
IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 5 ,  SEPTEMBER 1998 3056 

Modeling Magnetic Materials using Artificial Neural Networks 

H.H.Saliah and D.A.Lowther 
CADLab, Electrical Engineering Department, McGill University 

Montreal, Quebec, CANADA 

B.Forghani 
Infolytica Corporation, Montreal, Quebec, CANADA 

Abstract-The accurate and effective modeling of magnetic 
materials is critical to the prediction of the performance of 
electromagnetic devices. The paper discusses the use of 
artificial neural networks as a uniform method for modeling 
the behavior of magnetic materials both isotropic and 
anisotropic, and with and without hysteresis. 

Index terms- Material modeling, Neural networks, Finite 
element methods, Computer aided engineering. 

I. INTRODUCTION 

Magnetic materials, i.e. those that exhibit both 
permeabilities greater than air and, possibly, hysteresis, are 
crucial in the design of electromagnetic devices. They can be 
used as sources of magnetic field (permanent magnets), 
magnetic conductors, memory systems, etc. In general, they 
are used to construct the electromagnetic field distributions 
which are required to accomplish a desired task whether it be 
the translation of energy between electric, magnetic and 
mechanical forrns or the creation of a particular field 
structure at specified points in space or the storage of energy. 

The design process for such devices has, at its core, a 
requirement for an accurate prediction of the performance of 
a device. This requires modeling the material behavior in an 
accurate manner. In effect, the accuracy of the prediction is 
controlled by the accuracy of the material modeling. 

However, the magnetic properties of materials are 
dependent on several parameters including temperature and 
stress. In addition, they all exhibit "memory" to a greater or 
lesser extent in the form of hysteresis. All of these features 
mean that constructing a computational model of a magnetic 
material is a complex and difficult business. 

In the past, the methodology used for constructing a 
computer model of a material has been dependent on the 
final goal of the analysis package and, since these have been 

likewise. For example, if the material is to be modeled as 
non-hysteretic, the initial magnetization curve can be 
handled by a polynomial, by piecewise linear segments, by a 
sequence of cubic splines, etc. If a range of temperatures is to 
be considered, then a different model for each temperature 
needs to be constructed. For analyses where the hysteretic 
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properties become important, polynomials [l], [2] have been 
used as well as, phenomenological models based around 
Stoner-Wohlfarth and Preisach [ 3 ] .  

Thus, in general, the modeling methodology has been 
dependent on the characteristics of the material of interest in 
the analysis. While this has been a satisfactory approach 
because many of the analysis systems have been very 
specialized, it is becoming unwieldy to handle multiple 
representations of the same material in analysis systems 
which are becoming much more general purpose. 

Artificial neural networks provide a means of 
representing complex multi-dimensional surfaces in a 
uniform manner. A trained network can be considered as 
providing a form of least squares fit to the hypersurface 
defined by the input and output vectors. Thus such a system 
offers the possibility of creating a uniform model for all the 
properties of a magnetic material, including hysteretic, 
thermal and stress effects. In addition, the data and 
computational requirements are extremely low resulting in 
an efficient system from a point of view of memory and time. 

11. THE DE~IGN OF NELJRAL NETWORKS 

Previous work involving the use of neural networks for 
modeling magnetic materials, [4], [5], has concentrated on 
the hysteretic properties and has shown that a conventional 
feedforward neural network based around perceptron-like 
neurons, [6],  is capable of modeling such aspects of a 
material. It would seem reasonable to expect that such a 
model will also be effective for non-hysteretic behaviour. 
However, little attention was paid in the previous work to the 
construction of the input vector. To handle the non-linear 
nature of the data, the network requires at least one hidden 
layer. The size of the layer can be determined in two ways. 
The first is a simple trial and error approach - neurons are 

the training data. The second is to use a pruning algorithm 
[7] to remove neurons without affecting the accuracy of the 
representation. Alternate neuron structures using radial basis 
functions have also been considered. Such systems lead to 
improved training times and simplified architectures but the 
overall behavior is similar to more conventional feedforward 
systems. 

The goal of the network design, then, is to create a 
structure which can handle the full range of material 
characteristics including anisotropy and hysteresis. The 
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training system has to be constructed such that an effective 
model is created for the desired application. 

Within a finite element analysis system, the material 
model is subjected to an arbitrary driving field, H. Thus the 
training scheme for the neural network has to teach it an 
appropriate response to each arbitrary H value. 

III. THE INPUT VECTOR 

The design of the input vector for a neural network is 
critical. If the inputs are not independent then the training 
time can increase with little benefit in the modeling. If the 
input set is not complete then the result will not provide an 
accurate representation of the system. The proposed method, 
if it is to eventually handle hysteretic as well as non- 
hysteretic materials, has to retain a history of the behavior 
under an arbitrary driving field, H. In a non-hysteretic 
material, only one input is needed and only one output. If the 
system is anisotropic, then three inputs are required - the 
three orthogonal components of the magnetic field - and 
three outputs need to be considered. If there is no coupling 
between the three principal directions, i.e. the permeability 
tensor has no off-diagonal terms, the system is really the 
equivalent of three independent networks. 

However, when hysteresis is considered, the problem 
becomes somewhat more complex. At any point in the M-H 
plane, the next state depends not only on the current state but 
also on the previous state. The current state alone is not 
sufficient because, for any given (M,H) pair, there are a large 
number of possible M-H trajectories which pass through the 
point. Thus enough information has to be provided to 
determine which trajectory is being followed. The minimum 
is two states to define the curve. While this is overkill for a 
non-hysteretic material, the same input vector can handle 
both hysteretic and non-hysteretic materials, providing a 
uniform method for handling all forms of material. The 
complete input vector for a single component of H then 
consists of 5 variables: the previous (M,H) pair, the current 
(M,H) pair and the next H. The output is the next value of 
M. For an anisotropic system, the number of input variables 
is 15. 

IV. THE NETWORK ARCHITECTURE 

The architecture is a feedforward neural network trained 
with a variant of a supervised learning to determine the 
parameters (the weights and biases). 5 inputs and 1 output 
are enough to capture and represent the material behavior 
within a finite element solver. The goal, from the point of 
view of the analysis system, is to determine the appropriate 
value for M, the magnetization, given the current value of H, 
tho magnotiti field, 

The final architecture for each magnetic axis of the 
material consists of five inputs and six hidden units with a 
hyperbolic tangent activation function and one output to be 
predicted, Fig. 1. However, it is also easy to use a single 
architecture with fifteen inputs (3 x 5 )  and three outputs to 
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Fig. 1 .  The 5-6-1 Feedforward Network with Bias. 
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Fig. 2. The activation function for each neuron. 

represent a material, [4]. This 5-6-1 model is more flexible 
and provides a universal framework - the same interface can 
be used for all types of materials isotropic or not. In the non- 
hysteretic case, the inputs M1, H1, M2 and H2 are all set to 
zero since the memory information is not required. 

Each neuron consists of a summing unit followed by an 
"activation" function - this is used to limit the outputs of the 
network to a specific range and is designed to be 
differentiable in order to speed up the training of the 
network. For this problem, the tanh function was used for 
this purpose, Fig. 2. The training process generates values 
for the interconnection and bias weights at the input to each 
neuron and, for the network shown, there are 36 
interconnections and 7 bias weights. In the isotropic, non- 
hysteretic model being considered in this paper, the number 
or weigiits neeaea reauces to 12 ror me intercoiineccions ana 
7 for the bias. 
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V. THE TRAINING SETS 

The performance of a feedforward network is determined 
both by its architecture and the values of the weights 
associated with the inputs and output of each neuron. The 
weights are found through a training process in which the 
network is presented with a large number of sets of the input 
data and corresponding outputs. The weights are adjusted 
until the trained response of the network matches the desired 
response. The set of available data is usually broken into two 
parts; the first for the actual training, the second for testing 
the performance of the trained network. 

In general, some level of pre-processing is needed to 
generate an appropriate input set for a neural network. In the 
particular case of magnetic material modeling, the training 
is critical and must take into account the way in which the 
neural network will be expected to function within the 
analysis system. A finite element solver will tend, at least in 
the early stages of the process, to oscillate and present 
increasing and decreasing H magnitudes and thus the 
network should be able to work effectively with this. The 
pre-processing scheme used in this case is described below: 
1. The inputs and the output are scaled in such a way that 

the maximum values of H and M equal one. 
2. A lookup table is created and more data generated 

using a cubic ypline based model. 
3. The inputs are procr in a manner that a large 

spectrum of various data with diversified amplitudes 
can be used to capture the i'- dom nature of a jinite 
element solver's requests. 
R e  data is resampled at a lower rate after low pass 
filtering using a Chebyshev filter. This action 
contributes to reduce the amount of data to be used for 
the training gracefully and tries for  a good 
generalization (validation tests will be done later using 
the whole set of data). 

The training algorithm is based on a variant of the 

The learning performance and the final curve generated 
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Fig. 3. Learning performance of the network. 

The neural network was trained with data representing 
the M and H values for a typical electrical steel, M19, and an 
interface was developed to the MagNet program [9] to allow 
this model to be used instead of the built in magnetization 
curve model which is based on a set of hermite polynomials, 

The two models of M19 were then compared on the same 
problem, shown in Fig. 5 ,  in terms of the accuracy of the 
results, the amount of memory used for each model and the 
operation count in the code. The device chosen was intended 
to be a simple geometry which would result in a non-uniform 
flux density distribution in the core. The basic process in 
each case is that a value of H is provided to the curve model 
and a new value of M is returned. The problem was non- 
linear and was solved using a Newton-Raphson process. The 
intention was to look at testing the generalization of the 
neural network over a range of H values. 

The polynomial model for the material has the advantage 
that it can return the value of M, the permeability, p, and 
dp/dH2. The neural network, at present, returns only M and 
the calculation of p and dCL/dH2 are done externally. Clearly, 
it would be appropriate to train the network to generate p as 
well as M. Since these calculations are performed using a 
finite difference approximation, there is likely to be some 
error introduced in the calculations. Fig. 5 shows the error 
field, i.e. the difference between B values computed using 
the two different curve models on the same finite element 
discretization. The errors have been quantized into about 8 
levels of grey and show an average error in the core of less 
than 1.4%. The solution used a Newton convergence 
tolerance of 0.01%. The flux densities in the core ranged 
from 0.9 Tesla (below saturation) to around 2 Tesla. The 
differences in the solutions are being caused by the 
differences in the two material curves shown in Fig. 4. 
However, the inductance computed from the two solutions, a 
measure of the total energy in the system, agreed to within 
0.3%. It should be remembered that the polynomial curve 
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Fig. 4. M-H curve for M19 arouiid the initial magnetization region. 
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Additions 
Multiplications 

used is also only an approximation to the measured data and 
thus the error in the core flux densities between predicted 
and measured could well be of the same order as the errors 
between the two models. 

In terms of the memory required, the polynomial mbdel 
currently requires 83 floating point numbers to store the data 
while the neural network requires 19 for the isotropic case. 
This reduction becomes important when hysteresis is 
considered. The operation counts for the two methods are 
given in table I for each model. 

The operation count suggests that the neural network 
model is likely to cost about 20% more on each access in 
terms of CPU time than the polynomial equivalent. However, 
this is only a small component of the total solution process 
and the neural network system was measured as being 10% 
slower than the polynomial approach. In terms of Newton 
convergence, the polynomial model required 25 steps while 
the Neural network took 20. The difference here is probably 
due to the computation of p described earlier. The average 
number of conjugate gradient steps for each Newton step 
differed by 5 in 100 (the network being larger). 

Overall, it appears that the neural network model 
performs as well as more conventional models and is 
somewhat more efficient in terms of memory requirements 
although the amount of memory required for isotropic, non- 
hysteretic materials is fairly small in any case. 

Polynomial Neural Network 
12 14 
18 17 

v. THE ADVANTAGE OF THE NELJRAL NETWORK 

Divisions 

In this approach, each magnetic material to be used in a 
particular problem would have its own weight set, which 
characterizes its response, but would use a common network 
architecture. The network for a non-hysteretic material 
would be the same as that for a material exhibiting hysteresis 
thus unifymg the representation being used. 

In addition, in a magnetic device a material is likely to be 
operating not only under a distributed set of H values but 
also temperatures. With the models currently in use, 
modeling temperature variations within a material requires 
that a range of curves is constructed. The solution system 
then interpolates between them to determine an appropriate 
value for the permeability and/or M. The neural network 
architecture given above can be modified to include an extra 
input which represents the temperature of the material. It is 
then trained with information which includes both the 
magnetic field and temperature. The final network will be 
able to generate the appropriate response without the need 

TABLE I 
COMPARlsON OF OPERAnON COUNTS 

3 6 
Exponentials I 0 2 

Fig. S. Error plot between solutions for M19 using hermite cubics and 
the neual network. 

for explicit interpolation. This is likely to both simplify 
the system, reduce the amount of memory needed to 
represent a material and reduce the solution times. 

VI. CONCLUSIONS 

The paper has desaibed a possible approach for 
modeling the magnetic properties of materials, both isotropic 
and anisotropic, by using a neural network. The approach 
provides a uniform method of handling all materials, rather 
than using different representations for different properties, 
The performance of the system is heavily dependent on the 
architecture of the network chosen and as well as the input 
vector. Currently, this is done mostly by experiment since no 
good theoretical approach exists. 

The results given in the paper have demonstrated that the 
neural network model can provide a computational model 
which has a cost in terms of time comparable to that of more 
conventional polynomial based systems. 
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