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Abstract

This thesis is dedicated to the study of two enumerative geometry problems
in the context of linear series on algebraic curves.

The first problem is that of settling the issue of the validity of the de
Jonquières formulas. These formulas compute the number of divisors with
prescribed multiplicity, or de Jonquières divisors, contained in a linear series
on a smooth projective curve. To do so, we construct the space of de Jonquières
divisors as a determinantal cycle of the symmetric product of the curve and
prove that, for a general curve with a general linear series, it is of expected
dimension. In doing so, we describe the degenerations of de Jonquières di-
visors to nodal curves using both limit linear series and compactified Picard
schemes.

The second problem deals with cycles of subordinate or, more generally,
secant divisors to a given linear series on a curve. We consider the intersection
of two such cycles corresponding to secant divisors of two different linear
series on the same curve and investigate the validity of the enumerative for-
mulas counting the number of divisors in the intersection. We study some
interesting cases, with unexpected transversality properties, and establish a
general method to verify when this intersection is empty.





Zusammenfassung

Diese Arbeit widmet sich der Untersuchung von zwei Problemen der abzählen-
den Geometrie im Zusammenhang mit linearen Systemen auf algebraischen
Kurven.

Das erste Problem besteht darin, die Frage der Gültigkeit der Jonquières-
Formeln zu klären. Diese Formeln berechnen die Anzahl von Divisoren mit
vorgeschriebener Multiplizität, genannt de Jonquières-Divisoren, die in einem
linearen System auf einer glatten projektiven Kurve enthalten sind. Umdies zu
tun, konstruieren wir den Raum der de Jonquières-Divisoren als einen Deter-
minantenzyklus des symmetrischen Produkts der Kurve und beweisen, dass er
für eine allgemeine Kurve die erwartete Dimension hat. Dabei beschreiben wir
die Degenerationen der Jonquières-Divisoren zu den Knotenkurven sowohl
mit linearen Systemen als auch mit kompaktifizierten Picard-Schemata.

Das zweite Problem behandelt Zyklen von Untergeordneten-, oder allge-
meiner, Sekanten-Divisoren zu einem gegebenen linearen System auf einer
Kurve. Wir betrachten den Durchschnitt zweier solcher Zyklen, die Sekanten-
Divisoren von zwei verschiedenen linearen Sytemen auf der gleichen Kurve
entsprechen, und untersuchen die Gültigkeit der enumerativen Formeln, die
die Anzahl der Teiler im Durchschnitt zählen. Wir untersuchen einige inter-
essante Fälle mit unerwarteten Transversalitätseigenschaften und etablieren
eine allgemeine Methode, um zu überprüfen, wann dieser Durchschnitt leer
ist.
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Conventions

Curve C complete reduced algebraic curve over C
Cd d-th symmetric product of the curve C
hi(C,L) dimension of Hi(C,L) for a line bundle L on C
Picd(C) Picard group of line bundles of degree d on C
Wr
d(C) subvariety of Picd(C) of line bundles Lwith

h0(C,L) > r+ 1
Linear series on C pair (L,V) where V is a vector subspace of H0(C,L)
grd linear series of degree d and dimension r on a curve
|L| for a line bundle L, stands for the linear series

(L,H0(C,L))
|D| for a divisor D ∈ Cd, stands for the linear series

| OC(D)|
Grd(C) variety of grd-s on C
ρ(g, r,d) Brill-Noether number
KC canonical line bundle on C; used also for canonical

divisor and canonical linear series
DJr,dk,N(µ1,µ2,C, l) space of de Jonquières divisors of length N of the series

l of type grd determined by the partitions µ1 and µ2
of length k

Γe(l) space of effective divisors of degree e subordinate to
the linear series l

Ve−fe (l) space of effective divisors of degree e imposing at most
e− f independent conditions on l
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Chapter 1

Introduction

The goal of algebraic geometry is the understanding of geometric manifes-
tations of solutions to systems of polynomial equations, or in other words,
the study of the properties of algebraic varieties. One of the oldest avenues
of research in algebraic geometry is enumerative geometry, whose aim is to
compute the number of objects satisfying certain geometric conditions. The
subject saw significant development towards the end of the 19th century due
to Hermann Schubert [Sch79], who introduced Schubert calculus for enumera-
tive problems in projective geometry. This is a powerful tool, some of whose
more computational aspects are still of interest today, and acted as a precursor
to both characteristic classes and intersection theory. As his 15th problem,
Hilbert asked at the beginning of the 20th century that a rigorous foundation
for Schubert calculus, and more generally for enumerative geometry, be estab-
lished. While Schubert calculus and its use of the "principle of conservation of
number" has been put on firm ground via topology and intersection theory on
Grassmannians by Kleiman and Laksov [KL72b], the broader question about
enumerative geometry is still open. Perhaps the best way to understand where
the issues come from is to describe the anatomy of an enumerative geometry
problem. The first important observation is that in algebraic geometry the
objects of study fall naturally into families that are themselves parametrised by
other schemes, called moduli or parameter spaces. Thus, the objects of interest
in the enumerative problem are parametrised by some moduli space and the
conditions that they have to satisfy cut certain subschemes within it. Hence the
enumerative question becomes an intersection theory problem on the moduli
space and the sought-after number is given by the class of the intersection of
the subschemes giving the conditions. However, in order for the resulting class
computation to give a sensible answer, one needs to verify that the intersection
is indeed non-empty, of expected dimension, and transverse, so that the counts
occur without multiplicity.

In this thesis we study the issues of expected dimension and transversality
for two beautiful enumerative geometry problems concerning algebraic curves

1



2 CHAPTER 1. INTRODUCTION

in the context of Brill-Noether theory. In the remainder of this chapter we first
explain what we mean by "Brill-Noether theory" and how we understand its
place in the wider framework of algebraic geometry, and more specifically,
in the theory of algebraic curves. We then describe the problems of inter-
est, namely that of de Jonquières divisors and that of intersections of secant
varieties on an algebraic curve and state our main results. In Chapter 2 we
give a summary of the techniques used in approaching our problems, i.e. de-
generations to nodal curves using limit linear series and compactified Picard
schemes. Finally, Chapter 3 and Chapter 4 are dedicated to the proofs of our
results concerning de Jonquières divisors and intersections of secant varieties,
respectively.

1.1 Brill-Noether theory: a brief summary

The developments in curve theory that led to the understanding of Brill-
Noether theory that we have today mirror those that occurred in other fields
of mathematics between the 19th and the 20th centuries. The significant
paradigm shift that took place in this time was characterised by the change
in the way mathematicians thought about their fundamental objects of study:
from sub-objects of some ambient object to an abstract entity with extra struc-
ture. Indeed, this change can be recognized, for example, in the study of
groups: while in the 19th century they were studied as subsets of GLn, closed
under matrix multiplication and inversion, in the 20th century the notion of
abstract group was introduced. This prompted the separation of group theory
into two complementary subjects: the study of the structure of abstract groups
on the one hand, and representation theory, i.e. the study of the ways in which
a given abstract group can be realised as a subgroup of GLn on the other.

A similar development took place in algebraic geometry and in particular
in the study of algebraic curves. From the classical, 19th century, point of view,
a curve is a subset of projective space defined by polynomial equations, with
three associated discrete invariants: its genus g, its degreed, and the dimension
of the projective space r. The classification question is therefore equivalent
to establishing which triples (d,g, r) may occur. In modern language, the
question is reformulated bymeans of amoduli space, namely theHilbert scheme
H0
d,g,r parametrising all such smooth non-degenerate curves in Pr of degree d

and genus g and the classification is reduced to describing all components of
the Hilbert scheme.

In the 20th century, the modern notion of an abstract curve took hold,
with only one discrete invariant, the genus g, and parametrised by the moduli
space Mg. The classification of all curves in this case becomes the problem of
describing the geometry ofMg.

Much like representation theory for groups, Brill-Noether theory relates
these two points of view by attempting to describe all the ways in which an
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abstract curve Cmay be mapped to the projective space Pr. This entails the
study of the set of all non-degenerate maps C→ Pr which has the structure of
a scheme, denoted Grd(C). More precisely, the questions seen as being in the
purview of Brill-Noether theory are whether Grd(C) is empty or not, what is
its dimension, whether it is irreducible, or smooth and if not, what its singular
locus is, and so on.

In what follows we make a summary of the main results of Brill-Noether
theory, with an emphasis on those that are relevant to our enumerative prob-
lems.

Let C be a smooth curve of genus g. To avoid redundancies, we restrict our
attention to non-degenerate maps, i.e. maps f : C→ Pr whose image does not
lie in a hyperplane. The degree of the map f denotes the degree of the pullback
divisor f∗H for any hyperplane H ⊂ Pr. In Brill-Noether theory, this setup
corresponds to the following data:

1. a line bundle L of degree d on C,

2. an (r+ 1)-dimensional vector space V ⊆ H0(C,L) of sections of Lwith
no common zeroes.

We call the pair l := (L,V) a linear series of degree d and dimension r on C and we
denote it grd for short. The condition that the sections in V have no common
zeroes is expressed by saying that l is base point free. Unfortunately, it turns out
that the set of base point free grd-s is not a complete variety, so in what follows
we consider the set Grd(C) of all grd-s, base point free or not. We also have the
related spaces

Wr
d(C) = {L ∈ Picd(C) | h0(C,L) > r+ 1} ⊆ Picd(C)

and
Crd = {D ∈ Cd | h0(C,OC(D)) > r+ 1},

where Picd(C) denotes the Picard variety of degree d line bundles on C and
Cd is the d-th symmetric product of the curve. For the construction of the
above spaces we refer the reader to Chapter IV of [ACGH85]. We note here
only thatWr

d(C) is obtained as a degeneracy locus in Picd(C) and Crd is its
preimage under the Abel-Jacobi map

u : Cd → Picd(C)
D 7→ OC(D).

The space Grd(C) is constructed as the canonical blow-up of the determinantal
varietyWr

d(C).
Finally, we define the Brill-Noether number ρ(g, r,d) by

ρ(g, r,d) = g− (r+ 1)(g− d+ r).
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Consider now the forgetful map

φ : H0
d,g,r →Mg.

The main results of Brill-Noether theory from the point of view of moduli of
curves state that

1. if ρ(g, r,d) < 0, then the map φ is not dominant and

2. if ρ(g, r,d) > 0, then there exists a unique irreducible component Hd,g,r
of the Hilbert schemeH0

d,g,r such that the restrictionφ|Hd,g,r is dominant.

We call this unique componentHd,g,r the Brill-Noether component of the Hilbert
scheme and its general point a Brill-Noether general curve.

In other words, we have the three main theorems concerning the non-
emptiness, dimension and smoothness of the spaces of linear series:

Theorem 1.1 ([ACGH85, Proposition 1.1, Chapter V]). For any smooth curve C
of genus g, if ρ(g, r,d) > 0, thenWr

d(C) 6= ∅ and Grd(C) 6= ∅. Furthermore, every
component of Grd(C) has dimension at least equal to ρ(g, r,d). The same is true for
Wr
d(C) provided r > d− g.

Theorem 1.2 ([ACGH85, Theorem 1.5, Chapter V]). If C is a general curve of
genus g and ρ(g, r,d) < 0, then Grd(C) is empty. If ρ(g, r,d) > 0, the Grd(C) is
reduced and of pure dimension ρ(g, r,d).

Theorem 1.3 ([ACGH85, Theorem 1.6, Chapter V]). For a general curve C of
genus g, the space Grd(C) is smooth of dimension ρ(g, r,d).

Another important concept in the theory of linear series is that of ram-
ification, as it simultaneously encapsulates various phenomena of classical
algebraic geometry. For a curve C equipped with a linear series l of type grd,
we define the vanishing sequence at a point p ∈ C

a(l,p) = 0 6 a0(l,p) < . . . < ar(l,p) 6 d

to be the sequence of distinct orders of vanishing of sections in l at p. The
ramification sequence of type (r,d):

α(l,p) = 0 6 α0(l,p) 6 . . . 6 αr(l,p) 6 d− r

is given by αi(l,p) = ai(l,p) − i.
When a linear series defines a morphism f : C → Pr, we may interpret

the vanishing sequence geometrically in terms of the possible multiplicities at
p of preimages under f of hyperplanes in Pr. Furthermore, the ramification
sequence gives information about the singularities of the image curve f(C) at
f(p).
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It is important to note that there are only finitely many ramification points
of l and we have the Plücker formula

∑
p∈C

( r∑
i=0

αi(l,p)
)

= (r+ 1)d+

(
r+ 1
2

)
(2g− 2).

The refinement of Theorem 1.2 including ramification states that on a
general pointed curve (C,p1, . . . ,pn) of genus g the ramification α(l,pj) of a
linear series l of type grd at the points pj must satisfy:

ρ(g, r,d) >
n∑
j=1

r∑
i=0

αi(l,pj). (1.1)

On the one hand, there are easy examples that show that this condition
is not sufficient. On the other, degeneration techniques can be used to show
that a slightly stronger version of the inequality (1.1) is both a a necessary
and a sufficient condition for the existence of linear series with prescribed
ramification:

Proposition 1.4 ([EH87, Proposition 1.2]). A general pointed curve (C,p) of genus
g possesses a linear series l of type grd with ramification sequence at p given by
α(l,p) = (α0, . . . ,αr) if and only if

r∑
i=0

(αi(l,p) + g− d+ r)+ 6 g, (1.2)

where (x)+ = max{x, 0} denotes the positive part of the integer x.

One possible direction of further study is to attempt to describe the geom-
etry of a Brill-Noether general curve. Note that once the curve is embedded
in projective space, we may start to ask questions about its extrinsic proper-
ties, such as for example the relations of points on the curve to each other,
inflectionary points, secant planes, and so on. The enumerative problems we
consider in this thesis are of this flavour and we describe them in the next
section.

1.2 Enumerative questions for embedded curves

Although the statement and original formulation of the enumerative problems
considered in this thesis are expressed in terms of extrinsic properties of
curves, both problems and their degenerations to nodal curves are related and
elucidate various aspects in the study of the moduli spaces of abstract curves
Mg,Mg,n, and their compactified counterpartsMg andMg,n.
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1.2.1 De Jonquières divisors on algebraic curves

The first problemwedealwith is that of de Jonquières divisors on algebraic curves.
A toy example of de Jonquières’ question is that of counting the number of
flex points of a plane cubic. An easy computation of the intersection of the
curve with its Hessian shows that there are 9 such inflectionary points. More
generally, using the Plücker formula one can show that a plane curve of degree
d has 3d(d− 2) flex points.

The notion of de Jonquières divisors can be understood as a natural gen-
eralisation of the situation above. In his 1866 memoir [Jon66], de Jonquières
set himself the "repellant but interesting task" 1 of computing the number
of divisors with prescribed multiplicities that are contained in a fixed linear
series on a given plane algebraic curve. In other words, one computes the num-
ber of lines in the projective plane intersecting a given curve with prescribed
multiplicities at the points of intersection. Allen [All19] later generalised
de Jonquières’ formula to curves embedded in projective spaces of arbitrary
dimension.

Almost a century after de Jonquières, using modern techniques of topol-
ogy and intersection theory of cycles on the symmetric product on a curve,
MacDonald [Mac62] and Mattuck [Mat65] recovered the original formula in
characteristic zero and arbitrary characteristic, respectively. However, their
work does not address the vagueness of the classical statements, assuming
either that the linear series in question is sufficiently generic, or that the mul-
tiplicities are counted correctly. To address this issue, Vainsencher [Vai81]
described the locus of divisors with prescribed multiplicities as the vanish-
ing locus of a section of a bundle of the appropriate rank. Using a natural
filtration of this bundle, he computed its Chern classes without making use of
the Grothendieck-Riemann-Roch theorem, and established the enumerative
validity of the de Jonquières formula for plane curves and for some higher
dimensional cases.

Our aim in this thesis is twofold. On the one hand, we settle the issue of
the validity of the de Jonquières formula for linear series of arbitrary degree
and dimension on a general curve by studying the geometry of the respective
moduli space. On the other hand, we develop a theory of degenerations for
de Jonquières divisors to nodal curves, which plays a central role as the main
tool in the study of the aforementioned moduli space.

Before stating our results, we must first make precise the notion of a de
Jonquières divisor: for a fixed smooth curve C of genus gwith a fixed linear
series l = (L,V) ∈ Grd(C), a de Jonquières divisor of length N is a divisor

a1D1 + . . .+ akDk ∈ Cd

such that
a1D1 + . . .+ akDk ∈ PV ,

1cf. J.L.Coolidge’s Treatise on algebraic plane curves [Coo31, Chapter 3, §3]
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where k 6 d is a positive integer and the Di are effective divisors of degree
di for i = 1, . . . ,k such that N =

∑k
i=1 di. If l is complete (so if g− d+ r > 0),

the definition of a de Jonquières divisor is equivalent to

L ' OC(a1D1 + . . .+ akDk).

Furthermore, if we let µ1 = (a1, . . . ,ak) and µ2 = (d1, . . . ,dk) be two positive
partitions such that

∑k
i=1 aidi = d, then we denote the set of de Jonquières

divisors of length N determined by µ1 and µ2 by DJr,dk,N(µ1,µ2,C, l).
In the particular case when di = 1 for all i = 1, . . . ,k, let n := N = k and it

follows that the de Jonquières divisor is of the form

a1p1 + . . .+ anpn,

for some distinct points p1, . . . ,pn ∈ C. Here we simplify the notation to

DJr,dk,N(µ1,µ2,C, l) = DJ
r,d
n (µ1,C, l).

Aside from being interesting objects in their own right, de Jonquières
divisors and their degenerations are natural generalisations of the concept
of strata of abelian differentials which were first introduced in the context of
Teichmüller dynamics and flat surfaces - see the works of Masur [Mas82] and
Veech [Vee82], and more recently, of Bainbridge, Chen, Gendron, Grushevsky,
andMöller [BCGG+16]. These strata are, however, interesting objects also from
the point of view of algebraic geometry, as can be seen in the work of Farkas
and Pandharipande [FP18], Chen and Tarasca [CT16], or Mullane [Mul16]. In
fact, the result of Polishchuk [Pol06] concerning the dimension of the strata
in Mg,n provides an important clue towards the validity of the de Jonquières
formulas.

It turns out that the space DJr,dk,N(µ1,µ2,C, l) has the structure of a deter-
minantal variety and its expected dimension (or, equivalently, lower bound
for its dimension) is

expdimDJr,dk,N(µ1,µ2,C, l) = N− d+ r.

The de Jonquières formula (cf. [Mat65] §5) states that, if we expect there to be a
finite number of de Jonquières divisors of length N (so if N− d+ r = 0), then
this virtual number is given by the coefficient of the monomial td1

1 · . . . · t
dk
k in

(1+ a21t1 + . . .+ a2ktk)g(1+ a1t1 + . . .+ aktk)d−r−g. (1.3)

Substituting r = 1 and d1 = . . . = dk = 1 in formula (1.3) recovers the number
of ramification points of a Hurwitz cover of C obtained from the Plücker
formula. In addition, if C is the plane cubic, then g = 1, d− r− g = 1 and we
recover its 9 flex points. Lastly, taking the linear series to be the canonical one,
we recover the number of odd theta characteristics on a general curve. Hence
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we expect these counts to be true. To settle the issue, in Chapter 3 we study
the space DJr,dk,N(µ1,µ2,C, l), establish whether it is empty when the expected
dimension is negative, and when non-empty whether it is smooth, reduced,
and of expected dimension.

Luckily, we are able to settle these questions in the affirmative. In fact, the
non-emptiness of the space of de Jonquières when the expected dimension is
non-negative follows from an easy class computation, which we explain in Sec-
tion 3.3. The questions regarding the dimension of the spaceDJr,dk,N(µ1,µ2,C, l)
and whether it is empty when the expected dimension is negative are less
straightforward and require the degeneration techniques described in Chapter
2. Using limit linear series on nodal curves of compact type, we prove

Theorem 1.5 (Dimension theorem). Fix a general curve C of genus g equipped
with a general complete linear series l ∈ Grd(C). If N − d + r > 0, the space
DJr,dk,N(µ1,µ2,C, l) is of expected dimension i.e.

dimDJr,dk,N(µ1,µ2,C, l) = N− d+ r.

A direct consequence of the dimension theorem is the non-existence statement
for complete linear series:

Corollary 1.6. LetC be a general curve equipped with a general complete linear series
l ∈ Grd(C). If N− d+ r < 0, the variety DJr,dk,N(µ1,µ2,C, l) is empty.

The validity of de Jonquières’ counts is a direct consequence of Theorem 1.5,
and of the determinantal variety structure of the space of de Jonquières divisors.
The latter implies that DJr,dk,N(µ1,µ2,C, l) is in fact a Cohen-Macaulay variety
(Proposition 4.1, Chapter II, [ACGH85]). As such, if it is zero-dimensional, it
consists of a finite number of discrete closed points. This yields

Corollary 1.7. LetC be a general curve equipped with a general complete linear series
l ∈ Grd(C). If N− d+ r = 0, the variety DJr,dk,N(µ1,µ2,C, l) is a finite collection of
reduced points.

Weaddress the issue of the smoothness ofDJr,dk,N(µ1,µ2,C, l), by expressing
the space as an intersection of subvarieties inside the symmetric product Cd
and obtaining a transversality condition from the study of the relevant tangent
spaces.

Theorem 1.8 (Smoothness result). Let C be a general curve of genus g. For any
complete linear series l ∈ Grd(C), the spaceDJ

r,d
k,N(µ1,µ2,C, l) is smooth whenever

N− d+ r > 0.

The proof is also by degeneration to nodal curves and limit linear series,
however this time using a strategy developed in [Far08] .

Finally, we prove the non-existence result for non-complete linear series
using a different degeneration technique, namely compactified Picard schemes
for moduli of stable pointed curves. We obtain:
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Theorem 1.9 (Non-existence statement). Let C be a general curve equipped with
a general linear series l ∈ Grd(C) satisfying g − d + r < 0 and let µ be a positive
partition of d length n. If n− d+ r < 0, the variety DJr,dn (µ,C, l) is empty.

These degenerations are only suitable for treating the case of de Jonquières
divisors with d1 = . . . = dk = 1, as they rely on the fact that the points in the
support of the divisor are distinct.

1.2.2 Secant varieties to linear series on algebraic curves

The study of de Jonquières divisors may give a lot of information on the
singularities of an embedded curve. For example, a consequence of the non-
existence result (Corollary 1.6) is that a general space curve of degree 8 (i.e.
embedded by a general g38) cannot have two flex points, as that would entail the
existence of a de Jonquières divisor 4p1 + 4p2 of length two, and 2− 8+ 3 < 0.

In what follows we concentrate on an enumerative problem stemming
from an alternative perspective on the topic of singularities of a curve embed-
ded in projective space. An elementary example thereof is the calculation of
the number of double points of a curve C contained in the quadric surface
P1×P1. Assuming the curve C has arithmetic genus g and bidegree (d1,d2),
the adjunction formula tells us that there are exactly

ν = (d1 − 1)(d2 − 1) − g

ordinary double points.
We can reformulate this problem from the point of view of intersections of

incidence varieties as follows: the embedding

C→ P1×P1

is given by a pair of pencils l1 = g1d1
and l2 = g1d2

on C and the double points
correspond to pairs of points (p1,p2) common to both linear series, i.e. a divisor
D = p1 + p2 ∈ C2 such that

dim(l1 −D) > 0,
dim(l2 −D) > 0.

The enumerative problem becomes that of counting the number of divisors of
degree two that are common to the two pencils, or more precisely the number
of divisors in the intersection of the two incidence varieties corresponding to
the series l1 and l2.

In this thesis we study the geometry of such intersections of incidence (or
more generally secant) varieties to algebraic curves, with a focus on issues of
transversality of intersection.

Before stating the precise results, we introduce some terminology. Let C
be a general curve of genus g equipped with a linear series l = (L,V) = grd
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such that the Brill-Noether number ρ(g, r,d) is non-negative and let e 6 d be
a positive integer. We set

Γe(l) := {D ∈ Ce | D ′ −D > 0 for some D ′ ∈ l} ⊂ Ce

to be the incidence variety of all effective divisors of degree e that are subordinate
to the linear series l.

As a subspace of Ce, the space Γe(l) has the structure of a degeneracy locus
so it is indeed a variety and it is easy to see that it has expected dimension r.
We explain this in more detail in Chapter 4.

Consider the following setup: equip the smooth general curve C of genus
g with two complete linear series l1 = gr1d1

and l2 = gr2d2
with positive Brill-

Noether numbers ρ(g, r1,d1) and ρ(g, r2,d2).
Let

Γe(l1) = {D ∈ Ce | l1 −D > 0},
Γe(l2) = {D ∈ Ce | l2 −D > 0},

be the respective incidence varieties. We therefore expect to have finitely many
divisors D in the intersection Γe(l1) ∩ Γe(l2) if

dim Γe(l1) + dim Γe(l2) = r1 + r2 = e.

In fact, in Chapter VIII, §3 of [ACGH85], a class computation shows that in this
case, the number is expected to be the coefficient of the monomial te−r11 te−r22
in

(1+ t1)d1−g−r1(1+ t2)d2−g−r2(1+ t1 + t2)g. (1.4)

Using this formula we immediately recover the number of double points of
a curve C of genus g and bidegree (d1,d2) contained in the quadric surface
P1×P1. Indeed, in this case r1 = r2 = 1 and e = 2. Thus, according to formula
(1.4), the number we are after is the coefficient of t1t2 in

(1+ t1)d1−g−1(1+ t2)d2−g−1(1+ t1 + t2)g.

But this is exactly (d1 − 1)(d2 − 1) − g, i.e. the same count we obtained by
geometric methods.

Unlike in the case of de Jonquières divisors, formula (1.4) yields unexpected
zero counts that correspond to the case when the intersection

Γe(l1) ∩ Γe(l2)

is not transverse.
We study this behaviour in Section 4.2 and, using the dimension theorem

for de Jonquières divisors (Theorem 1.5), we obtain in Section 4.2.1 some
examples where this intersection is actually empty. Using a tangent space
computation, we prove in Section 4.2.2 our main non-transversality result:
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Theorem 1.10. Consider a general curve C of genus g equipped with arbitrary linear
series l1 = gr1d1

and l2 = gr2d2
= KC − l1 such that ρ(g, r1,d1) is non-negative. If

non-empty, the intersection Γe(l1) ∩ Γe(l2) is not transverse for e = r1 + r2.

Another related direction of study is to consider a generalisation of the
notion of incidence varieties, namely that of secant varieties: if C is a smooth
general curve of genus g endowed with a linear series l of type grd and if e and
f are positive integers such that 0 6 f < e 6 d, then let

Ve−fe (l) = {D ∈ Ce | dim(l−D) > r− e+ f}

be the secant variety of effective divisors of degree e which impose at most
e− f independent conditions on l. Equivalently, this space parametrises the
e-secant (e− f− 1)-planes to the curve C embedded in Pr via l.

The cycle Ve−fe (l) of Ce is also endowed with a degeneracy locus structure
(so it is an actual variety) and it was proven by Farkas [Far08] that, if non-empty,
it does indeed have expected dimension

dimVe−fe (l) = e− f(r+ 1− e+ f),

for a general curve Cwith a general series l of type grd. We remark here that
incidence varieties are special cases of secant varieties, namely Γe(l) = Vre(l)
and f = e− r.

Furthermore, secant varieties are interesting objects not just from the point
of view of classical algebraic geometry, but also from a modern perspective.
For example, one may generalise the notion of secant varieties to nonsingular
projective surfaces Swith a line bundle L. If |L| is a linear system of dimension
3m−2 inducing amap S→ P3m−2, then the number ofm-chords of dimension
m − 2 to the image of S (so the cardinality of the secant variety Vm−1

m (|L|) is
given by the integral of the top Segre class∫

S[m]
s2m(H[m]),

where S[m] is the Hilbert scheme of points of S carrying a tautological rank-m
bundle H[m]. Such Segre classes play a basic role in the Donaldson-Thomas
counting of sheaves and appeared first in the algebraic study of Donaldson
invariants via the moduli space of rank-2 bundles on S [Tyu93]. The exact
result of the integral is the subject of Lehn’s conjecture [Leh99] that states that
it can be expressed as a polynomial of degreem in the four variables

H2, H · KS, K2
S, c2(S).

For a proof of this conjecture, see [Tik94] and for a generalisation to K3 surfaces
see [MOP17].
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We shall therefore consider the more general case of the intersection of an
incidence variety and a secant variety on a smooth general curve C, namely

Γe(l1) ∩ Ve−fe (l2),

where l1 and l2 are linear series on C and e and f are integers such that
0 6 f < e 6 min(d1,d2). Here we investigate the complementary problem to
that studied in Theorem 1.10, i.e. the expected emptiness of the intersection
when the sum of the dimensions of the two varieties Γe(l1) and Ve−fe (l2) inside
Ce is less than e. As in Theorem 1.10, we again focus on the case l2 = KC − l1.
To get the correct dimensional estimate when we allow for the series l1 to vary
in moduli (so now we do not take just the general series of type gr1d1

), consider
the correspondence

Λ = {(D, l1) ∈ Ce ×Gr1d1
(C) | D ∈ Γe(l1) ∩ Ve−fe (KC − l1)} ⊂ Ce ×Gr1d1

.

By construction, Λ has expected dimension

expdimΛ = ρ(g, r1,d1) + dim Γe(l1) + dimVe−fe (KC − l1) − e,

so if this number is negative, we expect Λ to be empty. Our main result in this
context is:

Theorem 1.11. Let C be a smooth general curve of genus g equipped with a complete
linear series l1 = gr1d1

such that ρ(g, r1,d1) > 0. If f = 1 and

dim Γe(l1) + dimVe−fe (KC − l1) 6 e− ρ(g, r1,d1) − 1,

then the intersection Γe(l1) ∩ Ve−fe (KC − l1) is empty for an arbitrary linear series
l1 ∈ Gr1d1

(C).

Note that if f = r1 + 1+ ρ(g, r1,d1), then Ve−fe (KC − l1) = Γe(KC − l1) and
we are back to the degenerate case of Theorem 1.10.

We prove this in Section 4.4 by degeneration to a nodal curve using limit
linear series and by exploiting an ingenious construction of [Far08]. Further-
more, we in fact provide a method to check the emptiness of such intersections
for any f 6= r1 + 1+ ρ(g, r1,d1), but the case f = 1 seems to be the one with the
most tractable computations.

In the course of the proof of Theorem 1.11 we also find an interesting
example that contradicts the expectation of non-emptiness of secant varieties
as stated in Theorem 0.5 of [Far08]. We explain this in Remark 4.4.



Chapter 2

Degeneration techniques

Although the results of Brill-Noether theory concern a single curve, what
distinguishes them from more elementary theorems such as Riemann-Roch
is that most of them are not true for every curve C of genus g. Instead, they
apply to an open dense subset of Mg, and moreover they concern conditions
that are open on proper, smooth, families of curves. Hence to prove such
a theorem, it would be enough to exhibit a single smooth curve satisfying
it. Unfortunately, up until recently (see [ABFS16]), it was not known how to
write down a smooth curve of large genus satisfying any of the Brill-Noether
theorems. One resolution of this problem is to work on families of curves,
instead of just fixed curves, so as to be able to use variational tools in the
proofs. In this framework, one needs to find degenerations to curves that are
sufficiently special so that the required analysis can be carried out explicitly,
but that are at the same time general from the point of view of the Brill-Noether
theorems. It turns out that most known examples of such curves are singular
and highly reducible. Indeed, the proofs of the fact that Grd(C) is empty if
ρ(g, r,d) is negative and that Grd(C) is smooth and of dimension ρ(g, r,d)
(Theorems 1.2 and 1.3) both involve taking the limit of a family of grd-s on a
degenerating family of smooth curves with nodal central fibres.

Since the enumerative problems considered in this thesis are of a similar
nature, we shall also use degenerations arguments to approach them. These
techniques allow us to understand what happens to the limit of a line bundle
(or linear series) on a family of smooth curves as it degenerates to a singular
special fibre. In the remainder of this chapter we make a summary of the
two methods employed: limit linear series in Section 2.1 and compactified Picard
schemes in Section 2.2.

Before we start, we fix some terminology. The dual graph of a curve consists
of one vertex for each irreducible component and one edge for each node.
A curve is of compact type if its dual graph is a tree and is tree-like if, after
deleting self-edges, the dual graph becomes a tree. We call a curve X stable
if each smooth rational component Y meets X \ Y in at least three points. It

13
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is semi-stable if any smooth rational component Y ⊂ X intersects X \ Y in
at least two points. A smooth rational component Y ⊂ X is destabilising if
#
(
Y ∩ X \ Y

)
6 2. Furthermore, assume X is an n-pointed curve of genus g

and that 2g − 2 + n > 0. Then X is stable (or semi-stable) if on each smooth
rational component the number of nodes and marked points is at least three
(or two). A smooth rational component is destabilising if the number of nodes
and marked points is at most two.

2.1 Limit linear series

Consider a smooth 1-parameter family π : X → B of curves of genus g over a
smooth curve B such that the fibres over B∗ = B \ 0 are smooth curves, while
the special fibre is given by a nodal curve of compact type X0. Let X ∗ be the
restriction of the family to B∗. Suppose that L ∗ is a line bundle on X ∗ such
that the restriction Lt to each fibre Xt is of degree d for all t ∈ B∗. Then we
can extend L ∗ to a limit line bundle L over the whole family X . If Y is any
irreducible component of X0, then

L ⊗ OX (Y) (2.1)

is also an extension of L ∗.
Given a line bundle L ∗ on X ∗, for each t ∈ B∗ fix a non-zero subvector

space Vt ⊆ H0(Xt,Lt) of dimension r+ 1. If L is an extension of L ∗ to the
whole X , let V be a free module of rank r+ 1 over Bwith

Vt := Vt ∩H0(X ,L ) with t ∈ B,

where the intersection is taken in H0(Xt,Lt). We denote by V ∗ the corre-
sponding module over B∗. Note that the induced homomorphism

V0 → (π∗L )0 → H0(X0,L0)

is injective. To summarise, we call L∗ = (L ∗,V ∗) a linear series on X ∗. Given
a limit line bundle L on X , L∗ extends to a linear series L := (L ,V ) on X .
Its restriction L0 = (L0,V0) is a linear series of degree d and dimension r on
X0. Unfortunately, twisting the bundle L by different components of X0 as in
(2.1) yields infinitely many possible extensions of the linear series L∗. Hence
any geometric information that one may extract from the degeneration is lost.

In [EH86], Eisenbud and Harris explain that in order to get the most infor-
mation about the limiting behaviour of the linear series on the central fibre we
should only focus on some particular extensions of the line bundle in question.
Thus, for each component Y of X0, we denote by LY the unique extension
of the line bundle L ∗ that has degree d on Y and degree 0 on all other com-
ponents of X0 and by VY the corresponding free module of rank r + 1 over
B defined as above. The advantage of this is that the sections belonging to
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(VY)0 vanish on all components of X0 except for Y. Hence each LY = (LY ,VY)
induces on the component Y a linear series lY of type grd, which is called an
aspect of L∗.

The relationship between the various aspects of L∗ is best described in
terms of the vanishing sequence at the point p ∈ Y

0 6 a0(lY ,p) < a1(lY ,p) < · · · < ar(lY ,p) 6 d.

If Z is another component of X0 such that Y ∩ Z = p, then for all i = 0, . . . , r,

ai(lY ,p) + ar−i(lZ,p) > d− r. (2.2)

To sum up, a collection l of aspects of L∗ satisfying (2.2) is called a crude limit
linear series and it was proved in [EH86] that it indeed arises as a limit of
ordinary linear series on smooth curves. If all inequalities in (2.2) become
equalities, then l is called a refined limit linear series. Since refined limit series
are in fact the ones playing the role of ordinary limit series on smooth curves,
we shall usually drop the adjective "refined" unless it is necessary.

If p ∈ X is a smooth point contained in a component Y, then we define the
vanishing and ramification sequences of l at p to be those of lY at p. We have
an analogue of the Plücker formula for limit linear series:

Proposition 2.1 ([EH86, Proposition 1.1]). Let X be a genus g curve of compact
type. If l is a crude limit grd on X, then

∑
p smooth point of X

( r∑
i=0

αi(l,p)
)

6 (r+ 1)d+

(
r+ 1
2

)
(2g− 2).

Equality holds if and only of l is a refined limit linear series.

Moreover, if X is a tree-like curve of genus g, with smooth points p1, . . . ,pn
and ramification sequences α1, . . . ,αn of type (r,d), then we define

Grd(X, (p1,α1), . . . , (pn,αn))

to be the scheme of all limit linear series with prescribed ramification satisfying

αi(l,pj) > αji,

for all i = 0, . . . , r and j = 1, . . . ,n. This scheme has a determinantal structure
and we have the following dimension estimate:

dimGrd(X, (p1,α1), . . . , (pn,αn)) > ρ(g, r,d) −
r∑
i=0

n∑
j=1

α
j
i.

In fact, one can prove that the estimate is correct for most tree-like curves:
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Theorem 2.2 ([EH87, Theorem 1.1]). Let X be a tree-like curve of genus g and
suppose that each irreducible component Y, and the points q1, . . . ,qm ∈ Y where Y
meets other components of X satisfy:

1. if g(Y) = 1, thenm = 1;

2. if g(Y) = 2, thenm = 1 and q1 is not a Weierstrass point of Y;

3. if g(Y) > 3, then (Y,q1, . . . ,qm) is a generalm-pointed curve.

If p1, . . . ,pn ∈ X are general points, or arbitrary smooth points of X on smooth
rational components, then, for any ramification sequences αj,

dimGrd(X, (p1,α1), . . . , (pn,αn)) = ρ(g, r,d) −
r∑
i=0

n∑
j=1

α
j
i.

Unfortunately, it is not always true that a limit linear series on a nodal
curve X0 occurs as the limit of linear series on a family X of smooth curves
specialising to X0, as is shown in Example 3.2 of [EH86]. Happily, one can
check the smoothability of certain series, under some assumptions. To do so,
we extend the above considerations to a family (satisfying some extra technical
conditions) of curves with sections

π : X → B, p1, . . . ,pn : B→X ,

where B is now an irreducible scheme, the fibres are curves of genus g of
compact type, and the sections pi are disjoint (with image in the smooth locus
of π). One can show that there exists a scheme

G rd(X /B, (p1,α1), . . . , (pn,αn))

parametrising limit linear series on the fibres of the family with prescribed
ramification αi at the pi. The key concept that appears in the proof of smootha-
bility of limit linear series is that of dimensional properness. To understand it,
consider an irreducible curve C of genus g with a linear series of type grd with
prescribed ramification α1, . . . ,αn at the smooth points p1, . . . ,pn ∈ C. Then l
is dimensionally proper with respect to p1, . . . ,pn if, letting

π : C̃→ B

pi : B→ C̃

be the versal deformation of the pointed curve (C;p1, . . . ,pn), we have that
the dimension of an irreducible component of G rd(C̃/B, (p1,α1), . . . , (pn,αn))
containing l is

ρ(g, r,d) −
r∑
i=0

n∑
j=1

α
j
i + dimB.

Furthermore, a limit linear series with prescribed ramification at smooth points
is dimensionally proper if each of its aspects is. The smoothing result is:
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Theorem 2.3 ([EH86, Corollary 3.7]). If X is a curve of compact type, and l a
refined limit linear series which is dimensionally proper with respect to smooth points
p1, . . . ,pn ∈ X and their prescribed ramification α1, . . . ,αn, then l can be smoothed,
maintaining the ramification conditions at the points pj.

An alternative, functorial formulation of the space of limit linear series
is given in the work of Osserman [Oss06]. This proves to be useful when
constructing the spaces of degenerations corresponding to our enumerative
problems. We recall the main definitions by following the exposition in [Oss].

To begin with, let π : X → B be a proper family of smooth curves of genus
gwith a section. Following Definition 4.2.1 in [Oss], the functor G rd(X /B) of
linear series of type grd is defined by associating to each B-scheme T the set of
equivalence classes of pairs (L ,V ), where L is now a line bundle on X ×B T
with degree d on all fibres, and V ⊆ π2∗L is a subbundle of rank r + 1,
where π2 denotes the second projection from the fibre product. For the precise
definition of the equivalence relation, we refer the reader to [Oss]. This functor
is represented by a scheme Grd(X /B) which is proper over B.

Assume now that the fibres of the family π : X → B are nodal curves of
genus g of compact type such that no nodes are smoothed. Hence all fibres
have the same dual graph Γ . For each vertex v of Γ , let Yvt denote the irreducible
component of Xt corresponding to v. Thus for each v we have a family Y v of
smooth curves overBwith fibres given by Yvt . In this case the functorG rd(X /B)
of linear series of type grd is defined as follows. Consider the product fibred
over B ∏

v

G rd(Y
v/B).

Let T be a scheme over B. A T -valued point of the above product consists of
tuples of pairs (L v,V v), where L v is a vector bundle of degree d on Y v×B T
and V ⊆ π2∗L v is a subbundle of rank r+ 1. Denote by L

~d the “canonical”
line bundle of degree d and multidegree ~d on X ×B T obtained as in 4.4.2 of
[Oss]. Moreover, a line bundle has multidegree ~dv if it has degree d on the
component corresponding to the vertex v and degree zero on all the other
components. Note also that for two distinct multidegrees ~d and ~d ′, there is
a unique twist map f~d, ~d ′ : L

~d → L
~d ′ obtained by performing the unique

minimal number of line bundle twists. According to Definition 4.4.7 in loc.cit.,
a T -valued point of

∏
v G rd(Y

v/B) is in G rd(X /B)(T) if, for all multidegrees ~d
of d, the map

π2∗L
~d →

⊕
v

(π2∗L
v)/V v

induced by the restriction to Y v and f~d,~dv has its (r+ 1)st degeneracy locus
equal to all of T . With this construction, G rd(X /B) is also represented by a
scheme Grd(X /B) proper over B.

Finally, if π : X → B is a smoothing family (for details, see 4.5 of [Oss]), the
irreducible components Yvt may not exist for certain t ∈ B and it follows that
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the dual graph of the fibres of the family is not constant. We assume from now
on that there is a uniquemaximally degenerate fibre with dual graph Γ0 (i.e. the
family is locally smoothing). We fix a vertex v0 ∈ V(Γ0) and set ~d0 := ~dv0 . We
then replace the tuples of pairs (L v,V v)with tuples (L , (V v)v∈V(Γ0)), where
L is a line bundle of multidegree ~d0 on X ×B T , and for each v ∈ V(Γ0), the
V v are subbundles of rank r + 1 of the twists π2∗L ~dv . Let f : T → B be a
B-scheme. A T -valued point (L , (V v)v∈V(Γ0)) is in G rd(X /B)(T) if for an open
cover {Um}m∈I of B satisfying certain technical properties explained in 4.5.2
of [Oss], for allm ∈ I and all multidegrees ~d of d, the map

π2∗L
~d|(f◦π2)−1(Um) →

⊕
v

(
π2∗L

~dv |(f◦π2)−1(Um)

)
/V v|f−1(Um),

induced by the appropriate (local) twist maps, has its (r + 1)st degeneracy
locus equal to the whole of Um.

Remark 2.4. The functor of linear series with points given by tuples

(L , (V v)v∈V(Γ0))

is naturally isomorphic to the linear series functor with points given by tuples
of pairs (L v,V v) in the case of families where no nodes are smoothed (this is
Proposition 4.5.5 in loc.cit.).

Remark 2.5. All the constructions can be shown to be independent of the
choice of vertex v0, twist maps, and open covers {Um}m∈I.

Note that all constructions are compatible with base change and moreover,
the fibre over t ∈ B is a limit linear series space when Xt is reducible, and
a space of classical linear series when Xt is smooth. As a last remark, since
working with (refined) limit linear series in the sense of Eisenbud and Harris
is more convenient for practical purposes, we generally restrict to those (see
Section 6 of [Oss06] for the connection between the two approaches).

2.2 Compactified Picard schemes

Recall that Pic(C) is the group of isomorphism classes of line bundles on a
curve and it may furthermore be identified with the sheaf cohomology group
H1(C,O∗C). If the curve is integral, Pic(C) is also isomorphic to the class group
of Cartier divisors of C.

For a nonsingular projective curve C of genus g, one can show that Pic(C)
has the structure of a variety and the following properties:

(i) There is a Poincaré line bundle L̃ on Pic(C) × C such that for all points
[L] ∈ Pic(C), the restriction L̃ |[L]×C is the line bundle L.
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(ii) The variety Pic(C) has infinitely many components, one for each d ∈ Z,
denoted by Picd(C).

(iii) The Poincaré line bundle L̃ on Picd(C) × C is such that for all points
[L] ∈ Picd(C), the restriction L̃ |[L]×C is the line bundle L of degree d. This
restriction induces a bijection between Picd(C) and the isomorphism classes
of line bundles of degree d on C.

(iv) Picd(C) is nonsingular and projective of dimension g.

Of course we can extend these considerations to families of curves to obtain
a relative Picard variety of degree d. More precisely, one can show (see for example
Chapter XX1, Theorem 2.1 of [ACG11]) that for a family π : X → B of smooth
curves of genus g > 1 that admits a section, there exists a scheme Pd,g over B
and a Poincaré line bundle L̃ on X ×B Pd,g which restricts to a degree d line
bundle on each fibre of π and satisfies the following universal property: for
every morphism f : B ′ → B and every line bundle L on X ×B B ′ restricting
to a degree d line bundle on each fibre of h : X ×B B ′ → B ′, there exists a
unique lifting ϕ : B ′ → Pd,g of f such that

L = (Id×ϕ)∗L̃ ⊗ h∗M ,

for some line bundle M on B ′.
Furthemore, for g > 3 and the universal family f : Cg →Mg, we have the

universal Picard variety of degree d:

πd : Pd,g →Mg,

where for every [C] ∈ Mg with trivial automorphisms, we have π−1
d ([C]) '

Picd(C). In this case however, it was shown in [MR85] that a Poincaré bundle
on Cg ×Mg

Pd,g exists if and only if (d− g+ 1, 2g− 2) = 1.
Since we ultimately want to construct degenerations of de Jonquières di-

visors, we shall concentrate on the universal Picard variety of degree d over
Mg,n which we denote by Pd,g,n. Functorially, what we have said so far is
expressed as follows: let Pd,g,n be the universal Picard stack overMg,n. Sec-
tions of Pd,g,n over a scheme B consist of flat and proper families π : X → B

of smooth curves of genus g, with n distinct sections pi : B→ X and a line
bundle L of relative degree d on X . Morphisms between such objects are
given by Cartesian diagrams

X X ′

B B ′

β2

π π ′

β1

pi p ′i
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such that p ′i ◦ β1 = β2 ◦ pi for i = 1, . . . ,n, together with an isomorphism
β3 : L → β∗2L

′.
So far we have only taken into consideration the case of smooth curves.

Assume now that X is a nodal curve. We can describe how the Picard group
of X is related to that of its normalisation X̃ via the following exact sequence:

0→
⊕
p∈X

Õ
∗
p/O

∗
p → Pic(X)→ Pic(X̃)→ 0,

where for each p ∈ X, Op is its local ring and O∗p the integral closure of Op. It
can be shown that Pic(X) has a scheme structure and, as before, we denote by
Picd(X) its subscheme parametrising line bundles on X of degree d.

Unlike in the smooth case, one finds that while Picd(X) is always smooth
of dimension g, it need not be projective, because it is not necessarily proper.

Example 2.6. If X is an irreducible nodal curve of genus g and if, moreover, X
is rational, it follows that its normalisation X̃ is isomorphic to P1. Then, from
the exact sequence above we immediately get that Picd(X) ' (C∗)g.

Let Y1, . . . , Yγ denote the irreducible components of X and let L ∈ Picd(X).
We define the multidegree of L to be the vector of integers

d = (deg LY1 , . . . , deg LYγ).

Moreover we set

Picd(X) := {L ∈ Picd(X) | L has multidegree d}

and we have that
Picd(X) =

∏
|d|=d

Picd(X), (2.3)

where |d| = deg LY1 + . . . + deg LYγ . Hence, unless X is irreducible, Picd(C)
has infinitely many connected components, indexed by multidegree.

Wewould now like to extend our considerations to families of nodal curves.
We encounter two major difficulties:

1. Let π : X → B be a 1-parameter family of curves with smooth fibres for
every b ∈ Bwith b 6= b0 and nodal fibre over b0. Unfortunately, if the central
fibre is not of compact type, or if the family X is not smooth, then line bundles
over the complement X \ Xb0 do not necessarily extend over Xb0 .

2. Assume that the above family of curves π : X → B is smooth. In this case
line bundles over X \ Xb0 always extend, so we have a scheme Pd,g → B

which parametrises line bundles of degree d on the fibres of π. The fibre of Pd,g
over a point b ∈ B is Picd(Xb). It turns out that the scheme Pd,g is smooth,
but not separated, due to the fact that the special fibre has infinitely many
connected components, as seen in (2.3).
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Example 2.7. As a concrete example of the non-separatedness of Pd,g (and
expanding on our observation in (2.1)), suppose Xb0 has only two irreducible
components Y1, Y2 connected at a single node. Then Y1 and Y2 are effective
divisors on X . Now consider the trivial bundle OX and the twisted bundle
L = OX (mY1), for some integer m. Clearly L and OX are isomorphic on
X \ Xb0 , but they are not isomorphic on Xb0 as the restriction of L to the
special fibre is non-trivial. Moreover, OX has multidegree (0, 0), while L has
multidegree (−m,m) on the special fibre. Hence, twisting the bundle OX

by the components of the special fibre yields infinitely many bundles that
are isomorphic to OX on X \ Xb0 , but that belong to different connected
components of Pd,g on Xb0 .

The same discussion applies also to the situation of n-pointed curves.
Hence, to obtain a compactification of Pd,g,n over Mg,n, we need to construct
a stack Pd,g,n with a map Ψd,g,n ontoMg,n with the following properties:

(i) Ψd,g,n andMg,n fit in the following commutative diagram:

Pd,g,n Pd,g,n

Mg,n Mg,n

Ψd,g,n

(ii) Ψd,g,n is proper (or at least universally closed).

(iii) Pd,g,n has a geometrically meaningful description.

Unfortunately, in order to extend Pd,g,n overMg,n, it is not enough to consider
the stack of line bundles over families of n-pointed stable curves, as it is itself
not complete. The solution is to enlarge the type of objects that we are working
with, either by admitting more general sheaves than just line bundles, or a
bigger class of curves. In this thesis we have opted for the latter, following the
work of Caporaso [Cap94] and Melo [Mel11].

To give an illustration of the idea behind the choice of the new curves one
introduces, consider the following example, where we ignore the markings.

Example 2.8. Let X be an irreducible nodal curve with one node p, its normal-
isation X̃, and the two preimages of the node p ′,p ′′ ∈ X̃. Take L ′ ∈ Picd(X̃).
Therefore the set of line bundles onX pulling back to L ′ via the normalisation is
a copy of C∗, which we will now try to complete. Any line bundle L ∈ Picd(X)
pulling back to L ′ is obtained by gluing the fibre L ′p ′ with the fibre L ′p ′′ . Such a
gluing, after fixing a local trivialisation for L ′, is expressed as an isomorphism

L ′p ′ → L ′p ′′

1 7→ c 6= 0,
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where we used the fact that L ′p ′ ' L ′p ′′ ' C. Let Lc denote the line bundle on
X corresponding to this gluing. Now if c→ 0, then the isomorphism above
degenerates to the zero map. This means that the sections of L ′ compatible
with this map are the ones that vanish at p ′′. In other words, L ′ "degenerates"
to L ′(−p ′′), but by doing so it also decreases in degree. One way to fix this
problem is to replace X by its blow-up at the node p, i.e. by the nodal curve Y
that is constructed by adding to X̃ a smooth rational component E connecting
the points p ′ and p ′′. In this way, the limit of Lc as c approaches 0 is a line
bundle L̂ such that

L̂|
X̃
= L ′(−p ′′),

L̂|E = OE(1).

Hence deg L̂ = d and furthermore, an easy argument shows that the limit L̂ is
uniquely determined up to those automorphisms of Y that fix X̃.

Similarly, if c 7→∞, then the limit of Lc is a line bundle on Y that restricts
to L ′(−p ′) on X̃ and to OE(1) on E.

The curve Y constructed above is an example of a quasi-stable curve, a type
of curve that has very good properties for our purposes. To see this, consider
the Hilbert scheme Hd,g,r where we take g − d + r = 0. It has a natural
action of PGL(r + 1) induced by coordinate change in Pr and we denote by
Hssd,g,r the locus of GIT -semi-stable curves for this action. For large d, the
compactification of Pd,g constructed by Caporaso in [Cap94] is given by:

Pd,g = Hssd,g,r/PGL(r+ 1).

In fact, in [Gie82] and [Cap94] it is shown that the points of Hssd,g,r correspond
to quasi-stable curves equipped with balanced line bundles (we shall define
these notions precisely below).

By construction, Pd,g is endowedwith a propermorphismφd : Pd,g →Mg,
such that the preimage of the locus of automorphism-free curves under φd is
isomorphic to Pd,g. Moreover, it turns out (see [Cap05]) that for large d and
(d− g+ 1, 2g− 2) = 1, the quotient stack associated to the GIT-quotient above
is a smooth, irreducible Deligne-Mumford stack with a proper and strongly
representable map ontoMg.

In [Mel11], this construction is extended to the moduli of n-pointed stable
curves, which is our case of interest. We begin with the precise definitions
of the notions of quasi-stable curves and balanced line bundles mentioned
previously.

Let X be an n-pointed semi-stable curve of genus g > 2. For a subcurve
X ′ ⊂ X, let kX ′ = #

(
X ′ ∩ X \ X ′

)
. A rational tail C of X is a rational proper

subcurve with kX ′ = 1, whereas a rational bridge is a rational proper subcurve
X ′ of X satisfying kX ′ = 2. An exceptional component of X is a destabilising
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component without marked points. Finally the semi-stable curve X is called
quasi-stable if the following conditions are satisfied:

• all destabilising components are exceptional;

• rational tails do not contain any exceptional components;

• each rational bridge contains at most one exceptional component.

Definition 2.9. Let Y be a quasi-stable curve (obtained via semi-stable reduc-
tion) of the n-pointed stable curve X of genus g > 2 equipped with a line
bundle L of degree d. The multidegree of L is balanced if

1. If Y ′ ⊂ Y is an exceptional component, then degY ′ L = 1.

2. If Y ′ is a rational bridge, then degY ′ L ∈ {0, 1}.

3. If Y ′ is a rational tail, then degY ′ L = −1.

4. If Y ′ is a proper subcurve whose irreducible components are not con-
tained in any rational tail or bridge, then degY ′ Lmust satisfy the follow-
ing inequality:∣∣∣degY ′ L− d(wY ′ − tY ′)

2g− 2 − tY ′
∣∣∣ 6 kY ′ − tY ′ − 2bLY ′

2 , (2.4)

where wY ′ = 2(gY ′ − 2), tY ′ is the number of rational tails meeting Y ′,
and bLY ′ is the number of rational bridges where the degree of L vanishes
and which meet Y ′ in two points.

Denote byPXd the set of all the pairs (Y,L) of quasi-stable curves Y ofX equipped
with a balanced line bundle L of degree d. LetWX

r,d ⊂ P
X
d denote all those

pairs where the line bundles satisfy h0(Y,L) > r+ 1.

The compactification Pd,g,n of the Picard stack on the moduli stack of n-
pointed stable curves is given by the line bundles with balanced multidegrees
on quasi-stable curves.

Definition 2.10 ([Mel11, Definition 4.1]). For any integer d and g > 3, we
denote by Pd,g,n the following category fibred in groupoids over the category
of schemes over F: objects over a F-scheme B are families

(π : X → B,pi : B→X ,L )

of n-pointed quasi-stable curves over B and a balanced line bundle L on X of
relative degree d. Morphisms between two such objects are given by Cartesian
diagrams
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X X ′

B B ′

β2

π π ′

β1

pi p ′i

such that p ′i ◦ β1 = β2 ◦ pi for i = 1, . . . ,n, together with an isomorphism
β3 : L → β∗2L

′.

In Theorem 4.2 of [Mel11] it is shown that Pd,g,n is an Artin stack endowed
with a (forgetful) universally closed morphism Ψd,g,n ontoMg,n.

Remark 2.11. By construction, Pd,g,n contains Pd,g,n for all n > 0.

Remark 2.12. The quotient stack Pd,g from above is the rigidification (in the
sense of [ACV03]) of the stack Pd,g,0. Unfortunately, the stacks Pd,g,n can
never be Deligne-Mumford because there is an action of GLn given by the
scalar product on the line bundles which leaves the curves and the sections
fixed. If moreover (d − g + 1, 2g − 2) = 1, the rigidification of Pd,g,n is a
Deligne-Mumford stack and the morphism Ψd,g,n is proper. For more details,
see Section 7 of [Mel11].



Chapter 3

Enumerative study of de
Jonquières divisors

In this chapter we study the dimension theory of de Jonquières divisors on
algebraic curves. We begin by extracting as much information as possible
about the geometry of the space DJr,dk,N(µ1,µ2,C, l) of de Jonquières divisors
without using any degeneration techniques: in Section 3.1 we describe the
space of de Jonquières divisors as a determinantal variety inside the symmet-
ric product Cd and in Section 3.2 we write down its tangent space and the
transversality condition which we are already able to verify in some special
cases. In Section 3.3 we establish the existence result in the case of positive
expected dimension by means of a class computation. We then proceed in
Section 3.4 to construct degenerations of de Jonquières divisors using both
limit linear series and compactified Picard schemes which will be used to
prove Theorem 1.5 (dimension result) in Section 3.5, Theorem 1.8 (smoothness)
in Section 3.6, and finally Theorem 1.9 (non-existence for non-complete series)
in Section 3.7. We conclude in Section 3.8 with a discussion of de Jonquières
divisors admitting negative coefficients.

3.1 The space of de Jonquières divisors as degeneracy
locus

Fix an integer k 6 d and two vectors of positive integers µ1 = (a1, . . . ,ak) and
µ2 = (d1, . . . ,dk) such that

∑k
i=1 aidi = d. The space DJ

r,d
k,N(µ1,µ2,C, l) can

be described as a degeneracy locus of vector bundles over Cd as follows: the
idea is that the condition

a1D1 + . . .+ akDk ∈ PV

is equivalent to the condition that the natural restriction map

V → H0(C,L/L(−a1D1 − . . .− akDk))

25
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has non-zero kernel. To reformulate this globally in terms of a morphism of
two vector bundles over Cd, let the first bundle E = OCd ⊗V be the trivial
bundle. As for the second bundle, consider the diagram

C× Cd ⊃ U

C Cd

σ τ

where σ and τ are the usual projections and U is the universal divisor defined
as

U = {(p,D) | D ∈ Cd and p ∈ D} ⊂ C× Cd.
Alternatively, identifying Cd with the Hilbert scheme C[d] of d points on C,
one defines U as the universal family U ⊂ C × C[d]. For the second bundle,
consider the sheaf:

Fd(L) = τ∗(σ
∗L⊗ OU),

By cohomology and base change Fd(L) is indeed a vector bundle. The fibre
of Fd(L) over any point D ∈ Cd is given by the d-dimensional vector space
H0(C,L/L(−D)).

Finally, let Φ : E → Fd(L) be the vector bundle morphism obtained by
pushing down to Cd the restriction σ∗L→ σ∗L⊗ OU. Moreover let

Σk,N(µ1,µ2) =
{
E ∈ Cd | E =

k∑
i=1

aiDi for some D1 ∈ Cd1 , . . . ,Dk ∈ Cdk
}
.

The spaceDJr,dk,N(µ1,µ2,C, l) is defined as the r-th degeneracy locus ofΦ, i.e. the
locus in Σk,N(µ1,µ2) where rkΦ 6 r.

Lemma 3.1. For every point D ∈ DJr,dk,N(µ1,µ2,C, l), one has

dimDDJr,dk,N(µ1,µ2,C, l) > N− d+ r.

Proof. From the description of DJr,dk,N(µ1,µ2,C, l) as a degeneracy locus, its
codimension in Σk,N(µ1,µ2) is at most

(rk E− r)(rkFd(L) − r) = (r+ 1− r)(d− r) = d− r.

Since dimΣk,N(µ1,µ2) = N, the dimension estimate follows.

Finally, we record here an easy result that forms the base case for the
induction argument in the proof of Theorem 1.9.

Lemma 3.2. Let C be any smooth curve of genus g with a general linear series l ∈
Grd(C). Fix an integer k 6 d and two vectors of positive integers µ1 = (a1, . . . ,ak)
and µ2 = (d1, . . . ,dk) such that

∑k
i=1 aidi = d and N− d+ r < 0.



3.2. PRELIMINARY DISCUSSION OF TRANSVERSALITY 27

1. If g− d+ r = 0, then DJr,dk,N(µ1,µ2,C, l) = ∅.

2. If g− d+ r < 0 and N < g, then DJr,dk,N(µ1,µ2,C, l) = ∅.

Proof. 1. Consider the following restriction of the Abel-Jacobi map:

u : Σk,N(µ1,µ2)→ Picd(C)
a1D1 + . . .+ akDk 7→ OC(a1D1 + . . .+ akDk).

In the non-special regime Picd(C) = Wr
d(C). Moreover the image of ϕ is

closed and dim imu 6 N < g = dimPicd(C). Thus a general line bundle
L ∈ Picd(C) is not contained in the image of uwhence we conclude that the
divisor a1D1+ . . .+akDk is not contained in a general linear series l of type grd,
i.e. DJr,dk,N(µ1,µ2,C, l) = ∅. This is Theorem 1.9 for non-special linear series.
As a consequence, for all r ′ < r, a general linear series l ′ in Gr ′d (C) also has
DJr

′,d
k,N(µ1,µ2,C, l ′) = ∅. To see this, let c : Gr ′d (C) → Wr ′

d ⊂ Wr
d(C) be the

forgetful map (L,V) 7→ L. Note that a line bundle L ∈Wr
d(C) \ imu does not

admit de Jonquières divisors of lengthN. Now, since c is continuous (as the
projection morphism from a Grassmann bundle), c−1(Wr ′

d (C) \ imu) is also
open in Gr ′d and nonempty. Hence no l ′ ∈ c−1(Wr ′

d (C) \ imu) admits a de
Jonquières divisor of length N and our claim is proved.

2. Set r1 = d − g so that g − d + r1 = 0 and r < r1. We conclude from the
discussion above that ifN < g, thenDJr,dk,N(µ1,µ2,C, l) = ∅ for a general linear
series l. The non-existence forN > g forDJr,dn (µ,C, l) follows by an induction
argument explained in Section 3.7.

3.2 Preliminary discussion of transversality

We deal here only with the case of complete linear series l ∈ Grd(C) such that
|D| = l for some D ∈ Cd. Consider the alternative description of the space
DJr,dk,N(µ1,µ2,C, l) as the intersection

DJr,dk,N(µ1,µ2,C, l) = Σk,N(µ1,µ2) ∩ |D|.

The condition for transversality of intersection is:

TD(Cd) = TD(Σk,N(µ1,µ2)) + TD(|D|), (3.1)

for a divisor D =
∑k
i=1 aiDi, such that Di ∈ Cdi and the fixed vectors

of strictly positive integers µ1 = (a1, . . . ,ak) and µ2 = (d1, . . . ,dk) satisfy∑k
i=1 aidi = d and N =

∑k
i=1 di.

Recall that
TD(Cd) = H

0(C,OD(D)),
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as shown for instance in [ACGH85] chapter IV, §1. Moreover its dual is

T∨D(Cd) = H
0(KC/KC(−D))

and the pairing between the tangent and cotangent space is given by the
residue.

To compute TD(Σk,N(µ1,µ2)), letDi denote the diagonal in the ai-th prod-
uct Cdi × . . .× Cdi so that Σk,N(µ1,µ2) = D1 × . . .×Dk/Sd. Hence

TD(Σk,N(µ1,µ2)) = Ta1D1D1 ⊕ . . .⊕ TakDkDk.

Since TDi = TCdi for all i = 1, . . . ,k,

TD(Σk,N(µ1,µ2)) = TD1Cd1 ⊕ . . .⊕ TDkCdk
' T(D1,...,Dk)Cd1 × . . .× Cdk
' TD1+...+DkCN

= H0(C,OC(D1 + . . .+Dk)/OC),

and is isomorphic toH0(KC(−D1− . . .−Dk)/KC(−D))0, where the superscript
0 denotes the annihilator of a vector space.

To determine TD|D|, consider the following restriction of the Abel-Jacobi
map:

u : Crd →Wr
d(C)

with differential given by

δ : im(αµ0)
0 → im(µ0)

0,

where δ denotes the restriction of the coboundary map

H0(C,OD(D))→ H1(C,OC)

of the Mittag-Leffler sequence to TDCrd = im(αµ0)
0, while

α : H0(C,KC)→ H0(C,KC ⊗ OD)

is the restriction mapping and

µ0 : H
0(C,KC −D)⊗H0(C,OC(D))→ H0(C,KC)

the cup-product mapping (see Chapter IV of [ACGH85] for details).
Let D ∈ Crd. Then |D| ⊂ Crd and u(D) ∈ Wr

d(C) with u−1(u(D)) = |D|.
Since δ is surjective by definition,

TD|D| = TD(u
−1(u(D))) = ker δ = im(δ∨)0,

where the dual map δ∨ is the restriction of α to (im(µ0)
0)∨ = coker(µ0).
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The transversality condition (3.1) translates to

TDCd = H0
(
C,KC

(
−

k∑
i=1

Di

)
/KC(−D)

)0
+ im(δ∨)0

which is equivalent to:

H0
(
C,KC

(
−

k∑
i=1

Di

)
/KC(−D)

)
∩ im(δ∨) = 0.

If the Brill-Noether number ρ(g, r,d) = 0, then µ0 is an isomorphism and this
means that there are two possibilities for a differential in H0(C,KC):

1. the differential is of the form 1⊗ωwithω ∈ H0(C,KC−D). Then clearly
δ∨(ω) = 0.

2. the differential is of the form f⊗ω, where f is a meromorphic function
with divisor of polesD. Assuming that f⊗ω ∈ H0(C,KC−D1−. . .−Dk),
we notice that it vanishes on D1 + . . .+Dk if and only if

ω ∈ H0(C,KC −D−D1 − . . .−Dk).

We conclude that the transversality condition (3.1) can be reformulated as:

H0(C,KC −D−D1 − . . .−Dk) = 0. (3.2)

If the Brill-Noether number ρ(g, r,d) > 1, then the transversality condition
becomes

H0
(
C,KC −

k∑
i=1

Di

)
∩ coker(µ0) = 0.

Since H0(C,KC) = im(µ0)⊕ coker(µ0), the transversality condition becomes

H0
(
C,KC −

k∑
i=1

Di

)
⊆ im(µ0).

Using the same argument as in the previous case, we obtain the same transver-
sality condition (3.2) as in the case ρ(g, r,d) = 0.

Note that the condition (3.2) is immediately satisfied by non-special (i.e. grd-
s with g−d+r = 0) and canonical linear series therefore proving Theorems 1.5
and 1.8 in these cases. There are actually a fewmore cases where transversality
follows without using degenerations to nodal curves.
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3.2.1 The case r = 1
The argument in this case is similar to the one in Section 5 of [HM82]. The
idea is to consider the map

π : C→ P1

given by the de Jonquières divisor D =
∑k
i=1 aiDi and its versal deformation

space V. Moreover, let V ′ ⊂ V be the subvariety of maps given by divisors with
the same coefficients asD. Then the tangent space to V at π is TπV = H0(C,N),
where N is the normal sheaf of π defined by the exact sequence

0→ TC → π∗TP1 → N→ 0,

where TC is the tangent sheaf of C and TP1 the tangent sheaf of P1.
Consider also the forgetful map β : V→Mg, with differential β∗ given by

the coboundary map
H0(C,N)→ H1(C,TC)

of the exact sequence above. We now identify the tangent space to V ′ with the
subspace of H0(C,N) of sections of N that vanish in a neighbourhood of the
points in the support ofD1 + . . .+Dk, i.e. the sections of the sheaf N ′ defined
by the sequence

0→ TC → π∗TP1(−(a1 − 1)D1 − . . .− (ak − 1)Dk)→ N ′ → 0.

Since π is a point in the general fibre of β|V ′ , from Sard’s theorem it follows
that the differential β∗ restricted to Tπ(V) is surjective. This in turn means
that the map β ′ below is surjective:

H0(C,N ′) β
′
−→ H1(C,TC)→ H1(C,π∗TP1(−(a1−1)D1− . . .−(ak−1)Dk))→ 0.

Now, note that TP1 ' OP1(2) and moreover π∗OP1(1) = OC(D). Therefore

0 = H1(C,OC(2D− (a1 − 1)D1 − . . .− (ak − 1)Dk))
= H0(C,KC −D−D1 − . . .−Dk)

as desired.

3.2.2 The case r = 2
Denote by ZN the smooth (N + 2)-dimensional subvariety of the N-th sym-
metric product of P2 corresponding to collinear length N zero-cycles in P2.
Further imposing on ZN that the coefficients in these zero-cycles add up to d
(i.e. imposing d independent conditions) yields indeed that

dimDJ2,dk,N(µ1,µ2,C, l) = N− d+ 2

for every linear series l.
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3.2.3 The case g− d+ r = 1
Let D =

∑k
i=1 aiDi be a de Jonquières divisor such that l = |D| is a grd with

g− d+ r = 1 and, as usual, let L denote the corresponding line bundle. This
means that the residual linear series KC − l is an isolated divisor E ∈ C2g−2−d
such that KC = OC(D+ E). Consider the subspace

Pd = {L ∈ Picd(C) | h1(C,L) = 1} ⊂ Picd(C),

which, by the previous observation, has dimension 2g− 2− d. Now consider
the space

Q = {(E,D1 + . . .+Dk) ∈ C2g−d−2×CN | OC(E+a1D1 + . . .+akDk) = KC}.

Polishchuk [Pol06] shows that this space is smooth with

dimQ = N+ g− d− 1.

Hence, for a general fixed isolated divisor E ∈ C2g−d−2, the space

Q ′ = {D1 + . . .+Dk ∈ CN | OC(a1D1 + . . .+ akDk) = OC(KC − E)}

is also smooth and of dimension

(N+ g− d− 1) − (2g− d− 2) = N− g+ 1 = N− d+ r,

which immediately implies the same for the space DJr,dk,N(µ1,µ2,C, l) for a
general linear series lwith g− d+ r = 1.

We can in fact do better than this and prove transversality for an arbitrary
linear series lwith g− d+ r = 1. From Polishchuk’s result we have that the
intersection

Σ = {E+D ∈ C2g−2 | D ∈ Σk,N(µ1,µ2)} ∩ |KC|

is transverse, i.e.

TE+D(Σ) + TE+D|KC| = TE+D(C2g−2).

Using the facts that

TE+D(Σ) = TE(C2g−d−2)⊕ TD(Σk,N(µ1,µ2))
TE+D(C2g−2) = TE(C2g−d−2)⊕ TD(Cd)

TE+D|KC| = TE|E|⊕ TD|KC − E| = TD|L|,

we obtain
TD(Σk,N(µ1,µ2)) + TD|L| = TD(Cd),

which is the sought after transversality condition.
Therefore, in order to prove Theorem 1.8, it remains to check the transver-

sality condition (3.2) for r > 3 and g−d+r > 2. We do this using degenerations
in Section 3.6.
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3.3 Existence of de Jonquières divisors

Luckily, the question of existence is easily answered in a manner similar to that
of the first proofs of the existence part of the Brill-Noether theorem ([Kem71]
and [KL72a]). The idea is to simply look at the class of DJr,dk,N(µ1,µ2,C, l) and
establish its positiveness. Consider the diagonal mapping for Cd:

ε : Cd1 × . . .× Cdk → Cd

D1 + . . .+Dk 7→ a1D1 + . . .+ akDk.

It is well-known (see for example chapter VIII §5 of [ACGH85]) that the image,
via ε of the fundamental class of ε(Cd1 × . . .× Cdk) is equal to the coefficient
of the monomial td1

1 · . . . · t
dk
k in

∑
a>b

(−1)a+b
b!(a− b)!

(
1+

k∑
i=1

aiti

)N−g+b(
1+

k∑
i=1

a2iti

)g−b
xd−N−aθa,

where θ is the pullback of the fundamental class of the theta divisor to Cd and
x the class of the divisor q+ Cd−1 ⊂ Cd. Evaluating this formula on a linear
series l of degree d and dimension r, and using that θ |l= 0, we obtain the
following expression for the class of DJr,dk,N(µ1,µ2,C, l):(

1+
k∑
i=1

aiti

)N−g(
1+

k∑
i=1

a2iti

)g
xd−N[l].

If N− d+ r > 0, this class is clearly positive and yields the non-emptiness of
DJr,dk,N(µ1,µ2,C, l).

3.4 Degenerations of de Jonquières divisors

In the case of nodal curves, the usual correspondence between divisors and
line bundles breaks down. Most significantly for our problem, the Abel-Jacobi
map

Cd → Picd(C)
does not make sense any more, even though the two spaces Cd and Picd(C)
are still defined. As a simple example of this failure, the sheaf of functions with
one pole at one of the nodes is not a line bundle, while the sheaf of functions
with two poles at the node has degree 3. We therefore first need to make sense
of the statement that a linear series on a nodal curve admits a de Jonquières
divisor. We do this in a variational setting, by considering families of smooth
curves degenerating to a nodal curve and analysing what happens on the
central fibre to limits of line bundles admitting de Jonquières divisors. As
mentioned in the Introduction, we approach this issue from two points of
view: limit linear series for central fibres of compact type in Section 3.4.1 and
compactified Picard schemes for stable central fibres in 3.4.2.
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3.4.1 Limit linear series approach

In the framework of 2.1, fix Y ⊂ X0 an irreducible component of the central
fibre. Let D∗ = (σ) ∈ |L ∗| (and D∗t = (σ)|X ∗

t
) be a divisor on X ∗, where σ is

a section of L ∗. To find the limit of D∗ on X0, we multiply σ by the unique
power of t ∈ B∗ so that it extends to a holomorphic section σY of the extension
LY on the whole of X and so that it does not vanish identically on X0. The
limit of D∗ is the divisor (σY |Y).

Definition 3.3 (De Jonquières divisors on a nodal curve of compact type). Let
X0 be a nodal curve of compact type equipped with a smoothable limit linear
series l of type grd. Fix an integer k 6 d and two vectors of positive integers
µ1 = (a1, . . . ,ak) and µ2 = (d1, . . . ,dk) such that

∑k
i=1 aidi = d. The divisor∑k

i=1 aiDi withDi ∈ Cdi on X0 is a de Jonquières divisor for l if for each aspect
lY corresponding to an irreducible component Y ⊂ X, there is a section σY |Y
as above vanishing on

∑
Di,Y∈Y aiDi,Y , where Di,Y is the specialization of the

divisor Di on the component Y.

The section σY |Y will also vanish at the nodes of X0 belonging to Y, and in
such a way that (2.2) is satisfied (we assume the limit series l to be refined, so
we have equality in (2.2)). Hence the series lY of type grd on Y admits the de
Jonquières divisor

k∑
i=1

aiDi,Y +
∑

q∈Sing(X0),q∈Y

(
d−

k∑
i=1

aidi,Y

)
q,

where the sum is over the preimages q ∈ Y of the nodes of X0, and di,Y =
degDi,Y . We therefore have away to go from de Jonquières divisors on a nodal
curve of compact type to de Jonquières divisors on its smooth components,
where the coefficients of the nodes must of course satisfy the inequality (2.2).

In what followswe construct the space of de Jonquières divisors on families
of nodal curves of compact type and endow it once more with the structure of
a degeneracy locus.

Denote by ` a T -valued point ofG rd(X /B)(T). Inwhat follows, we construct
a functorDJr,dk,N(µ1,µ2,X , `), represented by a schemewhich is projective over
B, andwhich parametrises de Jonquières divisors for a familyX → B of curves
of genus g of compact type equipped with a linear series `.

Proposition 3.4. Fix a projective, flat family of curves X → B over a scheme
B equipped with a linear series ` of type grd. Let µ1 = (a1, . . . ,ak) and µ2 =

(d1. . . . ,dk) be vectors of positive integers such that
∑k
i=1 aidi = d. As usual,

let N =
∑k
i=1 di. Consider also the relative divisors Di ⊂ X di . There ex-

ists a scheme DJr,dk,N(µ1,µ2,X , `) projective over B, compatible with base change,
whose point over every t ∈ B parametrises objects [Xt,D1(t), . . . ,Dk(t)] such that
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∑k
i=1 aiDi(t) is a de Jonquières divisor of `t. Furthermore, every irreducible compo-

nent of DJr,dk,N(µ1,µ2,X , `) has dimension at least dimB− d+ r.

Proof. We construct the functor DJr,dk,N(µ1,µ2,X , `) as a subfunctor of the
functor of points of the fibre product X N over B. We show that it is repre-
sentable by a scheme that is projective over B and which we also denote by
DJr,dk,N(µ1,µ2,X , `).

Let T → B be a scheme over B. Suppose first that all the fibres of the family
are nonsingular. In this case, from the discussion above, a grd on X is given by
a pair (L ,V ), where V ⊆ π2∗L is a vector bundle of rank r+1 on B. Then the
T -valued point [X ,D1, . . . ,Dk] belongs to DJr,dk,N(µ1,µ2,X , `)(T) if the r-th
degeneracy locus of the map

V → π2∗L |∑k
i=1 aiDi

is the whole of T . By construction DJr,dk,N(µ1,µ2,X , `) is compatible with base
change, so it is a functor, and it has the structure of a closed subscheme, hence
it is representable and the associated scheme is projective.

Alternatively, more explicitly, take the projective bundle PV correspond-
ing to V which has rank r, with elements in its fibres given by sections
σ ∈ H0(L |Xt

) up to equivalence with respect to scalar multiplication. Con-
sider the subscheme DJ ′(X ,V ) in PV cut by the equations coming from the
condition that the sections vanish on Di with multiplicity at least ai. This im-
poses in total

∑k
i=1 aidi = d conditions, so the dimension of every irreducible

component of DJ ′(X ,V ) is at least dimB− d+ r. Collecting all irreducible
components of DJ ′(X ,V ) such that the section σ does not vanish on the
whole underlying curve, we obtain the desired DJr,dk,N(µ1,µ2,X , `).

Now suppose that some of the fibres have nodes (that may or may not
be smoothed by X - see Remark 2.4). From the discussion above, a grd on
X is a tuple (L , (V v)v∈V(Γ0)). Let vj ∈ Γ0 be the vertex corresponding to an
irreducible component. Denote by Di,j the specialisation of Di to vj. Then
the T -valued point [X ,D1, . . . ,Dk] belongs toDJr,dk,N(µ1,µ2,X , `)(T) if, for all
vertices vj, the r-th degeneracy locus of the map

V vj → π2∗L
~d
vj
|aiDi,j

is the whole of T . Checking for compatibility with base change (and hence
functoriality) ismore delicate than in the previous case because the base change
may change the graph Γ0. However, arguing like in the proof of Proposition
4.5.6 in [Oss] yields the desired property. Representability and projectiveness
then follow analogously.

Alternatively, if no nodes are smoothed in X , for each vertex v of the
dual graph Γ of the fibres, we have a family Y v of smooth curves with the
divisors Di belonging to Y v and additional sections qj corresponding to the
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preimages of the nodes. Consider now the space DJ ′(Y v,V v) defined as in
the case of families with smooth fibres by the vanishing at the Di. In addition,
we cutDJ ′(Y v,V v) with the equations corresponding to the vanishing of the
sections at the points qj, subject to the constraints explained in the discussion
following Definition 3.3. We denote the space thus obtained by DJ ′(Y v,V v)
as well. Finally, the desired space DJr,dk,N(µ1,µ2,X , `) is obtained by taking
the fibre product over B of the DJ ′(Y v,V v). The dimension estimate follows
as in the case of smooth fibres. If there are smoothed nodes, for each v ∈ V(Γ0),
consider the subscheme DJ ′(X ,V v) in PV v cut by the vanishing conditions
at the divisors Di and at the nodes. Taking the fibre product over B yields the
space DJr,dk,N(µ1,µ2,X , `) and the dimension bound.

Remark 3.5. Let φ : DJr,dk,N(µ1,µ2,X , `)→X be the forgetful map, which is
projective by base change. Then the fibre of φ over a curve Xt is precisely
DJr,dk,N(µ1,µ2,X , `).

To conclude the study of the space DJr,dk,N(µ1,µ2,X , `) of de Jonquières
divisors for a family of curves, we investigate their smoothability.

Proposition 3.6. Suppose the object [C,D1, . . . ,Dk] ∈ B is contained in an irre-
ducible componentU ⊂ DJr,dk,N(µ1,µ2,X /B, `)with dimU = dimB−d+r. Then
the general point of U parametrises a de Jonquières divisor on a smooth curve.

Proof. We essentially follow the argument in the proof of Theorem 3.4 of
[EH86].

Let X̃ → B̃ be the versal family of pointed curves around [C,p1, . . . ,pn]
and let f : B → B̃ be the map inducing π : X → B with n sections cor-
responding to the marked points. Moreover, let L̃ be the corresponding
linear series on X̃ . Let Ũ ⊂ DJr,dk,N(µ1,µ2, X̃ /B̃,˜̀) be a component such that
U ⊂ f∗Ũ and denote by C̃ the point of Ũ corresponding to C. By Proposition
3.4, dim Ũ > dim B̃− d+ r. Hence, if Ũ does not completely lie in the discrim-
inant locus of X̃ → B̃which parametrises nodal curves, then a general point
of Ũ corresponds to a de Jonquières divisor on a smooth curve. On the other
hand, if Ũ lies over a component B̃ ′ of the discriminant locus and f(B) ⊂ B̃ ′,
then

dim Ũ > dim B̃− d+ r > dim B̃ ′ − d+ r,

since B̃ ′ is a smooth hypersurface in B̃. Therefore every component of f∗Ũ
(hence also U) must have dimension strictly larger than dimB− d+ rwhich
contradicts the assumption on dimU. Hence Ũ cannot lie entirely in the
discriminant locus, and we are done.
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3.4.2 Compactified Picard scheme approach

In this section we give a different approach to the degenerations of de Jon-
quières divisors, this time relying ourselves on the framework of compactified
Picard stacks on the moduli stack of curves with marked points summarised
in 2.2. We chose to work with this compactification (instead of using rank-1
torsion-free sheaves) because we want to use an induction procedure involving
restrictions of line bundles on different irreducible components of the nodal
curve. Rank-1 torsion-free sheaves would not allow this, since their restrictions
to subcurves are not necessarily torsion-free themselves.

Consider a smooth 1-parameter family π : X → B of curves of genus g
over the smooth curve B such that the fibres over B∗ = B\0 are smooth curves,
while the special fibre is given by a stable nodal curve X0. Denote by I(X0)
the set of all irreducible components of the central fibre and by N(X0) the set
of nodes lying at the intersection of distinct irreducible components, together
with their respective supports, i.e.

N(X0) = {(q,C) | q ∈ C ∩ C ′ where C,C ′ ∈ I(X0)}.

Suppose that L ∗ is a line bundle on X ∗ such that the restriction Lt to each
fibreXt is of degree d for all t ∈ B∗. Then, using Caporaso’s approach [Cap94]
we can extend L ∗ over the central fibre 0 ∈ B such that the fibre L0 is a limit
line bundle on X0 (or possibly a quasi-stable curve of X0) of degree d. As
observed before, this limit is not unique because, for anymC ∈ Z,

L ⊗ OX

( ∑
C∈I(X0)

mCC
)

(3.3)

is also an extension of L ∗ to B. We call the new extension in (3.3) a twisted line
bundle. Observe also the following “computation” rules

OX ' OX

( ∑
C∈I(X0)

C
)

OX

( ∑
C∈I(X0)

mCC
)∣∣∣
C ′
' OC ′

( ∑
q∈C∩C ′

(mC −mC ′)q
)
.

(3.4)

We encode this information in a twist function:

T : N(X0)→ Z
(q,C) 7→ mC ′ −mC

and introduce the following

Definition 3.7. A twist of the line bundle L is a function T : N(X0) → Z
satisfying the following properties:
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1. Given C,C ′ ∈ I(X0) and q ∈ C ∩ C ′, then T(q,C) = −T(q,C ′).

2. Given C,C ′ ∈ I(X0) and q1, . . . ,qn ∈ C ∩ C ′, then

T(q1,C) = . . . = T(qn,C) = −T(q1,C ′) = . . . = −T(qn,C).

3. Given C,C ′, Ĉ, Ĉ ′ ∈ I(X0), and points qC ∈ C ∩ Ĉ, qC ′ ∈ C ′ ∩ Ĉ ′,
q ∈ C ∩ C ′, and q̂ ∈ Ĉ ∩ Ĉ ′, such that

T(qC,C) = T(qC ′ ,C ′) = 0,

we have that
T(q,C) = T(q̂, Ĉ).

Remark 3.8. The definition for the twist T of a line bundle L on a single curve
X is analogous.

Definition 3.9. Fix a quasi-stable curve Y of a stable curve Xwith nmarked
points p1, . . . ,pn. The line bundle L with balanced multidegree d on Y admits
a de Jonquières divisor

∑n
i=1 aipi if there exists a twist T such that, for all

C ∈ I(Y),
L|C = OC

(∑
pi∈C

aipi

)
⊗ OC

(∑
q∈C

T(q,C)q
)
.

In other words, each restriction of L to the irreducible components C of Y
admits the de Jonquières divisor∑

pi∈C
aipi +

∑
q∈C

T(q,C)q.

Remark 3.10. If C is an exceptional component, then the de Jonquières divisor
has only the nodes q in the support.

Remark 3.11. If any of the coefficients in the divisor above are negative, we
find ourselves in the situation described in Section 3.8.

Remark 3.12. Here our perspective on de Jonquières divisors on quasi-stable
curves is naive in the sense that we ignore the precise vanishing or residue
conditions at the nodes. In what follows we construct a space that not only
contains the closure of the space of smooth curves with marked points and line
bundles admitting de Jonquières divisors, but also some “virtual” components
which we keep, in the same vein as the space of twisted canonical divisor of
[FP18].

We now define the notion of de Jonquières divisors for a family of stable
curves with nmarked points. We work locally so that a Poincaré bundle exists
(otherwise we would have to assume that (d− g+ 1, 2g− 2) = 1).
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Definition 3.13. Let (π : X → B,pi : B → X ,L ) be a flat, proper family
of quasi-stable curves of genus g with n marked points equipped with a
relative degree d balanced line bundle L such that Lt ∈ W

Xt

r,d. For a fixed
partition µ = (a1, . . . ,an) of d we say that L admits the de Jonquières divisor∑n
i=1 aipi if for all t ∈ B, Lt admits the de Jonquières divisor

∑n
i=1 aipi(t).

Furthermore, define the locusDJr,dg,n,µ(B) of de Jonquières divisors in Pd,g,n
by

DJr,dg,n,µ(B) =
{(
π : X → B,pi : B→X ,L

)
| L admits divisor

n∑
i=1

aipi

}
.

In what follows we also need the result below (for a proof, see [Ray70]
Proposition 6.1.3).

Lemma 3.14. Let B be a smooth curve and let f : X → B be a flat and proper
morphism. Fix a point b0 ∈ B and set B∗ = B \ b0. Let L and M be two line
bundles on X such that L |f−1(B∗) 'Mf−1(B∗). Then

L = M ⊗ OX (C),

where C is a Cartier divisor on X supported on f−1(b0).

The content of the following proposition is that, for a one-parameter family
of quasi-stable curves, the limit of de Jonquières divisors is itself a de Jonquières
divisor.

Proposition 3.15. The locus DJr,dg,n,µ(B) is closed in Pd,g,n.

Proof. We use the valuative criterion. Take a map ι from B∗ toDJr,dg,n,µ(B). We
must show that there exists a lift ῑ of ι from B, as shown in the commutative
diagram below.

B∗ DJr,dg,n,µ(B)

B

ι

ῑ

Since a map from B∗ to DJr,dg,n,µ(B) is the same as a family

(π : X ∗ → B∗,pi : B∗ →X ∗,L ∗
)
,

we must show that we can extend this to a family

(π : X → B,pi : B→X ,L
)



3.4. DEGENERATIONS OF DE JONQUIÈRES DIVISORS 39

in DJr,dg,n,µ(B). In other words, we must show that if the general fibre

(Xt,pi(t),Lt),

for t ∈ B∗, is such that Lt admits the de Jonquières divisor
∑n
i=1 aipi(t), then

the central fibre (X0,pi(0),L0) is such that L0 also admits the de Jonquières
divisor

∑n
i=0 aipi(0).

From Definition 3.9, the family admits de Jonquières divisors if there exists
a twist Tt for each fibre Xt, with t ∈ B∗, such that, for all components C ∈Xt

and all nodes q ∈ C,

Lt|C ' OC

( ∑
pi(t)∈C

aipi(t)
)
⊗ OC

(∑
q∈C

Tt(q,C)q
)
.

By shrinking B, and after possibly performing a base change, we may assume
that the fibres of X are of constant topological type, the twist Tt is the same
twist T over B∗, and there is no monodromy in the components of the fibres
over B∗. We must now assign a twist T0 to the central fibre X0 equipped with
L0.

Recall that the twist T0 is a function T0 : N(X0)→ Z. There are two types
of elements in N(X0):

• (q0,C0) where q0 is a node not smoothed by the family Y . Here

T0(q0,C0) = T(qt,Ct),

where qt is the corresponding node in the component Ct in the generic
fibre over t ∈ B.

• (q0,C0) where q0 is smoothed by the family X . Here the twist T0 must
be assigned “by hand”.

To do so, note also that the component C0 ∈ I(X0) belongs to a connected
subcurve X of X0 which consists of all components belonging to the same
equivalence class with respect to twists at the non-smoothed nodes, i.e.

C0,C ′0 ∈ X⇔ C0 ∼ C
′
0 ⇔ T(q,C0) = T(q,C ′0) = 0,∀q ∈ C0 ∩ C ′0.

This yields a sub-family of X → B, which we call X ′, whose central fibre
is X and whose generic fibre is given by the corresponding subcurves in Xt.
The markings pi which lie on the fibres of X ′ give sections which we rename
p ′i : B→X ′, for i = 1, . . . ,n ′, where n ′ 6 n. The nodes connecting X ′

t to its
complement in Xt also yield sections qj : B→X ′, for q = 1, . . . ,m, for some
m > 1; we emphasize here that the qj(t) are smooth points of X ′. Since the
twist T at the qj(t) is non-zero (by the definition of the equivalence classes),
for t ∈ B∗ and for any component Ct ∈ I(X ′

t ),

Lt|Ct ' OCt

( ∑
p ′i(t)∈Ct

aip
′
i(t) +

∑
qj(t)∈Ct

T(qj(t),Ct)qj(t)
)
.
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By our previous assumptions, T(qj(t),Ct) is constant for t ∈ B, so in what
follows we omit the terms in the bracket. Hence the line bundles

L and OX ′

( n ′∑
i=1

aipi +

m∑
j=1

Tqj

)
are isomorphic over B∗ and they therefore differ by a Cartier divisor C on X ′,
supported over 0 ∈ B. This Cartier divisor is a sum of irreducible components
of the fibre X ′

0 = X, that is

C =
∑

C∈I(X)

mC0C0, withmC0 ∈ Z.

Since the non-smoothed nodes of the familyX ′ all have zero twist, this Cartier
divisor yields in fact the definition of the twist T0 : N(X) → Z for a node
q0 ∈ C0 ∩ C ′0 that is smoothed by X ′:

(q0,C0) 7→ mC ′0 −mC0 .

Putting everything together, we obtain a twist T0 : N(X0) → Z which by
construction satisfies all the conditions of Definition 3.7. Moreover, for t = 0,

L0|C0 = OC0

( ∑
pi∈C0

aipi(0)
)
⊗ OC0

( ∑
q0∈C0

T0(q0,C0)q
)

for each irreducible component C0 of X0. By Definition 3.13,

(X → B,pi : B→X ,L ) ∈ DJr,dg,n,µ(B).

We conclude that DJr,dg,n,µ(B) is closed.

Remark 3.16. Arguing like in the proof of Lemma 6 of [FP18], one can show
that the line bundle associated to a de Jonquières divisor on a quasi-stable curve
can be smoothed to a line bundle on a nonsingular curve. More precisely, let
(X → B,pi : B→X ,L ) be a smoothing of a quasi-stable curve with marked
points [X,p1, . . . ,pn] (so X0 = X). Suppose also that for some (X,L) ∈ PXd ,

OX

( n∑
i=1

aipi

)
= L ∈ PXd ,

Then there exists a line bundle L ′ →X and an isomorphism L ′
0 ' L, which

is constructed by twisting L .

For the next two results, assume that (d − g + 1, 2g − 2) = 1 so that the
definitions of de Jonquières divisors hold not just locally, but also for families
over any scheme B. We give a lower bound on the dimension of irreducible
components of DJr,dg,n,µ(Pd,g,n).
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Proposition 3.17. Every irreducible component of DJr,dg,n,µ(Pd,g,n) has dimension
at least 3g− 3+ ρ(g, r,d) + n− d+ r.

Proof. The proof of this statement is the same as the one of Proposition 11 in
[FP18]. The only difference is the dimension bound itself, which we explain
below.

Let [X,p1, . . . ,pn,L] ∈ DJr,dg,n,µ(Pd,g,n) and L = OX (
∑n
i=1 aipi) its associ-

ated twisted line bundle. We drop the markings pi without contracting the
unstable components that we obtain. We then addm newmarkings to X to get
rid of the automorphisms of the unstable components (see loc. cit. for details)
and we obtain a stable pointed curve [X,q1, . . . ,qm]. Let V be its nonsingular
versal deformation space. Hence

dimV = dimDef([X,q1, . . . ,qm]) = 3g− 3+m.

Let π : C→ V be the universal curve and consider the relative moduli space
ε : B → V of line bundles of degree d on the fibres of π. Let V∗ ⊂ V be the
locus of smooth curves and B∗ → V∗ the relative Picard scheme of degree
d. Finally, let Wr∗

d ⊂ B∗ be the codimension at most (r+ 1)(g− d+ r) locus
of line bundles with dimension of the space of sections r+ 1. LetWr

d be the
closure ofWr∗

d in B. Then

dimWr
d > dimB− (r+ 1)(g− d+ r) +m = 3g− 3+ ρ(g, r,d) +m.

This then contributes to the lower bound in the same way as in loc. cit.

Moreover, we also obtain an upper bound for the dimension of certain
irreducible components of DJr,dg,n,µ(Pd,g,n) supported on the locus of marked
quasi-stable curves with at least one node.

Proposition 3.18. Every irreducible component of DJr,dg,n,µ(Pd,g,n) supported en-
tirely on the locus of quasi-stable curves with n marked points and at least one node
has dimension at most 4g− 4+ n− d+ r.

Proof. Suppose Z ⊂ DJr,dg,n,µ(Pd,g,n) is an irreducible component supported
entirely on the locus of quasi-stable curves with nmarked points and at least
one node. Let (X,p1 . . . ,pn,L) ∈ Z be a generic element and denote by ΓZ the
dual graph of the curve X. By the definition of Z, the set E of edges of ΓZ has
at least one element. Denote by v the vertices of ΓZ and their set by V (with
|V | > 1). By definition, each v corresponds to an irreducible component of X
whose genus we denote by gv. Recall the genus formula:

g− 1 =
∑
v∈V

(gv − 1) + |E|. (3.5)

The strategy in what follows is to bound the dimension of the space of

(X,p1, . . . ,pn,L) ∈ Z
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with graph exactly ΓZ. Now X is equipped with a line bundle L of degree d
with strictly balanced multidegree d = (dv)v∈ΓZ and h0(X,L) = r+ 1. Denote
by Lv the restriction of L to the irreducible component corresponding to the
vertex v and by nv the number of the marked points on it. Thus, for a fixed
vertex v of Γv, and Assuming the result of Theorem 1.8, the dimension of the
space of de Jonquières divisors of length nv on the component corresponding
to v is at most 3gv − 3+ ρ(gv, rv,dv) + nv − dv + rv, where rv := h0(Lv) − 1.
The dimension bound is obtained by summing over the vertices

dimZ 6
∑
v∈V

(3gv − 3+ ρ(gv, rv,dv) + nv − dv + rv)

6 3
∑
v∈V

(gv − 1) + n+ 2|E|− d+
∑
v∈V

rv +
∑
v∈V

ρ(gv, rv,dv),

where we used the fact that
∑
v∈V nv 6 n + 2|E|. The surplus of 2|E| comes

from the preimages of the nodes on each component in case the twist from
the definition of de Jonquières divisors is nonzero. From (3.5) we have

dimZ 6 3g− 3+ n− d− |E|+
∑
v∈V

rv +
∑
v∈V

ρ(gv, rv,dv).

To estimate
∑
v∈V rv, let X1 and X2 be two connected subcurves of X intersect-

ing each other at k nodes. From the Mayer-Vietoris sequence

0→ H0(X,L)→ H0(X1,L|X1)⊕H
0(X2,L|X2)→ Ck

we obtain h0(X1,L|X1) + h
0(X2,L|X2) 6 r + 1 + k. Consider in turn the same

Mayer-Vietoris sequence for two connected subcurves of X1 and of X2, etc. ,
until we are left only with irreducible components. Working backwards and
adding up the dimensions of the spaces of global sections for all irreducible
components of X, we obtain∑

v∈V
h0(Lv) = h

0(X,L) + |E|⇔∑
v∈V

(rv + 1) = r+ 1+ |E|⇔∑
v∈V

rv = r+ 1+ |E|− |V |.

For the sum of Brill-Noether numbers, we use the bound
∑
v ρ(gv, rv,dv) 6∑

v∈V gv, which in turn yields, using (3.5),
∑
v∈V gv = g− 1− |E|+ |V |. Hence

dimZ 6 4g− 3+ n− d+ r− |E| 6 4g− 4+ n− d+ r.

3.5 The dimension theorem for complete linear series

We now give a proof of the dimension theorem (Theorem 1.5) for complete
linear series (i.e. those with s = g−d+ r > 0) that makes use of the framework
of limit linear series as discussed in Section 3.4.1.
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We construct a nodal curve X = C1 ∪p C2 of genus g out of two general
pointed curves (C1,p) of genus g1 and (C2,p) of genus g2, where g1 + g2 =
g. Furthermore, we equip X with a limit linear series of type grd which we
construct from the corresponding aspects grd1

(b1p) on C1 and grd2
(b2p) on C2,

where b1,b2 ∈ Z>0. The genera gj, the degrees dj, and the multiplicities bj
are chosen in such a way as to allow for a convenient induction step, where
the induction hypothesis is the dimension theorem for grdj on Cj for j = 1, 2.
We do this in two steps:

1. The proof for linear series with s > 2 and ρ(g, r,d) = 0 works by induc-
tion on s (while keeping ρ(g, r,d) = 0 fixed), with base case given by the
canonical linear series on a general smooth curve (which has s = 1 and
ρ(g, r,d) = 0). This is done in Section 3.5.1.

2. The proof for linear series with ρ(g, r,d) > 0 works by induction on
ρ(g, r,d) (and keeping s constant), with base case given by the linear
series with ρ(g, r,d) = 0 from the previous step. This is done in Section
3.5.2.

In choosing the aspects grdj(bjp) on Cj (with j = 1, 2), one has to take
the following restrictions into consideration, which ensure that the limit we
constructed exists and is smoothable:

• asmentioned in the Introduction, a general pointed curve (Cj,p) ∈Mgj,1
may carry a grdj(bjp)with ramification sequence at least (α0, . . . ,αr) at
the point p if and only if (cf. (1.2))

r∑
i=0

(αi + gj − d+ r)+ 6 gj. (3.6)

In our case, the ramification sequence at p of grdj(bjp) is (bj, . . . ,bj).

• the limit grd on Xmust be refined in order to satisfy the hypotheses of
the smoothability result of Eisenbud and Harris (Theorem 2.3). This
means that the inequality in (2.2) must be in fact an equality, thus further
constraining the choice of bj.

Theorem 2.2 and Theorem 2.3 then ensure that the limit grd on X that we chose
is indeed smoothable. Assume that we are in the setting of Definition 3.3 with
X0 = X. If the limit grd on X admits a de Jonquières divisor

∑n
i=1 aiDi, then

each aspect grdj(bjp) on Cj (with j = 1, 2) admits the de Jonquières divisor

k∑
i=1

aiDi,Cj +
(
d−

k∑
i=1

aidi,Cj

)
p,
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where the following inequality must hold in order to preserve the chosen
ramification at p:

d−

k∑
i=1

aidi,Cj > bj. (3.7)

Removing the base point p from the series grdj(bjp), we are left with a general
linear series lj := grdj on Cj (for j = 1, 2), with simple ramification at p and
admitting a de Jonquières divisor

k∑
i=1

aiDi,Cj +
(
dj −

k∑
i=1

aidi,Cj

)
p.

The strategy is to prove that

dimDJr,dk,N(µ1,µ2,X, l) 6 N− d+ r

by using the dimension theorem for the spaces of de Jonquières divisors of
the series lj on Cj. By the upper semicontinuity of fibre dimension applied to
the map φ from Remark 3.5 it follows that

dimDJr,dk,N(µ1,µ2,Xt, lt) 6 N− d+ r

for a smoothing of X to a general curve Xt equipped with a general linear
series lt of type grd. Combining this with Lemma 3.1, we obtain the statement
of the dimension theorem for a general curve with a general linear series.

3.5.1 Step 1: proof for ρ(g, r,d) = 0
Having fixed r and s = g−d+ r > 2, the proof in this case works by induction
on s. The base case is given by the dimension theorem for the canonical linear
series, (the unique linear series with index of speciality s = 1 and vanishing
Brill-Noether number), on a general smooth curve of any genus. This follows
either from our discussion in Section 3.2 or from Theorem 1.1 a) of Polishchuk
[Pol06] with D = 0. The induction step constructs a curve X of genus gwith
a limit linear series l of type grd with index of speciality s and Brill-Noether
number ρ(g, r,d) = 0 from two irreducible components: C1 equipped with a
linear series l1 with index of speciality s1 = s− 1 and Brill-Noether number
ρ(l1) = 0 and C2 equipped with its canonical linear series (with index of
speciality s2 = 1). The induction hypothesis at each step is the dimension
theorem for each of the components C1 and C2 equipped with their respective
linear series l1 and l2.

We now show how to obtain the curve X. From the condition ρ(g, r,d) = 0,
we get

g = s(r+ 1),
d = g+ r− s.
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We start with a general curveC1 of genus (s−1)(r+1) equippedwith a general
linear series l1 of type grg−s. Hence the index of speciality of l1 is

s1 = (s−1)(r+1)−g+s+r = (s−1)(r+1)−(s−1)(r+1)−r+s−1+r = s−1

and its Brill-Noether number is

ρ((s− 1)(r+ 1), r,g− s) = (s− 1)(r+ 1) − (r+ 1)(s− 1) = 0.

We choose a general point p ∈ C1 to which we attach another general curve C2
of genus r+ 1 equipped with its canonical linear series l2 = gr2r. This series
has index of speciality s2 = 1 and Brill-Noether number

ρ(r+ 1, r, 2r) = 0.

Thus we obtained a curve X = C1 ∪p C2 of genus g. We construct on X a
refined limit linear series l of type grd aspect by aspect using l1 and l2.

On C1 we take the aspect to be the series l1(rp), which therefore has the
following vanishing sequence on C1:

(r, r+ 1, . . . , 2r).

Since the limit is refined, the vanishing sequence on C2 must be

(d− 2r, . . . ,d− r),

so we take the aspect corresponding to C2 to be the series l2((d− 2r)p).
Finally, we check that the limit series

{(C1, l1(rp)), (C2, l2((d− 2r)p))}

satisfies (1.2):

on C1 :
r∑
i=0

(r+ (s− 1)(r+ 1) − d+ r)+ = (r+ 1)(s− 1) 6 (r+ 1)(s− 1),

on C2 :
r∑
i=0

(d− 2r+ r+ 1− d+ r)+ = r+ 1 6 r+ 1.

Hence the limit linear series l on X is smoothable.
We now prove that

dimDJr,dk,N(µ1,µ2,X, l) 6 N− d+ r.

For j = 1, 2, let Nj =
∑k
i=1 di,Cj and therefore N1 +N2 = N. As seen above,∑k

i=1 aiDi ∈ DJ
r,d
k,N(µ1,µ2,X, l) if and only if

∑
i=1

aiDi,Cj +
(
d−

k∑
i=1

aidi,Cj

)
p
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is a de Jonquières divisor of length (at most) Nj + 1 of the aspect of l corre-
sponding to Cj, where j = 1, 2.

We observe that if all points in the support of the Di-s specialise on one of
the Cj (with j = 1, 2), then

d−

k∑
i=1

aidi,Cj = 0,

contradicting inequality (3.7). Hence we must have

d− 2r 6
k∑
i=1

aidi,C1 6 d− r,

2r >
k∑
i=1

aidi,C2 > r.

We now distinguish a few possibilities:

1. If
∑k
i=1 aidi,C1 = d− r, then

∑k
i=1 aidi,C2 = r and moreover

k∑
i=1

aiDi,C1 ∈ DJ
r,d−r
k,N1

(µ ′1,µ ′2,C1, l1)

and
k∑
i=1

aiDi,C2 + rp ∈ DJ
r,2r
k,N2+1(µ

′′
1 ,µ ′′2 ,C2, l2),

where µ ′1 = (ai)Di,C1>0, µ ′2 = (di,C1) are the strictly positive vectors corre-
sponding to the component C1, while µ ′′1 = (ai)Di,C2>0 and µ ′′2 = (di,C2 , r)
are the ones corresponding to C2. By the induction hypothesis, the following
inequalities must be satisfied

dimDJr,d−rk,N1
(µ ′1,µ ′2,C1, l1) = N1 − d+ 2r =: x > 0

dimDJr,2rk,N2+1(µ
′′
1 ,µ ′′2 ,C2, l2) = N2 + 1− r = (N− d+ r) − x+ 1 > 0,

where we used the fact that N1 +N2 = N. Furthermore, note that on C2 we
are actually only interested in the locus in DJr,2rk,N2+1(µ

′′
1 ,µ ′′2 ,C2, l2) consisting

of divisors with p in their support. More precisely, consider the incidence
correspondence

Γ = {(D,p) | p ∈ D} ⊂ DJr,2rk,N2+1(µ
′′
1 ,µ ′′2 ,C2, l2)× C

and let π1, π2 be the canonical projections. The locus we are after is π1(π−1
2 (p)).

By construction, π2 is dominant and since p is general,

dimπ1(π−1
2 (p)) = dimDJr,2rk,N2+1(µ

′′
1 ,µ ′′2 ,C2, l2) − 1.
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Therefore the dimension estimate for DJr,dk,N(µ1,µ2,X, l) is

dimDJr,dk,N(µ1,µ2,X, l) 6dimDJr,d−rk,N1
(µ ′1,µ ′2,C1, l1)+

+DJr,2rk,N2+1(µ
′′
1 ,µ ′′2 ,C2, l2) − 1

=N− d+ r.

2. If d−2r <
∑k
i=1 aidi,C1 < d−r, then 2r >

∑k
i=1 aidi,C2 > r and we obtain

de Jonquières divisors of lengthNj + 1 on the component Cj, for j = 1, 2. This
yields

dimDJr,d−rk,N1+1(µ
′
1,µ ′2,C1, l1) = N1 + 1− d+ 2r =: x > 0

dimDJr,2rk,N2+1(µ
′′
1 ,µ ′′2 ,C2, l2) = N2 + 1− r = (N− d+ r) − x+ 2 > 0.

Arguing as in the previous case (for bothC1 andC2), we obtain the same upper
bound for the dimension of DJr,dk,N(µ1,µ2,X, l):

dimDJr,dk,N(µ1,µ2,X, l) 6dimDJr,d−rk,N1
(µ ′1,µ ′2,C1, l1) − 1+

+DJr,2rk,N2+1(µ
′′
1 ,µ ′′2 ,C2, l2) − 1

=N− d+ r.

3. If
∑k
i=1 aidi,C1 = d− 2r, then

∑k
i=1 aidi,C2 = 2r and we get de Jonquières

divisors of lengthN1 + 1 on C1 and of lengthN2 on C2. This case is analogous
to (1) andwe again obtain the upper boundN−d+r for dimDJr,dk,N(µ1,µ2,X, l).

3.5.2 Step 2: proof for all ρ(g, r,d) > 1
Fix r, s = g−d+r, and ρ(g, r,d) > 1. We continue with the proof by induction
on ρ(g, r,d), where the base case is given by the dimension theorem for linear
series with ρ(g, r,d) = 0 that we proved in Section 3.5.1. The induction step
constructs a curve X of genus g with a linear series l of type grd from two
components: C1 equipped with a linear series l1 and C2 equipped with l2 such
that ρ(l) = ρ(g, r,d) = ρ(l1) + 1. As before, the induction hypothesis at each
step is the dimension theorem for the components Cj and their corresponding
linear series lj, with j = 1, 2.

We start with a general curve C1 of genus g− 1 equipped with a general
linear series l1 = grd−1. We pick a general point p ∈ C1 and attach to it an
elliptic normal curve C2 with its associated linear series l2 = grr+1. Note that
the dimension theorem holds for the elliptic normal curve by virtue of the fact
that l2 is non-special (see the discussion in Section 3.2).

The resulting curve X = C1∪pC2 has genus g and we construct on it a limit
linear series l of type grd aspect by aspect. On C1 we take the aspect grd−1(p),
hence p is a base point of the grd on Xwith vanishing sequence on C1 given by

(1, 2, . . . , r+ 1).
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Since the limit grd must be refined in order to be smoothable, the aspect on C2
must have the following vanishing sequence at p

(d− r− 1, . . . ,d− 1).

Thus the aspect on C2 is given by the series grr+1((d− r− 1)p).
We check that this limit grd also satisfies (1.2):

on C1 : (r+ 1)(1+ g− 1− d+ r) = (r+ 1)s 6 g− 1,
on C2 : (r+ 1)(d− r− 1+ 1− d+ r) = 0 6 1,

where in the first inequality we used the fact that ρ(g, r,d) = g− (r+ 1)s > 1.
Hence l is a smoothable limit linear series on X. Moreover, its Brill-Noether
number is

ρ(l) = ρ(g, r,d) = g− (r+ 1)s

while the linear series l1 = grd−1 on C1 has Brill-Noether number

ρ(l1) = ρ(g− 1, r,d− 1) = ρ(g, r,d) − 1.

Finally, we observe here that the induction step leaves the indices of speciality
unchanged since s1 = (g− 1) − (d− 1) + r = s.

We now show that dimDJr,dk,N(µ1,µ2,X, l) 6 N − d + r. The argument
is the same as in 3.5.1. For j = 1, 2, denote by Nj the length of the divisor∑k
i=1 aiDi,Cj . As for the ρ(g, r,d) = 0, there are a few possibilities:

1. If
∑k
i=1 aidi,C1 = d− 1, then

∑k
i=1 aidi,C2 = 1 and moreover

k∑
i=1

aiDi,C1 ∈ DJ
r,d−1
k,N1

(µ ′1,µ ′2,C1, l1)

and
k∑
i=1

aiDi,C2 + rp ∈ DJ
r,r+1
k,N2+1(µ

′′
1 ,µ ′′2 ,C2, l2),

where the vectors µ ′1,µ ′2,µ ′′1 ,µ ′′2 are defined as in 3.5.1. By the induction hy-
pothesis,

dimDJr,d−1
k,N1

(µ ′1,µ ′2,C1, l1) = N1 − d+ 1+ r =: x > 0,

dimDJr,r+1
k,N2+1(µ

′′
1 ,µ ′′2 ,C2, lC2) = N2 = (N− d+ r) + 1− x.

As discussed in 3.5.1, we have the bound

dimDJr,dk,N(µ1,µ2,X, l) 6DJ
r,d−1
k,N1

(µ ′1,µ ′2,C1, l1)+

+DJr,r+1
k,N2+1(µ

′′
1 ,µ ′′2 ,C2, l2) − 1

=N− d+ r.
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2. If d − r − 1 <
∑k
i=1 aidi,C1 < d − 1, then r + 1 >

∑k
i=1 ai,C2 > 1 and we

get de Jonquières divisors of length N1 + 1 on C1 and length N2 + 1 on C2.
Counting dimensions as before we obtain the upper bound N− d+ r for the
dimension of DJr,dk,N(µ1,µ2,X, l).

3. If
∑k
i=1 aidi,C1 = d − r − 1, then

∑k
i=1 aidi,C2 = r + 1 and we have de

Jonquières divisors of length N1 + 1 on C1 and length N2 on C2. We obtain
the same upper bound N− d+ r.

3.6 Smoothness

In this section we prove Theorem 1.8 which states that the space

DJr,dk,N(µ1,µ2,C, l)

is smooth by showing that it arises as a transverse intersection of subvarieties
of the symmetric product Cd. Recall that we already proved in Section 3.2 this
result in the following cases:

• l = KC

• g− d+ r ∈ {0, 1}

• r ∈ {1, 2}.

This section is dedicated to the case r > 3 and s > 2. From the transversality
condition (3.2), we have to show that H0(C,KC −D−D1 − . . .−Dk) = 0. To
do this, we prove that

g− (d+N) + r ′ < 0,

where r ′ = h0(D+D1 + . . .+Dk) − 1 = r+ n ′, for some integer n ′ > 0.
Suppose towards a contradiction that n ′ > N − g + d − r. Consider all

flag curve degenerations j : M0,g → Mg and let Z := M0,g ×Mg
C
N
g , where

Cg = Mg,1. Let U ⊂ Z be the closure of the divisors with r ′ = r + n ′ and
n ′ > N− g+ d− r on all curves from im(j) ⊆Mg. By assumption, the map
U → M0,g is dominant, hence dimU > g − 3. Applying Proposition 2.2 of
[Far08], there exists a point [R̃ := R ∪ E1 ∪ . . . ∪ Eg,y1, . . . ,yN] ∈ U, where R is
a rational spine (not necessarily smooth), the Ei are elliptic tails and the yi are
the points in the supports of the divisors D1, . . . ,Dk such that either:

(i) the supports of the divisors D1, . . . ,Dk coalesce into one point, or else

(ii) the supports of the divisors D1, . . . ,Dk lie on a connected subcurve Y of R̃
of arithmetic genus pa(Y) = N and |Y ∩ (R̃ \ Y)| = 1.
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Denote by q1, . . . ,qg the points of attachment of the elliptic tails to the rational
spine.

A short computation using the Plücker formula allows us to immediately
dismiss Case (i). We now deal with Case (ii). By assumption, there exists a
proper flat morphism φ : X → B satisfying:

1. X is a smooth surface, B is a smooth affine curve with 0 ∈ B a point such
that the fibre X0 is a curve stably equivalent to the curve R̃, and the fibre Xt

is a smooth projective curve of genus g for t 6= 0. Furthermore, we have the
relative divisors Di ∈X di with Di(0) = Di, for i = 1, . . . ,k.

2. Let X ∗ = X \ X0. Then there exists a line bundle L ∗ on X ∗ of rela-
tive degree d and with dimH0(Xt,Lt) = r + 1 for t 6= 0. After (possibly)
performing a base change and resolving the resulting singularities, the pair
(L ∗,V ∗ := H0(X ∗,L ∗)) yields a refined limit linear seriesm := grd on R̃. The
limit linear seriesm has moreover the property that it admits the de Jonquières
divisor

∑k
i=1 aiDi(0) =

∑k
i=1 aiDi.

3. The line bundle L ∗ also has the following property: N := L ∗
(∑k

i=1 Di
)

is another line bundle on X ∗ of relative degree d+N and with the property
h0(Xt,Nt) = r+n ′+ 1. The pair (N ∗, Ṽ ∗ := H0(X ∗,N ∗)) also gives a limit
linear series l := gr+n ′d+N on R̃. Furthermore, the limit linear series l admits the
de Jonquières divisor

∑k
i=1(ai + 1)Di.

The situation can be reformulated as follows: for t 6= 0,

dimH0
(
Xt,Nt

(
−

k∑
i=1

Di(t)
))

= r+ 1.

Then N ∗ ⊗ OX ∗(−
∑k
i=1 Di(B \ 0)) induces the limit linear series grd that we

started with.
Now, for a component C ⊂ X0, let (LC,VZC) ∈ Grd(Z) be the C-aspect

mC of the limit m = grd. Then there exists a unique effective divisor DC ∈ CN
supported only at the points of (C ∩

⋃k
i=1 Di(B) ∩ (C ∩X0 \ C) such that the

C-aspect of m has the property that the restriction map

VC → VC|DC

has non-trivial kernel. For the C-aspect lC of the limit l the situation is anal-
ogous, but now we have an effective divisor D ′C ∈ Cd+N with D ′C > DC.
Moreover, the C-aspect of m is of the form

mC = (MC := NC ⊗ OC(−D
′
C +DC),WC ⊂ Ṽ ∗C ∩H0(MC))

Thus, the collection mY := {mC}C⊂Y forms a limit grd on Y, while the collection
lY := {lC}C⊂Y forms a limit gr+n ′d+N on Y.



3.6. SMOOTHNESS 51

Let p = Y ∩ (R̃ \ Y) and Z := R̃ \ Y. The vanishing sequence of the limit grd
at p is a subsequence of the vanishing sequence at p of the limit gr+n ′d+N. The
complement of this subsequence yields another limit linear series gn ′−1

d on Y
(see Lemma 2.1 of [Far08]). We distinguish two cases:

(I) N < g.
To begin with, we list two technical results that help us determine a lower
bound for the ramification sequence at p of the limit linear series gn ′−1

d in this
case.

Lemma 3.19 (Corollary 1.6 of [EH83a]). Let C ' P1 be an irreducible component
of Z such that qj ∈ C for some j = 1, . . . ,N, where qj is the point of attachment of the
elliptic tail Ej to C. Let l be a limit linear series on Z and C ′ be another component of
R̃ and q = C ∩ C ′. If q ′ is another point on C, then for all but at most one value of i,

ai(lC,q ′) < ai(lC ′ ,q).

Lemma 3.20. Let {σC | C ⊆ Y irreducible component} be the set of compatible
sections corresponding to the divisorD+D1+. . .+Dk. If q ∈ C, then ordq(σC) = 0.

Proof. The proof works by induction on the components of Y. By construction,
the tree curve Y has at least two components, so the base case is Y = C1 ∪q ′ C2.
Denote by DC1 and DC2 the specialisations of the divisor D+D1 + . . .+Dk
on the two components C1 and C2. Then σC1 vanishes on DC1 and

ordq ′(σC1) = d+N− degDC1 = degDC2

and similarly σC2 must vanish on DC2 and ordq ′(σC2) = degDC1 . Hence, if
q ∈ C1 is a smooth point, then σC1(q) = 0 and if q ∈ C2 is a smooth point,
then σC2(q) = 0 and we are done.

Suppose now that Y has m irreducible components denoted C1, . . . ,Cm
and let DC1 , . . . ,DCm be the specialisations of the divisor D+D1 + . . .+Dk
to each component. Let Cm ∩ Cm−1 = q

′. Then

ordq ′(σCm−1) = d+N− degDC1 − . . .− degDCm−1 = degDCm .

Furthermore, ordq ′(σCm) = d+N−degCm. Thus, if q ∈ Y is a smooth point
belonging to Cm, then σCm(q) = 0. If q ∈ Y belongs to any of the components
of the subcurveC1∪ . . .∪Cm−1, then σCj(q) = 0 (with j = 1, . . . ,m−1), where
we used the induction hypothesis and the fact that

DC1 + . . .+DCm−1 + (degCm)q ′

is a divisor of degree d+N on the subcurve C1 ∪ . . . ∪ Cm−1.
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Let C ⊂ Z be the irreducible component meeting Y at p. Denote by C ′ the
component of Y containing p. Suppose first that C contains at least one of the
points qj of attachment of the elliptic tails. Let p ′ ∈ C be a general smooth
point, which therefore has vanishing sequence

ai((g
r+n ′

d+N)C,p
′) = (0, 1, 2, 3, . . . , r+ n ′).

By Lemma 3.19 with q = p and q ′ = p ′, the vanishing sequence at p is

ai((g
r+n ′

d+N)C ′ ,p) > (0, 2, 3, 4, . . . , r+ n ′ + 1).

By a similar argument,

ai((g
r
d)C ′ ,p) > (0, 2, 3, 4, . . . , r+ 1).

Combining this with Lemma 3.20, we get the following ramification sequence
for gn ′−1

d :
αi((g

n ′−1
d )C ′ ,p) > (1, 1, . . . , 1).

In fact we obtain a limit linear series gn ′−1
d on Y with ramification

αi((g
n ′−1
d )Y ,p) > (1, 1, . . . , 1). (3.8)

We check a necessary condition for such a limit series to exist (cf. Theorem 1.1
of [EH87]):

n ′−1∑
i=0

α̃i + n
′(N− d+ n ′ − 1) 6 N. (3.9)

Since we assumed n ′ > N− g+ d− r and using moreover the inequality (3.8)
we obtain that

n ′−1∑
i=0

α̃i + n
′(N− d+ n ′ − 1) > (N− g+ d− r)(2N− g− r).

Denoting by s := g− d+ r and usingN > d− r, we reformulate the necessary
condition (3.9) as

(N− s)(N− s− r) < N

which is equivalent to the quadratic inequality

N2 − (2s+ r+ 1)N+ s(s+ 1) < 0.

This implies that the solution N must be contained in the interval (N1,N2),
where N1 and N2 are the solutions to the equation

N2 − (2s+ r+ 1)N+ s(s+ 1) = 0.
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This implies that

N <
2s+ r+ 1+

√
(2s+ r+ 1)2 − 4s(s+ r)

2 .

We now show that for s > 2 and r > 3

2s+ r+ 1+
√
(2s+ r+ 1)2 − 4s(s+ r)

2 < d− r+ 1, (3.10)

contradicting thus the hypothesis N− d+ r > 1. To do this, first note that a
simple calculation yields

g > (r+ 1)s > 2s+ r+ 1

for s > 2 and r > 3 which in turn yields

2s+ r+ 1 6 g− ((r+ 1)s− 2s+ r+ 1) = g− s(r− 1) + r+ 1.

Another simple calculation gives, for r > 3 and s > 2:√
(2s+ r+ 1)2 − 4s(s+ r) 6 (2s+ r+ 1) − 4.

Putting it all together, we get a sufficient condition for the inequality (3.10) to
be satisfied, namely:

2g− 2s(r− 1) + 2(r+ 1) − 4
2 < d− r+ 1

which is equivalent to
(2− r)(s− 1) < 0.

This is clearly satisfied for r > 3 and s > 2 which means (3.10) is also satisfied
for these value ranges of r and s, contradicting thus the assumptionN−d+r >
1.

(II) N > g.
In this case Y = R̃ and we check the necessary condition for the existence of a
linear series gn ′−1

d on the tree curve Y with specified ramification at a point
(also Theorem 1.1 of [EH87]):

n ′(g− d+ n ′ − 1) 6 g. (3.11)

By our assumptions, n ′ > N− g+ d− r > d− r and we therefore have

n ′−1∑
i=0

α̃i + n
′(N− d+ n ′ − 1) > (d− r)(g− r− 1).
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Thus a necessary condition for (3.11) is that

(d− r)(g− r− 1) 6 g,

which is equivalent to

g 6
(r+ 1)(d− r)

d− r− 1 .

However, we also know that s = g − d + r > 2 and g 6 r+1
r (d − r), which

immediately give d > 3r. This in turn yields

g 6
(r+ 1)(d− r)

d− r− 1 6
r+ 1
2r− 1(d− r) 6 d− r,

which contradicts the assumption that s = g− d+ r > 2.

3.7 Non-existence for non-complete linear series

In this section we prove Theorem 1.9 which states that, for a general curve of
genus g, if n− d+ r < 0, the general linear series grd with g− d+ r < 0 does
not admit de Jonquières divisors of length n of the type

a1p1 + . . .+ anpn,

where the points pi in the support are distinct. Recall that in this case, we
only need one partition µ = (a1, . . . ,an) of d and we denote the space of de
Jonquières divisors by DJr,dn (µ,C, l). We proceed by induction. The base case
is given by the non-existence statement in the case n − d + r < 0 and n < g
shown in Lemma 3.2. In the induction step we prove non-existence for n > g.

Consider the following quasi-stable curve Y of genus g > 4 with n > g

marked points consisting of a general curve C of genus g − 1 and a rational
bridge with n + 1 rational components γj, for j = 1, . . . ,n + 1. Since the
curve is quasi-stable, at most one of the components of the rational chain is
exceptional (i.e. it contains no marks). In our case, since we have n marks,
there must be one such component which we denote by γj ′ , while each of
the other rational components γj contains one of the marked points pi. Let
C ∩ γ1 = q1, C ∩ γn+1 = qn+2, and γj ∩ γj+1 = qj+1 for j = 1, . . . ,n+ 1. The
curve Y is equipped with a linear series l = grd = (L,V) with g − d + r < 0
corresponding to a line bundle L with h0(Y,L) > r + 1. The bundle L has
balanced multidegree d, meaning that deg LC = d− 1 and deg Lγj = 0 for all
j 6= j ′ and deg Lγj ′ = 1. An easy Mayer-Vietoris sequence calculation yields
that C is also equipped with a non-complete linear series lC = grd−1.

This configuration gives a de Jonquières divisor on Y corresponding to
l = (L,V) if there exists a twist T satisfying the following system of linear
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equations:

T(q1,C) + T(qn+2,C) = d− 1

T(qj,γj) + T(qj+1,γj) +
∑
pi∈γj

ai = 0 for all j 6= j ′

T(qj ′ ,γj ′) + T(qj ′+1,γj ′) = 1.

Note that at least one of the terms T(q1,C) and T(qn+2,C) must be non-
zero. There are therefore two possibilities for solutions of this system:

1. Both T(q1,C) and T(qn+2,C) are non-zero. In this case we have a de
Jonquières divisor T(q1,C)q1 + T(qn+2,C)qn+2 on C of length 2 corre-
sponding to lC. Note that since 2 < g− 1 and

2− (d− 1) + r = 3− d+ r < n− d+ r < 0,

the induction hypothesis yields that lC admits no such de Jonquières
divisors.

2. Only one of the two terms is non-zero. We then have a de Jonquières
divisor of length 1 corresponding to lC. Since 1 < g− 1 and

1− (d− 1) + r < n− d+ r < 0,

the induction hypothesis yields that lC does not admit such de Jonquières
divisors.

Hence l does not admit any de Jonquières divisors on Y of length n > g.
We now explain how to conclude the non-existence statement for a general
smooth curve with a general linear series of type grd.

First note that Y is embedded in Pr by the linear series l and using the
methods ofHartshorne-Hirschowitz and Sernesi [Ser84] (for the precise details,
see for example Lemma 1.5 of [AFO17]) one shows that it is flatly smoothable
to a general curve of genus g and degree d in Pr. Thus we have a family π :
X → B of curves of genus gwith central fibre X0 = Y. The family is equipped
with a line bundle L of relative degree d and such that h0(Xt,Lt) > r + 1
for all t ∈ B. Thus the family (π : X → B,pi : B → X ,L ) /∈ DJr,dg,n,µ(B).
Otherwise, if the smooth fibres of X → B admitted de Jonquières divisors,
then by Proposition 3.15, the central fibre would as well. However, we have
just proven this not to be the case, which concludes the induction step.

Remark 3.21. Y is a quasi-stable curve obtained via semi-stable reduction
from the stable curve X of genus g with no marked points and just one self-
intersection node. Since X is d-general (see Definition 4.13 of [Cap05]), it
follows that locally around X the forgetful morphism Ψd,g,0 : Pd,g,0 → B (with
B ⊂Mg) is proper. Moreover, if Ψd,g,0 is proper, then so are Ψd,g,n : Pd,g,n →
B (with B ∈ Mg,n - see for example the discussion in Sections 7 and 8 of
[Mel11]) and DJr,dg,n,µ(B)→ B.
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3.8 De Jonquières divisors with negative terms

It is also worthwhile to study de Jonquières divisors whose partition µ of d
contains negative terms. In fact, in Section 3.4.2 we saw that negative coeffi-
cients occur naturally when considering de Jonquières divisors on nodal stable
curves, as the twists T may be negative. For simplicity of notation, we consider
only de Jonquières divisors with distinct points in the support.

Definition 3.22. Fix a curve C equipped with a linear series l ∈ Grd(C) and let

µ = (a1, . . . ,an1 ,−b1, . . . ,−bn2)

be a partition of d of length n, where ai,bi are positive integers satisfying∑n1
i=1 ai−

∑n2
i=1 bi = d and n1,n2 are fixed positive integers with n1+n2 = n.

We define the space DJr,dn1,n2(µ,C, l) of de Jonquières divisors with n1 positive
and n2 negative terms corresponding to the linear series l on the curve C by
the rule

n1∑
i=1

aipi −

n2∑
i=1

biqi ∈ DJr,dn1,n2(µ,C, l)

if and only if
n1∑
i=1

aipi ∈ DJr
′,d ′
n1 (µ ′,C, l ′),

where pi,qi ∈ C, µ ′ = (a1, . . . ,an1) is a positive partition of

d ′ =

n1∑
i=1

ai = d+

n2∑
i=1

bi,

and l ′ is the linear series of type gr ′d ′ given by l ′ = l+
∑n2
i=1 biqi.

Theorem 3.23. Fix a general curve C of genus g equipped with a general linear series
l = (L,V) ∈ Grd(C), and let µ = (a1, . . . ,an1 ,−b1, . . . ,−bn2) be a partition of
d of length n, where ai,bi are positive integers and n = n1 + n2. Assume that
g− d+ r >

∑n2
i=1 bi (which ensures that l ′ is complete). If n1 − d

′ + r ′ > 0, then
the space DJr,dn1,n2(µ,C, l) is of expected dimension n− d ′ + r ′.

Proof. Set L ′ = L(
∑n2
i=1 biqi). We first show that

dimDJr ′,d ′n1 (µ ′,C, l ′) > n1 − d
′ + r ′.

We distinguish a few cases.

• If d ′ = 2g− 2 and L ′ = KC, then h0(L ′) = g.

• If d ′ = 2g− 2, but L ′ 6= KC, then h0(L ′) = g− 1.

• If d ′ > 2g− 2, then h0(C,L ′) = d ′ − g+ 1.
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• If d ′ < 2g− 2, then h0(C,L ′) > r.

In all cases h0
(
C,L ′|∑n1

i=1 aipi

)
=
∑n1
i=1 ai = d ′. With this in mind, we can

describe the spaceDJr ′,d ′n1 (µ ′,C, l ′) as the locus inCd ′ where the vector bundle
mapΦ (constructed as in Section 3.1, but substituting L ′ for L) has rank at most
h0(C,L ′)−1 = r ′. Hence the lower bound for the dimension ofDJr ′,d ′n1 (µ ′,C, l ′)
is given by

• n1 − (h0(C,L ′) − r ′)(d ′ − r ′) = n1 − d
′ + r ′ = n1 − g+ 1 if d ′ = 2g− 2

and L ′ = KC,

• n1 − (h0(C,L ′) − r ′)(d ′ − r ′) = n1 − g if d ′ > 2g− 2 and L ′ 6= KC,

• n1 − (h0(C,L ′) − r ′)(d ′ − r ′) = n1 − d+ r if d ′ < 2g− 2.

The fact that
dimDJr ′,d ′n1 (µ ′,C, l ′) = n1 − d

′ + r ′

follows as in the case of effective de Jonquières divisors, by replacing the
occurrences of L by L ′ in the proof of Theorem 1.5. Finally, including the
points qi in the dimension count, we get that the dimension ofDJr,dn1,n2(µ,C, l)
is indeed n− d ′ + r ′.





Chapter 4

Intersections of secant varieties

This chapter is dedicated to the study of intersections of incidence and secant
varieties on algebraic curves. In Section 4.1 we establish some preliminary
results on incidence and secant varieties before we prove Theorem 1.10 using
a tangent space argument in Section 4.2. We construct degenerations of secant
varieties for families of curves with nodal fibres of compact type using limit
linear series in Section 4.3 and we use them to prove Theorem 1.11 in Section
4.4.

4.1 Preliminaries on incidence and secant varieties

As usual, let C be a general curve of genus g equipped with a linear series
l = (L,V) of type grd. Let e and f be integers such that 0 6 f < e 6 d.

As mentioned in the Introduction, incidence varieties are special cases of
secant varieties, namely Γe(l) = Vre(l).

Secant (and therefore incidence) varieties Ve−fe (l) of effective divisors of
degree e imposing at most e− f conditions on l have a degeneracy locus struc-
ture inside the symmetric product Ce, obtained as follows: let E = OCe ⊗V be
the trivial vector bundle of rank r+ 1 on Ce and Fe(L) := τ∗(σ

∗L⊗OU) be the
e-th secant bundle, where U is the universal divisor

U = {(p,D) | D ∈ Ce and p ∈ D} ⊂ C× Ce,

and σ, τ are the usual projections:

C× Ce ⊃ U

C Ce

σ τ

Let Φ : E → F be the bundle morphism obtained by pushing down to
Ce the restriction σ∗L → σ∗L⊗ OU. The space Ve−fe (l) is then the (e − f)-th

59
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degeneracy locus of Φ, i.e. where rkΦ 6 e− f. To see that this is indeed the
case, note that fibrewise, the morphism Φ is given by the restriction:

ΦD : H0(C,L)→ H0(C,L/L(−D)).

Now by definition, D ∈ Ve−fe (l) if and only if

dim kerΦD = h0(L−D) > r+ 1− e+ f,

which is equivalent to the aforementioned condition rkΦ 6 e − f. The di-
mension estimate for Ve−fe (l) follows immediately from its degeneracy locus
structure:

dimVe−fe (l) > e− (r+ 1− e+ f)(e− e+ f) = e− f(r+ 1− e+ f).

In particular,
dim Γe(l) > r.

On the other hand, since D ∈ Γe(l) is equivalent to there existing a divisor
E ∈ l such that E−D > 0, and since the dimension of the locus of such divisors
E inside l is at most r, we immediately have that

dim Γe(l) = r

for any linear series l of type grd on C. Using the Porteus formula, one obtains
(see for [ACGH85] Chapter VIII, Lemma 3.2) that the fundamental class of
Γe(l) is given by

γe(l) =

e−r∑
j=0

(
d− g− r

j

)
xkθe−r−j

(e− r− j)! ,

where, as before, θ is the pullback of the fundamental class of the theta divisor
to Cd and x is the class of the divisor q+ Cd−1 ⊂ Cd.

To obtain formula (1.4) giving the number (when expected to be finite) of
divisors in the intersection

Γe(l1) ∩ Γe(l2),

where l1 = gr1d1
and l2 = gr2d2

, one may compute the product

γe(l1)γe(l2) ∈ H2e(Ce,Z) ' Z,

which, as shown in [ACGH85] Chapter VIII, Section §3, yields the desired
count.

Unfortunately, the situation is not so simple in the general case of secant
varieties with r− e+ f > 0. Indeed, the fundamental class of Ve−fe (l) has been
computed by MacDonald and its expression is very complicated and thus of
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limited practical use, as can be seen in [ACGH85], Chapter VIII, §4. For a study
of the dimension theory of secant varieties we refer the reader to [Far08].

In this thesis we are concerned instead with the study of intersections of
incidence and secant varieties on a given general smooth curve and with the
geometric interpretation of some unexpected enumerative results that arise in
this context.

4.2 Intersections of incidence varieties

In this section we investigate the failure of transversality for intersections of
incidence varieties in certain interesting cases. We begin in 4.2.1 by explaining
why the enumerative formula (1.4) yields unexpected zero counts in some
situations by making use of the dimension theorem for de Jonquières divisors.
By studying the relevant tangent spaces we then prove Theorem 1.10 in 4.2.2.

4.2.1 Unexpected zero counts

Recall that for two linear series l1 = gr1d1
and l2 = gr2d2

on a general curve C and
for the positive integer e = r1 + r2, we expect there to be a finite number of
divisors in the intersection Γe(l1)∩ Γe(l2) and this number is given by formula
(1.4).

Consider the complete linear series l1 = gr1d1
, the pencil l2 = g1d2

, and
e = r1+1. Formula (1.4) gives that the number of divisorsD ∈ Cr1+1 common
to both l1 and l2 is

(d1 − r1)

(
d2 − 1
r1

)
− g

(
d2 − 2
r1 − 1

)
. (4.1)

This number was first computed by Severi in the context of the theory of
correspondences and coincidences on curves (see Section 74 of [SL21]).

From our point of view, this choice of parameters provides an interesting
example of a zero count when d2 = r1 + 2 and ρ(g, r1,d1) = 0, because now

(d1 − r1)

(
d2 − 1
r1

)
− g

(
d2 − 2
r1 − 1

)
= ρ(g, r1,d1) = 0.

Thus we expect this intersection not to be well-behaved in the case of vanishing
ρ(g, r1,d1). Indeed, we have:

Proposition 4.1. In the above setting, if d2 = r1 + 2 and ρ(g, r1,d1) = 0 there are
three possibilities for the intersection Γe(l1) ∩ Γe(l2):

(i) it is empty if l1 = KC and l2 is base point free;

(ii) it is strictly positive-dimensional if l1 = KC and l2 is not base point free;

(iii) it is empty if l1 6= KC.
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Proof. Let D ∈ Γr1+1(l1) ∩ Γr1+1(l2) and let s1 := g − d1 + r1 be the index of
speciality of the linear series l1. Since ρ(g, r1,d1) = 0, it immediately follows
that:

d1 = r1(s1 + 1)
g = s1(r1 + 1).

Since the curve C is general, the Brill-Noether number corresponding to the
pencil l2

ρ(g, 1, r1 + 2) = s1(r1 + 1) − 2(s1 − 1)(r1 + 1) = (r1 + 1)(2− s1)

must be non-negative. This is only possible if s1 = 1 or s1 = 2.

Assume first that s1 = 1, so that l1 = KC. Then KC − D > 0 for all
D ∈ Cr1+1 = Cg satisfying g − (r1 + 1) + dim |D| = dim |D| > 0. Hence
D ∈ Γg(KC) if and only |D| = g1g. If l2 is base point free, then the intersection
Γg(KC)∩ Γg(l2) is empty. Otherwise, the intersection Γg(KC)∩ Γg(l2) is at least
1-dimensional, hence not a finite, discrete set.

If s1 = 2, then l1 = gr13r1 and l2 = g
1
r1+2. Note that in this case l1 = KC − l2.

By our assumption, there exists an effective divisor E1 of degree 2r1 − 1 such
that

|D+ E1| = l1

and an effective divisor E2 of degree 1 such that

|D+ E2| = l2.

Therefore
KC = |2D+ E1 + E2|.

Since in this case g = 2r1 + 2, we have KC = g2r1+1
4r1+2. Applying the dimension

theorem for de Jonquières divisors (Theorem 1.5), we conclude that the locus
of triples (D,E1,E2) inside Cr1+1 × C2r1−1 × C has dimension

(r1 + 1+ 2r1 − 1+ 1) − (4r1 + 2) + (2r1 + 1) = r1.

Since l1 has Brill-Noether number equal to zero, it follows that it is general
and hence base point free (cf. Proposition 5.4 of [EH83b]). This implies further
that

dim(l1 −D) = dim(|E1|) 6 r1 − 1.

Moreover, E2 is simply a point on C, which means that dim(|E2|) = 0. Putting
everything together, we conclude that dim(|D|) > 1. Since D ∈ l2, we finally
get that |D| = g1r1+1. This is then equivalent to the statement

E1 ∈ Vr1−1
2r1−1(l1).
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However, one easily checks that

ρ(g, r1, 3r1) + dimVr1−1
2r1−1(l1) = −1,

from which we conclude, using Corollary 0.2 of [Far08], that Vr1−1
2r1−1(l1) = ∅.

Hence in this case, the intersection Γr1+1(l1) ∩ Γr1+1(l2) is empty.

Using similar methods, we obtain a more general version of Proposition
4.1.

Proposition 4.2. Let C be a general curve of genus g equipped with two complete
linear series l1 = gr1d1

and l2 = gr2d2
such that

r1 > 1, g− d1 + r1 > 0 and l2 = KC − l1.

Then if non-empty, the intersection Γe(l1) ∩ Γe(l2) is not transverse.

Proof. By assumption, l2 = gg−d1+r1−1
2g−2−d1

. Let D ∈ Γe(l1). Then there exists an
effective divisor E1 ∈ Cd1−e such that |D+ E1| = l1. Moreover, it is easy to see
that dim |2D+ E1| > d1 + e− g. If dim |2D+ E1| = d1 + e− g, then |2D+ E1|
is a non-special linear series of degree d1 + e and from the transversality of
de Jonquières divisors, the dimension of the space of pairs (D,E1)with this
property is

d1 − (d1 + e) + (d1 + e− g) = d1 − g < r1.

Therefore there is at most a (r1 − 1)-dimensional family of divisors D ∈ Γe(l1)
satisfying |2D + E1| = d1 + e − g while the remainder of the divisors D in
Γe(l1) are such that dim |2D+ E1| > d1 + e− g.

Now, ifD ∈ Γe(l1) satisfies dim |2D+E1| > d1+e−g, then, by residuation,
there exists an effective divisor E2 such that

KC = |2D+ E1 + E2|.

Moreover, l2 = KC − l1 = |KC −D − E1| = |D + E2|, hence dim(l2 −D) > 0,
i.e. D ∈ Γe(l2) for all D ∈ Γe(l1) with dim |2D + E1| > d1 + e − g. Hence the
intersection Γe(l1) ∩ Γe(l2) is not transverse.

4.2.2 Proof of Theorem 1.10

Notice that we have almost proved Theorem 1.10, which states that the inter-
section

Γe(l1) ∩ Γe(KC − l1)

is never transverse for any complete linear series l1. In order to extend the
result of Proposition 4.2 and obtain Theorem 1.10 we change point of view to
the tangent spaces of incidence varieties. We recall here the most important
facts, some of which were already used in Section 3.2:
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(i) The tangent space TDCd = H0(C,OD(D)) and its dual is

T∨DCd = H0(C,KC/KC −D),

with the pairing given by the residue.

(ii) The tangent space at a point of a linear series |D| ⊂ Crd is TD|D| = ker δ,
where

δ : im(αµ0)
0 → im(µ0)

0

is the differential of the Abel-Jacobi map u : Crd →Wr
d(C) while

α : H0(C,KC)→ H0(C,KC ⊗ OD)

is the restriction mapping and

µ0 : H
0(C,KC −D)⊗H0(C,OC(D))→ H0(C,KC)

the cup-product mapping.

(iii) Suppose D and D ′ are effective divisors of degree d and d ′ respectively,
then the tangent spaces TD+D ′Cd+d ′ and TDCd are related via

H0(C,OD+D ′(D+D ′)) = H0(C,OD(D))⊕H0(C,OC(D+D ′)/OC(D)).

This follows from the exact sequence

0→ OC(D)/OC → OC(D+D ′)/OC → OC(D+D ′)/OC(D)→ 0.

We remark here that the projection from the spaceH0(C,OD+D ′(D+D ′)) onto
H0(C,OD(D)) is nothing but the truncation map for Laurent tails.

The transversality condition for the intersection of the incidence varieties
Γe(l1) and Γe(l2) is:

TDCe = TDΓe(l1) + TDΓe(l2).

or equivalently, since dim Γe(l1) + dim Γe(l2) = e,

TDΓe(l1) ∩ TDΓe(l2) = (0), (4.2)

for some D ∈ Γe(l1) ∩ Γe(l2). Let Di ∈ li, for i = 1, 2 such that D 6 Di and
Ei ∈ Cdi−d such that D+ Ei = Di.

Let δi,αi,µ0,i denote the differential, restriction, and cup-productmapping
corresponding to each of the divisors Di, for i = 1, 2. With this notation, the
tangent space to the incidence varieties is, for i = 1, 2:

TDΓe(li) = ker δi ∩H0(C,OD(D)).

Thus the transversality condition (4.2) becomes

ker δ1 ∩ ker δ2 ∩H0(C,OD(D)) = (0). (4.3)
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By construction, the restrictions of δ1 and δ2 to the space H0(C,OD(D)) coin-
cide and are both equal to the differential δ corresponding to D. Finally, recall
that η ∈ ker δi if and only if 〈δiη,ω〉 = 0 for allω ∈ cokerµ0,i.

Returning now to the case of a linear series l1 and its residual l2 = KC − l1,
we immediately see that µ0,1 and µ0,2 are the same multiplication map

µ : H0(C,D+ E1)⊗H0(C,D+ E2)→ H0(C, 2D+ E1 + E2).

Thus, η ∈ ker δ1 ∩ ker δ2 ∩ H0(C,OD(D)) if and only if 〈δη,ω〉 = 0, for all
ω ∈ cokerµ. But this condition is satisfied by any η in the kernels of both δ1
and δ2, so that the transversality condition (4.3) cannot be satisfied and this
gives the proof of Theorem 1.10.

4.3 Degenerations of secant varieties

In this section we construct a space of degenerations of secant varieties for
families of curves of compact type using limit linear series and the same idea
of degeneracy loci.

Proposition 4.3. Fix a proper, flat family of curvesX → B over a scheme B equipped
with a linear series ` of type grd. There exists a scheme Vee−f(X , `) proper over
B, compatible with base change, whose point over every t ∈ B parametrises pairs
[Xt,Dt] of curves and divisors such that Dt is an (e − f)-th secant divisor of `t.
Furthermore, every irreducible component of Vee−f(X , `) has dimension at least
dimB− f(r+ 1− e+ f).

Proof. We construct the functor Vee−f(X , `) as a subfunctor of the functor of
points of the fibre product X e over B. We show that it is representable by a
scheme that is proper over B and which we also denote by Vee−f(X , `).

Let T → B be a scheme over B. Suppose first that all the fibres of the family
are nonsingular. In this case, from Definition 4.2.1 of [Oss], ` = grd on X /B

is given by a pair (L ,V ), where L is a line bundle of degree d on X ×B T
and V ⊆ π2∗L is a vector bundle of rank r+ 1 on B, where π2 is the second
projection from the fibre product. Then the T -valued point [X ,D ] belongs to
Vee−f(X , `)(T) if the (e− f)-th degeneracy locus of the map

V → π2∗L |D

is the whole of T . By construction Vee−f(X , `) is compatible with base change,
so it is a functor, and it has the structure of a closed subscheme, hence it is
representable and the associated scheme is proper.

Now suppose that some of the fibres have nodes (that may or may not be
smoothed by X ). As we have seen already, a grd on X is a tuple

(L , (V v)v∈V(Γ0)),
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where Γ0 is the dual graph of the unique maximally degenerate fibre of the
family, with a fixed vertex v0, L is a line bundle of multidegree ~d0 (i.e. it has
degree d on the component corresponding to v0 and degree 0 otherwise) on
X ×B T , and for each v ∈ V(Γ0), the V v are subbundles of rank r + 1 of the
twists π2∗L ~dv . Let vi ∈ Γ0 be the vertex corresponding to the component
containing a point pi in the support of D. Then the T -valued point [X ,D]
belongs to Vee−f(X , `)(T) if, for all i, the (e − f)-th degeneracy locus of the
map

V vi → π2∗L
~dvi |pi

is the whole of T . Checking for compatibility with base change (and hence
functoriality) ismore delicate than in the previous case because the base change
may change the graph Γ0. However, arguing like in the proof of Proposition
4.5.6 in loc.cit. yields the desired property. Representability and properness
then follow analogously.

The dimension bound follows from the degeneracy locus construction of
Vee−f(X , `).

For a linear series `1 of type gr1d1
on X , denote by Γe(X , `1) the relative se-

cant variety Ver1(X , `1). Thus in this thesis we are interested in the intersection
Γe(X , `1) ∩ Vee−f(X , `2), as we shall see explicitly in what follows.

4.4 Intersections of incidence and secant varieties

In this section we give a proof of Theorem 1.11. We recall the setup: consider
a complete linear series l1 = gr1d1

on a general curve of genus g with g > d1.
We study the intersection of Γe(l1) and Ve−fe (l2), where l2 = gr2d2

= KC − l1 is
the residual linear series to l1 and in the case when

dim Γe(l1) + dimVe−fe (l2) 6 e− ρ(g, r1,d1) − 1. (4.4)

Weprove that the intersection is empty for an arbitrary linear series l1 ∈ Gr1d1
(C)

when f = 1.

4.4.1 The case of minimal pencils

Before proving Theorem 1.11 in general we first focus on the case of minimal
pencils. This will serve as a prototypical example of the strategy we develop in
Section 4.4.2 to check the emptiness of the intersection of incidence and secant
varieties

Γe(l1) ∩ Ve−fe (KC − l1)

when condition (4.4) is satisfied.
Let l1 = g1d1

be a minimal pencil, i.e. such that the Brill-Noether number

ρ(g, 1,d1) = 1.
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It follows that
g = 2d1 − 3. (4.5)

Let l2 = gr2d2
= KC − l1 = gd1−3

3d1−8. Then dim Γe(l1) = 1 and the expected
dimension of Ve−fe (KC − l1), as mentioned in the Introduction, is:

e− f(r2 + 1− e+ f).

Thus the non-existence condition (4.4) of Theorem 1.11 becomes

1+ e− f(r2 + 1− e+ f) 6 e− 2.

To ease the computation and presentation, we deal here with the particular
case

1+ e− f(r2 + 1− e+ f) = e− 2. (4.6)
We show that if (4.6) is satisfied, then the intersection

Γe(l1) ∩ Ve−fe (l2)

is empty. Condition (4.6) is equivalent to

f(r2 + 1− e+ f) = 3

and we distinguish two possibilities:

I. If f = 3, then r2 − e+ f = 0 and Ve−fe (l2) = Γe(l2). Moreover,

e = r2 + f = (d1 − 3) + 3 = d1. (4.7)

Thus, as expected from the discussion in Section 4.2, we are in a degenerate
situation and we are in fact looking at the inclusion of l1 = g1d1

inside the
series l2 = KC − l1 = gd1−3

3d1−8. More precisely, suppose there exists a divisor
D ∈ Ce such that

D ∈ Γe(l1) ∩ Γe(l2).
Thus, from (4.7) we have that |D| = l1 and, as we have seen in the proof of
Proposition 4.1, we have that

|2D+D ′| = KC

for some effective divisor D ′ of the correct degree. More precisely, the condi-
tion that D ∈ Γe(l2) is equivalent to

dim(l2 −D) = dim(KC − l1) −D = dim |D ′| > 0. (4.8)

Since the curve is general, the Petri map

µ0 : H
0(C,D)⊗H0(C,KC −D)→ H0(C,KC)

is injective. Combining this with the base-point-free pencil trick, we get that

H0(C,KC − 2D) = H0(C,D ′) = 0.

This then yields a contradiction with condition (4.8). Hence the intersection
Γe(l1) ∩ Ve−fe (KC − l1) is empty in this case.
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Remark 4.4. This actually provides an interesting example that contradicts the
expectation of non-emptiness of secant varieties (see Theorem 0.5 in [Far08]).
The inclusion of l1 = g1d1

in l2 = gr2d2
= gd1−3

3d1−8 can be reformulated from the
point of view of secant varieties as follows: there should exist an effective
divisor D ′ ∈ C2d1−8 such that g1d1

+D ′ = gd1−3
3d1−8. In other words, the secant

variety Ve−fe (l2), where e = 2d1 − 8 and f = d1 − 4 should be non-empty and
this is indeed the expectation from dimensional considerations as:

e− (r2 + 1− e+ f) = 0.

However, as we saw above, there are no such effective divisors D ′.

II. If f = 1, then e = d1−4 and r2−e+ f = 2. Assume towards a contradiction
that there exists a divisor

D ∈ Γe(l1) ∩ Ve−fe (l2).

Hence there exists an effective divisor E ∈ C4 such that D+ E = l1. Moreover

l2 −D = KC − l1 −D = gr2−e+f2d1−4 = g22d1−4.

Taking the residue yields
l1 +D = g22d1−4.

We have therefore obtained a “system of equations” for a pair of effective
divisors (D,E) ∈ Cd1−4 × C4:

|D+ E| = g1d1

|2D+ E| = g22d1−4.
(4.9)

By our assumption, a solution for this system exists. Consider all flag curve
degenerations j : M0,g → Mg and let Z := M0,g ×Mg

C
d1
g , where Cg = Mg,1.

Denote by q1, . . . ,qg the points of attachment of the elliptic tails to the rational
spine. Let X ⊂ Z be the closure of the divisors D and E satisfying (4.9) on
all curves from im(j) ⊆ Mg. Since, by assumption, X dominates M0,g, then
dimX > g − 3. Applying Proposition 2.2 of [Far08], there exists a point
[R̃ := R ∪ E1 ∪ . . . ∪ Eg,y1, . . . ,yd1 ] ∈ X, where R is a rational spine (not
necessarily smooth), the Ei are elliptic tails, and the yi are the points in the
support of D+ E such that either:

(i) y1 = . . . = yd1 , or else

(ii) y1, . . . ,yd1 lie on a connected subcurve Y of R̃ of arithmetic genus pa(Y) =
d1 and |Y ∩ (R̃ \ Y)| = 1. Since g = 2d1 − 3, it means that g > d1 for d > 2 so
that we may indeed find such a subcurve Y.
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Case (i) is immediately dismissed via a short computation using the Plücker
formula.

We focus on case (ii). By the assumption on R̃, there exists a flat, proper
morphism φ : X → B such that X is a smooth surface and B is a smooth
affine curve. Let 0 ∈ B be a point such that the fibre X0 := φ

−1(0) is a curve
stably equivalent to R̃ and the other fibres Xt := φ

−1(t) are smooth projective
curves of genus g for t 6= 0. Moreover there are e sections σi : B → X such
that the σi(0) = yi are smooth points of X0 for all 1 6 i 6 e. As before, let
X ∗ = X \ X0. There exists a line bundle L ∗ of degree 2d1 − 4 on X ∗ and a
subbundle V ∗ ⊂ φ∗L ∗ of rank 2, such that for all t 6= 0,

dimVt ∩H0
(

Xt,Lt
(
−

e∑
j=1

σj(t)

))
= 2.

Then, after possibly making a base change and resolving any resulting singu-
larities, the pair (L ∗,V ∗) induces a refined limit linear series of type g22d1−4
on R̃, which we denote by l̃. Moreover, the vector bundle

V ∗ ∩ φ∗
(

L ∗ ⊗ OX ∗

(
−

e∑
j=1

σj(B \ {0})
))

induces a limit linear series l1 = g1d1
on X0.

For a component X of X0, denote by (LX,VX) ∈ G2
2d1−4(X) the X-aspect of

l̃. There exists therefore a unique effective divisor DX of degree e supported
only at the points of (X ∩

⋃e
j=1 σj(B)) ∪ (X ∩X0 \ X) such that the X-aspect of

l1 is of the form

l1,X = (LX ⊗ OX(−DX),WX ⊂ VX ∩H0(X,LX ⊗ OX(−DX))) ∈ G1
d1(X).

The collection of aspects {l1,X}X⊂Y , which we will also denote by l1, forms a
limit g1d1

on Y with a vanishing sequence that is a subsequence of the vanishing
sequence of l̃. Moreover, the collection of aspects of l1 on Z also yields a limit
linear g1d1

on Zwhose vanishing sequence at p is a subsequence of the one of l̃.

Let p = Y ∩ (R̃ \ Y) and let Z := R̃ \ Y and let RY , RZ denote the rational
spines corresponding to Y and Z, respectively. An easy argument shows that,
without loss of generality, we may assume that all the points in the support of
D+ E specialise on RY . Furthermore, arguing like above, we obtain limits l1
and l̃ on both RY and RZ.

To reach the desired contradiction, we obtain various bounds for the rami-
fication sequences of the series l1 and l̃ and show that they cannot be simulta-
neously satisfied.
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Note that the points of attachment q1, . . . ,qg of the elliptic tails to the
rational spine are all cusps, hence for j = 1, . . . ,g,

α((l1)RY ,qj) > (0, 1) and α((l1)RZ ,qj) > (0, 1) (4.10)
α(l̃RY ,qj) > (0, 1, 1) and α(l̃RZ ,qj) > (0, 1, 1). (4.11)

Moreover, using the Plücker formula (2.1) on RY we have

for l1 = g1d1 :
∑

q smooth point

(
α0((l1)RY ,q) + α1((l1)RY ,q)

)
= 2d1 − 2 (4.12)

for l̃ = g22d1−4 :
∑

q smooth point

(
α0(l̃RY ,q) + α1(l̃RY ,q)

)
= 6d1 − 18. (4.13)

Combining (4.10)-(4.13) we obtain that on RY the ramification at p is at most

for l1 : α0((l1)RY ,p) + α1((l1)RY ,p) 6 d1 − 2 (4.14)

for l̃ :
2∑
i=0

αi(l̃RY ,p) 6 4d1 − 18, (4.15)

while on RZ we have the upper bounds

for l1 : α0((l1)RZ ,p) + α1((l0)RZ ,p) 6 d1 + 1 (4.16)

for l̃ :
2∑
i=0

αi(l̃RZ ,p) 6 4d1 − 12. (4.17)

A further constraint for the ramification sequence at p is given by applying
Lemma 3.20 to the current situation and we obtain the following

• If {σC | C ⊆ RY irreducible component} is the set of compatible sections
corresponding to the divisor D+ E and if q ∈ C, then ordq(σC) = 0.
• Similarly, the compatible sections {σC | C ⊆ RY irreducible component}

corresponding to the divisor 2D+ E also have the property that, if q ∈ C,
then ordq(σC) = 0.

The important observation in both cases is that the support of D+ E and of
2D+E are contained in Y and that deg(D+E) = d1 and deg(2D+E) = 2d1−4.
Concretely, this means that both the vanishing sequence of (l1)RY and that of
l̃RY must have 0 as their first entry.

Combining this with the compatibility conditions for the vanishing of the
sections (2.2) and the fact that the vanishing sequence at p of l1 is a subsequence
of the one of l̃we see that the only possibility for the vanishing sequences at p
of l1 is

a((l1)RY ,p) = (0,d1 − 4) and a((l1)RZ ,p) = (4,d1)
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while for the vanishing sequence of l̃ at p it is

a(l̃RY ,p) = (0,d1 − 4, 2d1 − 8) and a(l̃RZ ,p) = (4,d1, 2d1 − 4).

However the ramification sequence corresponding to the vanishing sequence

a((l1)RZ ,p) = (4,d1)

is
α((l1)RZ ,p) = (4,d1 − 1)

which certainly breaks the upper bound in (4.16) and we have obtained the
desired contradiction.

4.4.2 Proof of Theorem 1.11

This section is dedicated to proving Theorem 1.11, which states that for any
linear series l1 = gr1d1

on a general curve C there are no divisors D ∈ Ce in the
intersection

Γe(l1) ∩ Ve−fe (KC − l1)

whenever f = 1, g > d1, and

dim Γe(l1) + dimVe−fe (l2) 6 e− ρ(g, r1,d1) − 1.

In fact we give a general method to check this non-existence statement and
apply it to the case f = 1 where the computations are most tractable.

For the linear series l1 = gr1d1
on a general curve C of genus g, set

ρ := ρ(g, r1,d1).

Then we have an expression of the genus g in terms of ρ:

g =
(r1 + 1)d1 − ρ

r1
− r1 − 1. (4.18)

Moreover, an easy computation shows that the residual linear series to l1 is
l2 = g

r2
d2

where

r2 =
d1 − ρ

r1
− 2 (4.19)

d2 =
r1 + d1 − 2ρ

r1
− 2r1 − 4. (4.20)

The non-existence condition in the statement of the theorem is

r1 + e− f(r2 + 1− e+ f) 6 e− 1− ρ,

or equivalently
f(r2 + 1− e+ f) > r1 + 1+ ρ. (4.21)
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Assume towards a contradiction that there exists a divisor D ∈ Ce such that

D ∈ Γe(l1) ∩ Ve−fe (l2).

It follows that we also have a divisor E = l1 −D ∈ Cd1−e. Then

l2 −D = KC − l1 −D

is a linear series of dimension

r2 − e+ f

and degree
r1 + d1 − 2ρ

r1
− 2r1 − 4− e.

By residuation we conclude that

l1 +D = gr1+fd+e . (4.22)

We have therefore obtained a “system of equations” for two divisors (D,E) ∈
Ce × Cd1−e:

|D+ E| = gr1d1

|2D+ E| = gr1+fd1+e

(4.23)

and by assumption a solution should exist.

Remark 4.5. We may view the condition |2D + E| = gr1+fd1+e
from the point

of view of de Jonquières divisors: the dimension of the space of pairs (D,E)
satisfying this is

d1 − (d1 + e) + (r1 + f) = r1 − e+ f > 0.

Hence so far there is no reason to expect there not to be such a pair (D,E)
satisfying the system (4.23).

By assumption, there exists therefore a pair of divisors (D,E) ∈ Ce×Cd1−e

satisfying the system (4.23). Assume furthermore that g > d1 (we shall see later
that in the case f = 1 this assumption does not lead to any loss of generality).
We consider again all flag curve degenerations as in the case of minimal pencils.
Applying Proposition 2.2 of [Far08], there exists a point [R̃ := R ∪ E1 ∪ . . . ∪
Eg,y1, . . . ,yd1 ] ∈ X, where R is a rational spine (not necessarily smooth), the
Ei are elliptic tails, and the yi are the points in the support of D+ E such that
either:

(i) y1 = . . . = yd1 , or else

(ii) y1, . . . ,yd1 lie on a connected subcurve Y of R̃ of arithmetic genus pa(Y) =
d1 and |Y ∩ (R̃ \ Y)| = 1. This is possible since we have taken g > d1.
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Case (i) is again immediately dismissed via a short computation using the
Plücker formula.

We focus on case (ii). Let p = Y ∩ (R̃ \ Y) and let Z := R̃ \ Y and let RY , RZ
denote the rational spines corresponding to Y and Z, respectively. Just as in
the case of minimal pencils, we have limits l1 and l̃ on both RY and RZ and we
may assume that all points in the support of D+ E specialise on RY .

The strategy again is to constrain the vanishing (or, equivalently, ramifica-
tion) sequence at p of the limit linear series l1 = gr1d1

and l̃ := gr1+fd1+e
on each of

the components RY and RZ. We make use of four important facts:

1. For refined limit linear series, the vanishing sequences at the point pmust
satisfy the following equalities:

ai((l1)RY ,p) + ar1−i((l1)RZ ,p) = d1 for i = 0, . . . , r1
ai(l̃RY ,p) + ar1+f−i(l̃RZ ,p) = d1 + e for i = 0, . . . , r1 + f.

(4.24)

2. The vanishing sequence at p of l1 = gr1d1
is a subsequence of the one corre-

sponding to l̃ = gr1+fd1+e
.

3. The Plücker formula (2.1) applied to both limit linear series on both compo-
nents. The Plücker formula on RY yields:

for l1 :
∑

q smooth point of RY

( r1∑
i=0

αi((l1)RY ,q)
)

= (r1 + 1)(d1 − r1) (4.25)

for l̃ :
∑

q smooth point of RY

(r1+f∑
i=0

αi(l̃RY ,q)
)

= (r1 + f+ 1)(d1 + e− f− r1).

(4.26)

The curve RY contains the points q1, . . . ,qd1 which are all cusps, and therefore
have ramification sequences at least (0, 1, . . . , 1). Combining this with (4.25)
and (4.26) we obtain upper bounds for the ramification at p:

for l1 :
r1∑
i=0

αi((l1)RY ,p) 6 (r1 + 1)(d− r1) − d1r1 (4.27)

for l̃ :
r1+f∑
i=0

αi(l̃RY ,p) 6 (r1 + f+ 1)(d1 + e− f− r1) − (f+ r1)d1. (4.28)
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Using the same reasoning on RZ we obtain the following bounds on the rami-
fication at p:

for l1 :
r1∑
i=0

αi((l1)RZ ,p) 6 (r1 + 1)(d− r1) − (g− d1)r1 (4.29)

for l̃ :
r1+f∑
i=0

αi(l̃RZ ,p) 6 (r1 + f+ 1)(d1 + e− f− r1) − (f+ r1)(g− d1).

(4.30)

Since for a linear series l of type grd,
r∑
i=0

αi(l,p) =
r∑
i=0

ai(l,p) −
r(r+ 1)

2 , (4.31)

the upper bounds for the ramification give equivalently bounds for the van-
ishing at p.

4. The statement of Lemma 3.20 applied to the current situation, as in the case
of the minimal pencils. We again obtain that both the vanishing sequence of
(l1)RY and that of l̃RY must have 0 as their first entry.

Putting everything together, the vanishing sequence at p corresponding to
l1 on RY is

a((l1)RY ,p) = (0, x1, . . . , xr1),

for some strictly positive integers x1, . . . , xr1 smaller thand1, while the sequence
on RZ is

a((l1)RZ ,p) = (d1 − xr1 , . . . ,d1 − x1,d1).

On the other hand, the vanishing sequence at p corresponding to l̃ on RY is

a(l̃RY ,p) = (0, x1, . . . , xr1 , xr1+1, . . . , xr1+f),

where the strictly positive integers xr1+1, . . . , xr1+f are all smaller than d1 + e
and exactly one of the xi is equal to e. The sequence on RZ is

a(l̃RZ ,p) = (d1 + e− xr1+f, . . . ,d1, . . . ,d1 + e),

which must also contain the terms d1 − xr1 , . . . ,d1 − x1.
Let x = x1 + . . .+ xr1 . Using (4.27), (4.29), and (4.31) and the fact that

g− d1 =
d1 − ρ

r1
− r1 − 1,

we have that

r1

(
d1
r1

−
r1 + 1

2

)
− ρ 6 x 6 r1

(
d1
r1

−
r1 + 1

2

)
. (4.32)
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In order to prove the statement of Theorem 1.11, we find a contradiction to
the inequality (4.32). If f = 1, then l̃ = gr1+1

d1+e
and

e 6 r2 − r1 − ρ+ 1 =
d1 − (r1 + 1)ρ

r1
− r1 − 1. (4.33)

Note that the above inequality also implies e 6 g−d1−ρ, hence the assumption
g > d1 does not lead to any loss of generality in the case f = 1.

Suppose first that none of the xi with i = 1, . . . , r1 is equal to e. Thus the
vanishing sequence at p corresponding to l̃ on RY is

a(l̃RY ,p) = (0, e, x1, . . . , xr1).

Combining (4.30) and (4.31) yields the inequality

(r1 + 2)(d1 + e) − e− x−
(r1 + 1)(r1 + 2)

2 6(r1 + 2)(d1 + e− 1− r1)

− (r1 + 1)
(
d1 − ρ

r1
− r1 − 1

)
which, after plugging in the expression (4.33) for e, reduces to

x >
(r1 + 1)(r1 + 2)

2 + (r1 + 1)
(
d1
r1

− r1 − 1
)
.

This contradicts the upper bound in (4.32). Hence this vanishing sequence
cannot occur.

One the other hand, if e is one of the xiwith i = 1, . . . , r1, then the vanishing
sequence at p corresponding to l1 on RY is

a((l1)RY ,p) = (0, e, x1, . . . , xr1−1)

and on RZ

a((l1)RZ ,p) = (d1 − xr1−1, . . . ,d1 − x1,d1 − e,d1). (4.34)

Moreover, the vanishing sequence at p corresponding to l̃ on RY is

(0, e, x1, . . . , xr1−1,y)

and the one on RZ is

(d1 + e− y,d1 + e− xr1−1, . . . ,d1 + e− x1,d1,d1 + e). (4.35)

Since the sequence (4.34) must be a subsequence of (4.35), we see that

d1 + e− y = d1 − xi,
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for some index i. In other words, y = e+xi. Combining (4.30) and (4.31) again
yields the inequality

(r1 + 2)(d1 + e) − e− xi − x−
(r1 + 1)(r1 + 2)

2 6 (r1 + 2)(d1 + e− 1− r1)

− (r1 + 1)
(
d1 − ρ

r1
− r1 − 1

)
.

This leads to a contradiction with the upper bound in (4.32) in the same way
as above.
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