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Generalized Material Models for Coupled
Magnetic Analysis

Hamadou H. Saliah, David A. Lowther, Member, IEEE, and Behzad Forghani

Abstract—The solution of coupled magnetic and thermal sys-
tems is important for the design of many electromagnetic devices.
To achieve this, it is important to have an effective material model.
This paper proposes a general material model based on a neural
network which can take into account the temperature dependence
of the magnetization curve.

Index Terms—Adaptive learning, electromagnetics, finite
elements, material models, neural networks.

I. INTRODUCTION

A S PART of the design of an electromagnetic device, anal-
ysis is critical. This needs to take into account all the areas

of physics relating to the device, not just those of electromag-
netics. Thus, for example, an electric motor requires an elec-
tromagnetic analysis to determine the effectiveness of the con-
version from electrical energy to mechanical. It also needs a
thermal analysis to determine the effects of power losses in the
device on the overall performance; and a structural analysis to
ensure that the design can withstand the forces being generated.
In general these analyzes are coupled through the material pa-
rameters. Thus the thermal analysis will result in temperature
distributions throughout the material that can have the effect of
altering the material properties locally. As the material temper-
ature increases at certain points in the material, the permeability
will decrease producing a result similar to that observed through
magnetic saturation. In the reverse direction, the presence of
changing magnetic fields leads to losses in the magnetic ma-
terial (the iron losses) and these losses are the sources of heat
in the problem leading to temperature changes. Thus a coupled
problem exists between the magnetic and thermal solutions.

A similar set of effects may occur as a result of mechanical
stresses. In general, these coupled effects have been ignored for
many problems, and work to date in coupled problems has often
been related to devices where the creation of heat is a major ob-
jective, e.g. induction heating. The justification for ignoring the
temperature effects in many problems is the cost of performing
the coupled analyzes and the fact that high temperatures will
tend to occur near the high iron loss areas and these, in turn,
will tend to be in the areas where the material is saturating. Thus
temperature effects will compound the saturation effects but be
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largely limited to those areas. However, this may not be the case
if thermal conduction is also included in the calculations and, in
this situation, the effects of losses in one part of the device may
seriously affect the magnetic performance in another.

In general, for many low frequency electromagnetic devices,
where the primary goal is to develop forces and torques, the ef-
fects of losses and the consequent rise in temperature is an an-
noying side effect which may result in having to design an ef-
fective cooling system with a subsequent increase in cost. Thus
a coupled electromagnetic-thermal solution has increased in im-
portance as numerical tools have allowed designers to optimize
the use of the magnetic materials in the system.

In many of the electro–magneto–mechanical devices where
heat generation is a secondary effect, the thermal time constant
is considerably longer than the magnetic one. This is not true,
for example, in a fuse where the system is intended to have a
relatively short thermal time constant. However, if the two time
constants differ sufficiently, it is often possible to decouple the
two analyzes and link the effects through the material proper-
ties alone. In this case, the process is to run an electromag-
netic analysis and to follow this by a thermal analysis and then
re-run the electromagnetic analysis, etc., until electromagnetic
and thermal convergence is achieved.

Ideally, to make this work effectively, a material model is
needed which can take into account the effects of temperature
on the magnetic properties of the materials involved.

The intention of this paper is to describe developments to the
neural network model, which has been published previously [1],
[2], to include the effects of temperature and, eventually, stress,
more effectively than current models. It is part of ongoing work
to derive a single representational methodology for all material
properties (magnetic, thermal, structural,)

II. M ATERIAL MODELS

Just as materials are critical in a magnetic device, i.e. they
affect the distributions and strengths of the magnetic fields, ma-
terial models are critical in the performance of numerical sim-
ulations. The material model has two features that are of im-
portance: it must be able to represent the physical material; and
it must be designed to work effectively with the solution tech-
niques employed.

Over the years many models have been proposed to repre-
sent the performance of ferromagnetic materials. These have
included piecewise spline fits and exponential functions to try
to provide the smooth gradient information a Newton–Raphson
process requires; phenomenological models (such as Preisach)
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to represent the hysteretic performance; and many more. In gen-
eral, the material models are constructed to be as efficient as pos-
sible for a particular class of problems. Thus a Preisach based
model would not be used for solving a simple nonlinear magne-
tostatic problem—there are much simpler models. This diver-
sity of models, each tuned to a particular class of application
can result in great complexity in storing models and accessing
them based on the problem type.

However, many of the existing models appear to give good re-
sults when the material behavior is compared with measured re-
sults, but at some price. Some of the phenomenological models
may be expensive in terms of memory and time when used in a
finite element based analysis system, especially when each ele-
ment is operating with the material in a different state.

In an effort to try to create a unified model of the magnetic
performance of a material, models based on neural networks
have been proposed recently [1]–[4] and appear to be able to
match the performance of spline and function fits while having
the property of providing one model that can handle material
performance from isotropic anhysteretic through to anisotropic
and hysteretic.

When coupled problems are considered (e.g. magnetics plus
temperature and/or stress) the magnetic material models have to
be enhanced to include these effects. Conventionally, for tem-
perature, the approach is to store the curves for several temper-
atures and to interpolate between them for the needed tempera-
ture. Kvasnica and Kundracik [5] have proposed a modification
to the Jiles–Atherton [6] anyhsteretic model that allows temper-
ature and stress to be taken into account by making some of the
model parameters functions of temperature and stress. An alter-
nate approach is to extend the neural network model to include
the effects of temperature—thus expanding the capabilities of
the generalized model.

III. T HE NEURAL NETWORK MODEL

A neural network implements an adaptive learning process.
It consists of layers of fully interconnected simple (usually
summing) processors. Each interconnection has a weight
associated with it and it is these weights that control the perfor-
mance of the network. By adjusting the weights the value of the
output for a particular input vector can be controlled. In effect,
a neural network provides an implicit high order polynomial
fit to the desired surface. The more neurons there are in the
hidden layer(s), the higher the degree of the polynomial. The
goal of constructing and training a neural network is to adjust
the numbers of neurons used plus the interconnection weights.
Too many neurons, and the representation will introduce
high frequency ripples in the surface limiting the ability to
generalize (i.e. generate an accurate result for an input vector
not previously seen), too few neurons and the network will
not be able to approximate the function. In operation, data
flows through the network (hence the name—“feedforward”).
In training, errors are propagated backward. Training is a form
of optimization—i.e. derive the weight values to minimize the
error in the system. The network in this work used a Leven-
berg–Marquardt approach to training and consisted of simple

summing processors with a sigmoidal activation function to
limit the range of the output.

In previous work [1], [2], the design of a network to handle
anisotropic and hysteretic materials has been discussed with
a particular emphasis on two issues—the network architecture
and the performance of the final system in comparison with ex-
isting and proposed models. The goals of the work are to create a
material model that requires minimum memory for storage and
can be evaluated in minimum time. When considered in the con-
text of a present day, three dimensional analysis system, these
two issues are critical. In a large three-dimensional finite ele-
ment model, there may well be of the order of 10elements of
which more than 10% may involve a magnetic material. In an
iterative solution approach (such as Newton–Raphson) this can
involve hundreds of thousands of material property evaluations.

In modeling hysteresis, a network consisting of an input layer
of 5 neurons, a hidden layer of 6 neurons and a single output has
been found to be effective [2]. The five inputs represented the
previous two magnetization states in terms of the magnetization
and the corresponding magnetic field and the current magnetic
field. It has been shown that this model can also work for single
valued magnetization curves.

The introduction of temperature and/or tensile stress to the
model result in a need to add extra inputs for these quantities,
i.e. expanding the input vector. Also, to be able to store the extra
information, more neurons will be needed in the hidden layer.
In the work reported below, the network was expanded to 12
neurons and only the current value was used as input along
with a new input representing the temperature.

However, if a coupled analysis is to be performed, it is not
sufficient to store only the magnetic properties of the mate-
rial. In addition, the thermal and electric conductivities must
also be considered as well as the iron losses in the material. In
other words, the material model has to be much more complete
than that needed solely for magnetics analysis. To avoid massive
complexity in the system and minimize the training time for the
neural network, it is proposed that each constitutive relation be
modeled by a separate neural network, Fig. 1. Then, as the cou-
pled analysis is performed, the information from one analysis,
employing one particular constitutive relationship will be fed
back to the other via the inputs of the appropriate networks.

Thus, in the coupled electromagnetic–thermal situation, the
electromagnetic problem is solved using the neural network
trained on the M–H–T (magnetization, magnetic field and
temperature) hypersurface to represent the material behavior.
The temperature at each point in the model is determined from
a thermal analysis. The thermal problem also has a constitutive
equation relating heat flow and temperature gradient and the
resulting output is a set of temperatures, while the input is a set
of losses derived from the electromagnetic analysis.

IV. THE TRAINING SETS

While many electrical machines problems require a coupled
electromagnetic–thermal analysis, the practicality of this
depends on having appropriate material data. This is not easy
to obtain. So, to verify the concepts outlined, a circuitous
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Fig. 1. Neural nets for magnetic and thermal properties.

Fig. 2. Basic temperature dependent M–H curves from J–A model.

route was used by implementing a temperature dependent
anhysteretic Jiles–Atherton model as described in [5]. This
allowed the generation of a set of training curves for the system.
In practice, this data would be replaced by measured results.
The magnetization curves for three temperatures, predicted by
this model, are shown in Fig. 2.

The data from these curves is then used to train a neural net-
work having inputs of the current values of magnetic field and
temperature (the previous states relating to a hysteresis model
are not needed here). A state is defined as a triple (M, H, T).
Thus the neural network uses 2 inputs and generates one output,
i.e. the new state of the magnetization. The network was trained
once with a large data set derived from the curves at 25, 75 and
100 degrees.

The trained network is finally tested using a fourth curve gen-
erated for a different temperature.

V. THE NUMERICAL SYSTEM

The final trained network is used within a finite element based
system but, since it cannot generate derivative information in
its current form, a Newton–Raphson approach cannot be used
for solving the nonlinear magnetic problem. Instead successive
substitution is used. This leads to slower convergence. However,
there are speed gains to be had since the network operates as a
look-up function for the material properties. The entire system
then iterates between the magnetic and thermal systems until

Fig. 3. Potcore structure used for analysis—half the top is transparent to show
the coil.

Fig. 4. Flux linkage for fixed and variable temperatures for increasing current.

convergence is reached. The systems used were MagNet 6 [7]
and LUSAS [8].

VI. RESULTS ON APOTCORE

The material network was trained using the data in Fig. 2 and
tested on a curve at a different temperature. It was shown to
generalize extremely well. The material model was then used in
the analysis of the potcore device shown in Fig. 3.

The device was analyzed at a series of fixed temperatures (25,
50, 75 and 100 degrees Centigrade) and the flux linkage cal-
culated at each temperature. The magnetics analysis was then
coupled to a thermal calculation to generate the temperature dis-
tributions within the core. This analysis took into account both
diffusion and conduction and used a room temperature of 25
degrees. The resulting flux linkages as the current is increased
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Fig. 5. Difference inH values between 25 deg fixed temperature and variable
temperature from the thermal solution.

are shown in Fig. 4. The effects of temperature, and the oper-
ation of the neural network in changing the properties can be
seen clearly. It is important to note that the convergence of the
nonlinear iterations maintained the same pattern whether the op-
erating temperature was the one used for training the network
or some other temperature. This feature is key in a generalized
material model since during the nonlinear iterations, the system
may request the material properties with random values for the
input parameters until the operating point is found.

Fig. 5 shows the difference in the magnetic field values be-
tween the solution for a constant 25 degrees and the variable
temperature (thermal) solution. As expected the largest varia-
tion occurs within the center limb. Fig. 6 shows the temperature
distribution in the core.

VII. CONCLUSIONS

The paper has described a generalized form of a material
model which takes into account thermal as well as magnetic
properties. It can be applied in a numerical coupled analysis
which uses an iterative approach to link the thermal and

Fig. 6. Temperature plot for potcore at 20 Amps.

magnetic problems. The extensions to the network to include
thermal effects have been discussed and results shown for a
coupled thermal analysis of a simple device. The overhead in
terms of speed and memory usage is minimal and the training
is extremely quick. The memory required to store the network
is less than a hundred floating point numbers. The model could
be easily extended to include the effects of stress allowing a
linkage to a structural system. However, at this point in time,
very little measured data for magnetic materials in terms of
temperature and stress has been published. To use the proposed
system effectively requires that measured data is obtained.
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