

Investigating global diet change dynamics by linking models of human behavior to IAMs

Sibel Eker, Gerhard Reese, Michael Obersteiner, Lei Gao International Institute for Applied Systems Analysis (IIASA)

14 November 2018 11th Annual Meeting of the IAMC, Seville

Diet change

Diet Change

PER MILLION KILOCALORIES CONSUMED

Source: World Resources Institute [1]

Diet Change Dynamics

Impacts of reductions in food loss and waste, technological change, and dietary changes on global environmental pressures in 2050

How many people does it take...?

Framework of Diet Change

FeliX Model

http://www.felixmodel.com/

Modelling Diet Change of animal calories per capita Food demand Animal calories in Animal calories in meat-based diet vegetarian diet Land use emissions Gross World Product Meat-based Global Vegetarians temperature **Diet Followers** Shift from change vegetarianism to meat-eating Total Occurence of Willingness to population Shift from climate events change **Response efficacy** meat-eating to multiplier vegetarianism Descriptive Self-efficacy Climate social norm + Gendermultiplier events in Social transmission Perception of memory climate events **Fraction intended to** change diet Forgetting climate Perceived risk events Attitude multiplier Subjective norm + for diet change multiplier **Education** Age

Who eats what?

Diet Change Dynamics

Diet Change Dynamics

Impact of the 5 diet composition scenarios in 2050

Diet Change Dynamics - Uncertainty

Factor prioritization (Statistical screening)

Correlation coefficients over time for Total Vegetarians

- SA Self-efficacy multiplier[female]
- Time to Forget
- SA k risk attitude
- SA Normal Shift Fraction from Vegetarianism to Meat

SA XU risk attitude

Factor prioritization (GSA)

Factor prioritization (PRIM)

Which factors are distinguishing the scenarios with a high vegetarian fraction? (Reference diet composition, 2050)

Risk attitude

The inflection point of the risk attitude function (x0):

The smaller it is, the more rapid diet change action is.

Conclusions

For an extensive diet change, even a low number of climate events should steer rapid action towards diet change.

A long time to forget climate events, e.g. by repeated media coverage, is required, too.

The model structure is transferable to other problems.

References

[1] Ranganathan, J., Vennard, D., Waite, R., Dumas, P., Lipinski, B., Searchinger, T., 2016. Shifting diets for a sustainable food future. World Resources Institute: Washington, DC, USA.

[2] Springmann, Marco, et al. 2018. Options for keeping the food system within environmental limits." *Nature*.

[3] Beckage, B., Gross, L.J., Lacasse, K., Carr, E., Metcalf, S.S., Winter, J.M., Howe, P.D., Fefferman, N., Franck, T., Zia, A., 2018. Linking models of human behaviour and climate alters projected climate change. *Nature Climate Change*

Investigating global diet change dynamics by linking models of human behavior to IAMs

Sibel Eker

International Institute for Applied Systems Analysis (IIASA) Advanced Systems Analysis | Ecosystems Services and Management | Water

14 November 2018 11th Annual Meeting of the IAMC, Seville

Historical Data Comparison

Diet Change Dynamics - Uncertainty

Cropland Use

