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Abstract
Distortion (Denneberg in ASTIN Bull 20(2):181–190, 1990) is a well known premium cal-
culation principle for insurance contracts. In this paper, we study sensitivity properties of
distortion functionals w.r.t. the assumptions for risk aversion aswell as robustness w.r.t. ambi-
guity of the loss distribution. Ambiguity is measured by the Wasserstein distance. We study
variances of distances for probability models and identify some worst case distributions. In
addition to the direct problem we also investigate the inverse problem, that is how to identify
the distortion density on the basis of observations of insurance premia.

Keywords Ambiguity · Distortion premium · Dual representation · Premium principles ·
Risk measures · Wasserstein distance

1 Introduction

The function of the insurance business is to carry the risk of a loss of the customer for a fixed
amount, called the premium. The premium has to be larger than the expected loss, otherwise
the insurance company faces ruin with probability one. The difference between the premium
and the expectation is called the risk premium. There are several principles, from which an
insurance premium is calculated on the basis of the loss distribution.

Let X be a (non-negative) random loss variable. Traditionally, an insurance premium is
a functional, π : {X ≥ 0 defined on (Ω,F, P)} → R≥0. We will work with functionals that
depend only on the distribution of the loss random variable (sometimes called law-invariance
or version-independence property, Young 2014). If X has distribution function F we use the
notation π(F) for the pertaining insurance premium, and E(F) for the expectation of F .
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We use alternatively the notation π(F) or π(X), resp. E(F) or E(X) whenever it is more
convenient. To the extent of the paper, a more specific notation is used for particular cases of
the premium.

We consider the following basic pricing principles:

– The distortion principle (Denneberg 1990).
– The certainty equivalence principle (Von Neumann and Morgenstern 1947).
– The ambiguity principle (Gilboa and Schmeidler 1989).
– Combinations of the previous (for instance Luan 2001).

1.1 The distortion principle

Thedistortionprinciple is related to the idea of stress testing.Theoriginal distribution function
F is modified (distorted) and the premium is the expectation of the modified distribution. If
g : [0, 1] → R is a concave monotonically increasing function with the property g(0) = 0,
g(1) = 1, then the distorted distribution Fg is given by

Fg(x) = 1 − g(1 − F(x)).

The function g is called the distortion function and

h(v) = g′(1 − v),

with g′ being the derivative of g, is the distortion density.1 Notice that h is a density in [0, 1].
We denote by H(u) = ∫ u

0 h(v) dv the distortion distribution. Since the assumptions imply
that g(x) ≥ x for 0 ≤ x ≤ 1, Fg ≤ F , i.e. Fg is first order stochastically larger than F .2

The distortion premium is the expectation of Fg

πh(F) =
∫ ∞

0
g(1 − F(x)) dx ≥

∫ ∞

0
(1 − F(x)) dx = E(X).

By a simple integral transform, one may easily see that the premium can equivalently be
written as

πh(F) =
∫ 1

0
F−1(v) h(v) dv =

∫ 1

0
V@Rv(F) h(v) dv, (1)

where V@Rv(F) = F−1(v), the quantile function. Note that a functional of this form is
called an L-estimates (Huber 2011). If the random variable X takes as well negative values,
we could generally define the premium as a Choquet integral

πh(F) =
∫ 0

−∞
g(1 − F(x)) − 1 dx +

∫ ∞

0
g(1 − F(x)) dx . (2)

In principle, any distortion function which is monotonic and satisfies g(u) ≥ u is a valid
basis for a distortion function. However, the concavity of g guarantees that the pertaining dis-
tortion density h is increasing, which—in insurance application—reflects the fact that putting
aside risk capital gets more expensive for higher quantiles of the risk distribution. Nonde-
creasing distortion functions lead to non-negative distortion densities with the consequence
that

πh(F1) ≤ πh(F2) whenver F2 is stochastically larger than F1.

1 The derivative of a concave function is a.e. defined, even if it is not differentiable everywhere.
2 F1 is first order stochastically larger than F2 if F1(x) ≤ F2(x) for all x .
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Relaxing the monotonicity assumption for g would violate in general the monotonicity w.r.t.
first stochastic order.

1.2 Examples of distortion functions

Widely used distortion functions g resp. the pertaining distortion densities h are

– the power distortion with exponent s. If 0 < s < 1,

g(s)(v) = vs, h(s)(v) = s(1 − v)s−1. (3)

The premium is known as the proportional hazard transform (Wang 1995) and calculated
as

πh(s) (F) =
∫ ∞

0
1 − F(x)s dx = s

∫ 1

0
F−1(v)(1 − v)s−1 dv. (4)

If s ≥ 1, then we take

g(s)(v) = 1 − (1 − v)s, h(s)(v) = svs−1. (5)

The premium is

πh(s) (F) =
∫ ∞

0
1 − (1 − F(x))s dx = s

∫ 1

0
F−1(v)vs−1 dv. (6)

If we consider integer exponent, the premium has a special representation.

Proposition 1 Let X (i), i = 1, . . . , n be independent copies of the random variable X, then
the power distortion premium with integer power s has the representation

πh(s) (X) = E

(
max

{
X (1), . . . , X (s)

})
.

Proof Let F be the distribution of X . The power distortion premium for integer power s is
computed with g(s) in (5) and by definition

πh(s) (F) =
∫ ∞

0
g(s)(1 − F(x)) =

∫ ∞

0
1 − F(x)s dx .

The assertion follows from the fact that the distribution function of the random variable
max{X (1), . . . , X (s)} is F(x)s . ��

Finally, notice that the distortion density is bounded for s ≥ 1, but unbounded for 0 <

s < 1.

– the Wang distortion or Wang transform (Wang 2000)

g(v) = Φ
(
Φ−1(v) + λ

)
, h(v) = φ(Φ−1(1 − v) + λ)

φ
(
Φ−1(1 − v)

) , λ > 0,

where Φ is the standard normal distribution and φ its density.
– the AV@R (average value-at-risk) distortion function and density are

gα(v) = min

{
v

1 − α
, 1

}

, hα(v) = 1

1 − α
1v≥α, (7)

123



Annals of Operations Research

where 0 ≤ α < 1. The pertaining premium has different names, such as conditional
tail expectation (CTE), CV@R (conditional value at risk) or ES (expected shortfall)
(Embrechts et al. 1997). The premium is

πhα (F) =
∫ ∞

0
min

{
1 − F(x)

1 − α
, 1

}

dx = 1

1 − α

∫ 1

α

F−1(v) dv. (8)

– piecewise constant distortion densities. The insurance industry uses also piecewise con-
stant increasing distortion functions. For example, the following distortion function is
used by a large reinsurer.

v h (v) v h (v)

[0,0.85] 0.8443 [0.988,0.992) 3.6462
[0.85,0.947) 1.1731 [0.992,0.993) 4.0572
[0.947,0.965) 1.4121 [0.993,0.996) 6.5378
[0.965,0.975) 1.7335 [0.996,0.997) 12.7020
[0.975,0.988) 2.4806 [0.997,1] 14.9436

For more examples on different choices of h and also for different families of distributions,
see Wang (1996) and Furman and Zitikis (2008).

1.3 Certainty equivalence principle

Let V be a convex, strictlymonotonic disutility function.3 The certainty equivalence premium
is the solution of

V (π) = E(V (X)),

i.e. it is obtained by equating the disutility of the premium and the expected disutility of the
loss. The premium is written as follows

πV (F) = V−1 (E(V (X))) = V−1
(∫ 1

0
V
(
F−1(v)

)
dv

)

.

By Jensen’s inequality πV (F) ≥ E(F). Examples for disutilities V are the power utility
V (x) = xs for s ≥ 1 or the exponential utility V (x) = exp(x).

Related to this premium, one could consider just the expected value and compute the
expected disutility (Borch 1961) obtaining

π(F) = E(V (X)). (9)

For generalizations of the CEQ premium see Vinel and Krokhmal (2017).

3 The original notion of a utility function introduced by Neumann/Morgenstern was a concave monotonicU ,
such that the decision maker maximizes the expectation E(U (Y )) of a profit variable Y . A disutility function
can be defined out of a utility function by setting V (u) = −U (−u).
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1.4 The ambiguity principle

Let F be a family of distributions, which contains the “most probable” loss distribution F .
The ambiguity insurance premium is

πF(F) = sup {E(G) : G ∈ F} .

F is called the ambiguity set. In an alternative, but equivalent notation, the ambiguity premium
is given by

πQ(X) = max
{
EQ(X): Q ∈ Q} , (10)

where Q is a family of probability models containing the baseline model P . The functional
inside the maximization needs not to be the expectation, but can be general, see e.g. Wozabal
(2012), Wozabal (2014), Gilboa and Schmeidler (1989) and our Sect. 6.

Remark 1 In their seminal paper from 1989, Gilboa and Schmeidler (1989) give an axiomatic
approach to extended utility functionals of the form

min
{
EQ(U (Y )): Q ∈ Q} ,

where U is a utility function and Y is a profit variable. For the insurance case, U should be
replaced by a disutility function V and Y should be replaced by a loss variable X leading to
an equivalent expression

max
{
EQ(V (X)): Q ∈ Q} .

The link to (10) is obvious and it can be seen as a combination of expected disutility (9) and
ambiguity.

Remark 2 Recall the fundamental pricing formula of derivatives in financial markets states
that the price can be obtained by taking the maximum of the discounted expected payoffs,
where the maximum is taken over all probability measures, which make the discounted price
of the underlying a martingale. This can be seen as an ambiguity price.

The ambiguity premium is characterized by the choice of the ambiguity setF. In principle,
this set can be arbitrary given as long as it contains F . Convex premium functionals have
a dual representation, which are also in the form of an ambiguity functional. For distortion
functionals, thiswill be illustrated in the next section.Other important examples for ambiguity
premium prices can be defined through distances for probability distributions. Let D be such
a distance, then an ambiguity set is given by

F = {G : D(F,G) ≤ ε} ,

with ambiguity premium

πε
D(F) = max {E(G) : D(F,G) ≤ ε} .

We call ε the ambiguity radius. This radius quantifies not only the risk premium, but also the
model uncertainty, since the real distribution is typically not exactly known and all we have
is a baseline model F . In our Sect. 6 we base ambiguity models on the Wasserstein distance
WD.
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1.5 Combinedmodels

Luan (2001) introduced a combination of distortion and certainty equivalence premiumprices
by defining a variable W distributed according to Fg and setting

πV
h (F) = V−1(E[V (W )]) = V−1

(∫ 1

0
V
(
F−1(v)

)
h(v) dv

)

.

Notice that (Fg)−1(v) = F−1(1 − g−1(1 − v)).
More generally, one may also add ambiguity respect to the model and set

π
V , ε
h (F) = sup

{

V−1
(∫ 1

0
V
(
G−1(v)

)
h(v) dv

)

: D(F,G) ≤ ε

}

. (11)

Notice that (11) contains all previous definitions by making some of the following parameter
settings

h(v) = 1, V (v) = v, ε = 0.

If all parameters are set like that, we recover the expectation.
We could also consider the expected disutility premium (9) and combine it with the

distortion premium,
∫ 1

0
V (F−1(v)) h(v) dv = E[V (W )].

Section 6 will be dedicated to study the combination of distortion and ambiguity premium
prices.

As to notation, we denote by Lp the space of all random variables with finite p-norm for
all p ≥ 1

‖X‖p = [E(|X |p)]1/p,
resp. ‖X‖∞ = ess sup (|X |), the essential supremum. The same notation is used for any real
valued function on [0, 1] and p and q are conjugates if 1/p + 1/q = 1.

2 The distortion premium and generalizations

The characterization and represestations of the distortion premiumwere studied exhaustively.
Among some of the most classic contributions we mention the dual theory of Yaari (1987);
and the characterization by axioms of this premium developed in Wang et al. (1997), where
the power distortion for 0 < s < 1 is also characterized in a unique manner. A summary
of other known representations and new generalization of this premium will be presented
below. Recall that anymapping X �→ π(X)which is monotone, convex and fulfils translation
equivariance4 is a riskmeasure. Furthermore, ifπ is also positively homogeneous,monotonic
w.r.t. the first stochastic order and subadditive5, then it is a coherent risk measure (Artzner
et al. 1999). The distortion premium fulfils all these properties, therefore by the Fenchel–
Moreau–Rockefellar theorem, it has a dual representation.

4 π has translation equivariance property, if π(X + c) = π(X) + c, for c ∈ R.
5 A premium π is called subadditive, if π(X + Y ) ≤ π(X) + π(Y ). Subadditivity and positive homogeneity
imply convexity.
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Theorem 1 (seePflug2006)Thedual representation of the distortion premiumwith distortion
density h is given by

πh(X) = sup{E(X · Z) : Z = h(U ), where U is uniformly distributed on [0, 1]}.
Note that all admissible Z ’s in Theorem 1 are densities on [0, 1], since h ≥ 0 and

E(h(U )) = 1. To put it differently, given X defined on (Ω,F, P) and let Q be the set of all
probability measures on (Ω,F) such that the density dQ

dP has distribution function H , the
distortion distribution, then

πh(X) = sup{EQ(X) : Q ∈ Q}.
Therefore, every distortion premium can be seen as well as an ambiguity premium with Q
as the ambiguity set.

Let us look into more detail to the special case of the AV@R premium. In this case, the
dual representation specializes to

πhα (X) = sup

{

E(X · Z) : 0 ≤ Z ≤ 1

1 − α
; E(Z) = 1

}

.

From the previous representation, we can see that the AV@R-distortion densities hα

are the extremes of the convex set of all distortion densities. This fact implies that any
distortion premium can be represented as mixtures of AV@R’s, such representations are
called Kusuoka representations (Kusuoka 2001; Jouini et al. 2006). Coherent risks have a
Kusuoka representation of the form

π(F) = sup
K∈K

∫ 1

0
AV@Rα(F) dK (α),

where K is a collection of probability measures in [0, 1]. In particular, for the distortion
premium we have the following result (Pflug and Römisch 2007).

Theorem 2 Any distortion premium can be written as

πh(F) =
∫ 1

0
AV@Rα(X) dK (α).

The mixture distribution K is given by the way how h is represented as a mixture of the
AV@R-distortion densities, i.e.

h(v) =
∫ v

0

1

1 − α
dK (α).

The pure AV@Rβ is contained in this class by setting K (α) = δβ , the Dirac measure at
β. Moreover, the integral of the AV@R’s is obtained for K (α) = α and is defined as

∫ 1

0
AV@Rα(F) dα =

∫ 1

0
F−1(v)

[− log(1 − v)
]
dv,

if the integral exists.

Remark 3 Some other generalizations of the distortion premiumwere studied in Greselin and
Zitikis (2018), where they consider a class of functionals

∫ 1

0
ν(AV@Rα(X),AV@R0(X)) dα,
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with ν(·, ·) an integrable function and show the Gini-index and Bonferroni-index belong to
this class. These generalizations lead to inequality measures instead of risk measures.

As a related generalization of the distortion premium one may consider

R(X) =
∫ 1

0
ν(AV@Rα(X)) k(α) dα, (12)

for some convex andmonotonic Lipschitz function ν and some non-negative function k on [0,
1]. Clearly, R(X) is convex and monotonic, but in general is neither positively homogeneous
nor translation equivariant unless ν is the identity (see “Appendix” section for a proof). To
our knowledge, functionals of the form (12) are not used in the insurance sector. For this and
some other generalizations see the papers of Goovaerts et al. (2004) and Furman and Zitikis
(2008).

3 Continuity of the premiumw.r.t. theWasserstein distance

In this section we study sensitivity properties of the distortion premium respect to the under-
lying distribution. Some results in this section are related to those in Pichler (2013), Pflug and
Pichler (2014) and Kiesel et al. (2016). Similar results of continuity for variability measures
are studied in Furman et al. (2017). To start, we recall the notion of the Wasserstein distance.

Definition 1 Let (Ω, d) be a metric space and P , P̃ be two Borel probability measures on
it. Then the Wasserstein distance of order r ≥ 1 is defined as

WDr ,d(P, P̃) =
⎛

⎜
⎝ inf

X∼P
Y∼P̃

E
(
d(X , Y )r

)

⎞

⎟
⎠

1/r

.

Here the infimum is over all joint distributions of the pair (X , Y ), such that the marginal
distributions are P resp. P̃ , i.e. X ∼ P , Y ∼ P̃ .

For two distributions F and G on the real line endowed with metric

d1(x, y) = |x − y|.
this definition specializes to (see Vallender 1974)

WD1,d1(F,G) =
∫ ∞

−∞
|F(x) − G(x)| dx =

∫ 1

0
|F−1(v) − G−1(v)| dv.

Therefore, the Wasserstein distance is the (absolute) area between the distribution func-
tionswhich is also the (absolute) area between the inverse distributions. By a similar argument
one may prove that the Wasserstein distance of order r ≥ 1 with the d1 metric on the real
line is

WDr
r ,d1(F,G) =

∫ 1

0
|F−1(v) − G−1(v)|r dv = ‖F−1 − G−1‖rr . (13)

We now study continuity properties of the functional F �→ πh(F).

Proposition 2 (Continuity for bounded distortion densities) Let F and G be two distributions
on the real line and h a distortion density function. If the distributions have both finite first
moments and h is bounded, then

|πh(F) − πh(G)| ≤ ||h||∞ · WD1,d1(F,G).
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Proof See Pichler (2010). ��
Remark 4 The boundedness of h is ensured if g has a finite right hand side derivative at 0,
and also if g has finite Lipschitz constant L , since ‖h‖∞ ≤ L .

Proposition 2 can be easily generalized as follows.

Proposition 3 (Continuity for distortion densities in Lq for q < ∞) Let F and G be two
distributions on the real line and h a distortion density function. If F, G have finite p-moments
and h ∈ Lq , then

|πh(F) − πh(G)| ≤ ||h||q · WDp,d1(F,G),

where p and q are conjugates.

Proof By Hölder’s inequality for p and q we obtain

|πh(F) − πh(G)| =
∣
∣
∣
∣

∫ 1

0
h(v) · (F−1(v) − G−1(v)

)
dv

∣
∣
∣
∣

≤
(∫ 1

0
|h(v)|q dv

)1/q

·
(∫ 1

0

∣
∣F−1(v) − G−1(v)

∣
∣p dv

)1/p

≤ ||h||q · WDp,d1(F,G).

��
Example 1 Let F and G be two distributions with finite first moments.

– For the AV@R distortion premium ||hα||∞ = 1
1−α

, and therefore

|πhα (F) − πhα (G)| ≤ 1

1 − α
· WD1,d1(F,G).

– For the power distortion with s ≥ 1, ||h(s)||∞ = s, and therefore

|πh(s) (F) − πh(s) (G)| ≤ s · WD1,d1(F,G).

The power distortion with 0 < s < 1 is not bounded. The next result is dedicated for this
particular case.

Proposition 4 (Continuity for the the power distortion with 0 < s < 1) Let F and G be
distribution functions and h(s) the distortion density defined in (3). If F and G have finite
p-moments for p > 1

s and h ∈ Lq , then

|πh(s) (F) − πh(s) (G)| ≤ s
q
√
1 + q (s − 1)

· WDp,d1(F,G),

where p and q are conjugates.

Proof We first note that p > 1
s implies q < 1

1−s and let t = 1 + q (s − 1) > 0.

(∫ 1

0
h(s)(v)q dv

)1/q

=
(∫ 1

0
sq · (1 − v)q·(s−1) dv

)1/q

=
(∫ 1

0
sq · (1 − v)t−1 dv

)1/q

= s
q
√
t

·
(∫ 1

0
t (1 − v)t−1 dv

)1/q

= s
q
√
t
.

Proposition 3 proves the statement. ��
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The next result is a direct consequence of Proposition 4.

Corollary 1 (Continuity for distortion densities dominated by power distortion densities with
0 < s < 1) Let F and G be distribution functions and h a distortion density. If h is such that
h(v) ≤ c · h(s)(v), for all v ∈ [0, 1], c > 0 and 0 < s < 1, F and G have finite p-moments
for p > 1

s , then h ∈ Lq and

|πh(F) − πh(G)| ≤ c · s
q
√
1 + q (s − 1)

· WDp,d1(F,G),

where p and q are conjugates.

Corollary 2 (Convergence) If F, Fn for all n ≥ 1 have finite uniformly bounded p-moments,
h ∈ Lq and WDp,d1(Fn, F) → 0 as n → ∞, then

|πh(F) − πh(Fn)| −−−→
n→∞ 0,

where p and q are conjugates.

Remark 5 Corollary 2 holdswhen the sequence of distributions are the empirical distributions
F̂n defined on an i.i.d. sample of size n, (x1, . . . , xn) from X ∼ F . If F has finite p-moments,
then WDp,d1(F̂n, F) −−−→

n→∞ 0, hence
∣
∣πh(F̂n) − πh(F)

∣
∣ −−−→

n→∞ 0. This result follows by

applying Lemma 4.1 in Pflug and Pichler (2014).

Finally notice that, for continuity, the order of the Wasserstein distance r coincides with
the number of finite moments of F .

3.1 Partial coverage

Many insurance contracts do not guarantee complete indemnity, but their payoff is just a part
of the full damage. Such contracts include proportional insurance, deductibles and capped
insurance. In general, there is a (monotonic) payoff function T such that the payoff is T (X),
if the total loss is X . A quite flexible form is for instance the excess-of-loss insurance (XL-
insurance), which has a payoff function

T (x) =
⎧
⎨

⎩

0 if x ≤ a
x − a if a ≤ x ≤ e
e − a if x ≥ e.

(14)

Denote by FT the distribution of T (X), if F is the distribution of X . The distortion
premium for partial coverage is πh(FT ). We study the relationship between FT and GT as
well as between πh(FT ) and πh(GT ) in a slightly more general setup, namely for Hölder
continuous T . Recall that T is Hölder continuous with constant Hβ , if |T (x) − T (y)| ≤
Hβ · |x − y|β , for some β ≤ 1.

Theorem 3 (Distance between the original and image probabilities by T ) Let P and Q be
two probability measures and consider their image probabilities under T denoted by PT and
QT , respectively. If T is a β-Hölder continuous mapping, then

WDrβ ,d1

(
PT , QT

)
≤ Hβ · WDβ

r ,d1
(P, Q),

for rβ = r
β

≥ 1 and r ≥ 1, where Hβ is the β-Hölder constant.
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Proof Let the joint distribution of X and Y such that

WDr ,d1(X , Y ) = E
1/r (|X − Y |r ) ,

then

WD
rβ
rβ ,d1

(PT , QT ) ≤ E(|T (X) − T (Y )|rβ )

≤ H
rβ
β · E(|X − Y |r ) = H

rβ
β · WDr

r ,d1(P, Q).

Taking the rβ root on both sides finished the proof. ��

For the XL-insurance, the Hölder-constant is a Lipschitz constant (β = 1) and has the value
1.

From the previous Theorem we can conclude that, if two probabilities are close, then
the image probabilities by a mapping T with the characteristics of Theorem 3, are close in
Wasserstein distance as well. Theorem 3 isolates the argument also used in Theorem 3.31
in Pflug and Pichler (2014). Note that the underlying distances for the Wasserstein distances
are the metrics of the respective spaces.

Corollary 3 Let F,G be two distributions defined by the probabilities P and Q, respectively,
and FT ,GT be their image distributions by T , respectively. If T is a β-Hölder continuous
mapping with constant Hβ , h ∈ Lq , the distributions FT , GT with finite p-moments, then
for all r = p · β (r ≥ 1), the distortion premium with payment function T satisfies

|πh

(
FT
)

− πh

(
GT

)
| ≤ ||h||q · WDp,d1

(
PT , QT

)
≤ ||h||q · Hβ · WDβ

r ,d1
(P, Q).

(15)

We proceed now to study sensitivity properties of the distortion premium w.r.t. the distor-
tion density.

4 Continuity of the premiumw.r.t. the distortion density

Previously, we studied the mapping F �→ πh(F) for fixed h. In this section, we consider and
present properties of the mapping h �→ πh(F) for fixed F . Different sensitivity properties
w.r.t. the distortion parameters were studied in Gourieroux and Liu (2006).

Proposition 5 (Continuity of the distortion premiumw.r.t. the distortion density h) Let F be a
distribution and consider two different distortion densities h1, h2. If F has finite p-moments
and h1, h2 ∈ Lq , then

∣
∣πh1(F) − πh2(F)

∣
∣ ≤ ||F−1||p · ||h1 − h2||q ,

where p and q are conjugates. Here the choices p = 1, q = ∞ and p = ∞, q = 1 are
included.

Proof Use Hölder inequality and the result is direct. ��

We can conclude that, if h1 and h2 are close, then also the premium prices are close.
However, h is always identifiable by the following Proposition.
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Proposition 6 If πh1(F) = πh2(F) for all distribution functions F (the value ∞ is not
excluded), then

h1(v) = h2(v) a.s.

Proof Let Fa be the distribution which takes the value 0 with probability a and the value 1
with probability 1 − a, for some a ∈ (0, 1), then its inverse F−1

a is the indicator function of
the interval [a, 1]. Hence,

πh1(Fa) =
∫

1[a,1](v) h1(v) dv =
∫ 1

a
h1(v) dv = πh2(Fa) =

∫ 1

a
h2(v) dv.

Thus, the distortion distributions H1 and H2 are equal and therefore h1 = h2 almost surely.
��

Remark 6 Note the previous proposition is true if the family of distributions where the pre-
mium prices coincide contains all the Bernoulli variables. Compare also Theorem 2 in Wang
et al. (1997).

Remark 7 Another family with the property that the premium prices for this family determine
the distortion in a uniquemanner is the family of Power distributions of the form Fγ (u) = uγ

on [0, 1] and more general of the form Fγ,β(u) = β−γ uγ on [0, β]. The distortion premium
prices for this family are

∫ 1

0
β v1/γ h(v) dv,

and the uniqueness of h and β is obtained since

β = lim
γ→∞

∫ 1

0
βv1/γ h(v) dv,

and the inversion formula for the Mellin transform (see Zwillinger 2002).

5 Estimating the distortion density from observations

The way how insurance companies calculate a premium is typically not revealed to the
customer. Notice that risk premia appear not only in the insurance business, see the link of
insurance premium prices and asset pricing in Nguyen et al. (2012). Risk premia appears in
other areas such as

– Power future markets A future contract fixes the price today for delivery of energy
later. There is the risk of price changes between now and the delivery period. Thus, such
a contract has the character of an insurance and the pricing principles apply, although the
price is found in exchange markets (e.g. electricity future markets).

– Exotic optionsWhile standard options are priced through a replication strategy argument,
this argument does not apply for other types of options and these options have the character
of insurance contracts. Pricing of such contracts is often done over the counter, but again
the pricing principle is not revealed to the counterparty.

– Credit derivativesAlso these contracts carry the character of insurance and can be priced
according to insurance price principles.
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In this section we assume that we know the distortion premium prices of m contracts,
which are all priced with the same distortion density h. For each contract j , we also have
a sample x ( j)

1 , . . . , x ( j)
n of size n drawn from the loss distribution of this contract at our

disposal. For simplicity we assume that n is the same for all contracts, but this is not crucial.
The goal of this section is to show how the distortion density h can be regained from the

observations of the insurance prices, which would help us to shed more light on the price
formation of contract counterparties. Notice that our aim is not to estimate the distortion
premium prices from empirical data as is done in Gourieroux and Liu (2006) or Tsukahara
(2013).

A simulation example As an example we consider m different loss distributions, all of
Gamma type. From each distribution, we obtain a sample of size n. For each sample, we
calculate the AV@R and power distortion premium prices. Based on the prices obtained and
our samples, we aim to recover the distortion density h. We denote the ordered sample from
the j-th loss distribution by x ( j)

[1] , . . . , x
( j)
[n] . The distortion premium, with distortion density

h for each sample j = 1, . . . ,m, is

π( j) =
n∑

i=1

x ( j)
[i]
∫ i

n

i−1
n

h(v) dv =
n∑

i=1

x ( j)
[i]
(

H

(
i

n

)

− H

(
i − 1

n

))

. (16)

On the following, we develop (16) for the particular cases of AV@R and power distortion
premium prices for each sample j = 1, . . . ,m.

AV@R distortion premium The price for hα defined on (7) is

π( j) = 1

n (1 − α)
·

n∑

i=ia

x ( j)
[i] , (17)

where 1 < iα < n s.t. iα−1
n ≤ α < iα

n .

Power distortion premium The price given by the power distortion h(s) defined in (3) with
0 < s < 1 is

π( j) =
n∑

i=1

x ( j)
[i] ·

((

1 − i − 1

n

)s

−
(

1 − i

n

)s)

, (18)

and the price given by h(s) defined in (5) with s ≥ 1 is

π( j) =
n∑

i=1

x ( j)
[i] ·

((
i

n

)s

−
(
i − 1

n

)s)

. (19)

The inverse problem consists on estimating the distortion density h from observed prices.
Recall that among the examples we presented of common distortion densities we had step
functions and continuous functions, therefore we will use step and spline functions in order
to estimate estimate h. We do so for the prices obtained in (17)–(19).
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5.1 Estimation of the distortion density with a step function

Distortion density as a step function Let ĥ1l denote the step function consisting of l equal-
size steps, defined as

ĥ1l (v) =
l∑

k=1

λk · I[
L· k−1

n ,L· kn
)(v) =

l∑

k=1

λk · I[ k−1
l , kl

)(v), (20)

where L = n/l, λs ∈ R for k = 1, . . . , l and l denotes the dimension of the step function
space. We also impose

∫ 1

0
ĥ1l (v) dv =

l∑

k=1

∫ k
l

k−1
l

λk dv = 1

l
·

l∑

k=1

λk = 1, (21)

with 0 ≤ λ1 ≤ · · · ≤ λl . In this way, ĥ1l fulfils the density constraints as well as the
non-decreasing constraints.

Prices with the step function For each sample j = 1, . . . ,m, the prices with ĥ1l are

π̂ ( j) =
n∑

i=1

x ( j)
[i] ·

∫ i
n

i−1
n

ĥ1l (v)dv =
l∑

k=1

L·k∑

i=(k−1)L+1

x ( j)
[i] ·

∫ i
n

i−1
n

λk dv =
l∑

k=1

λk

n
·

L·k∑

i=(k−1)L+1

x ( j)
[i] ,

(22)

Estimation In order to estimate ĥ1l we will minimize the squares of the differences between
the prices obtained by a distortion function h and the premium obtained by ĥ1l in (22). We
will test our results with the given prices π( j) calculated in (17), (18) and (19). We solve,

min
λ

m∑

j=1

(
π̂ ( j) − π( j)

)2

s.t.
1

l
·

l∑

i=1

λi = 1

0 ≤ λ1 ≤ · · · ≤ λl .

(P1)

5.2 Estimation of the distortion density with a cubic monotone spline

B-splines construction For our purposes we will define the splines on the interval [0, 1].
Any B-spline is a linear combinations of the B-spline basis functions. The B-spline basis
functions have all the same degree, b and we choose to define them at equally spaced knots
tk = k/L , for k = 0, . . . , L , hence L subintervals. The functions for this basis are denoted
as Bk,b and constructed following a recursion formula. The B-spline basis function of degree
0 is denoted and defined as

Bk,0(v) =
{
1 tk ≤ v ≤ tk+1

0 otherwise.

TheB-spline basis functions of degree b, Bk,b are obtained as an interpolation between Bk,b−1

and Bk+1,b−1, following the recursion formula

Bk,b(v) = v − tk
tk+b − tk

Bk,b−1(v) + tk+b+1 − v

tk+b+1 − tk+1
Bk+1,b−1(v).
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Fig. 1 Cubic increasing monotonic base functions

In the recursion we need to define fake knots t−k = 0 and tL+k = 1 for k = 1, . . . , b. In
our case, we consider splines of degree b = 2. If we divide [0, 1] in L equally sized intervals,
the basis has L + 2 functions

{
B−2,2, B−1,2, B0,2, B1,2, . . . , BL−1,2

}
. (23)

Notice that all the elements of the basis can be obtained by translating the B-spline basis
function B0,2 defined on the first b + 2 = 4 knots. In order to have a base of increasing
monotone cubic splines we integrate the functions of (23) and obtain a new base

{S−2, S−1, S0, . . . , SL−1}, (24)

where Sk(v) = ∫ v

0 Bk,2(w) dw for all k = −2, . . . , L − 1. We scale the functions of (23) so
the splines in (24) are distribution functions. Note that no linear combination of (24) gives
us a constant function, due to construction of (24). Therefore, we need one element to our
base, say SL(v) = c and hence

{S−2, S−1, S0, . . . , SL−1, SL}, (25)

is our final base with l = L + 3 elements, where l denotes its dimension.
As an example we illustrate the base obtained for L = 5. Starting with B0,2 defined on

t0 = 0, t1 = 1/5, t2 = 2/5, t3 = 3/5, precisely

B0,2(v) = 53

2
· (v21[t0,t1) + (v(t2 − v) + (t3 − v)(v − t1))1[t1,t2) + (t3 − v)21[t2,t3)

)

We denote by S0 the distribution of B0,2 and obtain the rest of the monotone cubic splines by
translating S0. The basis of cubic monotone splines of dimension l = 8, illustrated in Fig. 1,
is denoted as

{S−2, S−1, S0, . . . , S4, S5}, (26)

where Sk(v) = S0(v − k/5) for k = −2, . . . , 4 and S5(v) = c.
Any linear combination with positive scalars of the splines in (26) define a spline which

is an increasing and positive function.
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Distortiondensity as a splineLet ĥ2l (v)denote an increasingmonotone cubic density defined
as a linear combination of l = L + 3 splines in (25)

ĥ2l (v) =
L∑

k=−2

λk · Sk(v), (27)

where λk ≥ 0 for all k = −2, . . . , L . Notice that by setting the scalars to be non-negative,
ĥ2l is increasing. However, ĥ

2
l must integrate to 1 on [0, 1], hence

∫ 1

0
ĥ2l (v) dv =

L∑

k=−2

λk ·
∫ 1

0
Sk(v) dv =

L∑

k=−2

λk ·
(

n∑

i=1

Aik

)

=
L∑

k=−2

λk · ak = 1,

where

Aik =
∫ i

n

i−1
n

Sk(v) dv, ak =
n∑

i=1

Aik . (28)

Prices with the spline For each sample j = 1, . . . ,m, the prices with ĥ2l are

π̂ ( j) =
n∑

i=1

x ( j)
[i] ·

∫ i
n

i−1
n

ĥ2l (v) dv =
n∑

i=1

x ( j)
[i] ·

(
L∑

k=−2

λk Aik

)

. (29)

Estimation Given prices π( j) calculated as in (17), (18) or (19) and the prices calculated in
(29) for every sample j = 1, . . . ,m, we solve

min
λ

m∑

j=1

(
π̂ ( j) − π( j)

)2

s.t.
L∑

k=−2

λk · ak = 1

λk ≥ 0, k = −2, . . . , L,

(P2)

where ak is defined in (28).
The estimations obtained by solving (P1) and (P2) are presented below.

AV@R distortion premium We consider particular cases of hα for α = 0.9, 0.95. We
estimate the distortion density for each of the cases, with two different step functions, corre-
sponding to l = 8, 10 steps, and two different spline basis functions of dimensions l = 8, 13,
respectively.

Step function The estimated step distortions ĥl for l = 8, 10 are obtained by solving (P1)
and illustrated below (Fig. 2).

Splines The estimated spline distortions ĥ2l for l = 8, 13 are obtained by solving (P2) and
illustrated below (Fig. 3).

Power distortion premium For this case we considerh(s) for s = 0.8, 3. We solve (P1) and
(P2) with the same number of steps and number of spline basis functions as before.

Step function The estimated step distortions ĥ1l for l = 8, 10 are obtained by solving (P1)
and illustrated below (Fig. 4).

Splines The estimated spline distortions ĥ1l for l = 8, 13 are obtained by solving (P2) and
illustrated below (Fig. 5).
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Fig. 2 The true distortion density hα for α = 0.9, 0.95 and their respective step functions estimators for l = 8
steps, and l = 10 steps

Fig. 3 The true distortion density hα for α = 0.9, 0.95 and their respective spline estimators for l = 8 and
l = 13 spline base dimension

Fig. 4 The true distortion density h(s) for s = 0.8, 3 and their respective estimated step distortions with
l = 8, 10 steps
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Fig. 5 The true distortion density h(s) for s = 0.8, 3 and their respective estimated spline distortions with
l = 8, 13 spline base dimension

Table 1 Optimal values of the problems (P1) and (P2) for the AV@R-distortion and the power distortion

AV@R α = 0.9 α = 0.95 Power s = 0.8 s = 3

Step l = 8 7.3248 107.1562 Step l = 8 0.0012 1.1466e−04

Step l = 10 0 58.4835 Step l = 10 0 5.1772e−05

Spline l = 8 0.0322 13.0785 Spline l = 8 3.6976e−04 0

Spline l = 13 0.0154 0.0502 Spline l = 13 1.3251e−04 0

The optimal values of the optimization problems for all the cases can be seen in the
following Table 1.

6 Ambiguity

In this section we combine the distortion premium with the ambiguity principle. Such an
approach allows us to incorporate model uncertainty into the premium. Recall that, by setting
the distortion density to h = 1, we would price just with the ambiguity principle. As was
mentioned in Sect. 1, distances can be used to define ambiguity sets. Here, closedWasserstein
balls will serve as ambiguity sets. These sets will be centred at F , an initial distribution, that
we refer to as our baseline model.

Definition 2 (Robust distortion premium under Wasserstein balls with d1) Let F be the base-
line loss distribution, h a distortion density. The robust distorted price of order r ≥ 1 is

πε
h,r ,d1(F) = sup

{
πh(G) : G ∈ Br ,d1(F, ε)

}
, (P-r)

where Br ,d1(F, ε) = {G : WDr ,d1(G, F) ≤ ε}. We call the worst case distribution and
denote it by F∗ if F∗ ∈ Br ,d1(F, ε) and is such that

πε
h,r ,d1(F) = πh(F

∗).

Remark 8 Notice that for r1 ≤ r2

WDr1,d1 ≤ WDr2,d1 , (30)
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thus Br1,d1 ⊇ Br2,d1 .

We can say more about the value and solution of (P-r) if we choose r = p. We start with
bounded distortion densities, i.e. for p = 1 and q = ∞.

Proposition 7 (Characterization of theworst case distribution for r ≥ p = 1)Let the baseline
distribution F have its first moment finite.

(i) If h is unbounded, then (P-r) for r = 1 is unbounded.
(ii) If h is bounded with supv h(v) = ‖h‖∞, then (P-r) is bounded for all r ≥ 1. If r = 1,

the optimal value of (P-r) is

πε
h,1,d1(F) = πh(F) + ε · ‖h‖∞.

We interpret the additional term ε · ‖h‖∞ as the ambiguity premium. For the worst case
distribution,

– if h(v) = ‖h‖∞ for v ≥ 1 − η and 0 < η ≤ 1, then the supremum is attained at

F∗
η (x) =

⎧
⎨

⎩

F(x) x < F−1(1 − η),

1 − η F−1(1 − η) ≤ x < F−1(1 − η) + ε/η,

F (x − ε/η) x ≥ F−1(1 − η) + ε/η.

– Otherwise, the supremum is not attained, but can be approximated by the sequence
F∗
1/n(x), ∀n ∈ N.

Proof (i) Given that h is increasing and unbounded, the increasing sequence Kn =
h (1 − 1/n), is such that limn→∞ Kn = ∞. For all n ∈ N we define a distribution
Gn such that

G−1
n (v) = F−1(v) + ε · n 1[1−1/n,1].

Gn is on the boundary of B1,d1(F, ε) and

πh(Gn) = πh(F) + ε · n
∫ 1

1−1/n
h(v) dv ≥ πh(F) + ε Kn .

Hence, (P-r) is unbounded for r = 1. (ii) It is sufficient to prove (P-r) is bounded for r = 1
since B1,d1 ⊇ Br ,d1 for all r ≥ 1 (see Remark 8). Any admissible G for r = 1 can be written
as G−1(v) = F−1(v) + G−1

1 (v), where G1 is such that
∫ 1
0 G−1

1 (v) dv ≤ ε. Since F has its
first moment finite, the following upper bound is finite:

πh(G) = πh(F) +
∫ 1

0
G−1

1 (v) h(v) dv ≤ πh(F) + ε · ‖h‖∞. (31)

The distribution F∗
η (x) given in the Proposition has inverse

(
F∗

η

)−1
(v) = F−1(v) + ε

η
1[1−η,1].

Therefore, F∗
η is on the boundary of B1,d1(F, ε) and

πh

(
F∗

η

)
=
∫ 1

0

(

F−1(v) + ε

η
1[1−η,1]

)

h(v) dv = πh(F) + ε

η

∫ 1

1−η

h(v) dv.
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Fig. 6 The worst case
distribution F∗

η for hα with
α = 0.9 is obtained by shifting F
from xα , a length ε/η, where
xα = F−1(α) and η = 1 − α

If h(v) = ‖h‖∞ for v ≥ 1 − η, then F∗
η attains the upper bound in (31). Otherwise, F∗

1/n
approaches the maximum from below, since

(
F∗
1/n

)−1
(v) = F−1(v) + ε · n1[1−1/n,1],

and

πh(F
∗
1/n) = πh(F) + ε · n

∫ 1

1−1/n
h(v) dv ↑ πh(F) + ε · ‖h‖∞.

��
Remark 9 The solution F∗

η in Proposition 7 is not unique. Any distribution F̃η such that

F̃−1
η (v) = F−1(v) + ε

η
· k(v)1[1−η,1], with 1

η
· k(v)1[1−η,1] a density on [0, 1], attains the

supremum.

As an example, we illustrate the worst case distribution for the AV@R premium (Fig. 6).
If h is unbounded we can characterize the solution of (P-r) as follows.

Proposition 8 (Characterization of theworst case distribution for r ≥ p > 1)Let the baseline
distribution F have finite p-moments. If h ∈ Lq , then (P-r) is bounded for r ≥ p. If r = p,
the optimal value of (P-r) is

πε
h,p,d1(F) = πh(F) + ε · ‖h‖qq .

Also in this case, the term ε · ‖h‖qq is interpreted as ambiguity premium.
Furthermore, the worst case distribution F∗ of (P-r) for r = p is such that

F∗−1
(v) = F−1(v) + ε ·

(
h(v)

||h||q
)q/p

.

Proof We prove (P-r) is bounded for r = p and by Remark 8 we have boundness for all
r ≥ p. Notice that, for all admissible G, if r = p, we have

∫ 1

0
G−1(v) h(v) dv ≤

∫ 1

0
F−1(v) h(v) dv +

∫ 1

0
|G−1 − F−1| h(v) dv

≤ πh(F) +
(∫ 1

0
|G−1 − F−1|p dv

)1/p

||h||q
≤ πh(F) + ε · ||h||q .
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F∗ is admissible since it is on the boundary of Bp,d1(F, ε)

WDp,d1(F, F∗) =
(∫ 1

0
ε p ·

(
h(v)

||h||q
)q

dv

)1/p

= ε,

and F∗ attains the upper bound

πh(F
∗) − πh(F) =

∫ 1

0
ε ·
(
h(v)

||h||q
)q/p

h(v) dv = ε ·
∫ 1

0

h(v)q

||h||q−1
q

dv = ε · ||h||q . ��

Under some conditions on h we can also prove unboundness of (P-r) for r > p > 1 in
the case where h is not in Lq , where q is the conjugate of p, the finite moments of F .

Proposition 9 (Unboundness for r > p > 1) Let the baseline distribution F have finite
p-moments and let h /∈ Lq , for p, q conjugates and r , s conjugates with r > 1. If there
exists s1 < s such that

∫ 1
0 h(v)s1 dv = ∞ and h ∈ Lt , for all t < s1, then (P-r) is unbounded

for all r > p.

Proof Defineψη(v) = h(v)s1−11[1−η,1]. Sinceψη ∈ Lr for r > 1 (note that r(s1−1) < s1),
there exists an 0 < η < 1 such that

∫ 1

0
ψη(v)r dv =

∫ 1

1−η

h(v)r(s1−1) dv < ε.

Thus, the distributionGη such thatG−1
η (v) = F−1+ψη(v) is inBr ,d1(F, ε). And its premium

is unbounded

πh(Gη) = πh(F) +
∫ 1

0
ψη(v) h(v) dv = πh(F) +

∫ 1

1−η

h(v)s1 > ∞. ��

Remark 10 If instead of the metric d1 we consider dp(x, y) = |x p− y p| as underlyingmetric
for the Wasserstein distance, we could define the ambiguity principle

πε
h,1,dp (F) = sup{πh(G) : G ∈ B1,dp (F, ε)}, (P-dp)

whereBr ,dp (F, ε) = {G : WDr ,dp (G, F) ≤ ε}. It is easy to see that, if F has p-moments the
constraint of the balls make all of admissible distributions to have also p-moments, therefore
for Proposition 3, if h ∈ Lq , then (P-dp) is bounded. Furthermore, continuity respect to this
Wasserstein distance implies our continuity results in Sect. 3.

7 Conclusions

After some introduction about general premium principles we propose generalizations of the
distortion premium. In addition, we have studied in detail three functional relationships for
the distortion premium

– the premium function F �→ πh(F), i.e. the properties of πh as a premium principle,
– the direct function h �→ πh(F), i.e. the dependency on the distortion density,
– the inverse functions πh(F) �→ h.

The smoothness properties are important for robustness aspects, however it is well known
that a quite smooth direct function makes the inverse problem difficult. We showed however
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that the inverse problem is identifiable and we gave a simple quadratic optimization problem
to estimate it from empirical data. We successfully illustrated this in a simulation study, the
application on real data is left for further research. We also identified the ambiguity premium
for Wasserstein balls as ambiguity sets offering, in some cases, a specific formulation of the
worst case distribution. It turned out that the extra premium for ambiguity depends on the
distortion function h and in amultiplicative way on the ambiguity radius ε, but does not on the
loss distribution F itself. Thus it is the same for all contracts and can be calculated in a separate
manner. Finally, by using different distances as underlying metrics for the Wasserstein ball,
and hence, for the ambiguity set, we could find bounds for the robust premium is always
bounded.
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Appendix

Properties of the generalized distortion premium

We consider here the generalized distortion premium

R(X) =
∫ 1

0
ν(AV@Rα(X)) k(α) dα, (32)

where X ∈ L1, ν a convex,monotoneLipschitz function and k a non-negativeweight function
on [0, 1], which satisfies

∫ 1
0 (1 − α)−1 k(α) dα < ∞. Clearly, X �→ R(X) is convex and

monotone, but is positively homogeneous and/or translation equivariant only if ν is a multiple
of the identity. To see this, consider the subdifferential of R at Y ∈ L1 is

ZY =
∫ 1

0
ν′(AV@Rα(Y ))(1 − α)−11lY>F−1

Y (α)
k(α) dα ∈ L∞, (33)

where FY is the distribution function of Y . Notice that E(Y · ZY ) depends only on the
distribution function FY . After some calculation, one finds that

E(Y · ZY ) =
∫ 1

0
ν′(AV@Rα(Y )) · AV@Rα(Y ) k(α) dα.

Finally, based on the subdifferential, one gets a dual representation

R(X) = sup
Y∈L1

{E(X · ZY )

−
∫ 1

0
[ν′(AV@Rα(Y ))AV@Rα(Y ) − ν(AV@Rα(Y ))] k(α) dα},

where ZY is given by (33).
It is well known (see Pflug and Römisch 2007) that R is positively homogeneous only if

∫ 1

0
[ν′(AV@Rα(Y ))AV@Rα(Y ) − ν(AV@Rα(Y ))] k(α) dα = 0,
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when it is finite. This implies that ν(x) = γ · x for some γ > 0. R is translation equivariant,
if in addition the expectation of the dual multiplier ZY is one, which in happens only if∫ 1
0 γ k(α) dα = 1.

On different underlyingmetrics for theWasserstein distance

There is a whole family of distances on R, which are generalizations of d1. Set for x, y ≥ 0,
dp(x, y) = |x p − y p|. The Wasserstein distance of order 1 with distance dp is

WD1,dp (F,G) =
∫ 1

0
|(F−1(v))p − (G−1(v))p| dv.

Lemma 1 Notice that for p ≥ 1

WDp,d1(F,G) ≤ [WD1,dp (F,G)]1/p.
Proof By the subadditivity of x �→ x p on R≥0 one has that |x − y|p ≤ |x p − y p| and
therefore

WDp,d1(F,G) =
[∫ ∞

0
|F−1(v) − G−1(v)|p dv

]1/p
≤ [WD1,dp (F,G)]1/p.

��
Remark 11 This argument also shows that if F has finite p-moments and ifWD1,dp (F,G) <

∞ (and a fortiori if WDp,d1(F,G) < ∞), then also G has finite p-moments. On the other
hand, if both F and G have finite p-moments, then

WD1,dp (F,G) ≤ p · WDp,d1(F,G)
(
1 + ‖F−1‖p−1

p + ‖G−1‖p−1
p

)

[see Lemma 2.19 in Pflug and Pichler (2014)]. Therefore, imposing conditions on WD1,dp
or on WDp,d1 leads to quite similar results.
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