Top 

Building Heights in New York, Tokyo and London 
 

 

There is very clear scaling in all four data sets and we present the parameters of these 

in Table 1. The slope of the world cities data is steeper than the buildings data which 

implies that there is less competition for activity inside a city than between them. We 

have also examined the same scaling in building heights for three world cities from 

the Emporis database and in Figure 3(b) we show building heights over a wider range 
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of magnitudes for Tokyo, London and New York. The results which are also shown in 

Table 1 imply that New York has greater competition than Tokyo and that London 

has the flattest profile in terms of rank-size scaling. Although the fit of the power law 

to the London and World data sets is good, this is less so for Tokyo and New York 

where there is clear evidence of lognormality in the plots even at their upper end. This 

simply confirms the observations made above about needing to exercise care in 

approximating such urban distributions by power laws. 

 

 World 
Cities 

World 
Buildings 

London 
Emporis 

 
Virtual 
London 

 

Tokyo London New York 

N  200 200 200 200 1036 1302 2424 
Scaling 
Parameter Hβ  0.652 0.162 0.262 0.234 0.377 0.288 0.478 

Correlation 
Squared 0.970 0.995 0.983 0.992 0.827 0.979 0.919 

Density 
Parameter α  2.534 7.159 4.823 5.269 3.650 4.477 3.094 

 
Table 1: Scaling Parameters for the Preliminary Analysis of Building Heights 

 
 

This preliminary analysis gives us some confidence that there is scaling in building 

geometries and led us to develop a large database for London based on our 3-D 

GIS/CAD model of London which we refer to as Virtual London (Batty and Hudson-

Smith, 2005). This is a digital model of all building blocks within about 40 kilometers 

of the CBD – the City of London or ‘square mile’ – covering the 33 boroughs 

comprising the Greater London Authority (GLA) area which has an extent of 1579 

square kilometers. The data set is unique in that it has been created automatically 

from two main sources of data: first vector parcel files part of Ordnance Survey’s 

MasterMap (http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/) 

which code all land parcels and streets to at least one meter accuracy; and second a 

data set of buildings heights constructed from InfoTerra’s LIDAR data which 

produces a massive cloud of 3-D x-y-z data points which when used in association 

with the vector parcel data, can be used to extrude all buildings. In this data set, there 

are some 3,595,689 (≅ 3.6m) distinct buildings centroids (or toids as they are called). 

We are currently dealing with all 3.6 million although we only use a subset of these in 

our scaling and allometric analysis. In future work, we will be aggregating toids to 
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ensure that we are dealing with appropriate blocks. This becomes critical when land 

use is to be assigned to each building block because land use is tagged to street 

addresses which are a subset of all toids.  

 

To give some idea of the range of this data set, the maximum height of any block is 

204.06 meters, the Canary Wharf Tower in the London Docklands.  The mean height 

is 5.76 meters and the standard deviation is 3.29 meters which shows that the 

frequency of building heights is very skewed to the left, reflecting the fact that this 

distribution is likely to follow a power law. For illustrative purposes only the top 10 

blocks by height in London are 204, 197, 169, 160, 151, 150, 138, 130, 128, and 123 

meters in comparison with the top 10 from the Emporis world database which are 

509, 452, 452, 442, 421, 415, 391, 384, and 381. London’s highest building is in fact 

not in the top 200 in the world and from the regression in Table 1 associated with the 

plot in Figure 3(a), we can estimate its rank as about 400. London is not a city of tall 

buildings.  

 

From the data set, we are currently working with the perimeter of each plot which is 

computed directly from the MasterMap data, and the mean height of a plot which is 

important as there are many different heights from the LIDAR data reflecting 

complex roof shapes, masts, air conditioning units and so on. Other measures of 

height such as median and mode do not change the results below substantially. We 

compute volume by taking the area of the plot and multiplying it by its height. This 

does not take account of course of the fact that some buildings will taper but currently 

we are not able to do much about this as we do not have elaborate algorithms in place 

to construct intricate roofing shapes. We also are able to classify these buildings by 

land use from the MasterMap Layer 2 where we have land uses associated with each 

street address for which there is a toid. However there are many blocks that do not 

have street addresses and these tend to be part of other building complexes and/or are 

very small and somewhat idiosyncratic in their form, such as sheds, lean-to’s and 

such-like bric-a-brac. We have various algorithms for joining unclassified polygons to 

those which are already classified and currently we consider the data set to be robust. 

There are over a thousand different land use types in the MasterMap data and we 

have classified these into nine major types which we list as the toids classified with at 

least one residential, office, retail, services, industrial, educational, hotel, transport, 
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and general-commercial land use. We have not yet broached the difficult question of 

multiple uses for if we have a building with more than one land use classifier, we 

simply include it in the appropriate analysis. We have not yet tackled this double 

counting.  

 

Rank-Size Distributions  

and Allometric Analysis of Building Geometries  
 

We begin with the aggregate scaling relations which result from ranking the area 

}{ jA , perimeter }{ jL , height }{ jH and volume }{ jV  data for a slightly reduced data 

set of about 3.59 million buildings. We show these in Figure 4 which also contains the 

same scaling for each of the land uses which we will describe below. What this figure 

reveals is remarkably strong linearity over many orders of magnitude with the plots 

collapsing dramatically for the million or so smallest buildings (which are less than 

about 25 square meters in volume) and quite definitely represent the bric-a-brac of 

urban construction picked up from the remote sensing. These plots do not show any 

lognormality which is perhaps surprising and when the right tail is excluded from the 

data, the linearity is even more apparent. In fact what we have done in fitting power 

laws to these data is fit the generic equation to only the top 10 percent of buildings.  

 

The aggregate plots are shown in the thick black line in Figures 4(a) to (d) with the 

excluded data points in grey. We have estimated the scaling parameters Aβ , Lβ , 

Hβ , and Vβ  from the appropriate rank-size equations using log-linear regression but 

we must note that as volume is a simple product of area and height jjj HAV = , then 

this is a derived variable that does not have the same status as the raw data variables 

area, perimeter and height. In fact area and perimeter are confounded too as perimeter 

and area are both formed from the same two linear dimensions defining the 

rectangular blocks that make up the buildings data set. We include volume and area 

because these are two variables that are usually used in describing cities, 

notwithstanding the fact that they are composed of more basic geometric primitives. 

To illustrate the interdependence between these results, if the rank order r , for height 

and for area, were identical, that is for ArrA β−~)(  and HrrH β−~)( , then volume 
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could be predicted as HA rrrV ββ −−~)( . This is unlikely to be the case for we know 

that height is likely to increase faster than area as buildings seek space upwards. In 

short this is why we need to examine the allometric relations which relate the various 

quantities. Thus we might expect volume to decline more steeply with rank than area, 

which in turn is likely to fall more steeply than height or perimeter for this is the 

sequence of objects from 3 to 2 to 1 dimension.  

 

a) b) 

c) d) 

 

 
 

Figure 4: Normalized Rank-Order Plots 
a) Building Area, b) Perimeter, c) Height and d) Volume 

 
We plot all buildings (solid curves in black) and buildings classified by their land use (dashed and 

dotted curves). We also plot fits to the rank-size distribution for all buildings (all land uses) on each 
panel and compute the corresponding regression coefficients applying the least squares method to the 
top 10% ranks in each curve. Panel d) includes the rank-order plot of the height for the highest 200 

buildings from the Emporis worldwide database 
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In Table 2, we present the results which also show the data for same scaling relations 

for the land uses. We have very dramatic linearity in the log-log plots over several 

orders of magnitude for volume from 710  to 210  after which the plot falls very 

steeply, implying that buildings less than 25 square meters in volume behave quite 

differently. These are really sheds and bric-a-brac referred to earlier and in future 

work will be discounted to an extent as we construct better building blocks (Steadman 

et al., 2000). These regressions are striking in their linearity and such rank-size 

relations are amongst the best we have come across. In fact this bears out the 

remarkable linearity of the rank-size of the heights of the top 200 buildings in the 

world which enabled us to make such good predictions of building heights further 

down the scale. The rank-size plots for the nine land use categories – residential, 

office, retail, services, industrial, educational, hotel, transport, and general-

commercial – are also shown in Figure 4 with respect to area, perimeter, height and 

volume. We expected these plots to show rather different scaling from the aggregate 

(although 90 percent of the buildings in the database are classified as residential land 

use) but they are all close to the aggregate relations. From Figure 4, it is clear that 

their linearity tends to be over a lesser number of orders of magnitude. Any 

differences that do occur in these slopes are highlighted in Figure 5 which compares 

the β  coefficients and their error bars 

 

 All Land 
Uses 

 
Resid-
ential 

 

 
Office 

 
Retail Services Indus-

trial 
Educa-
tional 

Comm-
ercial 

N  3595689 3320579 39587 77075 33949 67270 16257 122874 

Area Aβ   0.763 0.559 0.711 0.802 0.664 0.840 0.486 0.711 

Perimeter Lβ  0.272 0.251 0.294 0.305 0.308 0.352 0.272 0.287 

Height Hβ  0.457 0.352 0.457 0.461 0.469 0.477 0.393 0.432 

Volume Vβ  0.861 0.688 0.834 0.923 0.841 1.007 0.570 0.841 

 
Table 2: Scaling Parameters for Buildings in the London Database 

 
Note that only the top 10 percent of these building numbers are used in the regressions and that 

Transport and Hotel have been excluded due to their small numbers 
 
 

The six sets of allometric relations stated earlier in equations (17) are plotted in 

logarithmic form as two-dimensional surfaces in Figure 6. Only three of these 
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relationships show the kind of linearity that we might expect from our earlier analysis, 

and these involve area v. perimeter, volume v. perimeter and volume v. area, that is 

those based on ϑμη
jjjjjj AZVLZVLZA 632 and,, === . The other relationships 

involving height are quite scattered and require different techniques for extracting 

their allometry for clearly the set of data points must be culled to extract those that 

reflect the densest parts. As there are almost 3.6 million points in this scatter, their 

representation as surfaces coloured by their density after appropriate binning into a 

relatively fine scale set of categories is the most useful way of assessing these 

relationships. In Table 3, we present results from estimating the three allometric 

regression lines to the data in its logarithmic form.  

. 

 

 

 
Figure 5: Scaling Coefficients for the Plots in Figure 4.  

 
The least squares method is applied to the top 10% ranks in each curve. Error bars are 95% confidence 

intervals. Horizontal dashed lines (in grey) are mean values of 1−α .  
 
 
It is immediately clear that the value of the parameters is consistent with the order of 

the geometric scaling. That is, the parameter of area on perimeter is less the square 

while the value of the relation between volume and area is less than 3/2. This means 

that as the perimeter increases, the area increases less than the normal geometric 

relation implying that shape is changing, probably becoming more crennelated – 

implying a longer perimeter – as the area grows. In terms of volume, this increases at 

less than 3/2 of the area which suggests that the volume must get proportionately less 

as the area grows. This bears out the implied observation that as the surface grows, 

the shape must change. 
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        a) b) c) 

       d) e) f) 

 
 

Figure 6: Two-Dimensional Surface Plots of Allometric Relations 
 

a) Perimeter against Area, b) Perimeter against Height, c) Perimeter against Volume, d) Area 
against Height, e) Area against Volume and f) Volume against Height. Panels implying contour 

lines of logarithmically-binned histograms (frequency counts) on a logarithmic scale. Colour bars 
display the range of histogram values on each panel. We have found an approximate linear relation 

between the variables in panels a), c) and e). 
 
 

Table 3 also contains all the parameter estimates for these three relationships for each 

individual land use. Remarkably these are all consistent with the aggregate and show 

that building volumes grow proportionately less than their increases in area as we 

might expect. It is even more urgent now however to extend the analysis of allometry 

to height as this is a key variable in defining volume and it is the weakest aspect of 

our work, largely because we cannot assume that usable building volumes are the 

same as geometric volumes. Moreover the height data itself is highly variable due to 

the fact that we have used mean height which is not necessarily a good measure for 

computing volume. This requires considerable further research as it is central to some 

of the notions in this paper which relate to how volume scales with plot area and to 

questions of surface area that define building skins. This is the research we will 
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develop next when we link the buildings database to related databases of floorspace 

and energy emissions. 

 

 
 

Area v Perimeter 
 

Volume v Perimeter Volume v Area 

 Allometric 
Coefficient R-Square Allometric 

Coefficient R-Square Allometric 
Coefficient R-Square 

Euclidean 
Scaling 2  3  3/2  

All Land 
Uses 

1.832 
(1.832, 1.833) 0.962 2.386 

(2.385, 2.387) 0.811 1.296 
(1.296, 1.297) 0.835 

Residential 1.846 
(1.846, 1.846) 0.963 2.463 

(2.461, 2.464) 0.825 1.325 
(1.324, 1.326) 0.845 

Office 1.783 
(1.779, 1.787) 0.952 2.152 

(2.141, 2.162) 0.808 1.199 
(1.194, 1.204) 0.838 

Retail 1.811 
(1.808, 1.814) 0.958 2.215 

(2.207, 2.222) 0.816 1.216 
(1.212, 1.219) 0.842 

Services 1.773 
(1.769, 1.777) 0.964 2.129 

(2.118, 2.140) 0.814 1.195 
(1.189, 1.200) 0.836 

Industrial 1.788 
(1.786, 1.792) 0.957 2.052 

(2.042, 2.062) 0.706 1.148 
(1.142, 1.153) 0.738 

Educational 1.679 
(1.673, 1.684) 0.959 1.901 

(1.888, 1.914) 0.828 1.132 
(1.125, 1.139) 0.862 

Hotel 1.770 
(1.760, 1.780) 0.969 2.143 

(2.115, 2.172) 0.849 1.207 
(1.193, 1.222) 0.870 

Transport 1.775 
(1.749, 1.801) 0.948 1.991 

(1.928, 2.053) 0.797 1.116 
(1.085, 1.147) 0.833 

General 
Commercial 

1.813 
(1.811, 1.815) 0.956 2.179 

(2.173, 2.185) 0.813 1.194 
(1.191, 1.197) 0.840 

  
Table 3: Coefficients and Correlations for the Allometric Relations 

 
The numbers in brackets in the coefficient columns give the 95% confidence intervals 

 
 
 

The Spatial Distribution of Building Geometries 
 

 
To put space back into the argument, we can examine the two-dimensional 

distribution of building geometries in Greater London by computing the correlation 

functions with respect to how properties of a building – area, height and so on – vary 

with respect to every other building. From our earlier analysis of the spatial 

distribution of population densities with respect to how density varies around one 

point – the CBD, we might except that these correlation functions would imply power 

laws with respect to increasing distance from any building in question. In this section, 

we will compute a composite correlation function in the following way, assuming that 
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building properties meet the definitions of a point process.  

 

The first moment of such a point process can be specified by a single number, the 

intensity ρ  giving the expected number of points per unit area. The second moment 

can be specified by Ripley's K  function (Ripley, 1977) where )(RKρ  is the expected 

number of points within distance R  of an arbitrary point of the pattern. The product 

density 

 

  )()()()()(),( 2
2 ydAxdARgydAxdAyx ρρ =     (18) 

 

describes the probability of finding a point in the area element )(xdA  and another 

point in )(ydA , at distance yxR −= , and )(Rg  is the two-point correlation 

function. Ripley's K  function is related to )(Rg  as  

 

∫= dRRgRK )(2)( π  .      (19) 

 

In other words,  )(Rg  is the density of )(RK  with respect to the radial measure RdR  

(Stoyan, 2000). The benchmark of complete randomness is the spatial Poisson 

process, for which 1)( =Rg  and 2)( RRK π= , the area of the search region for the 

points. Values larger than this indicate clustering on that distance scale, and smaller 

values indicate regularity. 

 

The two-point correlation function can be estimated from N  data points Dx∈  inside 

a sample window W  as 

 

),(
2

),(
)1(

)( yx
R

yx
NN
W

Rg
Dy

R

Dx

ω
π∑∑

∈∈ Δ
Φ

−
=  ,   (20) 

 

where ΔRπ2   is the area of the annulus centred at x  with radius R  and thickness Δ  

(Kerscher, Szapudi, and Szalay, 2000). Here W  is the area of the sample window, 

and the sum is restricted to pairs of different points yx ≠ . The function RΦ  is 
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symmetric in its argument and ]),([),( Δ+≤≤=Φ RyxdRyxR  where ),( yxd  is the 

Euclidean distance between the two points and the condition in brackets equals 1 

when true and 0 otherwise. The function ),( yxω  accounts for a bounded W  by 

weighting points where the annulus intersects the edges of W . There are a number of 

edge-corrections available, but that developed by Ripley (1976) has a long tradition 

both in human geography and physics (Carvalho and Batty, 2006). Here we 

approximate 1),( =yxω  as the city does not have clear spatial boundaries. 

 
a) b) 

 
c) d) 

 
 

Figure 7: Spatial Distribution of the Geometric Properties 
of the Highest 100,000 Buildings 

 
a) Area b) Perimeter c) Height, and d) Volume 

 
 

 

Of special physical interest is whether the two-point correlation is scale-invariant. A 

scale-invariant )(Rg  is an indicator of a fractal distribution of points, and is expected 

in critical phenomena (Kerscher, Szapudi, and Szalay, 2000). Figure 7 shows the 

distribution of geometric building properties over Greater London for the largest 

100,000 selected by height for a range of distances up to km 3.3≅r and Figure 8 is a 

plot of the two-point correlation function on a double logarithmic scale. We observe a 

power-law decay of γ−− rrRg ~~)( 230.0  for these largest 100,000 buildings. 
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Interestingly, the two-point correlation function does not display scaling behaviour if 

we select the 100,000 largest buildings by perimeter size or area. This suggests that 

building height is a major variable which has so far been overlooked in studies of the 

fractality of cities and this supports our preliminary analysis of height from related 

databases. 

 

 

 
 

Figure 8: Two-Point Correlation Functions of the Building Geometries  
with Respect to Distance R  

 
. 

Conclusions and Next Steps 
 
Our analysis represents a first step in developing scaling and allometry for spatial 

distributions within cities and this suggests a research program complementary to that 

being developed for equivalent relationships between cities (Bettencourt, Lobo, 

Helbing, Kuhnert, and West, 2007). The link between the rank-size scaling of spatial 

attributes which suppresses the spatial pattern and the scaling of the spatial patterns 

with respect to distance which we examined in this paper initially as a demonstration 

of lognormality and lastly in terms of two-point correlation functions, needs to be 

explored in considerably more depth. We also need to investigate the relationship 

between geometric and socio-economic attributes as reflected in the link between 

building geometries and population densities as this serves to link the physical form 

of the city to its functioning. 
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Definitional problems abound when data which is spatial are explored. Data based on 

individual objects such as people frequently does not display spatial pattern until it is 

aggregated. Although attributes such as income do accord to scaling for individuals, 

many others are only retrieved when the data is aggregated to some specific level and 

thus the degree to which it is aggregated is critical. We need to revisit these 

definitional issues in more detail and in the case the database used here, iron out many 

of the problems of building size and type that we have identified. The analysis should 

be extended to deal with different rank-size and allometric relations in different areas 

of the city, showing how these relations might change as implied in the distributions 

pictured, for example, in Figure 8.  

 

We are much encouraged by the very strong scaling implicit in this data. Of course to 

confirm this, we need more examples from other cities. We need to relate the physical 

geometry to other measures, particularly linear measures such as utilities and street 

systems as well as socio-economic activity volumes as proposed by Kuhnert, Helbing, 

and West (2006) amongst others. We need to link the analysis much more strongly to 

fractal geometry (Batty, 2005) and we need to link it to circulation patterns in 

buildings (Bon, 1973; Steadman, 2006). The extension which we are about to do is to 

examine the surface areas of buildings linking these to energy emissions and related 

phenomena and when we do this, the variations in these relations with respect to 

different locations and districts within the city will take on new meaning. In time, we 

hope that such work will add to our growing knowledge of how efficient cities are in 

terms of their geometry and in this sense, provide a much more considered position on 

issues such as urban sprawl and the compact city. 
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