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Zusammenfassung 

Das Neuroblastom ist der häufigste solide Tumor bei Kindern und tritt vor allem in der 

Embryonalentwicklung oder kurz nach der Geburt auf. Ein immer wiederkehrendes 

Ereignis ist die Deletion des Chromosomenarms 1p, was auf etwa 35% aller 

Hochrisikopatienten zutrifft. In den letzten Jahren hat sich die Forschung darauf 

konzentriert Tumorsuppressorgene in diesem Bereich zu identifizieren, jedoch stellten 

sich therapeutische Ansätze als kaum wirksam heraus. Neben den 

Tumorsuppressorgenen geht mit der Deletion auch eine große Anzahl an Passagiergenen 

verloren. Zellen mit hemizygoter Deletion von überlebensnotwendigen Passagiergenen 

und mit einhergehender reduzierter Genexpression, sind sensitiv gegenüber einer 

weitereren Reduktion. Gene, die diesem Muster entsprechen, werden CYCLOPS (copy 

number alterations yielding cancer liabilities owing to partial loss) genannt.  

Diese Studie hat zum Ziel, CYCLOPS Gene auf Chromosomenarm 1p im Neuroblastom 

zu identifizieren. Nachdem der 1p-Status in 35 Neuroblastomzelllinien charakterisiert 

wurde, wurden fünf Zelllinien mit 1p-Deletion und fünf ohne ausgewählt. Um 

Kandidatengene zu identifizieren, wurde ein siRNA Screen für 184 potenziell 

therapeutisch adressierbare Gene auf dem distalen Ende von 1p durchgeführt. Sechs 

Kandidatengene mit differentieller Genabhängigkeit (1pdel 
> 1pnorm) und differentieller 

Expression (1pdel < 1pnorm) wurden ausgewählt. Am Ende setzte sich ein Gen durch, 

nämlich EPHB2. Dieses Gen ist von großer Bedeutung für embryonale Zellen und der 

Entwicklung des Nervensystems. In 1p deletierten Zelllinien hatte EphB2 

Runterregulierung mittels siRNAs eine große Auswirkung auf die Viabiliät, zusätzlich 

stellte sich Zellzyklusarrest in G1/G0 ein. Es überlebte ein kleiner Anteil von Zellen, deren 

Resistenz durch das Aktivieren des HGF/c-MET Signalwegs und über MAPK/Akt-

Aktivierung gesteuert wurde. Induzierbare EphB2-Expression rettete die Zellen vor dem 

Tod durch siRNA vermittelte EphB2 Runterregulierung, was darauf hinweist, dass 1p 

deletierte Zellen ein nötiges Minimum dieses Gens exprimieren. 

In der Kontrollgruppe der 1p normalen Zellen hatte EphB2 Runterregulierung minimalen 

Einfluss. Die Viabilität der Zellen war nicht eingeschränkt, jedoch wurde Zellzyklusarrest in 

G1/G0 beobachtet. 

Zusammenfassend beschreibt diese Studie EphB2 als einen vielversprechenden 

CYCLOPS Kandidaten im Neuroblastom. Da 1p-Deletion in ~35% aller 

Hochrisikopatienten auftritt, könnten mit diesem Ansatz weit mehr Patienten erreicht 

werden als mit Therapien, die auf andere Aberrationen im Neuroblastom abzielen. Auch 

könnten Nebenwirkungen reduziert werden, denn 1p-normale Zellen werden nicht negativ 

beeinflusst. Generell kann diese Studie als Grundsatzbeweis für die Identifikation neuer 
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zielgerichteter Therapieformen betrachtet werden und ist erweiterbar auf alle Krebsarten 

mit häufiger 1p-Deletion.  
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Summary 

Neuroblastoma is the most common solid tumor in infants arising during embryonal 

development or early post-natal life. A frequently recurrent event is the deletion of 

chromosome arm 1p, which accounts for ~35% of all high stage cases. In the past years 

research focused on identification of potential 1p tumor suppressor genes but therapeutic 

targeting of these was shown to be difficult. With tumor suppressor gene deletion also a 

wide range of passenger genes get lost. As some of these are cell essential, hemizygous 

loss and associated reduced expression renders cells vulnerable to further impairment. 

Genes fulfilling these requirements are referred to as CYCLOPS (copy number alterations 

yielding cancer liabilities owing to partial loss) genes and may open a new therapeutic 

window. 

In this study we aimed at identifying CYCLOPS genes on chromosome arm 1p in 

neuroblastoma. After detailed characterization of the 1p status in 35 neuroblastoma cell 

lines, we selected five cell lines with and five without 1p-deletion. For candidate gene 

identification, an siRNA screen for 184 druggable genes mapping to the distal end of 1p 

was done. Six candidates which showed high dependency in 1p-deleted but not in 1p non-

deleted cells and differentially expression (1pdel < 1pnorm) were selected for further 

validation. In the end one gene met our requirements, EPHB2. This gene is especially 

important for embryonic cells and the developing nervous system. In 1p-deleted cell lines, 

EphB2 knock-down induced cell cycle arrest in G1/G0 and impaired cell survival. A small 

proportion of cells remained alive after activating HGF-induced c-MET signaling and 

MAPK/Akt pathway-mediated survival mechanisms. Induced EphB2 overexpression 

rescued the cells from cell death upon knock-down, supporting that EPHB2 expression is 

at a minimum level for survival in 1p-deleted cell lines. 

In the control group of 1p non-deleted cell lines the impact on viability and gene 

expression after EphB2 knock-down was minimal. We observed also G1/G0 arrest but 

viability was not impaired.  

Taking together, this study revealed EPHB2 as a promising 1p CYCLOPS candidate in 

neuroblastoma. As 1p is deleted in ~35% of all high-risk cases, a much wider range of 

patients may benefit from therapy approaches compared to strategies targeting other 

neuroblastoma-specific aberrations. Side effects of such approaches may be reduced as 

1p non-deleted cells are not affected negatively. In general, this is a proof-of-principle for 

new drug target identification and is expandable to all cancers carrying frequent 1p-

deletions.  
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1. Introduction 

1.1 The genetic background of cancer 

All cells of an organism underlie careful mechanisms to control and regulate the 

homeostasis of cell survival, division or differentiation. Any disturbance of these processes 

may result in the killing of the respective cell or, in contrast, lead to malignancy and tumor 

initiation. Acquired capabilities which are involved in tumor initiation and progression are 

resistance to cell death and growth suppression, potential immortality, uncontrolled 

proliferation, invasion and metastasis, induction of angiogenesis, avoidance of immune 

destruction, tumor-promoting inflammation and deregulation of cellular energetics 

(Hanahan and Weinberg 2011). 

The course of tumor initiation is related to genomic alterations which may be induced by 

endogenic factors as defects of DNA replication, for example base pair mismatching, or 

reactive oxygen species produced during cellular metabolism. However, most of the 

defects are caused by exogenic factors which induce DNA damage (Lieber 1998; Mills, et 

al. 2003). These may be UV radiation, chemical substances as arsenic or asbestos or 

several viruses as the human papilloma virus (HPV) known to cause cervical cancer 

(Hubaux, et al. 2012; Pearce, et al. 2015; zur Hausen 1977). Whereas healthy cells show 

in average one mutation per cell in non-coding areas, cancer cells accumulate thousands 

of alterations (Loeb 2001). This process may start with one initial mutation in a crucial 

gene for tumor development which results in growth advantage compared to neighboring 

non-affected cells. The cell starts to proliferate leading to clonal expansion. Additional 

mutation events caused by endogenous or exogenous factors may lead to further growth 

advantage in affected cells which finally leads to the evolution of a tumor making 

carcinogenesis a multistep process (Vogelstein and Kinzler 2004). It is thought that at 

least four mutations that result in perturbation of critical signaling pathways are required to 

turn a cell into malignancy. Advanced tumor stages show strong genomic instability which 

goes along with heterogeneity of cells in one tumor cell population (Vogelstein and Kinzler 

1993).  

There are two types of mutations inducing tumor development. One is the gain-of-function 

mutation, amplification or overexpression of oncogenes, the other the loss-of-function 

mutation, deletion or epigenetic silencing of tumor suppressor genes. 

1.1.1 Oncogenes  

Oncogenes encode proteins which are involved in cell growth, differentiation, division or 

programmed cell death. They can be classified in to six categories: Growth and 
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transcription factors, growth factor receptors, proteins remodeling chromatin structure, 

signaling pathway transducers and regulators of apoptosis. The non-altered precursor 

genes of oncogenes are called proto-oncogenes. The activation of an oncogene leads to 

over expression of the corresponding protein giving the cell an advantage in proliferation 

and growth over other non-transformed cells. There are three basic ways to activate 

oncogenes: translocation, mutation and amplification (Anderson, et al. 1992; Croce 2008). 

The translocation process may occur in two different types. The first event relocates a 

proto-oncogene to a new chromosomal site which may induce its expression. The second 

event is a fusion of a proto-oncogene and another gene which leads to a fusion protein 

with increased oncogenic activity. Oncogene activation via translocation was mainly 

observed in hematological diseases and childhood carcinomas (Mitelman, et al. 2007). 

The most prominent example is the Philadelphia Chromosome discovered by Peter 

Nowell and David Hungerford in 1960. Here, the broken end of chromosome 22 

containing the BCR (RhoGEF and GTPase activating protein) gene fuses with the broken 

end of chromosome 9 containing the ABL-1 gene (ABL proto-oncogene 1). The fused 

gene encodes for the fusion protein “BCR-ABL1” which shows high protein tyrosine kinase 

activity and recruits other proteins that are involved in cell cycle and division and leading 

uncontrolled cell proliferation. The Philadelphia Chromosome was observed in Chronic 

Myelogenous Leukemia and other forms of leukemia (Fitzgerald, et al. 1963; Heisterkamp, 

et al. 1985). 

A mutation within a proto-oncogene causes changes in the protein structure which may 

increase the activity or lead to the loss of its regulation. The first oncogene in human 

beings was identified by Robert Allan Weinberg in 1981. Ras (rat sarcoma gene) gets 

activated by point mutation, is involved in signal transduction and the mutated form was 

observed in many carcinomas including lung, colon and pancreas (Balmain 1985; 

Fernandez-Medarde and Santos 2011).  

Amplification of oncogenes increases their gene expression and contributes significantly 

to the progression of many solid tumors (Brison 1993). The amplification may occur as 

amplified DNA within one chromosome, known as homogeneously stained region (HSR) 

or as non-centromeric and non-telomeric extrachromosomal structure called double 

minutes (DMs). These events were first discovered in neuroblastoma where the 

transcription factor MYCN (v-myc avian myelocytomatosis viral related oncogene) was 

amplified up to 140 times (Schwab, et al. 1983). Another example for an amplified 

oncogene is HER2 (human epidermal growth factor receptor 2), which plays a crucial role 

in 30% of aggressive breast cancers (Slamon, et al. 1987). 
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1.1.2 Tumor Suppressor Genes 

Tumor suppressor genes (TSGs) are genes which loss drives the multistep process of 

tumor development (Boyd and Barrett 1990). In 1971 Knudson analyzed statistically the 

incidence of sporadic and hereditary retinoblastomas and observed that the inherited form 

is generally diagnosed at younger age compared to the sporadic form. Additionally, the 

hereditary cases often show tumor development in both eyes, whereas only one eye is 

affected in sporadic cancers. This observation led him to postulate the “two-hit hypothesis” 

for carcinogenesis which implies that two independent events are required for tumor 

development. Hereditary retinoblastomas inherit the “first hit” in the germline, the “second 

hit” occurs later in the somatic cell. Sporadic cases develop the “first” and “second hit” in 

somatic cells. The mutation rate is the same for all events, which explains the higher age 

of diagnosis in the non-inherited form (Knudson 1971; Weinberg 1989). Later, it was 

shown that the “first” and “second hit” occur in one gene, namely Rb1 (retinoblastoma 1). 

The “first hit” occurred by loss of chromosomal region carrying Rb1 (loss of 

heterozygosity, LOH) in the germ line and the second copy was mutated in somatic cells 

(“second hit”). As long as only one copy of the gene is altered, the expression of the other 

allele can compensate the protein level. In other words, whereas mutant oncogenes are 

typically dominant, these kinds of mutations are recessive requiring inactivation of both 

alleles (Cavenee, et al. 1983).  

Next to the described genetic mechanisms, epigenetic silencing was observed, which is 

thought to be and early and driving event in tumorigenesis (Gauthier, et al. 2007; Yan, et 

al. 2006). The process is associated with a multi-step dynamic reprograming primarily in 

promoter regions which lead to transcriptional shut-down. One example is the TSG 

RASSF1A (Ras association domain family member 1) which shows widespread 

methylation of the promotor CpG islands in 65% of primary breast tumors and in many 

other cancer types (Honorio, et al. 2003; Liu, et al. 2002; Lo, et al. 2001). Another tool for 

TSG inactivation is post-transcriptional shut-down via microRNAs (miRNAs). Here, 

deregulated miRNAs bind to the messenger RNA (mRNA) of a TSG and inhibit the protein 

translation or induce direct cleavage. The miRNA mir-21 suppresses several TSGs 

including TPM1 (tropomyosin 1) and PDCD4 (programmed cell death 4) in breast cancer 

cell lines (Zhu, et al. 2007; Zhu, et al. 2008).  

However, the homozygous loss of TSGs is a too rare event to explain the high incidence 

of cancers. Nowadays it is known that the loss of one copy of many TSGs is sufficient to 

drive the cells into malignancy or promote tumor development. Indeed, most tumors are 

related to the hemizygous loss of TSGs which can be achieved by gene mutation, copy 

number changes, transcriptional repression, epigenetic silencing or post-transcriptional 
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shut-down through miRNAs leading to haploinsufficiency. This effect was suggested for 

many TSGs as p53 (tumorprotein 53), CAMTA1 (calmodulin binding transcription activator 

1) or PTEN (phosphatase and tensin homolog). Whereas p53 undergoes missense 

mutations, CAMTA1 and PTEN can be inactivated by multiple ways including LOH, 

mutation, deletion, miRNAs or epigenetic silencing (Berger, et al. 2011; Henrich, et al. 

2012; Kazanets, et al. 2016; Quon and Berns 2001; Wang, et al. 2015). In contrast to the 

“two-hit hypothesis”, many TSGs are “obligate haploinsufficient” meaning that partial loss 

is tumorigenic but complete loss induces cell death. One example for this dose-responsive 

TSGs is DICER1 (dicer 1, ribonuclease III) which is hemizygously deleted in many 

cancers. Mono-allelic deletion enhanced lung tumorigenesis in murine models but 

complete inactivation of DICER1 improved survival of the mice (Kumar, et al. 2009; 

Lambertz, et al. 2010). The effect of TSG deletion is also highly tissue specific. Whereas 

some cells do not express a gene at all, others may be dependent on its activity for certain 

processes. Hence, a deletion of such TSGs will not alter non-expressing cells but will 

contribute to tissue specific cancer development in gene-dependent cells. Moreover, the 

tumorigenic power of a TSG is not only copy number or tissue-dependent but also relates 

on the genetic background of the cell. More precisely, combinations of TSG (and 

oncogene) alterations lead to divergent phenotypes. One example for this context-

dependency is the interaction between PTEN and p53. In wild-type p53, prostate cancer 

haploinsufficient PTEN is more tumorigenic than the loss of both copies. In advanced 

cancers with p53 mutation, complete inactivation of PTEN enhances tumor progression 

much stronger than PTEN haploinsufficiency. It was also shown that even a reduction of 

20% of the expressed PTEN levels in murine prostate and mammary cells acts as a hit as 

it promotes the development of cancer (“quasi insufficiency”) (Alimonti, et al. 2010; 

Berger, et al. 2011; Chen, et al. 2005).  

Functionally, TSGs can be divided in to two groups: “gatekeepers” and “caretakers”. 

Gatekeepers encode for genes that control cell growth and their loss leads to enhanced 

cell proliferation. An example is the previously mentioned Rb1 gene, which is a key 

regulator of the entry into cell division. Caretakers are responsible for genetic stability and 

prevent and/or repair mutations. MLH1 (MutL homolog 1) and MSH2 (MutS homolog 2) 

are involved in mismatch repair of DNA bases which have been failed during DNA 

replication. Mutations in MLH1 and MSH2 induce microsatellite instability and increase the 

likelihood for tumor initiation. However, the differentiation between gatekeeper and 

caretaker is not always possible. For example, p53 directly regulates cells growth on one 

hand; on the other hand it is involved in genome recovery after damaging mutations 

(Deininger 1999; Kinzler and Vogelstein 1997). An additional function group of TSGs has 

been proposed, namely the “landscaper” genes. These do not contribute to cancer 
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development directly but generate a tumor-supportive microenvironment. Landscapers 

may regulate extracellular matrix proteins, cellular surface markers, growth factors or 

cellular adhesion molecules (Michor, et al. 2004). An example is PTEN which is involved 

in apoptosis-inducing pathways and its loss reduces the sensitivity to extracellular death 

signals as TNF (tumor necrosis factor ) (Stambolic, et al. 1998). 

Nevertheless, direct targeting of TSGs for therapeutic reasons has turned out to be 

difficult. Approaches to address interaction partners of TSGs delivered more promising 

results. For example, MDM2 (mouse double minute 2 homolog) is a negative regulator of 

p53. The chemical compound nutlin inhibits the interaction of MDM2 and p53, which has 

anti-tumoric effects. Nutlin and some of its more potent derivates are currently tested in 

preclinical studies (Michaelis, et al. 2011; Morris and Chan 2015).  

1.2 Neuroblastoma 

Neuroblastoma is an embryonal tumor which arises during fetal or early post-natal life. It is 

the most common solid extracranial childhood cancer and represents about 7% of all 

pediatric malignancies under the age of 15. The incidence is 1 case per 100,000 children 

with a median age of diagnosis of 17 months (Howlader N 2011; London, et al. 2005). 

Tumors can develop anywhere along the sympathetic nervous system but 65% are 

present in the abdomen including neck, chest and pelvis with a majority occurring in the 

adrenal medulla or paraspinal ganglia (Maris 2010; Maris, et al. 2007). Neuroblastoma is 

a clinically heterogeneous disease. Whereas older children have generally a poor 

prognosis despite chemo- and radiation therapy, it also shows the highest rate of 

spontaneous regression of all cancers, especially for infants under 18 months (Hero, et al. 

2008; Maris, et al. 2007). This goes along with the fact that low-risk patients show a long-

term survival probability greater than 95% but high-risk cases only 40 – 50% (Maris 2010; 

Oberthuer, et al. 2015). To determine the patients risk level and outcome probability the 

International Neuroblastoma Staging System (INSS) was published in 1988 and revised in 

2007 (Tab. 1.1) (Brodeur, et al. 1988; Maris, et al. 2007). Tumors of stages 1-3 and 4S 

are associated as low- or intermediate-risk cases with a much better survival prognosis 

than stage 4 showing an overall survival probability of 20 – 30% (Berthold and Hero 

2000). Stage 4S accounts for 5% of cases and has a striking clinical phenotype (S = 

special) as it almost always regresses spontaneously (D'Angio, et al. 1971; Maris, et al. 

2007). However, this phenomenon was also observed in rare cases of stage 1-3 

neuroblastomas (Berthold F 1998). Next to localization of the tumor and patient´s age at 

diagnosis also certain genetic alterations have an impact on patient´s survival. One of 

these is the copy number status of the MYCN oncogene which is amplified in 20% of all 

neuroblastoma cases (Westermann and Schwab 2002). Irrespective of stage, MYCN 
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amplification leads to patient’s assignment to the high-risk group. MYCN is a transcription 

factor which enhances cell proliferation and cell growth, metastasis, genomic instability, 

angiogenesis, reduces cell adhesion and inhibits proliferation. Thus its overexpression 

leads always to poor prognosis for the patient´s outcome (Adhikary and Eilers 2005). Next 

to the MYCN copy number, the tumor-cell DNA index (ploidy) and specific recurrent 

segmental chromosomal aberrations are prognostic biomarkers for neuroblastoma 

(Janoueix-Lerosey, et al. 2009).  

Tab. 1.1: International Neuroblastoma Staging System (Maris, et al. 2007) 

Stage Description 

1 

Localized tumor with complete gross excision, with or without microscopic 

residual disease; representative ipsilateral lymph nodes negative for tumor 

microscopically (nodes attached to and removed with the primary tumor could 

be positive).  

2A 
Localized tumor with incomplete gross excision; representative ipsilateral non-

adherent lymph nodes negative for tumor microscopically.  

2B 

Localized tumor with or without complete gross excision, with ipsilateral non-

adherent lymph nodes positive for tumor. Enlarged contralateral lymph nodes 

must be negative microscopically 

3 

Unresectable unilateral tumor infiltrating across the midline, with or without 

regional lymph node involvement; or localized unilateral tumor with 

contralateral regional lymph node involvement; or midline tumor with bilateral 

extension by infiltration (unresectable) or by lymph node involvement.  

4 
Any primary tumor with dissemination to distant lymph nodes, bone, bone 

marrow, liver, skin, and/or other organs, except as defined for stage 4S.  

4S 

Localized primary tumor in infants younger than 1 year (as defined for stage 1, 

2A, or 2B), with dissemination limited to skin, liver or bone marrow (<10% 

malignant cells).  

 

1.2.1 Genomic alterations in neuroblastoma 

Recent DNA sequencing projects revealed that recurrent somatic mutations in 

neuroblastoma are rare. Common cancer-driving mutations are limited, e.g. MYCN (1.7%) 

and ALK (ALK tyrosine kinase receptor) (7%). These findings suggest that tumorigenesis 

is more related to larger events as chromosomal rearrangements, including genomic gain 

or loss, or changes in ploidy (Molenaar, et al. 2012; Pugh, et al. 2013).  
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1.2.1.1  Ploidy 

Cytogenetic analyses revealed four ploidy levels in neuroblastoma: near-diploid, near-

triploid, near-tetraploid and near-pentaploid. The near-diploid and near-tetraploid stages 

usually are associated with structural abnormalities as 1p-deletion or MYCN amplification 

and are found mainly in infants older than one year. These patients most frequently have 

advanced tumor stages and are poor responders to chemotherapy. In contrast, near-

triploid and near-pentaploid tumors, which show three or respectively five almost complete 

haploid sets of chromosomes with only few structural abnormalities, were found in 

children with high survival rates. Hence, the DNA content of neuroblastoma tumors can be 

linked to tumor stage and prognosis (Hayashi, et al. 1989; Janoueix-Lerosey, et al. 2009; 

Kaneko, et al. 1987).  

1.2.1.2  Genomic gain 

Gain of genomic material occurs via gain of whole or partial chromosome arms or simply, 

the duplication or amplification of single genes. About 50 to 72% of all neuroblastomas 

show an additional 17q segment, mainly 17q21.32-25.3, making it the most frequent 

genetic alteration in neuroblastoma. This event is more often detected in advanced stages 

of di- or tetraploid tumors which also show 1p loss and MYCN amplification. In contrast, 

gain of the whole chromosome 17 in triploid cases is associated with favorable clinical 

outcome (Bown, et al. 1999; Bown, et al. 2001; Ho, et al. 2018; Plantaz, et al. 1997). 

Partial gain happens mostly through translocation of an additional segment of 17q to a 

partner chromosome leading to the loss of genetic information at the fusion area. More 

than 20 chromosome regions were identified to bind translocated 17q, with the highest 

incidence seen for chromosome arm 1p followed by 11q (Bown, et al. 1999). It has been 

implicated that dosage effects of certain genes located on 17q are involved in tumor 

formation but the large size of the gained area makes it difficult to identify these. 

Nevertheless, 17q gain has been proposed as a marker for poor prognosis, as well as 

gain of 1q, 2p, 7q and 11p (Cheung and Dyer 2013; Vandesompele, et al. 2005). The 

recurrent gain of whole chromosomal segments leads to the assumption that several 

genes are located there which may contribute to tumor initiation or progression. Next to 

this, also duplication or amplification of single genes was observed which underlies their 

role as driving events. The most prominent example is the oncogene MYCN which plays a 

crucial role in a few cancer types, but especially in neuroblastoma. Amplified MYCN is 

found in around 25% of cases with values between 5 and 500 fold. The initial copies of 

MYCN remain after amplification at their original chromosomal locus, 2p24. The additional 

copies can either stay at the chromosomal site as homogeneously staining regions 
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(HSRs) or as extrachromosomal amplified DNA (double minutes, DMs) (Schwab, et al. 

1983). MYCN amplification (> 10 copies) is present in 40% of high-risk patients and 

correlates with rapid tumor progression and poor prognosis. Therefore, it is a powerful 

prognostic marker (Brodeur, et al. 1984; Seeger, et al. 1985). However, it has turned out 

that MYCN itself is difficult to target therapeutically, which is true for most transcription 

factors. Current research focusses on addressing MYCN partners, for example BRD4 

(bromodomain containing 4) which can be inhibited by JQ1 (Chayka, et al. 2015; Fowler, 

et al. 2014). 

1.2.1.3  Genomic loss 

Loss of whole or partial chromosomes is a major event in many tumors including 

neuroblastoma (Frohling and Dohner 2008). Recurrently deleted chromosomal regions 

with different ratios depending on the study and used methods are 2q, 3p, 4p, 9p, 14q, 

16p and 18q (Bown 2001). The most frequently deleted chromosome arms are 11q (up to 

40%) and 1p (~ 35%) (Mlakar, et al. 2017). While 11q is more often deleted than MYCN 

amplified, these alterations are almost mutually exclusive (Plantaz, et al. 2001). Totally, 70 

to 80% of stage 4 neuroblastomas have either a MYCN amplification or 11q deletion 

(Mlakar, et al. 2017). Loss of whole chromosome 11 is associated with low stage, 

whereas unbalanced deletion is mostly observed in high stage tumors (Guo, et al. 2000). 

Loss of 11q is often associated with 17q gain as it is the second most common partner 

(after 1p) for 17q translocation (Van Roy, et al. 1994). Such translocations account for 

approximately half of all segmental 11q losses (Vandesompele, et al. 2001). The frequent 

loss of 11q led to the suggestion that TSGs may be located at this site. However, former 

attempts to validate candidates such as CADM1 (cell adhesion molecule 1), ATM (ATM 

serine/threonine kinase) and H2AFX (H2A histone family member x) to have tumor-

suppressing functions following Knudson´s “two-hit hypothesis” failed as no further 

(smaller) deletion, mutation or methylation events could be detected on the second 

chromosome. It has been proposed that 11q deletion could be a case of haplo-

insufficiency but this still remains to be proven (Mandriota, et al. 2015; Michels, et al. 

2008; Mlakar, et al. 2017). Interestingly, 11q also harbors several oncogenes as CCND1 

(cyclin D1) and NCAM (neural cell adhesion molecule 1). Copy number gains and 

rearrangements were identified in many tumors and hence appear to play important roles 

in neuroblastoma (Korja, et al. 2009; Molenaar, et al. 2003).  

Allelic loss of 1p accounts for approximately 35% and 70% of advanced stages. Most of 

the deletions happen through the attachment of a translocated 17q chromosome arm 

(Caron, et al. 1994; Savelyeva, et al. 1994). In contrast to loss of 11q, 1p deletion 

correlates with MYCN amplification and other high-risk events such as di- or tetraploidy. 
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Fig. 1.1 Chromosome arm 1p36 with detected deletion sites and potential TSGs in neuroblastoma. 

The horizontal bars represent deletion sites identified by several research groups; vertical colored 

bars indicate the location of TSG candidates; adapted from Henrich, et al. 2012. 

 

Only 15 - 20% of MYCN single copy cases show 1p loss (De Brouwer, et al. 2010; Fong, 

et al. 1989; Maris, et al. 2000). The size of the deleted chromosome part is associated 

with the MYCN status. MYCN amplified cases show large 1p deletions at the distal end 

and have worse outcome than patients with MYCN single copy with short or interstitial 

deletions (Takeda, et al. 1994). Many research groups have focused on the identification 

of the smallest region of overlapping deletion (SRO). Most studies agreed on a common 

deletion site at 1p36 (summarized by Henrich, et al. 2012; Fig. 1.1). A more recent study 

confirmed these findings by identification of a SRO at 1p36.33 – 1p13.3 in 25 – 40% of 

analyzed neuroblastoma tissue samples (Ho, et al. 2018). Enrichment of potential TSGs in 

frequently lost regions and a low density of oncogenes through all cancers have been 

reported and led to the proposal of a “cancer gene island model” (Solimini, et al. 2012). 

The frequent loss of chromosome arm 1p and the size of the SROs indicate that this 

location may also carry multiple genes shoes disruption promotes tumor development and 

progression. Indeed, several genes on 1p36 have been proposed as TSGs. However, the 

tumor-driving effect of these genes is difficult to proof as they do not follow the “two hit” 

model but are dosage-dependent. As there is no straight forward approach to prove 

dosage-sensitivity, the only way so far is to accumulate data and indications from genetic, 

epigenetic and transcriptional studies. Henrich and his colleagues reviewed supportive 

evidence for six TSG candidates: TP73 (tumor protein 73), CHD5 (chromodomain 

helicase DNA binding protein 5), CAMTA1 (calmodulin binding transcription activator 1), 
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miR-34a (microRNA 34a), KIF1B (kinesin family member 1B) and CASZ1 (castor zinc 

finger 1) (Henrich, et al. 2012). Other studies proposed TSG candidates as NBPF1 

(neuroblastoma breakpoint family member 1) or DMAP1 (DNA methyltransferase 1 

associated protein 1) (Vandepoele, et al. 2005; Yamaguchi, et al. 2014). Next to the loss 

of chromosome arm 1p, also aberrant methylation patterns at the distal end were 

observed leading to epigenetic silencing of encoded TSGs (Henrich, et al. 2016) (further 

discussed in 1.2.1.4). 

1.2.1.4 Epigenetic alterations 

Besides genetic alterations, epigenetic modifications play an important role in 

neuroblastoma development and progression. Here, the DNA sequence remains 

unchanged but local chromatin modification (e.g. aberrant DNA methylation or histone 

modification) or high-order chromatin structure rearrangements alter the expression of 

cancer-driving genes. 

In general, DNA methylation of CpG islands is a stable modification and its pattern can be 

inherited through many cell divisions and is often associated with gene silencing. The 

methylation status changes actively during development and cell differentiation, 

depending on the required genes, or plays a role in epigenetic memory (reviewed 

in(Durinck and Speleman 2018). The first DNA methylation study in neuroblastoma 

identified high methylation of the TSG CASP8 (caspase 8) which goes along with MYCN 

overexpression and resistance to chemotherapy (Teitz, et al. 2000). Later, these findings 

were confirmed by Alaminos and his colleagues, who analyzed promoter 

hypermethylation of 45 candidate genes in 10 neuroblastoma cell lines and 10 candidate 

genes in 118 primary neuroblastoma tumors. The CpG island hypermethylation portrait 

was different for MYCN-amplified versus non-amplified tumors, including the TSG CASP8 

(Alaminos, et al. 2004).  

Additionally, aberrant histone modification has been shown to play a role in tumorigenesis, 

including neuroblastoma (Lochmann, et al. 2018; Wong, et al. 2017). Histones serve as 

DNA packaging units associated with chromatin condensation and thereby regulate gene 

transcription. Post-translational modifications of N-terminal tails of the core histone 

proteins happen through, among others, methylation and acetylation. Whereas acetylation 

of lysine is associated with gene transcription, methylation of lysine and arginine residues 

induces either transcriptional activation or suppression, depending on the pattern (eg. di- 

or trimethylation) and exact position (Kornberg and Lorch 1999; Kouzarides 2007; Luger 

and Richmond 1998; Strahl and Allis 2000; van Groningen, et al. 2017). Several histone-

modifying proteins are involved in methylation/acetylation processes, such as the 

polycomb repressive complex 2 (PRC2) which trimethylates histone H3 on lysine 27 
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(H3K27me3) leading to chromatin compaction and transcriptional repression. Many 

H3K27 trimethylation targets are genes required for stem cell differentiation and 

embryonic development (reviewed in(Chase and Cross 2011). In high-risk 

neuroblastomas, PRC2 components have been described to play a role in the 

downregulation of tumor-suppressive and differentiation-related genes via promoter 

hypermethylation, e.g. SPOCK2 (SPARC (Osteonectin), Cwcv and Kazal like domains 

proteoglycan 2) and SLC18A2 (solute carrier family 18 member A2;(Henrich, et al. 2016). 

Taken together, chromatin accessibility is controlled by the CpG methylation level and the 

methylation/acetylation status of histones. Expression-activating hypomethylation and 

chromatin decondensation have been shown in so-called enhancer regions, DNA 

regulatory elements with multiple transcription factor (TF), cofactor and chromatin 

regulator binding. Enhancers control the expression of a gene from a distance, whereat 

these genes are required to define cell identity (Lister, et al. 2009). Mislead activation of 

enhancers which are connected to proto-oncogenes is a known epigenetic event in 

tumorigenesis (reviewed in (Hnisz, et al. 2013; Pott and Lieb 2015). Recently, our group 

has combined the analysis of methylation and transcription profiles and copy number 

variations in 105 neuroblastomas with primary tumor- and cell line-derived global histone 

modification analyses. Divergent enhancer methylation has been identified in different 

patient subgroups, with respect to patient prognosis, including MYCN amplification. An 

important high-risk phenomenon was the hypermethylation of TSG candidates located on 

1p36 as CAMTA1, KIF1B and CHD5 (Fig. 1.1). Next to epigenetic down-regulation of 

potential TSGs, activation of oncogenes via hypomethylation has been described, such as 

PRAME (preferentially expressed antigen in melanoma) or CCND1 in another study 

(Henrich, et al. 2016; Mayol, et al. 2012).  

Large clusters of multiple enhancers with unusually high levels of TFs and coactivator 

binding and histone-modifications leading to very high chromatin accessibility are defined 

as super-enhancers (SEs). SEs induce strong expression of the associated genes which 

encode for TFs defining cellular identity (Hnisz, et al. 2013; Pott and Lieb 2015). In 

tumors, oncogenes may acquire SEs through chromosomal rearrangements, such as 

TERT (telomerase reverse transcriptase) located on chromosome 5p15.33. In 31% of 

high-risk neuroblastoma cases translocation of 5p15.33 occurs to juxtapose active 

enhancer elements to boost TERT transcription (Peifer, et al. 2015). 

Many different TFs are involved in SE-induced gene transcription, however only a few of 

them, termed as core TFs, define the cell-specific network (Saint-Andre, et al. 2016). 

These TFs bind to their own promoters and those of other core TFs which leads to an 

auto-regulatory loop (Boyer, et al. 2005). It was shown that SE-associated TF regulatory 

circuits define lineage identity in intratumoral heterogeneity. Most neuroblastomas consist 
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of two types of tumor cells with divergent gene expression profiles. Here, undifferentiated 

mesenchymal and adrenergic- committed neuroblastoma types were described. Among 

others, PRRX1 (paired related homeobox 1) and SOX9 (SRY-box 9) were shown to be 

master regulators in the mesenchymal state, whereas the adrenergic state was driven by 

GATA3 (GATA binding protein 3) and HAND1 (heart and neural crest derivatives 

expressed 1). Interestingly, induction of PRRX1 expression in adrenergic cells led to a 

switch to the mesenchymal state (van Groningen, et al. 2017). 

1.3 The concept of CYCLOPS 

As described in 1.1.2 and 1.2.1.3 the loss of genomic material is often associated with the 

deletion of genes which promote tumorigenesis, namely TSGs. Any genetic change which 

contributes to tumor development or progression is referred as “driver event”. However, 

the loss of a whole chromosome arm containing one or more TSGs always goes along 

with an accompanied loss of multiple neighboring genes. Their loss does not drive 

malignancy but is a collateral damage and is therefore referred as “passenger event” (Fig. 

1.2). Nevertheless, these genes may function as general housekeepers or be involved in 

the accommodation of cancer-specific stress. Tumor cells rely in a much stronger manner 

than normal cells on genes that abrogate challenges induced by DNA replication 

damages, mitotic, metabolic or oxidative stress (Solimini, et al. 2007). In other words, the 

loss of one copy of such a gene through the deletion of a whole chromosome arm leads 

the cell to a high dependency on the remaining one. Some of these genes are expected to 

be cell essential and complete loss may not be tolerated by compensatory mechanisms.  

Nijhawan and his colleagues described the potential therapeutic window which might be 

opened by addressing these genes. They hypothesized that there is a set of genes which 

hemizygous loss leads to a reduced protein level but that is still high enough to sustain 

viability. Further external suppression of these should induce cell death in cells with 

deletion but will not harm cell without loss (Fig. 1.2). They termed these new candidates 

CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss). For 

this approach they screened 86 cancer cell lines and identified 56 CYCLOPS candidates 

which were mainly encoding for spliceosome, proteasome or ribosome proteins. Finally, 

One or more 
TSGs 
and 
multiple 
passenger 
genes 

Fig. 1.2: Loss of a chromosome arm containing one or more tumor suppressor genes (driver 

genes) and multiple passenger genes. 
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they validated PSMC2 (proteasome 26S subunit, ATPase 2) as a CYCLOPS gene which 

encodes and essential member protein of the 19S proteasome (Nijhawan, et al. 2012). In 

a recent follow-up study across 501 cancer cell lines the research group confirmed the 

previously found candidates in a total set of 399 identified potential CYCLOPS (Tsherniak, 

et al. 2017). Paolella et al. analyzed gene dependency date from Project Achilles with 

copy-number calls for 23,124 genes across 179 cancer cell lines. They show that 

CYCLOPS dependencies are the most frequent copy-number associated gene 

dependency. Again, CYCLOPS genes were mainly encoding for spliceosome 

components, which also accounts for their selected and validate candidate gene SF3B1 

(splicing factor 3b subunit 1) (Paolella, et al. 2017).  

Fig. 1.3: The concept of CYCLOPS.  

The expression ratio of CYCLOPS genes is reduced when one copy gets lost by hemizygous 

deletion but still the protein level is high enough to sustain viability. Further suppression of the 

remaining copy leads to such a strong reduction of the protein amount that viability cannot be 

maintained anymore whereas non-deleted cells stay unharmed. 
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1.4 Aim of the project 

In contrast to many other cancers, neuroblastoma shows rare recurrent somatic mutations 

making it difficult to address this disease with commonly used targeting 

chemotherapeutics. Malignant transformation seems to develop from larger chromosomal 

events, e.g. genomic loss or gain. However, approaches to address these, for example 

targeting amplified MYCN failed so far, as transcription factors are generally difficult to 

regulate. The same is true for TSGs which have been many years in the focus of 

research, especially on chromosome arms 1p, 3p and 11q but did not deliver satisfying 

results towards therapy. The loss of the majority of genes on these chromosome arms 

likely does not contribute to cancer development but is due to collateral damage. We 

propose that many of these so-called passenger events are required for cell survival and 

hypothesize that their partial loss can be exploited as drug targets themselves. 

Hemizygous deletion of essential genes may render cells highly vulnerable to further 

suppression whereas cells without deletions remain unharmed. The group of potential 

candidates following this paradigm is termed CYCLOPS (copy number alterations yielding 

cancer liabilities owing to partial loss). Metaphorically speaking, like the Cyclops of the 

Greek mythology has only one eye (Fig. 1.4), the hemizygously deleted cells are left with 

one copy of an essential gene. Both, the mythical creature and the cancer cell, are highly 

related on their remains to survive. Previous studies identified many potential CYCLOPS 

across different cancer types. However, we propose that neuroblastoma may be related 

on different genes than the mainly adult cancers, leading to a different output of 

candidates. This study aims to identify CYCLOPS genes on chromosome arm 1p in 

neuroblastoma and show a new approach towards cancer therapy. In other words, we are 

blinding the CYCLOPS.  

 

(Bauer, et al. 2001; Caron, et al. 2001; Ejeskar, 

et al. 2001; Ohira, et al. 2000; Schwab, et al. 1996; 

White, et al. 2005) 

 

 

  

Fig. 1.4 Polyphemus, by Johann 

Heinrich Wilhelm Tischbein, 1802. 
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2. Material and Methods 

2.1 Materials 

2.1.1 Chemicals 

4,6-diamidino-2-phenylindol (DAPI)   Sigma Aldrich, Munich 

Agar agar      Carl Roth, Karlsruhe 

Agarose      Carl Roth, Karlsruhe 

Ammonium persulfate (APS)    Merck, Darmstadt 

-Mercaptoethanol     Merck, Darmstadt 

Bacto-tryptone     Carl Roth, Karlsruhe 

Boric acid      Sigma Aldrich, Munich 

Bovine serum albumin (BSA)    Sigma Aldrich, Munich 

Bromphenol blue     Sigma Aldrich, Munich 

Chloroform      Sigma Aldrich, Munich 

Deionized formamide     AppliChem, Darmstadt 

Dextran sulfate     Carl Roth, Karlsruhe 

Dimethyl sulfoxide (DMSO)    Carl Roth, Karlsruhe 

DTT       Carl Roth, Karlsruhe 

EDTA       Carl Roth, Karlsruhe 

Ethanol      Sigma Aldrich, Munich 

Formaldehyde      AppliChem, Darmstadt 

Giemsa Azure Eosin Methylen Blue   Merck, Darmstadt 

Glutaraldehyde     Sigma Aldrich, Munich 

Glycine       Carl Roth, Karlsruhe 

Goat serum Jackson ImmunoResearch, West 

Grove, USA 

HEPES KOH      Sigma Aldrich, Munich 

Hoechst Thermo Fisher Scientific, Waltham, 

USA 

Isopropanol      Sigma Aldrich, Munich 

Laemmli Sample buffer x4    Bio-Rad, Munich 

Lipofectamine RNAiMAX Thermo Fisher Scientific, Waltham, 

USA  

Magnesium acetate     Sigma Aldrich, Munich 

Magnesium chloride     Sigma Aldrich, Munich 

Methanol      Sigma Aldrich, Munich 
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Midori Green Direct     Biozym, Hessisch Oldendorf 

Milk powder      Sigma Aldrich, Munich 

Phenol/ chloroform/ isoamylalcohol    Carl Roth, Karlsruhe 

Propidium iodide staining solution (PI) Miltenyi Biotec, Bergisch Gladbach 

Polyacrylamide Serva Electrophoresis, Heidelberg 

Polyethylengycol 6000    Sigma Aldrich, Munich 

Potassium acetate     Sigma Aldrich, Munich 

Potassium chloride     Carl Roth, Karlsruhe 

Sodium acetate     Merck, Darmstadt 

Sodium chloride     Sigma Aldrich, Munich 

Sodium citrate      Sigma Aldrich, Munich 

Sodium dodecyl sulfate (SDS)   Sigma Aldrich, Munich 

Sodium hydrogen carbonate    Merck, Darmstadt 

Sodium hydrogen phosphate    Sigma Aldrich, Munich 

Sodium hydroxide     Carl Roth, Karlsruhe 

Sucrose      Sigma Aldrich, Munich 

TEMED      AppliChem, Darmstadt 

Tris base      AppliChem, Darmstadt 

Tris-HCl      AppliChem, Darmstadt 

Triton X-100      AppliChem, Darmstadt 

Trypan Blue      AppliChem, Darmstadt 

Tween       Sigma Aldrich, Munich 

Vectashield Antifade Mounting Medium Vector Laboratories, Burlingame, USA 

Yeast extract      GERBU, Heidelberg 

2.1.2 Drugs and inhibitors 

Cysmethynil      Biomol, Hamburg 

KaryoMax Colcemide     GIBCO, Invitrogen, Karlsruhe 

Necrostatin-1      Sigma Aldrich, Munich 

Ferrostatin-1      Sigma Aldrich, Munich 

z-VAD-FMK      Sigma Aldrich, Munich 

Bafilomycin A1     Sigma Aldrich, Munich  

FR180204      Sigma Aldrich, Munich 
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2.1.3 Enzymes 

DNA-Polymerase I Thermo Fisher Scientific, Waltham, 

USA 

DNase I Fermentas, St.Leon-Rot, NEB, 

Schwalbach 

Pepsin       Sigma Aldrich, Munich 

Proteinase K      GERBU, Heidelberg 

RNase A      Roche, Basel, Switzerland 

DNA restriction enzymes Fermentas, St.Leon-Roth, NEB, Schwalbach   

2.1.4 Kits 

BM Chemiluminescence Blotting Substrate kit Roche, Basel, Switzerland 

CellTiter-Blue® Cell Viability Assay   Promega, Madison, USA 

ECL Select Western Blot Detection Reagent GE Healthcare, Munich 

Effectene transfection Reagent   Qiagen, Hilden 

First Strand cDNA Synthesis Kit Thermo Fisher Scientific, Waltham, 

USA 

Gateway® LR Clonase Enzym mix Thermo Fisher Scientific, Waltham, 

USA 

HGF Human ELISA Kit ab100534 Abcam, Cambridge, UK  

Platinum SYBR Green qPCR SuperMix-UDG Thermo Fisher Scientific, Waltham, 

USA 

Protein Assay kit     Bio-Rad, Munich 

Qiagen Plasmid Isolation kits (Mini, Maxi)  Qiagen, Hilden 

QIAquick Gel Extraction kit    Qiagen, Hilden 

QIAquick PCR purification kit    Qiagen, Hilden 

RNeasy mini kit     Qiagen, Hilden 

Senescence -galactosidase assay   Cell Signaling, Danvers, USA 

Ribo-Zero rRNA Removal Kit    Illumina, San Diego, USA 

NEBNext Ultra Directional RNA Library Prep Kit  New England BioLabs, Frankfurt a.M. 

2.1.5 Buffers and solutions 

1x PBS  137 mM NaCl  10 mM Na2HPO4 

   2.7 mM KCl  pH 7.4 
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2.1.5.1 Separation of DNA in horizontal agarose gels 

Agarose gel  1% Agarose 

    1x TBE 

 

1x TBE  89 mM Tris 

   89 mM Boric acid 

   2 mM EDTA 

2.1.5.2 Total protein isolation, separation and western blot analysis 

Lysis buffer 20 mM Tris pH 8.5 

1% Triton X-100 

   7 M Urea 

0.1 M DTT 

2.5 mM MgCl2 

Protease inhibitor 

cocktail (1 tablet per 

25 ml) 

 

1x TBS-T  50 mM Tris, pH 7.6 

   150 mM NaCl 

   5% Tween 20 

 

10x Running 25 mM Tris  

buffer  192 mM Glycine 

20% SDS 

 

1x Transfer  25 mM Tris 

buffer  192 mM Glycine 

   20% Methanol 

 

Blocking solution 5% Milk powder in 

H20dd 

 

Stacking gel  375 µl Acrylamide 

1.4 ml Tris [1.5 M],  

pH 6.8  

 Bromphenol blue 

   2.74 ml H2Odd 

   25 µl 20% SDS 

   150 µ 10% APS 

   6 µl TEMED 

 

Separation gel  3.78 ml Acrylamide 

(10%) 3.75 ml Tris [1.5 M], 

pH 8.8  

   7.32 ml H2Odd 

   75 µl 29% SDS 

   150 µl 10% APS 

   6 µl TEMED 

2.1.5.3 Fluorescence in situ hybridization (FISH) 

Hybridization  4x SSC 

buffer  20% Dextran sulfate 

   pH 7.0 

 

Nick translation  0.5 M Tris-HCl, 

pH 8.0  

50 nM MgCl2 

0.5 mg/ml BSA 

dNTP mix  50 µl dNTP (dATP, 

dCTP, dGTP) [1 nM] 

25 µl dTTP [1 nM] 

25 µl labeled dUTP 

[1 nM] 

 

Hypotonic  0.55% KCl 

solution 1% NaCitrate  
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Fixative solution Methanol 

Acetic acid 

Proportion 1:1 

 

20x SSC  3 M NaCl 

300 mM Sodium 

citrate, pH 7.0 

   

2.1.5.4 Fluorescence-activated cell sorting (FACS) 

Citric acid buffer 2.1% citric acid in H20dd 

   0.5% Tween 20 

2.1.5.5 Molecular cloning 

Lysis buffer 25 mM Tris-HCl,  

pH 7.5  

   10 mM EDTA 

   15% Sucrose  

 

 

Annealing Buffer  100 mM potassium 

acetate 

30 mM HEPES KOH 

2 mM magnesium 

acetate 

2.1.6 Media and supplements for cell culture 

Versene  0.02% EDTA 

   1x PBS 

 

 

Freezing medium 50% FCS 

   50% RPMI 1640 

10% DMSO of total 

volume 

All media and reagents were purchased as sterile ready-to-use solutions. 

 

Blasticidin       MP Biomedichals, Heidelberg 

Doxycycline      BD Clontech, Heidelberg 

Fetal bovine serum (FCS)    GIBCO, Invitrogen, Karlsruhe 

G418       Sigma, Munich 

Penicillin/ Streptomycin     Bio Whittaker, Walkerville, USA 

(10,000 U/ml / 10,000 µg/ml) 

RPMI 1640      GIBCO, Invitrogen, Karlsruhe 

Zeocin       Invitrogen, Karlsruhe 

2.1.7 Media and supplements for E.coli cultivation 

SOC medium      Invitrogen, Karlsruhe 
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LB medium  5 g/l yeast extract 

   10 g/l bacto tryptone    

5 g/l NaCl 

For LB plates preparation agar agar was added to the medium prior autoclaving. 

All antibiotics were added to the autoclaved media after cooling down to 50 °C.  

Tab. 2.1: List of antibiotics and concentrations for the cultivation of E.coli. 

Antibiotic Stock Concentration 
Final 

concentration 
Supplier 

Ampicillin 100 mg/ml 100 µg/ml Serva, Heidelberg 

Chloramphenicol 25 mg/ml 25 µg/ml Serva, Heidelberg 

Kanamycin 50 mg/ml 50 µm/ml Serva, Heidelberg 

Zeocin 100 mg/ml 50 µm/ml 
Invitrogen, 

Karlsruhe 

2.1.8 Bacteria strains and vectors 

E.Coli OneShot Top10  Thermo Fisher Scientific, Waltham, USA 

Genotype: F- mcrA Δ( mrr-hsdRMS-mcrBC)Φ80lacZΔM15 Δ lacX74 recA1 araD139 Δ(araleu)7697 

galU galK rpsL (StrR) endA1 nupG 

 

pcDNA/6TR      Invitrogen, Karlsruhe  

pTER+       van de Wetering et al., 2003 

pT-Rex
TM

-DEST30     Invitrogen, Karlsruhe 

 

2.1.9 Bacterial artificial chromosomes (BACs) 

All BACs have been purchased from the BACPAC Resource Center of the Children´s 

Hospital Oakland Research Institute in Oakland, USA. 

Tab. 2.2: List of BACs and their localization on 1p. 

BACs Localization (hg19)  

RP11-547D24 1,891,455 – 2,024,338 

RP11-368C17 25,034,711 – 25,212,781 

RP11-159C21 53,128,015 – 53,289,181 

RP11-415A20 77,205,366 – 77,334,921 

RP11-643M22 119,770,060 – 119,925,166 
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2.1.10  Antibodies 

Tab. 2.3: List of primary and secondary Antibodies for protein detection. 

Specificity catalog 

number 

Host supplier 

primary antibodies 

MAP2 ab5392 chicken, polyclonal Abcam, Cambride, UK 

EphB2 14389 rabbit, polyclonal Cell Signaling, Danvers, USA 

EphA2 6997 rabbit, monoclonal Cell Signaling, Danvers, USA 

TUBB3 ab18207 rabbit, polyclonal Abcam, Cambride, UK 

GAPDH MAB374 mouse, monoclonal Merck Millipore, Darmstadt 

-Tubulin ab40742 mouse, monoclonal Abcam, Cambride, UK 

-Actin-HRP ab20272 mouse, monoclonal Abcam, Cambride, UK 

NEFL ab108363 rabbit, monoclonal Abcam, Cambride, UK 

HGF ab83760 rabbit, monoclonal Abcam, Cambride, UK 

Phospho-Akt 9271 rabbit, monoclonal Cell Signaling, Danvers, USA 

Phospho-MAPK 9101 rabbit, monoclonal Cell Signaling, Danvers, USA 

Akt 9271 rabbit, monoclonal Cell Signaling, Danvers, USA 

MAPK 4695 rabbit, monoclonal Cell Signaling, Danvers, USA 

secondary antibodies 

anti mouse-HRP 115-035-003 goat, polyclonal Dianova, Hamburg 

anti rabbit-HRP 115-035-144 goat, polyclonal Dianova, Hamburg 

anti chicken-

HRP 
103-035-155 goat, polyclonal Dianova, Hamburg 

anti rabbit-FITC 111-095-003 goat, polyclonal Dianova, Hamburg 

molecular weight marker 

PageRuler 

Prestained 

Protein Ladder 

26616 - 
Thermo Fisher Scientific, 

Waltham, USA 

 

2.1.11 Nucleic acids 

Cot1 DNA Roche, Basel, Switzerland 

Fluorescence-conjugated dUTP  Fermentas, St.Leon-Rot; NEB, Schwalbach 

GeneRuler 1 kb DNA Ladder  Thermo Fisher Scientific, Waltham, USA 

GeneRuler 100 bb DNA Ladder  Thermo Fisher Scientific, Waltham,USA 

Salmon Sperm DNA     Roche, Basel, Switzerland 
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Tab. 2.4.: Oligonucleotides for shRNA hairpins. 

Oligonucleotidess 

for shRNA hairpins 

Sequence 5´-3 

EphB2 #2_for 
GATCCACATCGATCCTTTCACCTATTCAAGAGATAGGTGAAA
GGATCGATGTTTTTTTGGAAA 

EphB2 #2_rev 
AGCTTTTCCAAAAAAGCGTGATCCTGGACTATGATCTCTTGA
ATCATAGTCCAGGATCACGCG 

EphB2 #3_for 
GATCCAGATGATCCGCAATCCCAATTCAAGAGATTGGGATTG
CGGATCATCTTTTTTTGGAAA 

EphB2 #3_rev 
AGCTTTTCCAAAAAAAGATGATCCGCAATCCCAATCTCTTGAA
TTGGGATTGCGGATCATCTG 

Tab. 2.5: Oligonucleotides for RT-PCR. 

Primer Sequence 5´-3 

ja HPRT1 for TGACACTGGCAAAACAATGCA 

HPRT1 rev GGTCCTTTTCACCAGCAAGCT 

SDHA for TGGGAACAAGAGGGCATCTG 

SDHA rev CCACCACTGCATCAAATTCATG 

Primer QuantiTect Primer Assay * 

EphB2 Hs_EPHB2_1_SG 

HGF Hs_HGF_1_SG 

LRRC4B Hs_LRRC4B_1_SG 

MAP2 Hs_MAP2_1_SG 

NEFL Hs_NEFL_1_SG 

PRAME Hs_PRAME_2_SG 

SRGAP3 Hs_SRGAP3_1_SG 

TUBB3 Hs_TUBB3_1_SG 

*QuantiTect Primer Assays were obtained from Qiagen, the sequences are not provided. 
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Tab. 2.6: siRNAs for transient gene knock-down. 

Target gene siRNA ID Sense sequence 5´-3´ 

AURKAIP1 s195269 AGAUCAAGUUCGAGAAAGAtt 

AURKAIP1 s29953 GCAGAUCAAGUUCGAGAAAtt 

AURKAIP1 s29954 CCACCGCAAUCCUACCAGUtt 

EphA2 s4564 UGAUGAUCAUCACUGAGUAtt 

EphA2 s4565 GGAAGUACGAGGUCACUUAtt 

EphA2 s4566 GUAUCUUCAUUGAGCUCAAtt 

EphB2 s4740 GCGUGAUCCUGGACUAUGAtt 

EphB2 s4741 ACAUCGAUCCUUUCACCUAtt 

EphB2 s4742 AGAUGAUCCGCAAUCCCAAtt 

ICMT s23871 GGUUAGAGUUCACACUUGAtt 

ICMT s23872 CAGCCUGGAGUAUACAGUAtt 

ICMT s23873 CGAUCGAACAGAAGAAGAAtt 

RSC1A1 s12369 GAAUCUUGCCCGUCUAUAAtt 

RSC1A1 s12370 GGAUCUCACUUUAGAUAAUtt 

RSC1A1 s12371 GCUCAACAGUCCCUAGUUAtt 

SDF4 s27560 GGAGUUUGAGGAGCUCAUUtt 

SDF4 s27561 AGGUGGAUGUGAACACUGAtt 

SDF4 s27562 GAGUAUAAGGUGAAGUUUUtt 

PLK1 s448 CCAUUAACGAGCUGCUUAAtt 

Negative Control 

No. 1 siRNA – non 

target 

4390843 Proprietary, not provided 

 

All siRNA are Silencer Select siRNAs and have been purchased from Ambion, Austin, 

USA. The sequences of the all 990 siRNAs used in the screen are listed in the 

supplementary information (Tab. S1). 

Tab. 2.7: Sequencing primers. 

Primer Sequence 5´-3 

CMV_for CGCAAATGGGCGGTAGGCGTG 

T7 TAATACGACTCACTATAGGG 

H1 TCGCTATGTGTTCTGGGAAA 

BGH_rev TAGAAGGCACAGTCGAGG 

pCAG GCAACGTGCTGGTTATTGTG 
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2.1.12 Tissue culture cell lines 

CHLA-90   (Keshelava, et al. 1998)  

CHLA-20   (Keshelava, et al. 1998) 

CHP-126   (Schlesinger, et al. 1976) 

CHP-134   (Schlesinger, et al. 1976) 

CLB.Ga   (Combaret, et al. 1995) 

GI-M-EN   (Donti, et al. 1988) 

HD-N-16   (Schwab, unpublished) 

HD-N-33   (Schwab, unpublished) 

IMR-32   (Tumilowicz, et al. 1970) 

IMR-5/75   (Tumilowicz, et al. 1970) 

Kelly    (Schwab, et al. 1983) 

LAN-1    (Seeger, et al. 1977) 

LAN-2    (Seeger, et al. 1977) 

LAN-5    (Seeger, et al. 1982) 

LAN-6    (Wada, et al. 1993) 

LS    (Rudolph, et al. 1991) 

MHH-NB11   (Pietsch, et al. 1988) 

NB69    (Mena, et al. 1989) 

NBL-S    (Cohn, et al. 1990) 

NBS-124   (Westermann, unpublished) 

NGP    (Brodeur, et al. 1977) 

NMB    (Brodeur, et al. 1977) 

SH-EP    (Ross, et al. 1983) 

SH-SY5Y   (Biedler, et al. 1978) 

SIMA    (Marini, et al. 1999) 

SJ-NB-12   (Van Roy, et al. 2006) 

SK-N-AS   (El-Badry, et al. 1989) 

SK-N-BE(2)   (Biedler and Spengler 1976) 

SK-N-BE(2)c   (Biedler and Spengler 1976) 

SK-N-DZ   (Sugimoto, et al. 1984) 

SK-N-FI   (Sugimoto, et al. 1984) 

SK-N-SH   (Biedler, et al. 1973) 

SMS-KCNR   (Reynolds, et al. 1986) 

TR14    (Cowell and Rupniak 1983) 

Vi-856    (Ambros, unpublished) 
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2.1.13 Laboratory equipment 

2100 Bioanalyzer Agilent Technologies, Santa Clara, 

USA 

Analytical Balances PM 4600   Mettler, Gießen 

ChemiSmart 5100  Vilber Lourmat, Marne-la-Vallée, 

France 

CO2 Incubator Steri-Cult  Thermo Fisher Scientific, Waltham, 

USA 

Gel documentation system (Geldoc)   Bio-Rad, Munich 

Horizontal mini-gel systems   GIBCO/BRL Eggenstein Renner, 

Darmstadt  

Horizontal mixer RM5     CAT, Staufen 

Incubator Function Line    Heraeus, Wehrheim 

Incubator Shaker, Innova 4300   New Brunswick Scientific, Enfield, USA 

LightCycler 480     Roche, Basel, Switzerland  

Luna Automated Cell Counter   Logos biosystems, Annandale, USA 

MACSQuant VYB flow cytometer   Miltenyi Biotec, Bergisch Gladbach 

Magnetic Mixers      Heidolph-Elektro, Kehlheim 

Microplate dispenser  Thermo Fisher Scientific, Waltham, 

USA 

Mini trans-blot cell     Bio-Rad, Munich 

Mini-PROTEAN 3 electrophoresis system  Bio-Rad, Munich 

NanoDrop Spectrophotometer ND-1000  Peqlab, Erlangen 

pH-Meter Ph 540 GLP    WTW, Weilheim 

Pipetting Robot Microlab STAR   Hamilton, Reno, USA 

Plate Loader SWAP     Hamilton, Reno, USA  

Platereader FLUOstar OPTIMA   BMG Labtech, Ortenberg 

Power supply units, Phero-stab 500    Biotec Fischer, Reiskirchen 

Shaking platform, IKA KS250   Janke & Kunkel, Staufen 

Spectrophotometer GeneQuant 1300  GE Healthcare, Munich  

Sterile bench SAFE 2020   Thermo Fisher Scientific, Waltham, 

USA 

Thermo block mixer compact    Eppendorf, Hamburg 

Thermo water bath GFL 1083   GFL, Burgwedel 

Thermocycler GeneAmp 9700   Applied Biosystems, Darmstadt 

Vacuum concentrator, RVC2-18   Christ, Osterode am Harz 
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Vortex Reax top     Heidolph Instruments, Schwabach 

 

Centrifuges and rotors 

Avanti-JS-25-I      Beckman Coulter, Sinsheim 

Allegra X-12      Beckman Coulter, Sinsheim 

Biofuge fresco      Hereaus, Wehrheim 

J2-21 M/E      Beckman Coulter, Sinsheim 

Mini Star      Neolab, Heidelberg 

Rotor JA-10      Beckman Coulter, Sinsheim 

Rotor JA-20      Beckman Coulter, Sinsheim 

Rotor JS-4.2       Beckman Coulter, Sinsheim 

 

Microscopes 

Leica DMRA2      Leica, Wetzlar 

Zeiss Z1      Zeiss, Jena 

Olympus IX81      Olympus, Hamburg 

Olympus CKX41     Olympus, Hamburg 

Axiovert 10      Zeiss, Jena 

2.1.14  Further materials 

Cell culture dishes      TPP, Trasadingen, Switzerland 

Cell culture flasks      TPP, Trasadingen, Switzerland 

Cover slips      Menzel, Braunschweig   

Cryo tubes, 2 ml     NalgeneNunc, Wiesbaden 

Cuvettes Semi-Micro  Greiner Bio-One, Kremsmünster, 

Austria 

FACS tubes with cell-strainer cap   Corning, Tewksbury, USA 

Filter tips, graduated (10, 100, 200, 1000 µl) Star Lab, Hamburg 

Fixogum      Marabuwerke, Tamm 

Glass slides Thermo Fisher Scientific, Waltham, 

USA 

Luna Cell Counter Slides    Logos biosystems, Annandale, USA  

Nitrocellulose membranes 0.45 µm   GE Healthcare, Munich  

Plastic pipettes (5, 10, 25, 50 ml)   Corning, Tewksbury, USA  

qPCR 96 well plates, white    Biozym, Hessisch Oldendorf 

qPCR optical adhesive film    Applied Biosystems, Darmstadt 
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Reaction tubes (0.5, 1.5, 2.0 ml)   Eppendorf, Hamburg 

Reaction tubes (15, 50 ml)  Greiner Bio-One, Kremsmünster, 

Austria 

Tissue culturing plates (black, clear    BD Biosciences, Bedford, USA 

bottom 384 wells)   

Tissue culturing plates (transparent, 6, 24,   TPP, Trasadingen, Switzerland 

96 wells)  

Whatman 3MM paper     Whatman, Dassel 

2.1.15  Software  

FLUOstar Optima     BMG Labtech, Ortenberg 

Microsoft Office package 2010   Microsoft Crop., Redmond, USA 

Cell B Image Software    Olympus, Hamburg 

ScanR acquisition software    Olympus, Hamburg 

IGV viewer      Broad Institute, Cambridge, USA 

FlowJo version 10     FlowJo, LLC, Ashland, USA 

IDES 480      Roche, Basel, Switzerland 

Leica CW 4000 FISH Software   Leica Microsystems 

ImageJ version 1.51d     Wayne Rasband 

ISIS MetaSystems version 5.0   MetaSystems 

Chromas Lite 2.1     Technelysium Pty Ltd 

SignalMap version 1.9    Roche, Basel, Switzerland 

R studio      Comprehensive R Archive Network  

Sigma Plot 13.0     SPSS Inc., Chicago, USA 

2.1.16  Databases 

DAVID Bioinformatics Resources   http://david.abcc.ncifcrf.gov 

Ensembl genome browser     http://www.ensembl.org/index.html 

Addgene      https://www.addgene.org  

National Center for Biotechnology (NCBI)  http://www.ncbi.nlm.nih.gov/  

R2        https://hgserver1.amc.nl 

UCSC Genome Browser    http://genome.ucsc.edu/ 
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2.2 Methods  

2.2.1 Methods of cell biology 

2.2.1.1 Culturing and cryoconservation of human neuroblastoma cells 

All cell lines were cultured in a humidified cell incubator at 37 °C in a 5% CO2 atmosphere. 

RPMI 1640 medium was supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin 

and 10% FCS. Every four days the cell culture medium was substituted and the cells were 

split at ratios from 1:3 to 1:10, depending on the cell confluence and proliferation rate. 

Adherent cells were detached from the surface by versenization. For cryoconservation 

cells were harvested at a density of 70% and resuspended in 1 ml cryoconservation 

medium, dispensed in cryovials and immediately transferred to -80 °C in a freezing 

container. After one week, the cryovials were located to nitrogen tanks at -96°C for long-

term storage. To recultivate the cells the frozen suspension was thawed quickly and 

added into fresh warm growth medium. After cell detachment the medium was substituted 

with fresh growth medium to remove the DMSO.  

2.2.1.2 Determination of amount and viability of neuroblastoma cells  

To calculate the number of living cells in a cell culture, trypan blue assay was used. After 

siRNA or drug treatment the cell density was estimated by cell confluency assays and the 

viability was determined by CellTiter-Blue assay. 

 

Trypan blue viability assay 

Trypan blue is a membrane non-permeable dye which accumulates only in dying cells 

with lost membrane integrity. In contrast to the non-colored healthy cells, dead cells 

appear blue making it easy to count the amount both, dead and living cells.  

Adherent cells were removed from the surface by versenization. Then, 10 µl of the cell 

suspension were mixed 1:1 with 0.1% trypan blue/ PBS and counted in an automated cell 

counter.  

 

CellTiter-Blue viability assay 

Cells were seeded in 94 well plates and treated with siRNA or drugs after 24 hs. To 

assess the cell viability after 96 hs CellTiter-Blue reagent was added in a ratio of 1:5 and 

incubated for 5 hs. In a flouroscan platereader the fluorescence was read using 540 nm 

excitation and 580 nm emission filters (acquisition time 0.2 s, automatic gain). Auto 

fluorescence of the CellTiter-Blue reagent in RPMI medium of blank wells was subtracted 
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from all samples. The relative fluorescence values served as an indicator of the amount of 

viable and metabolically active cells. 

 

Cell confluency assay 

To determine the effectivity of gene knock-down or drug activity cell confluency was 

assessed after treatment. The cells were seeded and treated in 96 well plates in 100 µl 

medium. After 96 h 30 µl of an 11% glutaraldehyde fixation solution in 1x PBS were added 

for 30 min. The medium was removed and cells were washed two times with 1x PBS. 

Each well was then stained with 100 µl of a 10% Giemsa Azure Eosin Methylen Blue 

solution in 1x PBS and incubated overnight and then washed two times with Aqua dest. 

To calculate the cell confluency the plates were scanned and analyzed by the ImageJ 

software using the Colony Formation plugin. 

2.2.1.3 Cell transfection and selection 

Transfection is the process to introduce foreign DNA into eukaryotic cells. Here, we 

generated doxycycline-inducible, stable overexpression of EphB2 with the pT-Rex™-

DEST30 and doxycycline-inducible, stable knock-down of EphB2 in IMR32_6TR cells 

through the pTER30+ vector. IMR32_6TR contained the stably expressing tetracycline 

repressor protein (pcDNA/6TR). A very efficient method is binding the plasmids to lipids 

that can fuse with the cell membrane, releasing the DNA into the cell. We used “Effectene 

Transfection Reagent” and associated reagents from Qiagen. Cells were seeded 24 h 

before transfection in 15 cm plates. First, 1 µg of plasmids was diluted in 100 µl EC-buffer 

and 3 µl of the enhancer solution. After 2 min of incubation at RT, 7.5 µl of Effectene was 

added to the DNA/ enhancer mix. The solution was vortexed and incubated for 15 min at 

RT. Then, it was filled up with 1 ml cell culture medium and the whole mixture was added 

dropwise to the cells. The transfection medium was replaced after 24 h by fresh one. After 

48 h the selection process was initiated by addition of appropriate antibiotics into the 

growth medium. The selection took 7 – 10 days resulting in cell death of non-transfected 

cells whereas the transfected formed colonies. The polyclonal culture was reseeded in 96 

well plates with an average concentration of 1 cell per well. The separated cells were 

raised to monoclonal cultures and the expression of the introduced vectors was 

determined. The expression of pTER30+-EphB2 and the knock-down efficiency of 

pEXP30-EphB2 after doxycycline treatment were determined by western blot.  
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2.2.1.4 Gene knock-down with siRNA 

To study if a candidate gene has cell essential functions we performed knock-down 

experiments with short interfering RNAs (siRNAs). siRNAs are small double-stranded 

RNAs (21-25 bp) which get processed by the RNA-induced silencing complex (RISC). The 

target-complementary siRNA leads RISC to the mRNA of the transcribed gene of interest 

and induces cleavage by ribonucleases.  

Cells were seeded 24 h before the transfection in 96 well plates or 10 cm dishes. siRNA 

from a 50 µM stock solution was dissolved in serum- and antibiotic-free medium in a ratio 

of 1:250. In the same amount of medium Lipofectamine RNAiMAX was diluted 1:100 – 

1:25 (depending on the cell line). Both solutions were mixed 1:1 and incubated at RT for 5 

min. The 96 well plates were treated with 10 µl of the siRNA-lipid mix per well or 1 ml was 

added drop wise to the 10 cm the dishes.  

2.2.1.5 siRNA screening 

To identify candidate genes we screened 184 druggable genes on 1p in 10 

neuroblastoma cell lines. We used three different siRNAs per gene in independent 

experiments. The cells were seeded 24 h prior transfection in 384 well plates and treated 

as described in 2.2.1.4. After 96 h the cells were fixated 30 min with an 11% 

glutaraldehyde solution and washed three times with 1x PBS. The nuclei were stained 

with Hoechst solution (1:4000 in 1x PBS) over night at RT. Afterwards, the plates were 

imaged with a ScanR system by taking 9 images of each well to acquire a 3x3 matrix over 

the well. The total fluorescent area was determined and normalized for plate effects (B-

scoring) and to the controls present on each plate. Replicates were combined by 

calculating the mean, the median value for the three siRNAs was calculated to show the 

general effect. Finally, the mean value for 1p-deleted and 1p non-deleted cell lines was 

determined and the distance between the cell line groups was calculated by subtracting 

these values.  

The experimental part of the CYCLOPS screen was done in cooperation with the 

Advanced Biological Screening Facility (BioQuant, Heidelberg); data analysis was 

performed by Manuel Gunkel. The genome-wide siRNA screen in IMR5/75 was done by 

Sina Gogolin, data analysis by Chunxuan Shao. 

2.2.1.6 Senescence β-galactosidase assay 

In contrast to quiescent or immortal cells, senescent cells overexpress lysosomal β-

galactosidase required for the hydrolysis of β-galactosides to monosaccharides. The 
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cleavage of the chromogenic substrate X-Gal results in intracellular accumulation of a 

blue-dyed precipitate in senescent cells. In order to investigate if cells turn senescent after 

siRNA treatment the “Senescence β-Galactosidase Staining Kit” from Cell Signaling was 

used and all experiments were done following the company´s protocol. To amount of blue 

dye was assessed microscopically. 

2.2.2 Nucleic acids manipulation 

2.2.2.1 Whole genome sequencing 

Whole genome sequencing was performed by Elisa Wecht and Moritz Gartlgruber, data 

analysis was done by Chunxuan Shao according to a published protocol (Peifer, et al. 

2015). 

2.2.2.2 Comparative genomic hybridization arrays 

Comparative genomic hybridization (CGH) arrays have been performed by Elisa Wecht 

according to the NimbleGen Array User´s Guide (Roche, Madison USA) 

2.2.2.3 Total RNA extraction 

Cellular RNA was isolated with the “miRNeasy” kit from Qiagen using the QIAzol lysis 

reagent. QIAzol is a phenol/guanidine-based solution which dissolves cellular 

components. After addition of chloroform, the solution separates into an organic and an 

aqueous phase. The later one contains the RNA which can be easily recovered by 

precipitation. 

First, the cells were harvested by versenization and centrifuged (800 RPM; 5 min). The 

pellet was dissolved in 700 µl QIAzol and 140 µl chloroform were added. The reaction 

tube was shaken vigorously for 15 s and then allowed to rest for 3 min an RT. After 

centrifugation (10,000 RPM; 4 °C; 15 min) the upper aqueous phase containing the RNA 

was transferred to a new reaction tube. One volume of 70% ethanol was added and mixed 

thoroughly by vortexing. The mixture was then pipetted in a RNaesy Mini spin column 

placed in a collection tube and centrifuged (10,000 RPM; 15 s; RT). The flow-through was 

discarded and the pellet in the spin column was washed with 350 µl RWT buffer and 

centrifuged again (10,000 RPM; 15 s; RT). To digest remaining DNA, 80 µl of DNase I 

solution (10 µl DNase I stock, 70 µl RDD buffer) was pipetted on the spin column and 

incubated for 15 min at RT. Again, the pellet in the spin column was washed with 350 µl 

RWT, centrifuged (10,000 RPM; 15 s; RT) and the flow-through discarded followed by an 

additional washing and centrifugation step with 500 µl RPE. The spin column was then 
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placed in a new collection tube and centrifuged for 1 min at full speed. To elute the RNA 

from the membrane the spin column was placed in a new reaction tube and 30-50 µl of 

RNase-free water were added and again centrifuged (10,000 RPM; 15 s; RT). The RNA 

amount in the flow-through was estimated in a spectrometer, reading the absorbance at 

260 nm.  

2.2.2.4 RNA sequencing 

Total RNA was isolated as described in 2.2.2.3 and afterwards depleted from ribosomal 

RNA using the Ribo-Zero rRNA removal Kit according to the manufacture´s protocol. The 

NEBNext Ultra Directional RNA Library Prep Kit was used to prepare RNA libraries 

following the manufacture´s protocol including the following changes: the RNA 

fragmentation has been carried out for 20 min at 94 °C; the first strand cDNA synthesis 

reaction was expanded to 50 min at 42 °C. The adaptor-ligated DNA was purified and 

size-selected on a DynaMagTM-2 magnetic device (Thermo Fisher Scientific, Waltham, 

USA) with AMPure XP Beads (Beckman Coulter, Brea, USA) according to the 

manufacture´s protocol using first 40 µl, then 20 µl of bead volume. To analyze the quality, 

quantity and size of the RNA library we used a DNA High Sensitivity DNA chip on a 2100 

Bioanalyzer. The libraries were sequenced on an Illumina sequencing platform (50 bases 

single-end, German Cancer Research Center core facility).  

The data analysis of IMR-32, TR14 and IMR32_shRNA clones was performed by Umut 

Toprak as describe briefly. All genes below 1 count per million (CPM) were removed and 

the results were normalized with the TMM method (Robinson and Oshlack 2010). Then, 

the CPM from the normalized values was calculated and log2(x+1) transformation applied. 

These values were grouped into controls or intervention samples and the fold-change was 

calculated (mean and trimean) followed by a log2 transformation. The rank-based 

Kruskal-Walis test (Wallis 1952) was used to calculate statistical significances under no 

assumption of the underlying distribution.  

RNA sequencing of neuroblastoma primary tumors and cell lines was done by Elisa 

Wecht, data analysis was performed by Chunxuan Shao and Naveed Ishaque using TPM 

normalization and log2 transformation. Statistical significance was calculated with t-test. 

2.2.2.5 Quantitative RT-PCR 

To estimate the expression of genes in neuroblastoma cell lines, real time PCR (RT-PCR) 

was performed. First, the total RNA was isolated from cells and reversely transcribed to 

cDNA using the “First Strand cDNA synthesis” kit (Thermo Fisher Scientific, Waltham, 
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USA ) Scientific according to the company´s protocol. To avoid degradation of enzymes or 

the RNA, all steps were performed on ice. One standard reaction contained:  

250 ng  RNA 

1 µl  Random Hexamer Primer [100 µM] 

Fill up to 11 µl with H20dd 

 

To the RNA/ oligo mixture, the following master mixture was added: 

 

4 µl 5x Reaction Buffer 

1 µl RiboLock RNase Inhibitor (20 U/µl) 

2 µl dNTP Mix [10 mM] 

2 µl M-MuLV Reverse Transcriptase (20 U/µl) 

 

The reaction was carried out by the following conditions: 

 

25 °C – 5 min 

37 °C – 60 min 

5 min – 70 °C 

 

The samples were diluted and stored at -20 °C for maximum one week.  

To perform the RT-PCR the “Platinum SYBR Green qPCR SuperMix-UDG” from 

Invitrogen was used together with “QuantiTect” Primers from Qiagen. To detect the 

housekeeping genes SDHA and HPRT1 the following components were mixed: 

13 µl Platinum SYBR Green PCR SuperMix UDG (2x) 

0.75 µl forward primer [10 µM] 

0.75 µl reverse primer [10 µM] 

2.5 µl  template cDNA 

8 µl  H2Odd 

 

For all other genes the qPCR reaction mix is shown below: 

 

13 µl  Platinum SYBR Green PCR SuperMix UDG (2x) 

2.5 µl 10x QuantiTect Primer  

2.5 µl  template cDNA 

7 µl  H2Odd 
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The reaction was carried out in a LightCycler 480 from Roche with the following 

conditions: 

50 °C – 20 s  

95 °C – 2 min 

95 °C – 15 s 

60 °C – 30 s 

A melting curve was assessed at 97 °C. The results for all genes were normalized by 

HRPT1 and SDHA housekeeping genes qPCR results. 

2.2.3 Molecular Cloning 

Standard methods like separation of DNA fragments in agarose gel, enzymatic DNA 

manipulations or culturing and cryo-conservation of E.coli were conducted according to 

Sambrook J, Russell D (2002) and will not be emphasized here. (Sambrook J 2002) 

2.2.3.1 Cloning of EphB2 cDNA into a Gateway® eukaryotic expression plasmid 

The Entry clone pENTRTM223 containing the EphB2 open reading frame (ORF) was 

obtained from the Genomics & Proteomics Core Facilities at the DKFZ. The EphB2 ORF 

was cloned into a Gateway® eukaryotic expression vector pTRex™-DEST30 by using the 

Gateway® LR system. The recombination reaction was performed as followed: 

 

300 ng pTRex™-DEST30 vector 

300 ng pENTRTM223-EphB2 

4 µl 5x LR ClonaseTM Reaction Buffer 

To 16 µl TE Buffer, pH 8.0 

4 µl LR ClonaseTM 

 

The reaction mix was then incubated for one hour at 25 °C and afterwards 2 µl of 

Proteinase K were added and incubated for 10 min at 37 °C. 

Then, 3 µl of the recombination reaction were transformed in E.Coli OneShot Top10 

(2.2.3.3). 

2.2.3.2 Cloning of EphB2 shRNAs into the pTER+ plasmid 

First, the pTER+ plasmid was linearized for 3.5 hs at 37 °C by using the following mix: 

 

 

x 50  
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3.5 µg pTER+ plasmid 

4.5 µg Bgl II restriction enzyme 

4.5 g Hind III restriction enzyme 

10 µl Buffer R+ 

77.5 µl H20 

 

To inactivate the enzymes the mixture war incubated for 20 min at 60 °C. The resulting 

fractions of the solution were then separated on a 1% agarose gel and the vector was 

extracted from the corresponding band with the Qiagen “QIAquick Gel Extraction Kit”.  

To anneal the oligonucleotides encoding for the forward and reverse shRNA 3 µg of each 

were mixed in 5 µl annealing buffer and 43 µl H2O. The reaction was carried out on a PCR 

cycler for 3 min at 95 °C and then for one hour at 37 °C.  

The cloning reaction of the linearized vector and the annealed oligonucleotides was 

assembled over night at 16 °C. Following compounds were mixed: 

 

1 µl annealed oligonucleotides 

250 ng linearized pTER+ 

1 µl ligation buffer (10x) 

4.5 µl H2O. 

2.2.3.3 Transformation of competent E.coli cells 

Chemically competent E.coli were obtained from Invitrogen. After thawing, 25 µl of the 

bacteria solution was mixed with 2.5 µl DNA (20 – 50 µg DNA in H2O) and incubated for 

30 min on ice. The bacteria were then subjected to heat shock (30 s; 42 °C) and returned 

on ice for 3 min. To the suspension 100 µl of SOC medium was added and placed on a 

shaker with mild agitation for 30 min at 37 °C. LB plates containing appropriate antibiotics 

were inoculated with the transfected bacteria and incubated overnight at 37 °C. The next 

day, colonies were selected and picked with a sterile inoculation loop and transferred to 

5 ml (mini culture) or 300 ml (maxi culture) LB medium supplemented with antibiotics and 

grew overnight in an incubation shaker (160 rpm; 37 °C).  

2.2.3.4 Isolation and purification of plasmid DNA from E.coli 

For plasmid isolation from E.coli we used the QIAprep kits, according to the supplier´s 

protocols. Depending on the estimated DNA yield the Mini or Maxi kit was chosen. The 

plasmid DNA used to transfect neuroblastoma cell cultures was prepared with the “Endo-

free DNA isolation” kit from Qiagen to remove bacterial oligosaccharides and glycans. 
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DNA concentration and purity were assessed by reading the absorbance at 260 and 

280 nm. 

2.2.3.5 Isolation and purification of BAC DNA from E.coli 

E.coli transfected with BAC DNA were incubated overnight at 37 °C in 300 ml LB medium 

with antibiotics. The next day the culture was centrifuged (5,000 RPM; 4 °C; 15 min), the 

supernatant discarded and the pellet resuspended in 7 ml lysis buffer. The bacterial 

suspension was chilled for 20 min on ice, then 12 ml of 0.2 M NaOH/ 1% SDS were added 

and again placed on ice for 10 min. Afterwards, 7.5 ml of 3 M sodium acetate (pH 4.6) 

were added followed by another 10 min on ice. The lysate was centrifuged (18,000 RPM; 

20 min; 4 °C) and the supernatant was transferred into a new reaction tube. For RNA 

digestion RNase A (80 µl) was added and incubated for 1h at 37 °C. The solution was 

mixed with one volume of phenol/ chloroform/ isoamylalcohol (25:24:1) and centrifuged 

(3,500 RPM; 10 min). The upper aqueous phase contained the DNA and was therefore 

transferred into a new reaction tube and again mixed with phenol/ chloroform/ 

isoamylalcohol (25:24:1) and centrifuged. For DNA precipitations 2 volumes of 100% 

ethanol were added and kept for 1h at -20 °C. After centrifugation (8,500 RPM; 5 min; RT) 

the DNA pellet was dissolved in 1.68 ml water. For another precipitation process 350 µl 

NaCl and 2 ml of 13% polyethylengycol were added and chilled 60 min on ice. The 

mixture was centrifuged (8,500 RPM; 15 min; RT) and the precipitate was washed with 

70% ethanol, air-dried and dissolved in 1 ml Aqua dest.  

2.2.4 Protein methods 

2.2.4.1 Separation of proteins by SDS-PAGE 

SDS Page (sodium dodecyl sulfate polyacrylamide gelelectrophoresis) followed by 

western blot analysis is a method to separate and detect expressed proteins within cell 

cultures. The presence of SDS denatures proteins and gives a negative charge which is in 

proportion to their mass. In an electric field the proteins move to the cathode with a 

running speed proportional to size and charge and get separated from each other.  

 

Protein extraction and sample preparation 

For protein sample preparation all cultured cells were harvested (floating cells and 

adherent by versenization), pelleted, washed with 1x PBS and resuspended in protein 

extraction buffer. After centrifugation the pellet consisting of cellular debris was discarded. 

The total amount of proteins in the supernatant was determined by the method of Bradford 
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(1976) using the “Protein Assay kit” from BioRad. A protein amount of 40 µg was 

supplemented with 4x Laemmli Sample buffer and incubated for 5 min at 95 °C.  

 

Protein separation  

The samples were loaded on a SDS gel for size separation which was prepared in prior. 

Each gel contained two different layers, first the stacking gel, second the resolving gel. 

The stacking layer is needed to bring all proteins in one sample to the same height level 

by concentrating. The resolving gel separates the proteins by their size and a PAA 

concentration of 10% was used for all experiments. The resolving gel solution was filled in 

between of two glass plates and covered with isopropanol to remove bubbles. The 

polymerization process was finished after 30 min and the isopropanol removed. Next, the 

resolving gel solution was added on top and sample preparation combs were inserted. 

After 30 min the combs were removed and the glass sandwiches were assembled in a 

Mini-Protean 3 chamber from BioRad and filled up with Tris-Glycine buffer (by Laemmli). 

The samples were loaded into the gel slots and an electric potential of 100 V was applied 

for 2 h. 

 

Western blotting and protein detection  

After the separation via electrophoresis the proteins need to be blotted on a nitrocellulose 

membrane. The gel was released from the glass plates and transferred on two Whatman 

papers in a BioRad Mini Gel Holder Cassette and covered with a nitrocellulose membrane 

followed by two additional Whatman papers. After assembling of the cassette in the Mini-

Protean 3 chamber the tank was filled up with transfer buffer and an electric potential of 

100 V was applied for 2 h. After the blotting process the membranes were incubated on a 

shaker in blocking buffer for 1 h at RT and covered with primary antibody dilutions for 1 h 

at RT or 4 °C over night. The membranes were washed two times with PBS-T for 10 min 

and incubated for 1h at RT with 1:1000 secondary antibody dilutions followed by another 

washing step. The protein bands were detected using the BM Chemiluminescence kit.  

2.2.4.2 Enzyme-linked immunosorbent assay (ELISA) 

Extracellular quantitative protein measurements were assessed via enzyme-linked 

immunosorbent assay (ELISA). For this, the Human ELISA kit from Abcam was used. All 

steps were conducted according the manufacture´s protocol. 
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2.2.4.3 Immunocytochemistry 

Morphologic changes of cells after gene knock-down can be detected by using fluorescent 

markers against proteins of the cytoskeleton (here TUBB3). For this, the cells were 

seeded and treated in 8 well chamber slides with removable chamber walls. After 30 min 

the medium was substituted with 11% glutaraldehyde fixation solution and the cells were 

permeabilized with 1x PBS + 0.1% Tween 20 for 15 min. To block unspecific binding sites 

the samples were incubated for 1h with 1% goat serum in PBS. Then, the primary 

antibody was applied for 1h in a 1:100 dilution followed by a 1:200 FITC-labeled 

secondary antibody dilution for 1h. The cells were finally treated with DAPI solution 

(1:10,000 in PBS) for nuclei staining. After each step the samples were washed twice with 

1x PBS. Finally, the chamber walls were removed, the slides were mounted with antifade 

solution and covered by a slip. For protein visualization, a fluorescent microscope was 

used with appropriate filters. 

2.2.5 Fluorescence in situ hybridization (FISH) 

Fluorescence in situ hybridization (FISH) is a technique to identify the number and the 

location of specific regions of a chromosome using sequence complementary fluorescent 

probes. We used six different probes mapping in equal distances on the chromosome arm 

1p to determine the copy number status, location and length in neuroblastoma cell lines. 

 

Fluorescent labeling of DNA probes  

Sequence complementary DNA fragments were assessed from transfected E.coli with 

BAC DNA (see chapter 2.2.3.5). The DNA probes were enzymatically labeled with 

fluorescent dyes by nick translation. We used six different dyes linked to dUTP (FITC, 

DEAC, Cy3, Cy3.5, Cy5, Cy5.5). To avoid light-dependent degradation all steps were 

performed, as far as possible, in dark conditions. A standard nick translation reaction 

contains: 

 

3 µg  BAC DNA 

10 µl  β-Mercaptoethanol [0.1 M] 

1 µl  nick translation buffer  

3 µl  DNase I (0.03 U/µl) 

2 µl DNA-Polymerase I 

10 µl dNTP-mix 

Fill up to 100 µl with H20dd 



 

Material and Methods 
 

 
39 

 

 

After 1 h of incubation at 15 °C 5 µl Cot1 DNA and 2.5 µl salmon sperm DNA were added 

to block repeats. To precipitate the DNA a 2.5x volume of ethanol (20 min; -80 °C) was 

added and the probes were centrifuged (13,000 RPM; 15 min). The supernatant was 

discarded and the pellet was resuspended in 1 ml of 70% ethanol and again centrifuged 

(13,000 RPM; 15 min). Deionized formamide (50 µl; 65 °C) was used to dissolve the pellet 

and incubated for 5 min at 65 °C followed by another centrifugation step (13,000 RPM; 

15 min). The supernatant was transferred to a new reaction tube and 50 µl of pre-warmed 

(75 °C) hybridization buffer was added. Finally, the probe mix was incubated for 10 min at 

80 °C, cooled down on ice for 5 min and again incubated for 20 min at 37 °C. For long-

term storage, the probes were kept at -20 °C.  

 

Preparation of metaphases 

In order to increase the amount of cells with metaphase chromosomes cell cultures were 

treated with 10 µg/ml colcemid (2 h; 37 °C) to arrest cell division. The cells were harvested 

by versenization and centrifuged for 5 min at 800 RPM. The supernatant was discarded 

and 3 ml of the hypotonic dilution were added dropwise to the pellet and finally filled up to 

12 ml and incubated for 30 min at RT. Then, 2 ml of fixative solution were added followed 

by a centrifugation step (800 RPM; 5 min). The supernatant was discarded and the pellet 

dissolved in 10 ml fixative solution. After 10 min incubation at RT the suspension was 

centrifuged (800 RPM; 5 min) and the pellet again dissolved in 10 ml fixative solution and 

incubated for 10 min at RT. The solution was centrifuged (800 RPM; 5 min) and the 

supernatant was substituted with 5 ml fixative solution and stored at -20 °C.  

 

Preparation of slides and in situ hybridization of chromosomes 

Glass slides were washed, rinsed with Aqua dest. and dried at RT. Two to three drops of 

a cell suspension were pipetted on the slide and immediately flamed by a lighter. The heat 

bursts cell and nuclei membranes and leads to a release of chromosomes. The 

chromosomes were dried over night at 60 °C or two days at RT. To remove endogenous 

RNA which may influence the fluorescent signals 1 ml of 2x SSC + 20 µl RNAse A were 

added to each sample, covered with a cover slip and incubated for 1 h at 37 °C. The 

slides were rinsed three times for 5 min in 2x SSC at 42 °C. Afterwards, proteins were 

digested by 50 µg/ml pepsin in 0.01 M HCL (10 min; 42 °C) followed by a washing step in 

1x PBS (5 min; 42 °C) and in 1x PBS + MgCl2 (5 min; 42 °C). The chromosomes were 

fixated in 1% formaldehyde + MgCl2 (20 min; RT) and washed in 2x SSC (5 min; 42 °C). 

To dehydrate the chromosomes the slides were incubated 5 min in an ethanol series 



 

Material and Methods 
 

 
40 

 

(70%; 90% and 100%; RT) and air dried. Then, 70% formamide was used to denature the 

chromosomes (1.5 min; 71 °C) followed by another incubation series in ethanol (70%; 

90% and 100%; 5 min; -20 °C). After air-drying, previously prepared fluorescent-labeled 

DNA probes were spotted on the samples and carefully closed with cover slips for 

overnight hybridization at 37 °C in a humidified chamber. To prevent drying-out the edges 

of the cover slip were sealed with rubber cement (Fixogum). The cover slips were 

removed and the slides washed in 2x SSC (5 min; 42 °C). The chromosomes were dyed 

with a DAPI solution (0.05 mg/ml; 5 min; RT) and rinsed with Aqua dest. Finally, a drop of 

“Vectashield Antifade Mounting Medium” was applied on the slides to avoid light-mediated 

degradation of the fluorescent dyes and closed with a cover slip. The analysis was done 

with a fluorescent microscope using appropriate filters. 

2.2.6  Fluorescence-activated cell sorting (FACS) 

2.2.6.1 Cell cycle analysis 

Gene knock-down and drug treatment can enhance or inhibit cell cycle progression. As 

the relative amount of DNA is in G2/M phase twice as high as in G0/G1 we performed the 

cell cycle analysis by determination of the DNA content. For this, the DNA was stained 

with fluorescent dye (DAPI) and the amount was then estimated by fluorescence-activated 

cell sorting (FACS).  

 

Sample preparation 

Cells were harvested by versenization and centrifuged (800 RPM; 10 min). The excess 

medium was discarded leaving 500 µl in the tube to resuspend the pelleted cells. Then, 

1 ml of citric acid solution was added to the cell suspension and inverted gently. All 

samples were stored at 4 °C for at least 24 h and maximum 1 week. Before measurement, 

the tube were centrifuged (800 RPM; 10 min), the supernatant was discarded and the 

pellets were up taken in 500 µl PBS. The cells were stained with 0.5 µg/ ml DAPI and 

incubated 30 min before measurement in the dark.  

 

Sample acquisition 

The cellular suspensions were analyzed with the MACSQuant VYB flow cytometer with 

the following instrument settings: 
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 Tab. 2.8: Basic flow cytometer instrument settings. 

Detector (channel) Voltage Acquisition mode 

Forward scatter (FSC) 245 linear 

Side scatter(SSC) 317 linear 

Fluorescent signal (V1) 385 linear 

 

The FSC and SSC gains were adjusted to place the cell population in the middle of the 

dot plot and in each sample the voltage and gain of V1 were adjusted to run the G1 peak 

on 103. In each experiment 20,000 events were measured. Data was analyzed with the 

FlowJo software cell cycle platform using the Watson pragmatic algorithm.  

 

Cell death analysis 

To investigate if gene knock-down induces cell death, we measured the DNA content via 

PI staining. Whereas dead cells accumulate PI due to the disruption of membranes, 

healthy cells show no staining as the dye cannot enter through intact membranes. 

 

Sample preparation 

Cells were harvested 96 h after treatment and centrifuged (1000 RPM; 5 min). The pellets 

were washed with 10 ml PBS and centrifuged again. The pellets were then resuspended 

in 1 ml PBS and 200 µl were transferred to FACS tubes. Directly before measurement 2 µl 

PI were added to the cell suspension and 20,000 events were acquired. 

 

Sample acquisition 

The samples were analyzed with FCS and SSC as described in 2.2.6.1. The fluorescent 

signal (channel B2) was acquired at 356 V.  
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3. Results 

3.1 Initial indications of CYCLOPS genes in neuroblastoma on chromosome arm 

1p  

3.1.1 The expression of 1p-encoded genes is lower in 1p-deleted tumors than in 

1p non-deleted 

The concept of CYCLOPS is based on the assumption that the copy number of a gene 

correlates with its expression level. This means that cells with a hemizygously-deleted 

gene show a reduced expression compared to non-deleted cells. In this study, we focused 

on chromosome arm 1p as it is deleted in ~35% of patients (Bown 2001). There are 

mainly two types of deletions occurring, type 1 affects the first third of the distal end, the 

second includes almost the whole chromosome arm (Fig. 3.1 A). To assess the 

expression level in dependency to the copy number status, we analyzed an RNA 

sequencing data set from 573 primary tumors including 145 cases showing a type 1 or 

type 2 deletion. The expression level of genes in 1p-deleted tumors was set in contrast to 

the expression level in 1p normal tumors. The results show that the expression ratio of 

genes in hemizygously-deleted cases is lower than in 1p non-deleted tumors indicating 

that potential CYCLOPS may be localized on chromosome arm 1p (Fig. 3.1 B).  

Common 1p deletions: 

type 1 

type 2 NB tumors 1p
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Fig. 3.1: The expression ratio of genes located on 1p depends on their copy number.  

Neuroblastoma tumors show two types of deletions, type 1 affects one third of the distal end of 

chromosome 1p, type 2 includes almost the whole chromosome arm (A). The expression of genes on 

1p in hemizygously-deleted tumors is lower compared to 1p non-deleted tumors (B). 
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3.1.2 Potential CYCLOPS genes preferentially map on chromosome arm 1p 

To investigate if chromosome arm 1p has cell essential genes we analyzed data from an 

initial genome-wide siRNA screen in the neuroblastoma cell line IMR-5/75 addressing 

2934 druggable genes. A hit was defined as a reduction of the mean cell number of >40% 

after knock-down for at least two out of three siRNAs. The results showed a hit to non-hit 

ratio of 34.2% on 1p, whereas this ratio of the remaining chromosomes is 27.7%. This 

difference is significant indicating that genes whose knock-down induces cell death are 

significantly enriched in chromosome arm 1p (Tab. 3.1).  

 

Tab. 3.1: Genome wide analysis of hit to non-hit ratio in IMR-5/75 cells. 

 1p All chromosomes (1p excluded) 

Hits 113 2821 

Non-hits 217 7001 

Ratio of hits 34.2% 27.7% 

 

 

 

3.2 Characterization of the 1p copy number status in neuroblastoma cell lines 

For this study 1p-deleted and 1p normal cell lines were selected. To assess if the cells 

have a 1p deletion and to determine the exact breakpoint whole genome sequencing 

(WGS) was performed in 34 neuroblastoma cell lines. The absolute copy number was 

estimated by fluorescence in situ hybridization (FISH). 

3.2.1 Whole genome sequencing revealed the 1p status in neuroblastoma cell 

lines 

We analyzed whole genome sequencing data from 34 neuroblastoma cell lines to 

characterize the copy number status of chromosome arm 1p (Fig. 3.2). This revealed that 

one half of the cell lines had a deletion of 1p and showed the exact breakpoints. However, 

the sequencing results do not distinguish between diploid and tetraploid conditions. For 

instance, a tetraploid cell with two deleted and two non-deleted 1p chromosomes (e.g. 

SIMA, GI-ME-N) has the same copy number ratio as a diploid cell line with one deleted 

and one non-deleted chromosome arm 1p (e.g. LAN-5, NBS-124). Also more complex 

rearrangements as translocations cannot be seen. 

* 
p = 0.034 
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3.2.2  FISH analysis revealed the absolute amount of 1p chromosome arms in 

neuroblastoma cell lines  

To validate the WGS results, estimate the total copy number and identify translocations 

and rearrangements of chromosome arm 1p, we analyzed 35 neuroblastoma cell lines 

with FISH analysis. For this, we used six color probes mapping on predefined regions on 

1p (Fig. 3.3 A, Tab. 3.2). An example of a non-deleted, non-translocated and non-

rearranged chromosome arm 1p is shown in SH-EP cells (Fig. 3.3 B).  

We identified five cell lines with normal 1p status which have been selected for this study: 

LS, SH-SY5Y, SK-N-AS, SK-N-FI, TR14 (Fig. 3.4). All cell lines showed two 1p 

chromosomes without gain, loss or rearrangements except of TR14 which has a gain of 

the proximal end shown by three blue probes.  

The selected 1p-deleted cell lines are CHP-126, CBL.Ga, IMR-32, NB69 and SK-N-BE(2), 

the rearrangements were here more complex but the distal end including 1p36 was 

detected only once per cell (Fig. 3.5). All other tested cell lines showed more complicated 

1p modifications or were difficult to handle in cell culture and have not been selected for 

this study (Fig. S 1, Tab. 3.3). 

  

Fig. 3.2: Whole genome sequencing in neuroblastoma cell lines. 

Whole genome sequencing in 34 neuroblastoma cell lines revealed the status of chromosome arm 

1p. Blue: loss, red: gain. 
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Tab. 3.2: Positions and colors of FISH probes.  

Dye Color Position (mb) Band 

Cy3 Red 
1.89 – 2.02 1p36.33 

FITC Green 
25.03 – 25.21 1p36.11 

Cy5 Yellow 
53.12 – 53.28 1p32.3 

Cy3.5 Pink 
77.20 – 77.33 1p.31.1 

DEAC Violet 
97.50 – 97.70 1p21.3 

Cy5.5 Blue 119.77 – 119.92 1p12 

 

  

Fig. 3.3: FISH probes for chromosome arm 1p.  

Six different probes mapping on pre-defined positions of chromosome arm 1p (A). Example of a 

structurally unchanged chromosome arm 1p in SH-EP cells (B). 
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LS

SH-SY5Y

SK-N-AS

SK-N-FI

TR14

Fig. 3.4: FISH analysis in 1p non-deleted cell lines.  

FISH analysis reveals that LS, SH-SY5Y, SK-N-AS, SK-N-FI, TR14 have normal 1p status for the 

distal end of the chromosome arm, blue: DAPI.  
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CLB.GA

IMR-32

NB69

SK-N-BE(2)

CHP-126

Fig. 3.5: FISH analysis in 1p-deleted cell lines.  

FISH analysis reveals that CHP-126, CLB.Ga, IMR-32, NB69 and SK-N-BE(2) have a deletion on 

the distal end of chromosome arm 1p, blue: DAPI.  
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Tab. 3.3: Copy number at position of individual FISH probes in neuroblastoma cell lines. 

  

Cell line 1p36.33 1p36.11 1p32.3 1p31.1 1p21.3 1p12 

CHLA-90 1 2 2 3 3 3 

CHLA-20 2 2 2 1 1 1 

GI-M-EN 2 2 4 4 4 4 

HD-N-16 3 2 2 2 2 2 

CHP-134 1 3 2 2 1 2 

HD-N-33 4 4 4 4 4 4 

IMR-5/75 2 3 4 3 3 3 

CHP-126 1 1 2 2 2 2 

CLB.Ga 1 1 2 2 2 2 

IMR-32 1 1 3 3 3 3 

Kelly 3 2 2 2 2 3 

LAN-1 3 3 3 3 3 5 

LAN-2 5 5 5 5 7 7 

LAN-5 1 1 2 2 2 2 

LAN-6 1 2 2 2 2 2 

LS 2 2 2 2 2 2 

MHH-NB-11 3 3 6 6 6 6 

NB69 1 1 2 2 1 3 

NBL-S 2 2 2 2 2 2 

NBS-124 1 1 1 2 2 2 

NGP 2 2 2 2 2 2 

NMB 1 3 3 3 3 3 

SH-EP 2 2 2 2 2 2 

SH-SY5Y 2 2 2 2 2 2 

SIMA 2 2 4 4 4 4 

SJNB-12 3 3 3 3 3 3 

SK-N-AS 2 2 2 2 2 2 

SK-N-BE(2) 1 1 2 2 2 2 

SK-N-BE(2)c 4 2 2 2 4 4 

SK-N-DZ 3 3 3 3 3 5 

SK-N-FI 2 2 2 2 2 2 

SK-N-SH 2 2 2 2 2 2 

SMS-KCNR 1 1 2 2 2 2 

TR14 2 2 2 2 2 3 

Vi856 2 2 2 2 5 5 
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3.2.3 CGH arrays reveal an interstitial deletion in SK-N-AS 

FISH analysis of the cell line SK-N-AS suggested two unaltered chromosome arms 1p 

(3.2.2). However, the WGS data identified a small deletion at the distal end (3.2.1). To 

elucidate this discrepancy, we included CGH array data to further characterize the 1p 

status and revealed an interstitial deletion in 1,859,899-11,034,099 (Fig. 3.6)  

3.3 Candidate gene identification 

3.3.1 siRNA screen for CYCLOPS genes in neuroblastoma cell lines 

To identify CYCLOPS genes on chromosome arm 1p, we performed an siRNA screen. 

We focused on 1p36 as this is the smallest region of overlapping deletion in our cell lines 

and patients and selected 184 druggable genes. Each gene was knocked down with three 

different siRNAs in triplicates in five 1-deleted and five 1p non-deleted cell lines. The cell 

confluency was assessed after 96 hours. After normalization for plate effects (B-scoring) 

and to a non-coding scrambled siRNA as negative control, the mean of the confluency 

replicates was calculated. The three siRNAs were combined by calculating the median of 

all means leading to the confluency score for one gene in one cell line. To assess the 1p 

status-related gene dependency the mean values of all 1p-deleted vs all 1p non-deleted 

cell lines were estimated. A negative confluency score indicated cell death or growth 

arrest after gene knock down which is an indicator for high gene dependency. Genes 

whose knock-down induced cell growth had a positive confluency score. Genes with a 

negative confluency score in 1p-deleted cells (x ≤ -0.15) but little or no impact on 1p non-

deleted cells (-0.2 ≤ x ≤ 0.2) were considered as hits (Fig. 3.7). Finally, the distance 

Fig. 3.6: CGH array of SK-N-AS. 

The CGH array of SK-N-AS revealed a small interstitial deletion at the distal end.  
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between the dependency scores (1pnorm – 1pdel) was calculated. The bigger the distance, 

the stronger the effect on 1p-deleted cells while any impact on 1p normal cells was 

excluded by setting the parameters (Tab. 3.4). 

Additionally we noticed that genes that impair viability upon knock-down in both, 1p-

deleted and 1p non-deleted cell lines are mainly involved in cell growth and proliferation or 

are related to neuronal and embryonic development (Tab. S2). As these genes are likely 

to play important roles in neuroblastoma, this finding confirms the reliability of this siRNA 

screen.  

 

Fig. 3.7: CYCLOPS candidate screening results in neuroblastoma cell lines. 

The confluency scores for 1p non-deleted cell lines were blotted over the confluency scores for 1p-

deleted cell lines. Each dot represents one gene. A positive score indicates that siRNA knock-down 

of the gene induced cell growth; a negative score indicates cell death or growth inhibition. Genes 

whose knock-down induces cell death/growth inhibition in 1p-deleted cells (x ≤ -0.15) but has no 

effect on 1p non-deleted cells (-0.2 ≤ x ≤ 0.2) were defined as CYCLOPS genes, therefore, the 

potential candidates map in the red square. All scores are normalized to a non-coding scrambled 

siRNA. 
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Tab. 3.4: Potential CYCLOPS genes sorted by distance. 

Gene 
Confluency  

scores 1p
del

 

Confluency  

scores 1p
norm

 

Distance 

(1pnorm – 1pdel) 

AURKAIP1 -0.76 0.04 0.80 

CALML6 -0.70 0.07 0.77 

CAPZB -0.43 0.17 0.61 

SSU72 -0.65 -0.13 0.52 

AJAP1 -0.51 0.01 0.51 

ICMT -0.54 -0.03 0.51 

ATAD3B -0.65 -0.15 0.50 

RSC1A1 -0.41 0.02 0.43 

USP48 -0.31 0.12 0.43 

AKR7A2 -0.30 0.11 0.41 

PRDM16 -0.29 0.10 0.39 

CLCNKA -0.57 -0.18 0.38 

MMEL1 -0.45 -0.07 0.38 

PEX14 -0.51 -0.13 0.38 

NPPB -0.29 0.09 0.37 

LIN28A -0.16 0.12 0.28 

HSPG2 -0.23 0.05 0.28 

PLOD1 -0.37 -0.09 0.27 

ZBTB40 -0.44 -0.18 0.26 

FBXO6 -0.31 -0.06 0.25 

DNAJC11 -0.15 0.09 0.24 

HSPB7 -0.25 -0.01 0.24 

TP73 -0.39 -0.15 0.24 

LDLRAD2 -0.38 -0.14 0.23 

DHRS3 -0.26 -0.03 0.23 

SDF4 -0.21 0.01 0.22 

PLEKHM2 -0.32 -0.13 0.19 

CDEL5 -0.36 -0.18 0.18 

FBXO44 -0.23 -0.05 0.17 

NECAP2 -0.30 -0.14 0.16 

EPHA8 -0.15 0.00 0.15 

TTLL10 -0.31 -0.20 0.11 

EPHB2 -0.28 -0.18 0.10 

EPHA2 -0.19 -0.15 0.04 

KIF1B -0.21 -0.19 0.03 
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3.3.2 Selection of candidates by gene function and expression ratio in 

neuroblastoma patients and cell lines 

In the previously mentioned siRNA screen (3.3.1) genes whose siRNA-mediated knock-

down reduced confluency in 1p deleted-cells but had no impact on 1p non-deleted cells 

were considered hits. Candidate gene prioritization was based on the following criteria: 

 

 Confluency scores from the siRNA screen: 

1p-deleted cells: x ≤ -0.15 

1p non-deleted cells: -0.2 ≤ x ≤ 0.2 

 Gene expression in neuroblastoma patients: 

1pdel < 1pnorm 

 Gene expression in neuroblastoma cell lines: 

1pdel < 1pnorm 

 Druggability 

Genes for whom drugs are commercially available were preferred 

3.3.2.1 Expression ratio analysis in neuroblastoma patients 

A major characteristic of a CYCLOPS gene is its lower expression in hemizygously-

deleted vs non-deleted tumors. For candidate prioritization, we analyzed RNA sequencing 

data of a cohort with 573 patients including 147 cases which show an 1p deletion or 

imbalance. Following the criteria in 3.3.2 three candidates with the best results for gene 

expression (1pdel < 1pnorm) were chosen: SDF4, AURKAIP1 and ICMT. Additionally, we 

noticed that all genes belonging to the family of ephrin receptors which were included in 

the screen (EPHA2, EPHA8, EPHB2) were hits by our definition in 3.3.1, although the 

distance (1pnorm – 1pdel) was not as strong as for other candidates. However, we included 

them for validation as they function as key players in neuronal and embryonal 

development (Kania and Klein 2016; Nievergall, et al. 2012). EPHA2 and EPHB2 were 

significantly lower expressed in 1p-deleted/-imbalanced patients than in 1p non-deleted 

tumors, whereas the expression of EPHA8 was higher in 1p-deleted/-imbalanced tumors 

(Fig. 3.8 B).  
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3.3.2.2  Expression ratio analysis in neuroblastoma cell lines 

To determine the expression ratio of the candidate genes in the selected neuroblastoma 

cell lines (3.2.2) we analyzed an RNA sequencing data set of five 1p-deleted (CLB.Ga, 

CHP-126, IMR-32, SK-N-BE(2), NB69) and five 1p non-deleted cell lines (TR14, LS, SK-

N-AS, SK-N-FI, SH-SY5Y). All selected cell lines are either deleted or non-deleted for all 

genes with exception of SK-N-AS which has an interstitial deletion lacking one copy of 

ICMT (Tab. 3.5).  

The median expression levels of the candidates AURKAIP1, ICMT, SDF4, EPHA2 and 

EPHB2 were lower in hemizygously-deleted than in 1p non-deleted cell lines. This effect 
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Fig. 3.8: Expression level analysis in primary neuroblastoma tumors. 

To assess the expression level of the candidate genes AURKAIP1, ICMT, SDF4 (A) and EPHA2, 

EPHA8, EPHB2 (B) RNA sequencing data of 573 primary neuroblastoma tumors were analyzed; of 

these 147 show a deletion or imbalance of chromosome arm 1p; all results are highly significant.  
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was significant for AURKAIP1, SDF4 and EPHA2. The candidate EPHA8 expression was 

higher in 1p-deleted compared to 1p non-deleted tumors (Fig. 3.9).  

 

Fig. 3.9: Expression level analysis in neuroblastoma cell lines. 

To assess the expression level of the candidate genes AURKAIP1, ICMT, SDF4 (A) and EPHA2, 

EPHA8, EPHB2 (B) RNA sequencing data of five 1p-deleted cell lines (CLB.Ga, CHP-126, IMR-32, 

SK-N-BE(2), NB69) and five 1p non-deleted (TR14, LS, SK-N-AS, SK-N-FI, SH-SY5Y) was 

analyzed and the median expression assessed; SK-N-AS has an interstitial deletion and is 

therefore counted as an 1p-deleted cell line in the ICMT context, n.s. = not significant., * = 

significant (p<0.5).  
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Tab. 3.5: Copy number of the selected candidate genes in ten neuroblastoma cell lines, wt: wild 

type, del: deleted. 

 

  

Gene SDF4 AURKAIP1 ICMT EPHA2 EPHA8 EPHB2 

Position 1,21 mb 1,37 mb 6,22 mb 16,12 mb 22,56 mb 22,71 mb 

CHP-126 del del del del del del 

CLB.Ga del del del del del del 

IMR-32 del del del del del del 

LS wt wt wt wt wt wt 

NB69 del del del del del del 

SH-SY5Y wt wt wt wt wt wt 

SK-N-AS wt wt del wt wt wt 

SK-N-BE(2) del del del del del del 

SK-N-FI wt wt wt wt wt wt 

TR14 wt wt wt wt wt wt 



 

Results 
 

 
56 

 

3.4 Candidate gene validation 

3.4.1 Validation of AURKAIP1, ICMT and SFD4 

3.4.1.1 Knock-down of candidate genes induces loss of viability in 

neuroblastoma cells 

To validate the screening results AURKAIP1, ICMT and SDF4 were knocked down in four 

exemplary cell lines. We used IMR-32 and SK-N-BE(2) as 1p-deleted models and TR14 

and LS as 1p non-deleted. Each gene was addressed with three different siRNAs and 

after 96 hours the viability was measured via CTB assays (Fig. 3.10). The distance 

between the viability values was calculated (1pnorm – 1pdel; Tab. 3.6).  

 

 

 

 

 

 

 

Fig. 3.10: Candidate gene knock-down induces loss of viability.  

The candidate genes AURKAIP1, ICMT and SDF4 were knocked down in two 1p non-deleted cell 

lines (TR14, LS) and two 1p-deleted cell lines (IMR-32, SK-N-BE(2)). For each approach three 

different siRNAs were used. The viability was assessed after 96 h with CTB assay and the mean of 

each result group was calculated. All results are normalized to a non-specific scrambled siRNA. 

The results are triplicates of three independent experiments, + SD.  
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Tab. 3.6: Means and distances of viability after siRNA knock-down of candidate genes. 

Target gene siRNA 
Mean 

1p
norm 

[%] 

Mean 

1p
del 

[%] 

Distance 

(1pnorm – 1pdel
) 

  #1 106.3 68.4 37.9 

AURKAIP1 #2 85.5 63.8 21.7 

  #3 66.6 46.1 20.6 

  #1 88.0 90.1 -2.2 

ICMT #2 107.1 86.6 21.2 

  #3 86.1 69.5 16.5 

  #1 82.9 63.6 19.4 

SDF4 #2 105.6 87.3 18.3 

  #3 102.0 67.9 34.1 

 

 

Following criteria for a positive validation result were set: 

 

 Mean viability 1pnorm >85% 

 Mean viability 1pdel <75% 

 Distance (1pnorm – 1pdel
) >20 

 At least two siRNAs have to fulfill these criteria 

 

AURKAIP1 siRNA #1 and #2 fulfilled these requirements. The 1p-deleted cells were not 

differentially sensitive to ICMT knock-down and only siRNA #3 showed a positive result for 

SDF4 knock-down.  

 

These results were in line with testing the selective ICMT inhibitor cysmethynil. In titration 

experiments cysmethynil was used in a range of 30 – 50 µM in IMR-32 and SK-N-BE(2) 

(1p-deleted) and TR14 and LS (1p non-deleted) cells and the viability was assessed after 

96 hours (Fig. 3.11). TR14 had an IC50 of 39.3, LS 47.7. The values in IMR-32 and SK-N-

BE(2) were 34.1 and 47.6 (Tab. 3.7). The IC50 indicates that the sensitivity to ICMT 

inhibition is not related to the 1p copy number status. 
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Tab. 3.7: IC50 values of cysmethynil treatment in neuroblastoma cell lines. 

 

 

 

 

3.4.1.2 Knock-down of candidate genes reduces cell confluency in 

neuroblastoma cells 

To estimate the effect of candidate genes knock-down on cell confluency, plates used for 

viability assays (3.4.1.1) were Giemsa stained and the cell density was estimated. The 

same criteria as in 3.4.1.1 were used to determine positive results. Although the effect on 

1p-deleted cells was strong in all cases (except ICMT siRNA #2), a considerable effect on 

cell confluency was also seen for two out of three siRNAs after knock-down of all 

candidates (Fig. 3.12, Tab. 3.8). As the concept of CYCLOPS assumes that only 

hemizygously deleted cells are sensitive to further knock-down but non-deleted cells 

remain unharmed, these results revalidate AURKAIP1, ICMT and SDF4 as candidates. 

For this reason no further validation experiments were performed with these genes.  

Cell line 1p Status IC50 

TR14 non-deleted 39.3 

LS non-deleted 47.7 

IMR-32 deleted 34.1 

SK-N-BE(2) deleted 47.6 

Fig. 3.11: Cysmethynil treatment reduces viability in neuroblastoma cell lines. 

To inhibit ICMT selectively, we treated two 1p non-deleted cell lines (TR14, LS) and two 1p-deleted 

cell lines (SK-N-BE(2), IMR-32) with cysmethynil. We used concentrations of 30 – 50 µM and 

assessed the viability after 96 h with CTB assay. Measurements were done in triplicates in three 

independent experiments, + SD. 

 



 

Results 
 

 
59 

 

Tab. 3.8 Means and distances of cell confluency after siRNA knock-down of candidate genes. 

Target gene siRNA 
Mean  

1p
norm 

[%] 

Mean  

1p
del 

[%] 

Distance 

(1pnorm – 1pdel
) 

  #1 86.9 48.4 38.5 

AURKAIP1 #2 56.0 47.9 8.1 

  #3 59.6 32.2 27.3 

  #1 63.9 59.3 4.6 

ICMT #2 103.4 89.6 13.9 

  #3 78.6 45.3 33.3 

  #1 64.9 39.5 25.4 

SDF4 #2 86.0 71.5 14.6 

  #3 80.2 48.7 31.5 
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Fig. 3.12: Candidate gene knock-down reduces cell confluency.  

The candidate genes AURKAIP1, ICMT and SDF4 were knocked down in two 1p non-deleted cell 

lines (TR14, LS) and two 1p-deleted cell lines (IMR-32, SK-N-BE(2)). For each approach three 

different siRNAs were used. The cell confluency was assessed after 96 h with Giemsa staining and 

the mean of each result group was calculated. All results are normalized to a non-specific 

scrambled siRNA. The results are triplicates of three independent experiments, +SD. 
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3.4.2 Validation of ephrin receptor family candidates (EPHA2, EPHA8, EPHB2) 

Although the screening scores for genes of the ephrin receptor family (EPHA2, EPHA8, 

EPHB2) were moderate compared to the other candidates, we selected these genes for 

further validation as they play important roles in neuronal and embryonic development and 

this may have an impact on neuroblastoma biology. Per definition a CYCLOPS gene is 

lower expressed in deleted than in non-deleted tumors. We showed in 3.3.2.1 that this is 

the case for EPHA2 and EPHB2 but not for EPHA8, both in neuroblastoma primary 

tumors and cell lines. For this reason we excluded EPHA8 from the validation pipeline and 

focused on the other two candidates.  

3.4.2.1 Knock-down of EphA2 has little impact on neuroblastoma cell lines 

We knocked down EphA2 with three different siRNAs and assessed viability (Fig. 3.13 A) 

and cell confluency (Fig. 3.13 B) after 96 hours. None of these siRNAs reduced viability in 

1p-deleted or 1p non-deleted cells in line with our criteria in 3.4.1.1. Cell confluency in 1p-

deleted cell was reduced to 72.6% upon siRNA #1 treatment but the effect on 1p non-

deleted cells was also too strong by our definition (82.8%). Despite similar knock-down 

efficiencies of the siRNAs (Fig. 3.14) only siRNA #3 had a promising cell confluency 

reduction in 1p-deleted cells (65.9%) and almost no impact on 1p non-deleted cell lines 

(90.3%, Tab. 3.9 ). As one of the requirements in 3.4.1.1 was that at least two siRNAs 

have to meet the criteria but only siRNA #3 showed positive results here, EPHA2 was 

discarded from the validation pipeline.  

Fig. 3.13: EphA2 knock-down has little impact on neuroblastoma cell lines.  

EphA2 was knocked down in five 1p non-deleted cell lines and five 1p-deleted cell lines. For each 

approach three different siRNAs were used. First, the viability was assessed after 96 h via CTB 

assay (A) and then the cells were stained with Giemsa to detect cell confluency (B). The median of 

each result group was calculated. All results are normalized to a non-specific scrambled siRNA. The 

results are triplicates of three independent experiments, + SD.  
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Fig. 3.14: Confirmation of EphA2 knock-down.  

The knock-down of EphA2 was confirmed by western blot analysis. The results are compared to a 

non-specific scrambled siRNA as negative control (NC). 

Tab. 3.9: Median values of viability and cell confluency in neuroblastoma cell lines after EphA2 

knock-down. 

Assay siRNA 
Median 

1p
norm

 [%] 

Median 

1p
del

 [%] 

Distance 

(1pnorm – 1pdel
) 

Viability 

#1 93.5 79.3 14.2 

#2 93.4 94.2 -0.8 

#3 98.0 100.7 -2.7 

Cell 
confluency 

#1 82.8 72.6 10.2 

#2 86.6 85.6 1.0 

#3 90.3 65.9 24.4 
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3.4.2.2 EphA2 knock-down had no impact on morphology of neuroblastoma cell 

lines  

Here, we assessed cell morphology 96 hours after siRNA knock-down of EphA2. 

However, no morphological changes could be detected visually in neither 1p-deleted nor 

1p non-deleted cells. 

 

  

Fig. 3.15: EphA2 knock-down has no influence on the morphology of 1p non-deleted cells. 

EphA2 was knocked down in five 1p-deleted cell lines with three different siRNAs. After 96 h the 

morphology of cells was assessed microscopically. All results are compared to a non-specific 

scrambled siRNA as negative control (NC), magnification x200. 

TR14

LS

SK-N-AS

SK-N-FI

SH-SY5Y

NC #1 #2 #3

EphA2 siRNA



 

Results 
 

 
63 

 

  

CLB.Ga

CHP-126

IMR-32

SK-N-BE(2)

NB69

NC #1 #2 #3

EphA2 siRNA

Fig. 3.16: EphA2 knock-down has no influence on the morphology of 1p-deleted cells. 

EphA2 was knocked down in five 1p-deleted cell lines with three different siRNAs. After 96 h the 

morphology of cells was assessed microscopically. All results are compared to a non-specific 

scrambled siRNA as negative control (NC), magnification x200. 
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3.4.2.3 Knock-down of EphB2 reduces viability and cell confluency in 

neuroblastoma cell lines  

We knocked down EphB2 with three single siRNAS in five 1p-deleted and five 1p non-

deleted cell lines. After 96 hours, the viability was assessed via CTB assay (Fig. 3.17 A). 

For all three siRNAs, the median of viability was lower in 1p-deleted compared to 1p non-

deleted cells. The same cells were then fixated and stained with Giemsa to determine cell 

confluency. The effect on 1p-deleted cells was stronger whereas the cell confluency of 1p 

normal cells remained unchanged (Fig. 3.17 B, C). In all cases the effect was not 

significant. However, LS showed outlying effects for cell confluency probably indicating 

1p-additional factors determining EphB2-dependency in this cell line. Removing LS from 

the analysis leads to a highly significant result for siRNA #2 and #3 (both p=0.016).  

In the cell confluency assays siRNAs #2 and #3 fulfilled the hit requirements of our 

definition in 3.4.1.1 (Tab. 3.10). We confirmed the knock-down effect by western blot 

analysis and RT-PCR (Fig. 3.18). As the EphB2 knock-down results were promising we 

continued with further experiments to confirm EPHB2 as a CYCLOPS gene. 

 

 

 

 

 

  

Fig. 3.17: EphB2 knock-down induces loss of viability and reduces cell confluency.  

EphB2 was knocked down in five 1p non-deleted cell lines and five 1p-deleted cell lines with three 

different siRNAs. First, the viability was assessed after 96 h via CTB assay (A) and then the cells 

were stained with Giemsa to detect cell confluency (B). The median of each result group was 

calculated. All results are normalized to a non-specific scrambled siRNA. The results are triplicates 

of three independent experiments, + SD. Cell confluency results for TR14 (1p normal) and IMR-32 

cells (1p-deleted) (C). 
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Tab. 3.10: Median values and distances of loss of viability and cell confluency after siRNA knock-

down of EphB2. 

 

 

 

 

 

 

 

 

 

 

  

  

Assay EphB2 
siRNA 

Median 
1p

norm

 [%] 
Median 
1p

del

 [%] 
Distance 

(1pnorm – 1pdel
) 

Viability 
#1 95.3 73.3 22.0 
#2 94.6 81.0 13.6 
#3 84.3 65.0 19.3 

Cell 
confluency 

#1 86.4 77.1 9.3 
#2 93.2 65.7 27.5 
#3 86.2 42.6 43.6 

Fig. 3.18: Confirmation of EphB2 knock-down. 

The knock-down of EphB2 was confirmed by western blot analysis (A) and RT-PCR (B) for the 

exemplary cell lines IMR-32 (1p-deleted) and TR14 (1p non-deleted), RT-PCR was performed in 

triplicates, one exemplary result is shown, +SD. All results are compared to a non-specific scrambled 

siRNA as negative control (NC). 
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Fig. 3.19: EphB2 knock-down induces morphological changes in most 1p non-deleted cell lines. 

EphB2 was knocked down in five 1p non-deleted cell lines with three different siRNAs. After 96 h 

the morphology of cells was assessed microscopically. All results are compared to a non-specific 

scrambled siRNA as negative control (NC), magnification x200. 

3.4.2.4 EphB2 knock-down induces morphological changes in 1p non-deleted 

neuroblastoma cell lines 

As described in 3.4.2.1 knock-down of EphB2 induced loss of viability and reduced cell 

confluency in 1p-deleted cells but had only minimal impact on 1p non-deleted cell lines. 

However, changes in morphology were mainly observed in 1p normal cells (TR14, SK-N-

AS, SK-N-FI and SH-SY5Y, Fig. 3.19). This included extended fiber outgrowth and cell 

shape lengthening. Only LS showed no morphologic changes as well as the 1p-deleted 

cell lines CHP-126, CLB.Ga, IMR-32 and NB69 (Fig. 3.20). An exception is SK-N-BE(2) 

which is also 1p-deleted but started to grow fibers upon EphB2 knock-down. 
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Fig. 3.20: EphB2 knock-down has no influence on morphology on most 1p-deleted cell lines. 

EphB2 was knocked down in five 1p-deleted cell lines with three different siRNAs. After 96 h the 

morphology of cells was assessed microscopically. All results are compared to a non-specific 

scrambled siRNA as negative control (NC), magnification x200. 

3.4.2.5 Characterization of 1p-deleted neuroblastoma cell lines after EphB2 

knock-down 

For all validation experiments of 1p-deleted cell lines, IMR-32 has been selected.  

3.4.2.5.1 EphB2 knock-down induces cell cycle arrest in 1p-deleted cells 

To analyze changes in cell cycle progression, we knocked down EphB2 with three 

different siRNAs and measured the DNA content after 96 hours via FACS. Compared to a 

non-targeting scrambled control the amount of cells in G1/G0 was higher after knock-down, 

which goes along with fewer cells in S and G2 phase (Fig. 3.21) 
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3.4.2.5.2 EphB2 knock-down induces cell death in 1p-deleted cells  

In 3.4.2.1 we showed that knock-down of EphB2 via three different siRNAs led to reduced 

cell confluency in the 1p-deleted cell line IMR-32. Additionally, we noticed that this effect 

was accompanied by an increase of the amount of floating cells in the medium. Here, we 

wanted to determine the concrete number of detached cells and to analyze if these are 

dead or alive. This was addressed by PI staining and FACS analysis. Compared to cells 

treated with a non-targeting scrambled siRNA as negative control the amount of floating 

cells increased after EphB2 knock-down and in all cases the live to dead ratio was exactly 

1:3 ( Fig. 3.22 A). 

To assess if the cells have the ability to regrowth, we reseeded 50,000 floating cells 96 

hours after EphB2 knock-down. After ten days incubation the cells were stained with 

Giemsa and the number of colonies was estimated. Compared to the scrambled siRNA 

negative control, the amount of colonies regrown from floating cells is for all three siRNAs 

lower (Fig. 3.22 B). This indicates that a high proportion of the living EphB2 knock-down 

survivors died in a longer time manner. 

  

Fig. 3.21: EphB2 knock-down induces cell cycle arrest. 

EphB2 was knocked down in IMR-32 (1p-deleted) and the amount of cells in G1/G0, S and G2 phase 

was assessed via FACS after 96 h. All results were compared to a non-targeting siRNA as negative 

control (NC), on exemplary result out of three, +SD. 
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3.4.2.5.3 Cell death of 1p-deleted cells after EphB2 knock-down cannot be 

prevented by cell death inhibitors 

We showed previously that a high proportion 1p-deleted IMR-32 cells died after EphB2 

knock-down (3.4.2.5.2). Here, we aimed at investigating what kind of cell death occurred 

in the cells. We treated the cells with three different siRNAs against EphB2 in presence or 

absence of four different cell death inhibitors or DMSO as control. Before, a killing curve of 

each inhibitor was assessed in titration experiments and the highest possible non-toxic 

concentration was used (data not shown). The following inhibitors were applied: Z-VAD-

FMK (apoptosis inhibitor, 30 µM), Necrostatin-1 (necroptosis inhibitor, 20 µM), Ferrostatin-

1 (ferroptosis inhibitor, 5 µM) and Bafilomycin-A1 (autophagy inhibitor, 2.5 nM). After 96 

hours, the viability of cells was assessed via CTB assay. However, none of these 

inhibitors was able to prevent cells from death after EphB2 knock-down (Fig. 3.23).  

  

Fig. 3.22: EphB2 knock-down increases the number of floating dead cells and reduces the regrowth 

ability. 

EphB2 was knocked down in the 1p-deleted cell line IMR-32 and after 96 h the number of detached 

cells estimated, the amount of living and dead was determined via PI staining and FACS analysis 

(A). Then, 50,000 cells from the same treatment were reseeded and after ten days the number of 

regrown colonies was count. The results are normalized to a non-targeting scramble siRNA as 

negative control (B). One exemplary result, NC: negative control.  
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3.4.2.5.4 RNA sequencing of 1p-deleted cells reveals differentially expressed 

genes after EphB2 knock-down 

In previous experiments we could show that EphB2 knock-down induced cells death in the 

1p-deleted cell line IMR-32 (3.4.2.5.2). Although most cells died after siRNA treatment, a 

small proportion of cells remained alive. Here, we wanted to investigate which processes 

mediate this resistance. For this, we performed RNA sequencing of the cells 96 hours 

after EphB2 knock-down via three different siRNAs and compared the results to untreated 

cells and cells treated with a non-targeting scrambled negative control (both used as 

negative control as differentially expression of genes in scrambled-treated cells was not 

seen). The expression of each condition was estimated and the fold change in each group 

(control, knock-down) was calculated. After EphB2 knock-down 47 genes were 

upregulated (fold change >1.5) whereas only 8 genes were downregulated (fold change <-

1.5, Tab. S3) indicating that the knock-down has a generally repressive effect on gene 

expression. However, GO term analysis did not reveal any results. Among the 

Fig. 3.23: Cell death upon EphB2 knock-down cannot be prevented by cell death inhibitors in 1p-

deleted cells. 

In the 1p-deleted cell line IMR-32 EphB2 was knocked down with three different siRNAs and a non-

targeting scrambled siRNA as negative control (NC) in the presence/absence of Z-VAD-FMK [30 

µM], Necrostatin-1 [20 µM], Ferrostatin-1 [5 µM] and Bafilomycin-A1 [2.5 nM]. Untreated cells and 

DMSO served as negative control. After 96 h, the viability was assessed with CTB assay. One 

exemplary experiment performed in triplicates, + SD. 
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differentially expressed genes after EphB2 knock-down some neuron-related genes were 

detected and the c-MET activator HGF (Tab. 3.11). Validation of exemplary genes (HGF, 

EPHB2, LRRC4B, SRGAP3 and PRAME) has been performed via RT-PCR and 

compared to the RNA sequencing fold changes (Fig. 3.24). 

 

Tab. 3.11: Differentially expressed genes in IMR-32 after EphB2 knock-down. 

Gene 
Fold 
change Further explanation 

HGF 6.19 c-MET activator 

LRRC4B 5.19 synaptic formation 

NAV2-AS2 2.83 inhibits cellular growth and differentiation 

NAV2-AS3 2.56 inhibits cellular growth and differentiation 

GDNF 2.53 neurotrophic factor 

PCDHA6 1.95 neuronal maintenance 

IFIT3 1.87 cell cycle arrest 

PSAT1 1.83 associated with schizophrenia 

SRGAP3 1.70 neuronal signaling 

PRAME -2.64 preventer of differentiation 
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Fig. 3.24: Gene expression after EphB2 knock-down in IMR-32. 

Exemplary differentially expressed genes derived from RNA sequencing data (A). Each siRNA has 

been performed in duplicates and compared to two untreated and two scrambled-treated approaches 

as negative control. Validation of these genes via RT-PCR, each point represents the mean of three 

results of one siRNA against EphB2 or scrambled, +SD, one exemplary result shown of at least three 

(B). NC = negative control, the black bar indicates the median.  
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3.4.2.5.5 EphB2 knock-down activates MAPK and Akt signaling pathways in 1p-

deleted neuroblastoma cells 

We aimed at validating the elevated HGF expression levels upon EphB2 knock-down on 

protein level. For this, we performed western blot analysis to measure the intracellular 

HGF amount and ELISA assay for extracellular levels in IMR-32. Intracellular HGF 

expression did not change after EphB2 knock-down. Extracellular levels of HGF were 

zero, both for cells treated with siRNA against EphB2 and the scrambled control. As the 

calculation of the protein concentration is based on a logarithmic standard curve which 

does not allow dealing with “0”, ELISA results are not shown here.  

HGF is ligand of the c-Met receptor which activates MAPK and Akt signaling (Organ and 

Tsao 2011). Although there is a discrepancy between HGF RNA and protein level, we did 

not want to exclude the possibility of HGF-mediated c-MET activation. For this, we 

assessed possible activation of MAPK and Akt signaling by measuring phosphorylated 

p44 and p42 MAPK and phosphorylated Akt levels after EphB2 knock-down. An increase 

of phosphorylated p44/p42 MAPK and Akt was shown after EphB2 knock-down (Fig. 

3.25). To exclude any impact of EphB2 knock-down on MAPK and Akt signaling in 1p 

non-deleted cell lines we performed the same experiment in TR14. We confirmed that 

levels of phosphorylated MAPK and Akt do not change after knock-down (Fig. S 2).  

 

 

 

Fig. 3.25: EphB2 knock-down activates MAPK and Akt signaling. 

After the 1p-deleted cell line IMR-32 was treated with three different siRNAs against EphB2, 

protein levels of HGF, MAPK, Akt and their phosphorylated active forms were assessed by 

western blot analysis. All results were compared to a non-targeting scrambled siRNA as 

negative control (NC).  

EphB2

AkT

pAkT

MAP1/2

pMAP1/2

HGF

NC #1 #2 #3

EphB2 siRNA

-Tubulin



 

Results 
 

 
74 

 

3.4.2.5.6 MAPK inhibition in combination with EphB2 knock-down has little impact 

on cell confluency in 1p-deleted neuroblastoma cells 

In 3.4.2.5.5 we showed that EphB2 knock-down induces MAPK activation in the 1p-

deleted cell line IMR-32. Here, we wanted to test if MAPK inhibition enhances the effect of 

EphB2 downregulation. We knocked down EphB2 with three different siRNAs in the 

presence and absence of FR180204, a selective MAPK inhibitor and assessed cell 

confluency after 0, 6, 12, 24, 36, 48 and 72 hours. FR180204 reduced the amount of cells 

by ~ 5% for siRNA #1 and #2 but had no effect in addition to siRNA #3. To exclude an 

effect on 1p non-deleted cell lines the same experiments was performed in TR14 cells 

(Fig. S 3). 

3.4.2.5.7 EphB2 cDNA overexpression rescues 1p-deleted neuroblastoma cell 

lines from cell death induced by EphB2 siRNA knock-down 

We hypothesized that ectopic expression of EphB2 in hemizygously deleted cells may 

rescue these from death upon siRNA treatment. For this, we transfected the 1p-deleted 

Fig. 3.26: EphB2 knock-down in combination with MAKP inhibition has little impact on cell 

confluency. 

The 1p-deleted cell line IMR-32 was treated with three different siRNAs against EphB2 in 

combination with the selective MAPK inhibitor FR180204 [5 µM]. All results are compared to cells 

treated with DMSO, NC: negative control/non-targeting scrambled siRNA. The cell confluency was 

assessed after 0, 6, 12, 24, 36, 48 and 72 h. One exemplary result in triplicates, +SD.  
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cell line IMR32-6TR (expressing tetracycline/doxycycline-inducible repressor protein 6TR) 

with an inducible vector (pEXP30-EphB2) for EphB2 cDNA expression. The 

overexpression of EphB2 was confirmed by western blot (Fig. 3.27 A). 

We treated the stable cell line with three different siRNAs against EphB2 and a non-

targeting scrambled control siRNA in the absence (EphB2 cDNA Off) and presence of 

doxycycline (EphB2 cDNA On). After 96 hours cell confluency was assessed. 

In all our experiments we could show that overexpression of EphB2 had minimal impact 

on the untreated and control siRNA-treated cells indicating that EPHB2 has no tumor-

promoting role in IMR-32. The knock-down-induced phenotype could be rescued by 

EphB2 overexpression which was significant (siRNA #3) or highly significant (siRNA #1 

and #2; Fig. 3.27 B, C) 

  

Fig. 3.27: EphB2 cDNA overexpression rescues 1p-deleted cells from cell death induced by EphB2 

knock-down. 

Doxycycline-inducible EphB2 overexpression clones were generated from the 1p-deleted cell line 

IMR32-6TR. The upregulation of EphB2 expression was confirmed by western blot (A). The cells 

were treated with three different siRNAs to knock-down EphB2 in the absence (EphB2 cDNA Off) 

and presence (EphB2 cDNA On) of doxycycline. After 96 h cells were stained with Giemsa to detect 

cell confluency (B, C). B and C show one representative result, all results were performed in 

triplicates, +SD, *p<0.05, **p<0.001.  
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3.4.2.5.8 shEphB2 knock-down reduces cell confluency in 1p-deleted 

neuroblastoma cell lines  

To confirm the previously described effects of EphB2 knock-down on IMR-32 we 

generated stable cell lines with doxycycline-inducible shEphB2 expression. For this, we 

cloned the sequences of EphB2 siRNAs #2, #3 and a scrambled non-targeting sequence 

(Scrbl) as negative control into a pTER30+ vector and transfected these constructs into 

IMR32_6TR cells. However, we were not able to select single clones to raise monoclonal 

cell cultures and therefore all experiments were performed in polyclonal cell cultures. The  

knock-down efficiency was confirmed by western blot (Fig. 3.28 A) and RT-PCR (Fig. 3.28 

B). The mRNA and protein levels were reduced after shEphB2 induction; however, the 

background leakiness of the vectors was already strong enough to generally induce level 

reduction.  

Fig. 3.28: shEphB2 overexpression reduces cell confluency in 1p-deleted cell lines. 

Doxycycline-inducible shEphB2 overexpression clones were generated from the 1p-deleted cell line 

IMR32_6TR. The knock-down of EphB2 was confirmed by western blot (A) and RT-PCR (B) in 

IMR32_shEphB2 #2 and IMR32_shEphB2 #3 cells and compared to IMR32_shScrbl cells. One 

exemplary result performed in triplicates, +SD (B). Cell confluency was assessed 96 h after 

doxycycline induction with Giemsa staining (C). One representative experiment is shown; all results 

are in triplicates, +SD. 
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To assess the impact of shEphB2 on cell confluency, the cells were seeded in the 

presence or absence of doxycycline and after 96 stained with Giemsa. As the cell line 

clones behave differentially in cell culture it was not possible to seed the same amounts of 

cells. For this reason, we cannot compare all conditions with IMR32_shScrbl which would 

be necessary to determine the impact of the vector leakiness on cell survival. Here, we 

compared each shEphB2 On situation with the Off condition within one cell line. In 

IMR32_shpEphB2 #2 and IMR32_shEphB2 #3 we showed that doxycycline-induced 

shEphB2 expression reduced cell confluency by ~20% compared to shEphB2 Off (Fig. 

3.28 C). In general, the shEphB2-expressing clones were weak in viability and showed a 

high amount of dead cells in the culture medium compared to their shScrbl expressing 

counterparts. These results indicate that the general EphB2 reduction is in the cell line 

clones strong and impairs cell survival. Induced shEphB2 expression further reduces the 

mRNA and protein levels but further impact on cell confluency is little.  

3.4.2.5.9  shEphB2 induces cell cycle arrest in stable 1p-deleted neuroblastoma 

cell clones  

The stable cell line clones IMR32_shEphB2 #2, IMR32_shEphB2 #3 and IMR32_shScrbl 

were seeded in the presence or absence of doxycycline. After 96 hours the cell cycle 

status was assessed by DAPI staining followed by FACS analysis. Doxycycline-induced 

shEphB2 expression induced G2 arrest in IMR32_shEphB2 #3. In IMR32_shEphB2 #2 the 

presence of doxycycline had no impact on the phenotype; however, due to background 

leakiness of the pTER30+ vector, the distribution of cells in G1/G0 was in general larger 

compared to IMR32_shScrbl cells (Fig. 3.29). 

 

 

 

 

  

Fig. 3.29 IMR32_shEphB2 cell line clones show cell cycle arrest. 

The 1p-deleted stable cell line clones IMR32_shEphB2 #2 and IMR32_shEphB2 #3 were treated 

with doxycycline and cell cycle phases were assessed after 96 h through DAPI staining and FACS 

analysis. The results were compared to IMR32_shScrbl cells expressing a non-targeting scrambled 

shRNA. The mean of three independent experiments is shown, + SD. 
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3.4.2.5.10 RNA sequencing of 1p-deleted cells with inducible shEphB2 expression 

reveals differentially expressed genes  

To investigate which genes get differentially expressed upon shEphB2 knock-down, we 

performed RNA sequencing in the stable cell lines IMR32_shScrbl, IMR32_shEphB2 #2 

and IMR32_shEphB2 #3.  

First, we checked the different gene expression in absence (shEphB2 Off) vs presence 

(shEphB2 On) of doxycycline after 96 hours in IMR32_shEphB2 #2 and #3. However, we 

could not detect any differentially expressed genes between On and Off condition 

including EPHB2 which is likely due to the already described background leakiness of the 

vectors (Fig. 3.30 A, 3.4.2.5.8). For this reason, further comparison of shEphB2 On was 

done vs IMR32_shScrbl On and Off, both used as negative control as differentially 

expression of genes upon shScrbl induction was not seen. The total number of 

significantly differentially expressed genes in shEphB2 On conditions was 127 with 55 

being upregulated (fold change >1.5) and 72 being downregulated (fold change <-1.5, 

Tab. S4, Tab. S5). A GO term analysis revealed that genes required for neuronal 

development and morphogenesis were preferentially upregulated (Tab. 3.12). 

Tab. 3.12: GO terms enriched after shEphB2 knock-down. 

Enriched GO term (DAVID) 
No of 
genes 

% 
Adjusted p 
value 

neuron projection morphogenesis 11 18.03 1.75E-02 

synapse organization 7 11.48 1.97E-02 

positive regulation of neuron projection development 7 11.48 2.06E-02 

positive regulation of nervous system development 9 14.75 2.20E-02 

axonogenesis 9 14.75 2.21E-02 

axon development 9 14.75 2.33E-02 

positive regulation of multicellular organismal process 15 24.59 2.39E-02 

neuron projection guidance 7 11.48 2.60E-02 

cell part morphogenesis 12 19.67 2.70E-02 

cell projection morphogenesis 12 19.67 2.87E-02 

axon guidance 7 11.48 2.95E-02 

cell morphogenesis involved in neuron differentiation 10 16.39 2.95E-02 

neuron projection development 11 18.03 4.18E-02 
Note: p values are Benjamini-Hochberg adjusted as implemented in the DAVID platform 

GO: gene ontology, DAVID: database for annotation, visualization and integrated discovery tool. 

 

As we hypothesized that the gene expression in presence and absence of doxycycline 

should be similar due to the previously described background leakiness in 

IMR32_shEphB2 #2 and IMR32_shEphB2 #3, we included the analysis of shEphB2 Off 
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conditions to verify our data. Indeed, we could show that the vast majority of differentially 

expressed genes compared to shScrbl-expressing cell lines was the same (Tab. S4). The 

total number of differentially expressed genes in shEphB2 Off (but EphB2 low) was 139, 

of which 104 overlapped with the 127 genes identified in shEphB2 On with similar fold 

changes in both conditions (Fig. 3.30 B, Tab. S5). This indicates that the background 

leakiness is enough to have significant impact on gene expression.  

3.4.2.5.11 shEphB2 expression induces MAPK and Akt signaling in 1p-deleted 

neuroblastoma cell lines 

In 3.4.2.5.5 we could show that knock-down of EphB2 induces MAPK and Akt signaling in 

the 1p-deleted cell line IMR-32. To analyze if these mechanisms also play a role in the 

stable cell lines IMR32_shEphB2 #2 and IMR32_shEphB2 #3 we performed western blot 

analysis and assessed phosphorylated MAPK and Akt levels. In both shEphB2 expressing 

cell lines the pMAPK and pAkt amounts where higher than in the control cell line 

IMR32_shScrbl (Fig. 3.31). The proteins were equally expressed in absence or presence 

of doxycycline indicating that the effects induced by the background leakiness of the 

vectors are strong enough that survival mechanisms have to get activated. 

Fig. 3.30: Doxycycline-induced shEphB2 knock-down has little impact on gene expression. 

The cell lines IMR32_shScrbl, IMR32_shEphB2 #2 and IMR32_shEphB2 #3 were treated with 

doxycycline and the gene expression was analyzed. Absolute gene expression of EphB2 in absence 

or presence of doxycycline (A). Venn diagram of differentially expressed genes in shEphB2 Off and 

shEphB2 On conditions compared shScrbl On/Off (B).  
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The HGF protein level remained in all conditions the same. Also we were not able to 

generate consistent results on an mRNA level which indicates that an alternative 

activation of MAPK and Akt signaling may play a role here. 

  

  

Fig. 3.31: Stable cell line clones expressing shEphB2 show induced levels of phosphorylated MAPK 

and Akt. 

Western blot analysis in the stable cell lines IMR32_shEphB2 #2, IMR32_shEphB2 #3 and 

IMR32_shScrbl in the presence and absence of doxycycline. Two exemplary results from totally five, 

Scrbl: scrambled, p: phosphorylated.  
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3.4.2.6 Characterization of 1p non-deleted neuroblastoma cells after EphB2 

knock-down 

For all validation experiments of 1p non-deleted cell lines, TR14 has been selected. 

3.4.2.6.1 EphB2 knock-down induces cell cycle arrest in 1p non-deleted cells 

To analyze changes in cell cycle progression, we knocked down EphB2 with three 

different siRNAs and measured the DNA content after 96 hours via FACS. The distribution 

of cells in G1/G0 was higher after treatment with all three siRNAs compared to the negative 

control. Also the amount of cells in G2 increased leading to a reduction of cells in S phase 

(Fig. 3.32). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.6.2 EphB2 knock-down induces upregulation of differentiation markers in 1p 

non-deleted neuroblastoma cell lines 

As described in 3.4.2.6.1 cell cycle arrest was observed in G1/G0 phase in 1p non-deleted 

cell lines. The 1p non-deleted cell line TR14 did not die after siRNA knock-down but 

showed changes in morphology (3.4.2.1). Morphologic changes, especially fiber 

outgrowth, in combination with G1/G0 arrest are strong indicators of cell differentiation of 

neuroblastoma cell lines (Wainwright, et al. 2001).  

Fig. 3.32: EphB2 knock-down induces cell cycle arrest. 

EphB2 was knocked down in TR14 (1p non-deleted) and after 96 h the amount of cells in G1/G0, S 

and G2 phase was assessed via FACS. All results were compared to a non-targeting siRNA as 

negative control (NC), one exemplary result out of three, +SD. 
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To investigate if EphB2 siRNA knock-down induces differentiation in 1p non-deleted cell 

lines we assessed the mRNA levels of genes involved in differentiation after 6, 12, 24 and 

48 hours. MAP2 and NEFL were not upregulated after EphB2 knock-down whereas there 

is tendency for TUBB3 mRNA upregulation (Fig. 3.33).  

 

3.4.2.6.3 EphB2 knock-down induces neuronal fiber outgrowth in 1p non-deleted 

neuroblastoma cell lines 

TUBB3, also known as -tubulin, is a protein uniquely expressed in neuronal cells and a 

main component of neurite fibers (Tischfield, et al. 2010). To confirm our findings in 

3.4.2.6.2 and to investigate if the changes in morphology upon EphB2 knock-down are 

due to neurite outgrowth, we knocked down EphB2 with three different siRNAs and 

stained the cells after 96 hours with a fluorescence-labeled antibody against TUBB3. We 

could show that especially siRNA #2 and #3 inducd extended neurite fiber outgrowth in 

TR14 consisting of TUBB3 (Fig. 3.34)  

Fig. 3.33: EphB2 knock-induces upregulation of differentiation markers. 

After EphB2 knock-down in TR14 cells the mRNA levels of TUBB3, MAP2 and NEFL have been 

analyzed after 6, 12, 24 and 48 h, all results are normalized to a non-targeting scrambled siRNA as 

negative control, results are performed in triplicates and the mean of three independent 

experiments is shown, +SD. 
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3.4.2.6.4 EphB2 knock-down does not induce senescence in 1p non-deleted 

neuroblastoma cell lines. 

Morphologic changes in combination with G1/G0 have been reported as an indicator of 

senescence (Wainwright, et al. 2001). A characteristic of senescent cells is the secretion 

of -galactosidase which could not be found in pre-senescent, quiescent or immortal cells 

(Dimri, et al. 1995).  

We treated the 1p non-deleted cell line TR14 with three different siRNAs to knock-down 

EphB2. After 96 hours we added X-Gal to the cells which is a substrate of -

galactosidase. Cleavage of X-Gal results in blue dye which accumulates within the cells 

and can be assessed microscopically. However, we could not detect any significant 

changes in color compared to the non-coding siRNA negative control (Fig. 3.35). 

Fig. 3.34: EphB2 knock-down induces neurite outgrowth in 1p non-deleted cell lines. 

In TR14 cells EphB2 was knocked down with three different siRNAs. After 96 h the cells were 

fixated and stained with a fluorescence labeled antibody against TUBB3, blue: DAPI, green: FITC/ 

TUBB3, magnification x200. 
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3.4.2.6.5 EphB2 knock-down inhibits migration in 1p non-deleted neuroblastoma 

cell lines 

EphB2 has been shown to be involved in cell migration in different cancer types 

(Farshchian, et al. 2015; Sikkema, et al. 2012; Wang, et al. 2012). To analyze if knock-

down of EphB2 has an impact on 1p non-deleted neuroblastoma cell lines we performed 

migration assays with TR14. We seeded the cells in 24 well plates containing a silicone 

plug. After a confluency of 100% was achieved, the cells were treated with three different 

siRNAs against EphB2 and a non-targeting scrambled siRNA which served as negative 

control. After 24 hours the plug was removed remaining a standardized cell-free space. To 

assess how fast the cells enter the empty area, microscopic analysis was done after 0, 72, 

144 and 160 hours. After 160 hours the exclusive zone was overgrown in the negative 

control whereas the cells treated with EphB2 siRNAs did not conquer the entire space 

(Fig. 3.36). These results indicate that EphB2 knock-down inhibits cell migration in 1p 

non-deleted cell lines. 

Fig. 3.35: EphB2 knock-down does not induce senescence in 1p non-deleted cells. 

EphB2 was knocked down with three different siRNA in the 1p non-deleted cell line TR14. After 

96 h a -galactosidase assay was performed to detect senescence. All results are compared to a 

non-specific siRNA as negative control (NC), magnification x200. 
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3.4.2.6.6 RNA sequencing of 1p non-deleted cells reveals differentially expressed 

genes after EphB2 knock-down 

To assess differentially expressed genes in 1p non-deleted cell lines after EphB2 knock-

down, we treated TR14 with three different siRNA and after 96 hours RNA sequencing 

was performed. The results of all three siRNAs were summarized and compared to 

scrambled-treated and untreated cells to calculate the fold change (both used as negative 

control as differentially expression of genes in scrambled-treated cells was not seen). 

Totally, 34 genes were differentially expressed whereas 20 were upregulated (fold change 

>1.5) and 14 downregulated (fold change <-1.5, Tab. S6). GO term analysis did not reveal 

any results (3.4.2.5.4).  

Fig. 3.36 EphB2 knock-down inhibits migration in 1p non-deleted cells. 

The 1p non-deleted cell line TR14 was seeded in 24 well plates containing a silicone plug. After a 

cell confluency of 100% was achieved, the cells were treated with three siRNAs against EphB2 and 

a non-targeting scrambled siRNA as negative control (NC). After 24 h the plug was removed to 

leave a cell-free space. Overgrowing of the area was microscopically reported after 0, 72, 144 and 

160 h. One exemplary result is shown, magnification: x20. 
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We identified 8 genes that are involved in neuronal development and neuron protection 

(Tab. 3.13). These results indicate that general impact of EphB2 knock-down is lower than 

in 1p-deleted cell lines.  

 

Tab. 3.13: Differentially expressed genes after EphB2 knock-down in TR14. 

Gene Fold change Function 

ADAMTS14 4.86 matrix protein for neurogenesis 

TMEM178A 4.50 neuro-protective 

PARK2 2.70 neuro-protective 

RNF180 1.94 neuronal development 

INSM1 1.80 neuronal differentiation 

DAB1 1.64 neuronal development 

AMER2 -2.24 neuronal development 

ADAM21 -2.70 matrix protein for neurogenesis 
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4. Discussion 

4.1 Do CYCLOPS genes play a role in neuroblastoma? 

Cancer genomes are characterized by instability leading to the amplification of oncogenes 

or the deletion of tumor suppressor genes (TSGs). Often these alterations do not affect 

only the effector gene but also multiple surrounding genes. The loss of a TSG, which 

contributes to tumor initiation or progression is a “driving event”. Losses of neighboring 

genes that are irrelevant for tumor development are defined as “passenger events”. 

Elimination of TSGs is a result of selective pressure, the loss of the latter happens as 

collateral damage. Besides passenger genes do not contribute to the tumor itself, at least 

some of them are thought to be cell-essential and may be required for survival rendering 

hemizygously-deleted cells vulnerable to further impairment. These so-called CYCLOPS 

genes have been introduced firstly by Nijhawan et al. in 2012. They integrated data from 

copy number profiles and gene dependencies from 86 cancer lines and identified 56 

CYCLOPS genes candidates. A more recent study expanded the cancer line set to 179 

and identified 124 potential CYCLOPS genes. Additionally, they showed that the most 

enriched group of copy number-associated gene dependencies are CYCLOPS genes 

(Paolella, et al. 2017). However, both of the studies deal mainly with adult cancers and the 

role of CYCLOPS genes in neuroblastoma remains unclear. To address this issue in a 

pilot study, we analyzed previously assessed data from a genome-wide siRNA screen in a 

neuroblastoma cell line and RNA sequencing data from 573 neuroblastoma patients. We 

could show that genes with high dependency map preferentially to chromosome arm 1p 

and their expression correlates with the copy number status with hemizygously-deleted 

genes showing a reduced expression compared to non-deleted tumors. This information 

suggested that chromosome arm 1p is a promising region for the search of CYCLOPS 

genes in neuroblastoma. 

4.2 Characterization of the 1p status in neuroblastoma cell lines 

Before starting the study it was crucial to assess the 1p status in the neuroblastoma cell 

lines to be used as models. The copy number ratio of 1p and exact breaking points were 

estimated with WGS. More complex rearrangements as partial translocations or 

intrachromosomal insertions were detected via FISH analysis. After characterization of the 

1p status in 34 neuroblastoma cell lines we selected 5 with 1p36 deletion (CHP-126, 

NB69, CLB.Ga, SK-N-BE(2) and IMR-32) and 5 1p non-deleted cell lines (TR14, LS, SK-

N-AS, SK-N-FI, SH-SY5Y).  
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4.3 Candidate gene identification 

In the siRNA CYCLOPS screen we identified 35 candidate genes whose knock-down 

reduced cell confluency in 1p-deleted but had no impact on 1p non-deleted cell lines. 

Interestingly, 6 of these genes were encoding for components of protein-modifying 

proteins: MMEL1 (membrane metalloendopeptidase like 1), FBXO44 (F-box protein 44), 

FBXO6 (F-box protein 6), DNAJC11 (DnaJ heat shock protein family (Hsp40) member 

C11), HSPB7 (heat shock protein family B (small) member 7) and USP48 (ubiquitin 

specific peptidase 48). This is in line with Nijhawan reporting that CYCLOPS candidates 

were enriched for protein-modifying proteins, namely spliceosomes, proteasomes and 

ribosomes (Nijhawan, et al. 2012). Next, we observed 13 genes required for cell cycle and 

cell growth to impair viability upon knock-down in both, 1p-deleted and 1p non-deleted cell 

lines. Examples are CDK11B (cyclin-dependent kinase 11A and 11B) and CDC42 (cell 

division cycle 42). Furthermore, 16 neuron-related genes were identified that showed 

negative confluency scores after knock-down in all cell lines, e.g. the neuronal receptors 

HTR6 and HTR1D (5-hydroxytryptamine receptors 6 and 1D) or ATP13A2 (ATPase cation 

transporting 13A2), a transporter required for neuronal integrity. Even if 1p normal cells 

were not able to tolerate gene knock-down, 1p-deleted cells may have developed 

compensatory mechanisms to overcome the hemizygous loss, although further reduction 

could also not be compensated indicating that these genes play important roles in 

neuroblastoma but are not essential.  

For candidate prioritization we took into account that one requirement a CYCLOPS gene 

has to fulfill is lower expression in deleted compared to non-deleted cells. After analyzing 

expression profiles of all candidates in primary tumors and in the selected cell lines we 

chose AURKAIP1 (aurora kinase A interacting protein 1), ICMT (isoprenylcysteine 

carboxyl methyltransferase) and SDF4 (stromal cell derived factor 4). Next we noticed, 

that the siRNA screen revealed all included genes belonging to the ephrin receptor family 

as CYCLOPS candidates, namely EPHA2, EPHA8 and EPHB2 (EPH receptor A2/A8/B2). 

Although their dependency scores were moderate they were selected due to their role for 

neuronal and embryonic development. Gene expression in primary tumors was for EPHA2 

and EPHB2 lower in 1p-deleted than in 1p non-deleted cases, which fulfills the CYCLOPS 

requirements. However, the opposite was true for EPHA8 and for this reason we did not 

include it in our validation pipeline. 

4.4  Candidate gene validation 

Prior to the candidate gene validation we set parameters which had to be fulfilled by a 

gene to be cosidered as a potential CYCLOPS gene (1.4.1.1). In particular, the impact of 
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gene knock-down had to be as weak as possible on 1p non-deleted cells (1pnorm <15%), 

1p-deleted cells should show a certain reduction in cell survival (1pdel >25%) and a 

remarkable difference between these two values should be noticeable (distance >20). 

 

The validation process was started with cell confluency and viability assays. We noticed 

that the outcome of cell growth/survival was often diverging depending on the assay 

platform, which can be explained with the different approaches of these methods. In 

contrast to cell confluency, which counts the actual number of cells, viability assays aim to 

address the metabolic activity. We observed that the total number of cells often did not 

correspond with their metabolism. Precisely, the more cells in a well the lower their 

metabolic activity which may be due to the lack of space and nutrition. To assess the 

direct survival effect of gene knock-down we refer in this discussion mainly to the cell 

confluency data.  

4.4.1 Validation of AURKAIP1, ICMT and SDF4 

The knock-down of AURKAIP1, ICMT and SDF4 efficiently reduced the number of 1p-

deleted cells. However, the effect was also strong on 1p non-deleted cells. This indicates 

that 1p normal cells express a minimum amount of protein required for cell survival and no 

loss can be tolerated. In 1p-deleted cells alternative mechanisms may be activated to 

compensate the permanently reduced level but further knock-down also induces cell 

death. However, the concept of CYCLOPS assumes that only genes with hemizygous 

loss are sensitive to further down-regulation which has the great advantage that potential 

side effects of targeted therapy may be avoided in cells without deletion. Also treatment 

with the selective ICMT inhibitor revealed no correlation between cell viability and gene 

copy number. Hence, no further validation experiments were performed with these 

candidates. 

4.4.2 Validation of ephrin receptor gene candidates (EPHA2, EPHB2) 

It is remarkable that all Eph receptor genes we screened for were identified as potential 

CYCLOPS genes underlying their important role for neuroblastoma cells. In general, Eph 

receptors including EphB2 are essential for developing cells in embryos and are required 

for angiogenesis, lymphangiogenesis, palate development and, most importantly, 

development of the neuronal system (Kania and Klein 2016; Noren and Pasquale 2004). 

Eph receptors fulfill these tasks through regulation of cytoskeleton dynamics which control 

migration and positioning, cell-cell segregation or, depending on the context, cell-cell 

adhesion (Nievergall, et al. 2012). But also in developing adult cells Eph receptors play a 
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role, for instance in intestinal stem cells (Genander, et al. 2010; Merlos-Suarez and Batlle 

2008).  

The results for EPHA2 were not promising as the knock-down effect on 1p-deleted cells 

was not much stronger than on 1p normal cells. In the contrary, knock-down of EphB2 

reduced survival of 1p-deleted cell lines but had little impact in 1p normal cells. Taking the 

EphB2 expression levels together with knock-down experiments of all used cell lines, it 

becomes clear that sensitivity to suppression does not tightly correspond to gene 

expression but only the copy number status. For example, the 1p non-deleted cell line SK-

N-FI had the lowest mRNA expression level but EphB2 knock-down had no impact on 

viability or cell confluency. The opposite is true for CLB.Ga and CHP-126 (1p-deleted) 

which showed relatively high EphB2 expression and were sensitive to knock-down. This 

indicates that cells with two transcriptional templates may mediate more flexible 

compensation of challenged transcript levels. Exceptional behavior was seen for the cell 

line LS which also died upon EphB2 knock-down although it had high EphB2 mRNA 

expression and no 1p-deletion. Additionally, mRNA expression analysis of two exemplary 

cell lines revealed that EphB2 knock-down reduced the mRNA in TR14 (1p non-deleted) 

to the same level as it is in IMR-32 (1p-deleted) prior knock-down. As TR14 did not die 

upon EphB2 knock-down it becomes clear that the cells express more of this protein than 

it is required for survival, whereas in IMR-32 the level is close to the minimal threshold. 

These findings were confirmed by ectopic expression of EphB2 in IMR-32 which strongly 

enhanced the protein level and saved the cells from siRNA-mediated knock-down. The 

largely differential cell death in 1p-deleted cells suggests that EphB2 is a cell essential 

gene as loss of any non-essential gene leads to compensatory mechanisms through 

another gene (Hughes, et al. 2000). Besides EphB2 belongs to the largest group of 

tyrosine kinases with five members of the B subtype and nine members of the A subtype 

having similar functions (Gale, et al. 1996), none of these seems to be able to replace 

EphB2 after knock-down. 

We then wanted further dissect the phenotype seen upon EphB2 knock-down. Starting 

with the 1p-deleted cell line IMR-32 we observed G1/G0 arrest upon knock-down which is 

accompanied by the measured cell death. Reseeding experiments of floating cells 

showed, that the vast majority of cells which were not dead after our endpoint 

measurement died in a longer time manner or, at least, lacked regrowth ability. As the 

reseeding was done in the absence of siRNAs these results also indicate that knock-down 

of EphB2 has a long term effect. Unfortunately, our attempts to elucidate which kind of cell 

death occurs to the cells remained unsolved. Neither apoptosis, ferroptosis, necroptosis 

nor autophagy mediate cell death in IMR-32. However, it cannot be assumed that all of 
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the tested cell lines have the same faith. There was evidence that e.g. NB69 show 

apoptosis-related PARP (poly (ADP-ribose) polymerase 1) cleavage after knock-down 

whereas other cells including IMR-32 did not (data not shown).  

Besides strongly reduced survival in IMR-32 after EphB2 knock-down there was still a 

small proportion of living cells. RNA sequencing revealed that these cells express genes 

which induce cell cycle arrest (IFIT3; interferon induced protein with tetratricopeptide 

repeats 3) and cell growth inhibitors as NAV2-AS2 and NAV2-AS3 (neuron navigator 2 

antisense RNA 2 and 3) which is accompanied by the already described cell cycle arrest 

in G1/G0. Interestingly, the preventer of differentiation PRAME (preferentially expressed 

antigen in melanoma) was shown to be downregulated. This gene was described in other 

studies as upregulated in high-stage neuroblastomas and is associated with unfavorable 

outcome (Henrich, et al. 2016; Oberthuer, et al. 2004). Here, the down-regulated PRAME 

together with overexpression of the neuron-forming gene LRRC4B (leucine rich repeat 

containing 4B) indicate that differentiating processes get activated. As we could not 

observe any hallmarks of differentiation like neurite outgrowth or upregulation of 

differentiation markers it is more likely that these genes somehow contribute to cell 

survival. The strongest differentially expressed gene was HGF (hepatocyte growth factor). 

HGF is, so far known, the only ligand of the receptor tyrosine kinase c-MET. This surface 

receptor is required for normal cell development, embryo- and organogenesis and 

migration (Organ and Tsao 2011). Overexpression of c-MET has been observed in many 

cancers including neuroblastoma (Cooper 1992; Hecht, et al. 2004; International Cancer 

Genome Consortium PedBrain Tumor 2016). The c-MET oncogene activation happens 

through the establishment of a HGF/c-MET autocrine loop, overexpression of c-MET and/ 

or HGF or receptor binding site mutation of c-MET (Eder, et al. 2009). The downstream 

response of HGF/c-MET signaling axis is mediated by MAPK (mitogen activated protein 

kinase) and Akt pathways which promote cell proliferation, survival, differentiation or 

morphogenesis (Trusolino, et al. 2010). We hypothesized that the resistance of the 

surviving cells after EphB2 knock-down is mediated by c-MET signaling and indeed we 

could detect accumulation of phosphorylated MAPK and Akt, the active form of these 

proteins. Although the induced HGF expression was confirmed by RT-PCR no changes 

on an intracellular protein level could be assessed and no extracellular HGF was 

measured at all. Two possibilities may explain this discrepancy between enhanced mRNA 

expression and constant or no protein levels. First, there are different isotypes of HGF 

existing and possibly the used antibodies detect another isoform which does not activate 

c-MET signaling and has therefore unaltered levels (Day, et al. 1999; Mungunsukh, et al. 

2014). Second, these findings may also indicate that as long as a constant level of 
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intracellular HGF is present no further protein production may be required. Stress-

induction activates HGF expression and all proteins over a certain threshold might get 

secreted. That no accumulation of HGF in the extracellular medium was assessed might 

be evidence of immediate binding to the c-MET receptor. To poof this assumption 

receptor-ligand interaction/binding assays should be done in further studies. 

Taken together, this data set shows that EphB2 knock-down induced cell death in the vast 

majority of 1p-deleted cells but surviving cells activated HGF overexpression and c-MET 

signaling via MAPK and Akt as a resistance mechanism. Unfortunately, our attempt to 

overcome the resistance with a selective MAPK inhibitor failed as further loss of cell 

confluency of only maximum 5% was achieved. Targeting only one of these resistance 

pathways may be compensated by boosting the other one. More promising results may be 

achieved by inhibiting both, MAKP and Akt signaling in combination with EphB2 knock-

down. 

To confirm our findings on phenotypic changes upon EphB2 knock-down we generated 

stable cell lines with inducible shEphB2 expression. The general EphB2 expression is in 

IMR-32 on such a low level that the background leakiness of the vector was enough to 

have impact on survival and induce cell cycle arrest in G1/G0. Doxycycline-induced 

shEphB2 expression further reduced EphB2 but the effect on phenotypes was minimal. 

For instance, only 20% of loss of cell confluency could be achieved upon doxycycline 

induction but already the general vitality of the clones was weak compared to their 

counterparts carrying a control vector. The shEphB2 cells were growing slower and 

showed a high amount of detached cells in the medium. Also the levels of phosphorylated 

MAKP and Akt were enhanced but did not get further upregulated in the presence of 

doxycycline. However, in contrast to transient knock-down in the parental cell line IMR-32, 

we could not detect any upregulation of HGF and corresponding c-MET signaling. 

Whereas the HGF-mediated resistance in IMR-32 seems to be a fast response to EphB2 

knock-down, the long term survival mechanism in a permanently EphB2-lacking situation 

as it is in the shEphB2 clones may be HGF-independent. Hence, alternative mechanisms 

may activate MAPK and Akt signaling to mediate survival. 

Next we noticed that due to the construct leakiness differentially expressed genes were to 

a vast majority the same in the clones, no matter if vector expression was induced or not. 

Gene enrichment analysis revealed that many of the upregulated genes are involved in 

neuronal development, e.g. SEMA5A (semaphorin 5A), RELN (reelin) or ROBO2 

(roundabout guidance receptor 2). Again, it seems rather unlikely that induction of these 

genes promotes neuro-differentiation in EphB2-reduced stress conditions but possibly 

their upregulation contributes to cell survival. SEMA5A is also known to be involved in 
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MAPK and Akt signaling. Many more players of these pathways were also identified to be 

upregulated, such as the interleukin receptors IL13RA1 and IL1RAPL1 or BMP7 (bone 

morphogenic protein 7) strengthening our hypothesis of HGF-independent pathway 

activation.  

In summary, the EphB2 expression in the 1p-deleted cell line IMR-32 is so low that even 

the background leakiness of an shRNA plasmid was enough to induce the described 

phenotypes and had a strong impact on gene expression. Therefore, the shEphB2 clones 

are less viable than cells expressing a control shRNA. Doxycycline induction led to further 

EphB2 downregulation but this did not influence the already persisting phenotype. The 

results further indicate that permanent EphB2 downregulation in the clones led to a 

selection of knock-down resistant cells which compensate the protein loss with enhanced 

MAPK and Akt signaling. 

  

As described previously, knock-down of EphB2 had no impact on cell survival in 1p non-

deleted cells. We also found no evidence for activation of MAPK and Akt signaling after 

EphB2 knock-down indicating that no survival mechanisms employing this pathway are 

required. Supporting these findings, no effects could be assessed by combination of 

EphB2 knock-down and inhibition of MAPK by FR180204. Nevertheless, other 

phenotypes could be observed including morphological changes. All 1p non-deleted cells 

showed fiber outgrowth und cell body lengthening (again excluding LS) which was not 

seen for 1p-deleted cell lines (except SK-N-BE(2)). In our exemplary cell line TR14, we 

also measured cell cycle arrest in G1/G0. Neurite outgrowth and cell cycle arrest are 

indicators of senescence or differentiation (Childs, et al. 2014; Myster and Duronio 2000). 

We excluded the first but detected the upregulation of TUBB3 (tubulin beta 3 class III). 

TUBB3 is a part of the cytoskeleton and uniquely expressed in neurons. We showed that 

the outgrown fibers upon EphB2 knock-down contained TUBB3, which confirmed 

differentiation. Generally, these findings are in accordance with the known impact of 

EphB2 on the cytoskeleton and axon guidance (Kania and Klein 2016). 

Another cause for cell cycle arrest and morphologic changes is cell migration. 

Cytoskeletal contractility and elongated cell bodies have been described in migrating cells 

in other entities (Grinnell 2003; Thiery 2002). It is also well know that ephrin receptors 

including EphB2 are regulators of cell movement (Nievergall, et al. 2012; Noren and 

Pasquale 2004). EphB2 knock-down in 1p non-deleted TR14 inhibited migration and 

general motility was slowed down. Together with cell differentiation after EphB2 knock-

down this points to an oncogenic role of this gene in TR14. In fact, deregulated EphB2 

has been observed in many tumors with controversy functions. In most studies, EphB2 
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has been identified as a potential TSG but there are also cases where oncogenic 

functions have been described (Batlle, et al. 2005; Farshchian, et al. 2015; Husa, et al. 

2016; Huusko, et al. 2004). However, in contrast to this hypothesis is the fact that 1p-

deleted cell lines and tumors do not show significant upregulation of EphB2 to gain its 

oncogenic benefits. Additionally, in the previously mentioned cDNA overexpression 

experiments in IMR-32 the ectopic expression of EphB2 alone did not influence cell 

growth, which supports the theory that EphB2 has no tumor-driving function in 

neuroblastoma.  

In summary, knock-down of EphB2 had a small impact on the 1p non-deleted cell line 

TR14 as cell growth and survival did not get affected and only a few genes were 

differentially expressed. Differentiation and inhibited cell motility upon EphB2 knock-down 

indicate that EphB2 may support tumor maintenance in TR14. 

4.5 Conclusion and perspective 

When Nijhawan et al. introduced their concept they proposed which requirements a 

CYCLOPS gene has to fulfill. First, the gene has to be essential for general cell or cell 

lineage-dependent survival. Second, the gene has to be hemizygously deleted in tumors, 

mainly as a collateral damage in the turn of selection pressure-driven loss of tumor 

suppressor genes. And third, the expression ratio of a CYCLOPS gene strongly correlates 

with its copy number. In other words, cells with a deletion of that gene have to have a 

reduced expression and corresponding protein level compared to cells with both copies. 

This means that the latter express more protein than required for viability (Nijhawan, et al. 

2012). 

In this study we showed that among all selected CYCLOPS gene candidates EphB2 was 

the most promising one. It is deleted in ~35% of all neuroblastoma tumors and its overall 

expression is reduced in these cases. We further showed that knock-down of EphB2 in 

1p-deleted cell lines led to cell death, whereas 1p non-deleted cell lines survived. This 

suggests on one hand that the non-deleted cell lines express more protein than required 

for survival; on the other hand it becomes clear that EphB2 is an essential gene in 

neuroblastoma cells. Interestingly, none of its 13 tyrosine kinase family members could 

replace the loss besides all of them have similar functions. 

Although we proved that 1p-deleted cells die upon EphB2 knock-down we were not able 

to elucidate the cell death mechanism. We plan to perform time line RNA sequencing to 

address this question. 

Even if the majority of the 1p-deleted cells after knock-down died there was still a small 

proportion of survivors. We uncovered that the resistance may be due overexpression of 
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HGF and activation of c-MET signaling which might be mediated through MAKP and Akt 

pathways. Unfortunately, our attempts to impair this resistance by inhibiting MAPK had 

only moderate effect. In future experiments we will inhibit MAPK and Akt signaling in 

combination with EphB2 knock-down to avoid that one resistance pathway can 

compensate the inhibited other.  

As usual for validation series we generated stable cell lines expressing shEphB2 under 

the control of a doxycycline inducible vector. The background leakiness of the plasmid 

was strong enough to disrupt the low EphB2 level and induce the phenotypes we also 

showed in the siRNA experiments. Further EphB2 knock-down through induced vector 

expression did not have an additional impact on phenotypes. Also differential gene 

expression with and without doxycycline was almost the same compared to cell lines 

expressing a control non-targeting shRNA. Nevertheless, these cloning issues should not 

be regarded as failure as the observed effects proof that the 1p-deleted cell line IMR-32 

expresses a required minimum of EphB2 for survival and even the moderate depletion is 

enough to break the sensible equilibrium. These findings also indicate that EphB2 knock-

down resistant cells have been selected whose resistance was mediated by upregulation 

of MAPK and Akt signaling. In contrast to transient knock-down in the parental IMR-32 

cells, MAPK and Akt activation was not induced by HGF/c-Met. Possibly, there may be an 

alternative way to activate these resistance pathways in shEphB2 clones. 

Still, to avoid interference with background leakiness more sophisticated methods can be 

used as the knock-out approach via CRISPR/Cas. 

 

This study used TR14 as a control cell line for 1p non-deleted cells. Here, knock-down of 

EphB2 did not influence survival and the impact on global gene expression was low. 

Morphologic changes were observed and we identified differentiation to be the driving 

force behind this process. We also showed that EphB2 knock-down restricts cell motility in 

TR14. This reduced migration in combination with differentiation points to an oncogenic 

role of EPHB2 in 1p non-deleted cells. This is not in conflict with the CYCLOPS concept 

as long as the gene does not have tumor-driving functions in deleted cells. However, as 

1p-deleted cells do not show upregulation of EphB2 and ectopic expression had no 

influence on cell growth, it seems unlikely that only 1p non-deleted cells may be 

dependent on EPHB2 as an oncogene. To avoid the problem of genes with bipolar 

functions future CYCLOPS studies should also include non-malignant cells for control 

experiments. 
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As recurrent somatic mutations are rare in neuroblastoma but 1p-deletion is seen in ~35% 

of cases, this study might open a new therapeutic window which may be beneficial for a 

large patient group. We showed that EPHB2 is a promising CYCLOPS candidate as it 

fulfills all requirements. Due to little effect on 1p non-deleted cells, common side effects of 

potential targeted therapy addressing EphB2 may be avoided or reduced. If EPHB2 is 

also a CYCLOPS gene in other 1p-deleted entities remains to be clarified, but this 

approach may be regarded as a proof-of-principle for these cancer types.  
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6. Appendix 

6.1 Supplementary data 

Tab. S 1: siRNA IDs used in the CYCLOPS screen 

Gene siRNA ID Gene siRNA ID Gene siRNA ID Gene siRNA ID 

ACAP3 s42080 AOF2 s617 CA6 s2259 CLCNKA s3150 

ACAP3 s42081 AOF2 s618 CA6 s2260 CLCNKA s3151 

ACAP3 s42082 AOF2 s619 CA6 s2261 CLCNKA s3152 

ACOT7 s22346 ARID1A s15784 CALML6 s46468 CLCNKB s3153 

ACOT7 s22347 ARID1A s15785 CALML6 s46469 CLCNKB s3154 

ACOT7 s22348 ARID1A s15786 CALML6 s46470 CLCNKB s3155 

ACTL8 s37650 ASAP3 s31085 CAMK2N1 s30876 CLDN19 s45293 

ACTL8 s37651 ASAP3 s31086 CAMK2N1 s30877 CLDN19 s229812 

ACTL8 s37652 ASAP3 s31087 CAMK2N1 s30878 CLDN19 s229813 

ACTRT2 s44321 ATAD3A s30447 CAPZB s2401 CLIC4 s24778 

ACTRT2 s44322 ATAD3A s30448 CAPZB s2402 CLIC4 s24779 

ACTRT2 s195731 ATAD3A s195276 CAPZB s2403 CLIC4 s24780 

ADC s41476 ATAD3B s38233 CASP9 s2428 CLSTN1 s22583 

ADC s41477 ATAD3B s38234 CASP9 s2429 CLSTN1 s22584 

ADC s41478 ATAD3B s195445 CASP9 s2430 CLSTN1 s22585 

AGMAT s379 ATAD3C s47592 CASZ1 s29704 CMPK1 s28582 

AGMAT s380 ATAD3C s47593 CASZ1 s29705 CMPK1 s28584 

AGMAT s381 ATAD3C s47594 CASZ1 s29706 CMPK1 s230118 

AJAP1 s31811 ATP13A2 s23742 CATSPER4 s51801 CNKSR1 s20036 

AJAP1 s31812 ATP13A2 s23743 CATSPER4 s51802 CNKSR1 s20037 

AJAP1 s31813 ATP13A2 s23744 CATSPER4 s51803 CNKSR1 s20038 

AK2 s1209 ATP6V0B s623 CDA s2729 CNR2 s3263 

AK2 s1211 ATP6V0B s624 CDA s2731 CNR2 s3264 

AK2 s1210 ATP6V0B s625 CDA s2730 CNR2 s3265 

AKR1A1 s20197 ATPAF1 s34869 CDC20 s2747 COL16A1 s3356 

AKR1A1 s20198 ATPAF1 s34870 CDC20 s2748 COL16A1 s3357 

AKR1A1 s20199 ATPAF1 s34871 CDC20 s2749 COL16A1 s3358 

AKR7A2 s16331 AURKAIP1 s29953 CDC42 s2765 COL9A2 s3332 

AKR7A2 s16332 AURKAIP1 s29954 CDC42 s2766 COL9A2 s3333 

AKR7A2 s16333 AURKAIP1 s195269 CDC42 s2767 COL9A2 s3334 

AKR7A3 s22751 B3GALT6 s43087 CDK11A s229390 CPSF3L s29893 

AKR7A3 s22752 B3GALT6 s43088 CDK11A s229391 CPSF3L s29894 

AKR7A3 s22753 B3GALT6 s43089 CDK11A s229392 CPSF3L s29895 

AKR7L s48347 B4GALT2 s85 CDK11B s2732 CSF3R s3609 

AKR7L s48348 B4GALT2 s86 CDK11B s2733 CSF3R s3610 

AKR7L s48349 B4GALT2 s87 CDK11B s2734 CSF3R s3611 

ALDH4A1 s16484 BAI2 s1873 CELA2B s27288 CTPS s3731 

ALDH4A1 s16483 BAI2 s1874 CELA2B s27289 CTPS s3732 

ALDH4A1 s16485 BAI2 s1875 CELA2B s27290 CTPS1 s229529 

ALPL s1296 BEST4 s49003 CHD5 s24987 CTRC s22340 

ALPL s1297 BEST4 s49004 CHD5 s24988 CTRC s22341 

ALPL s1298 BEST4 s49005 CHD5 s24989 CTRC s22342 

ANGPTL7 s19931 BMP8B s2038 CLCN6 s3144 CYP4A11 s3852 

ANGPTL7 s19932 BMP8B s2039 CLCN6 s3145 CYP4A11 s3853 

ANGPTL7 s19933 BMP8B s2040 CLCN6 s3146 CYP4A11 s3854 

The table continuous on the next page 
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CYP4A22 s49696 EIF3I s16510 FGR s5185 GUCA2A s6340 

CYP4A22 s49697 EIF3I s16511 FGR s5186 GUCA2A s6341 

CYP4A22 s49698 EIF3I s16512 FGR s5187 GUCA2A s6342 

CYP4B1 s3855 EIF4G3 s16519 FHL3 s5200 GUCA2B s6343 

CYP4B1 s3856 EIF4G3 s16520 FHL3 s5201 GUCA2B s6344 

CYP4B1 s3857 EIF4G3 s16521 FHL3 s194411 GUCA2B s194480 

CYP4X1 s48973 ELA3A s19727 FOXD2 s5251 H6PD s18368 

CYP4X1 s48974 ELA3A s19728 FOXD2 s5252 H6PD s18369 

CYP4X1 s48975 ELA3A s19729 FOXD2 s5253 H6PD s18370 

CYP4Z1 s47162 ELOVL1 s34992 GABRD s5497 HCRTR1 s6485 

CYP4Z1 s47163 ELOVL1 s34993 GABRD s5498 HCRTR1 s6486 

CYP4Z1 s47164 ELOVL1 s34994 GABRD s5499 HCRTR1 s194519 

DDI2 s38861 ENO1 s4680 GALE s5533 HDAC1 s73 

DDI2 s38862 ENO1 s4681 GALE s5534 HDAC1 s74 

DDI2 s38863 ENO1 s4682 GALE s5535 HDAC1 s75 

DDOST s3998 EPHA10 s200588 GJA4 s5763 HECTD3 s36019 

DDOST s3999 EPHA10 s229806 GJA4 s5764 HECTD3 s36020 

DDOST s4000 EPHA10 s229807 GJA4 s5765 HECTD3 s36021 

DFFA s4056 EPHA2 s4564 GJA9 s37475 HES2 s29273 

DFFA s4058 EPHA2 s4565 GJA9 s37476 HES2 s29274 

DFFA s4057 EPHA2 s4566 GJA9 s37477 HES2 s29275 

DFFB s4059 EPHA8 s4734 GJB3 s5778 HES3 s52903 

DFFB s4060 EPHA8 s4735 GJB3 s5779 HES3 s196361 

DFFB s4061 EPHA8 s4736 GJB3 s5780 HES3 s196362 

DHDDS s36696 EPHB2 s4740 GJB4 s43184 HES4 s33732 

DHDDS s36697 EPHB2 s4741 GJB4 s43185 HES4 s195322 

DHDDS s36698 EPHB2 s4742 GJB4 s43186 HES4 s195323 

DHRS3 s17688 ERMAP s41566 GJB5 s5781 HES5 s52196 

DHRS3 s17689 ERMAP s41564 GJB5 s5782 HES5 s52197 

DHRS3 s17690 ERMAP s41565 GJB5 s5783 HES5 s52198 

DMAP1 s31789 ESPN s38139 GMEB1 s21020 HEYL s25473 

DMAP1 s31790 ESPN s38140 GMEB1 s21021 HEYL s25474 

DMAP1 s31791 ESPN s38141 GMEB1 s21022 HEYL s25475 

DMBX1 s43160 EXTL1 s4895 GNB1 s5901 HIVEP3 s33958 

DMBX1 s43161 EXTL1 s4896 GNB1 s5902 HIVEP3 s33959 

DMBX1 s43162 EXTL1 s4897 GNB1 s5903 HIVEP3 s33960 

DNAJC11 s31371 EYA3 s4910 GNL2 s26649 HMGCL s6658 

DNAJC11 s31372 EYA3 s4911 GNL2 s26650 HMGCL s6659 

DNAJC11 s31373 EYA3 s4912 GNL2 s26651 HMGCL s6660 

DNAJC16 s23602 FAAH s4961 GPN2 s29330 HMGN2 s6657 

DNAJC16 s23603 FAAH s4962 GPN2 s29331 HMGN2 s194528 

DNAJC16 s23604 FAAH s4963 GPN2 s195247 HMGN2 s194529 

DNAJC8 s22442 FABP3 s4973 GPR153 s51868 HNRNPCL1 s50974 

DNAJC8 s22443 FABP3 s4974 GPR153 s51869 HNRNPCL1 s50975 

DNAJC8 s22444 FABP3 s4975 GPR153 s196200 HNRNPCL1 s50976 

DNALI1 s15359 FBLIM1 s29380 GPR157 s36865 HNRNPR s19979 

DNALI1 s15360 FBLIM1 s195248 GPR157 s36866 HNRNPR s19980 

DNALI1 s15361 FBLIM1 s195249 GPR157 s195393 HNRNPR s19981 

DVL1 s4393 FBXO44 s41168 GPR3 s5998 HPCA s6782 

DVL1 s4394 FBXO44 s41169 GPR3 s5999 HPCA s6783 

DVL1 s4395 FBXO44 s41170 GPR3 s6000 HPCA s6784 

EFHD2 s35692 FBXO6 s25337 GRHL3 s33752 HPCAL4 s28144 

EFHD2 s35693 FBXO6 s25338 GRHL3 s33753 HPCAL4 s28145 

EFHD2 s35694 FBXO6 s25339 GRHL3 s33754 HPCAL4 s28146 

EIF2B3 s16995 FCN3 s16269 GRIK3 s6158 HPDL s39502 

EIF2B3 s16993 FCN3 s16270 GRIK3 s6159 HPDL s39503 

EIF2B3 s16994 FCN3 s16271 GRIK3 s6160 HPDL s39504 

The table continuous on the next page 
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The table continuous on the next page 

HSPB7 s25870 LDLRAD2 s53706 MPL s8934 PABPC4 s16693 

HSPB7 s25871 LDLRAD2 s53707 MPL s8935 PABPC4 s16694 

HSPB7 s25872 LDLRAD2 s196457 MPL s8936 PABPC4 s16695 

HSPG2 s7014 LEPRE1 s34536 MTF1 s9027 PADI1 s26757 

HSPG2 s7015 LEPRE1 s34537 MTF1 s9028 PADI1 s26758 

HSPG2 s7016 LEPRE1 s34538 MTF1 s9029 PADI1 s26759 

HTR1D s7034 LIN28A s36195 MTHFR s9035 PADI2 s22187 

HTR1D s7032 LIN28A s36196 MTHFR s9036 PADI2 s22188 

HTR1D s7033 LIN28A s36197 MTHFR s9037 PADI2 s22189 

HTR6 s7059 LRRC47 s33094 MUTYH s9090 PADI3 s28546 

HTR6 s7060 LRRC47 s33095 MUTYH s9091 PADI3 s28547 

HTR6 s7061 LRRC47 s33096 MUTYH s9092 PADI3 s28548 

ICMT s23871 LYPLA2 s22298 MYCBP s25391 PADI4 s24119 

ICMT s23872 LYPLA2 s22299 MYCBP s25392 PADI4 s24120 

ICMT s23873 LYPLA2 s22300 MYCBP s25393 PADI4 s24121 

IL22RA1 s33943 MACF1 s23937 MYOM3 s43156 PAFAH2 s10004 

IL22RA1 s33944 MACF1 s23938 MYOM3 s43157 PAFAH2 s10005 

IL22RA1 s33945 MACF1 s23939 MYOM3 s43158 PAFAH2 s10006 

INPP5B s7456 MAN1C1 s32754 NADK s35239 PANK4 s30500 

INPP5B s7457 MAN1C1 s32755 NADK s35240 PANK4 s30501 

INPP5B s7458 MAN1C1 s32756 NADK s35241 PANK4 s30502 

IPO13 s18608 MAP3K6 s17288 NASP s9280 PAQR7 s46503 

IPO13 s18609 MAP3K6 s17289 NASP s9281 PAQR7 s46504 

IPO13 s18610 MAP3K6 s17290 NASP s9282 PAQR7 s46505 

IPP s7489 MASP2 s21119 NDUFS5 s9397 PARK7 s22304 

IPP s7490 MASP2 s195063 NDUFS5 s9398 PARK7 s22306 

IPP s7491 MASP2 s195064 NDUFS5 s9399 PARK7 s230250 

KCNAB2 s16177 MAST2 s42 NECAP2 s31305 PAX7 s10070 

KCNAB2 s16178 MAST2 s43 NECAP2 s31306 PAX7 s10071 

KCNAB2 s16179 MAST2 s44 NECAP2 s31307 PAX7 s10072 

KCNQ4 s17443 MATN1 s8529 NMNAT1 s34981 PDIK1L s45286 

KCNQ4 s17444 MATN1 s8530 NMNAT1 s34982 PDIK1L s45287 

KCNQ4 s17445 MATN1 s8531 NMNAT1 s34980 PDIK1L s45288 

KHDRBS1 s20951 MECR s27434 NPPA s9679 PEF1 s54735 

KHDRBS1 s20952 MECR s27435 NPPA s9680 PEF1 s54736 

KHDRBS1 s20953 MECR s27436 NPPA s9681 PEF1 s54737 

KIF17 s33352 MED8 s41409 NPPB s9682 PEX14 s10324 

KIF17 s33353 MED8 s41410 NPPB s9683 PEX14 s10325 

KIF17 s33354 MED8 s41411 NPPB s194662 PEX14 s10326 

KIF1B s23022 MEGF6 s4528 NR0B2 s15996 PGD s10394 

KIF1B s23023 MEGF6 s4529 NR0B2 s15997 PGD s10395 

KIF1B s23024 MEGF6 s4530 NR0B2 s15998 PGD s224256 

KIF2C s21663 MFN2 s19260 NSUN4 s51859 PHC2 s4474 

KIF2C s21664 MFN2 s19261 NSUN4 s51860 PHC2 s4475 

KIF2C s21665 MFN2 s19262 NSUN4 s51861 PHC2 s4476 

KLF17 s43260 MFSD2 s39564 NT5C1A s39183 PIK3CD s10529 

KLF17 s43261 MFSD2 s39565 NT5C1A s39184 PIK3CD s10530 

KLF17 s43262 MFSD2 s39566 NT5C1A s39185 PIK3CD s10531 

KLHL17 s50531 MKNK1 s16319 NUDC s21071 PIK3R3 s16151 

KLHL17 s50532 MKNK1 s16321 NUDC s21072 PIK3R3 s229780 

KLHL17 s50533 MKNK1 s16320 NUDC s21073 PIK3R3 s229781 

KPNA6 s24241 MMEL1 s35722 OPRD1 s9862 PINK1 s35166 

KPNA6 s24242 MMEL1 s35723 OPRD1 s9863 PINK1 s35167 

KPNA6 s24243 MMEL1 s35724 OPRD1 s9864 PINK1 s35168 

LCK s8106 MMP23B s16172 OXCT2 s34373 PLA2G2A s10589 

LCK s8107 MMP23B s16173 OXCT2 s34374 PLA2G2A s10590 

LCK s8108 MMP23B s194938 OXCT2 s34375 PLA2G2A s10591 
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PLA2G2D s25361 PSMB2 s481 SCMH1 s22742 SNRNP40 s18011 

PLA2G2D s25362 PSMB2 s483 SCMH1 s22743 SNRNP40 s18012 

PLA2G2D s25363 PSMB2 s482 SCMH1 s22744 SNRNP40 s18013 

PLA2G2E s26914 PTAFR s11431 SCNN1D s12549 SPATA21 s51633 

PLA2G2E s26915 PTAFR s11432 SCNN1D s194785 SPATA21 s51634 

PLA2G2E s26916 PTAFR s11433 SCNN1D s194786 SPATA21 s51635 

PLA2G2F s34798 PTCH2 s16444 SDF4 s27560 SPEN s22829 

PLA2G2F s34799 PTCH2 s16445 SDF4 s27561 SPEN s22830 

PLA2G2F s34800 PTCH2 s16446 SDF4 s27562 SPEN s22831 

PLA2G5 s10595 PTP4A2 s581 SDHB s12653 SPSB1 s37008 

PLA2G5 s10596 PTP4A2 s582 SDHB s12654 SPSB1 s37009 

PLA2G5 s10597 PTP4A2 s583 SDHB s12655 SPSB1 s37010 

PLCH2 s18563 PTPRF s11546 SF3A3 s21534 SRM s13430 

PLCH2 s18564 PTPRF s11547 SF3A3 s21535 SRM s13431 

PLCH2 s18565 PTPRF s11548 SF3A3 s21536 SRM s13432 

PLEKHM2 s23280 PTPRU s19598 SFPQ s12710 SRRM1 s20018 

PLEKHM2 s23281 PTPRU s19599 SFPQ s12711 SRRM1 s20019 

PLEKHM2 s23282 PTPRU s19600 SFPQ s12712 SRRM1 s20020 

PLK3 s3245 PUM1 s18680 SFRS4 s12734 SSU72 s26487 

PLK3 s3246 PUM1 s18681 SFRS4 s12735 SSU72 s26488 

PLK3 s3247 PUM1 s18682 SFRS4 s12736 SSU72 s26489 

PLOD1 s412 RAB42 s41781 SKI s12880 ST3GAL3 s12853 

PLOD1 s413 RAB42 s41782 SKI s12881 ST3GAL3 s12854 

PLOD1 s414 RAB42 s41783 SKI s12882 ST3GAL3 s12855 

POMGNT1 s31106 RAD54L s16012 SLC25A33 s38789 STK40 s38326 

POMGNT1 s31107 RAD54L s16013 SLC25A33 s38790 STK40 s38327 

POMGNT1 s31108 RAD54L s16014 SLC25A33 s38791 STK40 s38328 

POU3F1 s10853 RBP7 s41993 SLC25A34 s49744 STX12 s24307 

POU3F1 s10854 RBP7 s41994 SLC25A34 s49745 STX12 s24308 

POU3F1 s10855 RBP7 s41995 SLC25A34 s49746 STX12 s24309 

PPCS s36168 RHBDL2 s29788 SLC2A1 s12925 SYTL1 s39754 

PPCS s36169 RHBDL2 s29789 SLC2A1 s12926 SYTL1 s39755 

PPCS s36170 RHBDL2 s29790 SLC2A1 s12927 SYTL1 s39756 

PPIE s20445 RHCE s12013 SLC2A5 s12937 TAL1 s13769 

PPIE s20446 RHCE s12014 SLC2A5 s12938 TAL1 s13770 

PPIE s20447 RHCE s12015 SLC2A5 s229610 TAL1 s13771 

PPIH s20485 RHD s12016 SLC2A7 s45929 TARDBP s23829 

PPIH s20486 RHD s12017 SLC2A7 s45930 TARDBP s23830 

PPIH s223120 RHD s12018 SLC2A7 s45931 TARDBP s23831 

PPP1R8 s10954 RLF s12043 SLC30A2 s15332 TCEA3 s13853 

PPP1R8 s10955 RLF s12044 SLC30A2 s15333 TCEA3 s13854 

PPP1R8 s10956 RLF s12045 SLC30A2 s15334 TCEA3 s13855 

PPT1 s11017 RPA2 s12130 SLC5A9 s47170 TCEB3 s13859 

PPT1 s11018 RPA2 s12131 SLC5A9 s47171 TCEB3 s13860 

PPT1 s11019 RPA2 s12132 SLC5A9 s47172 TCEB3 s13861 

PRDM16 s34346 RPS6KA1 s12273 SLC6A9 s12991 TEKT2 s26075 

PRDM16 s34347 RPS6KA1 s12274 SLC6A9 s12992 TEKT2 s26076 

PRDM16 s34348 RPS6KA1 s12275 SLC6A9 s12993 TEKT2 s26077 

PRDM2 s15357 RRAGC s34474 SLC9A1 s13021 TESK2 s20378 

PRDM2 s229620 RRAGC s34475 SLC9A1 s13022 TESK2 s20379 

PRDM2 s229621 RRAGC s34476 SLC9A1 s13023 TESK2 s20380 

PRDX1 s10007 RSC1A1 s12369 SMAP2 s34842 TFAP2E s50547 

PRDX1 s10009 RSC1A1 s12370 SMAP2 s34843 TFAP2E s50548 

PRDX1 s224164 RSC1A1 s12371 SMAP2 s34844 TFAP2E s50549 

PRKCZ s11128 RUNX3 s2467 SMPDL3B s26099 THAP3 s40333 

PRKCZ s11129 RUNX3 s2468 SMPDL3B s26100 THAP3 s40334 

PRKCZ s11130 RUNX3 s2469 SMPDL3B s26101 THAP3 s40335 

The table continuous on the next page 
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THRAP3 s19359 TRIM62 s30482 USP48 s38642 ZMPSTE24 s20065 

THRAP3 s19360 TRIM62 s30483 USP48 s38643 ZMPSTE24 s20066 

THRAP3 s19361 TRIM62 s30484 USP48 s38644 ZMPSTE24 s20067 

TIE1 s14140 TRIM63 s39302 UTP11L s27479 ZMYM6 s17593 

TIE1 s14141 TRIM63 s39303 UTP11L s27480 ZMYM6 s17594 

TIE1 s14142 TRIM63 s39304 UTP11L s27481 ZMYM6 s17595 

TINAGL1 s34486 TRIT1 s29468 UTS2 s21447 ZMYND12 s38660 

TINAGL1 s34487 TRIT1 s29469 UTS2 s21448 ZMYND12 s38661 

TINAGL1 s34488 TRIT1 s29470 UTS2 s21449 ZMYND12 s38662 

TNFRSF14 s16699 TRNAU1AP s29835 VWA1 s35040 ZNF436 s37407 

TNFRSF14 s16700 TRNAU1AP s29836 VWA1 s35041 ZNF436 s37408 

TNFRSF14 s16701 TRNAU1AP s29837 VWA1 s195357 ZNF436 s37409 

TNFRSF18 s194959 TSSK3 s37745 WDTC1 s22890 ZNF593 s27294 

TNFRSF18 s194960 TSSK3 s37746 WDTC1 s22891 ZNF593 s27295 

TNFRSF18 s453358 TSSK3 s37747 WDTC1 s22892 ZNF593 s195205 

TNFRSF1B s14268 TTLL10 s48504 YARS s442 ZNF683 s48848 

TNFRSF1B s14269 TTLL10 s48505 YARS s443 ZNF683 s48849 

TNFRSF1B s14270 TTLL10 s48506 YARS s444 ZNF683 s48850 

TNFRSF25 s231644 UBE2J2 s42189 YBX1 s9731 ZNF684 s43169 

TNFRSF25 s444243 UBE2J2 s42190 YBX1 s9732 ZNF684 s43170 

TNFRSF25 s500476 UBE2J2 s42191 YBX1 s9733 ZNF684 s43171 

TNFRSF4 s14529 UBE4B s555 ZBTB17 s15210 ZNF691 s27316 

TNFRSF4 s14530 UBE4B s556 ZBTB17 s15211 ZNF691 s27317 

TNFRSF4 s14531 UBE4B s554 ZBTB17 s15212 ZNF691 s27318 

TNFRSF8 s2630 UBR4 s23626 ZBTB40 s19248 ZSCAN20 s15066 

TNFRSF8 s2631 UBR4 s23627 ZBTB40 s19249 ZSCAN20 s15067 

TNFRSF8 s2632 UBR4 s23628 ZBTB40 s19250 ZSCAN20 s15068 

TNFRSF9 s7386 UQCRH s14708 ZBTB48 s6566     

TNFRSF9 s7387 UQCRH s14709 ZBTB48 s6567     

TNFRSF9 s7388 UQCRH s14710 ZBTB48 s6568     

TP73 s14319 UROD s14711 ZDHHC18 s38706     

TP73 s14320 UROD s14712 ZDHHC18 s38707     

TP73 s14321 UROD s14713 ZDHHC18 s38708     
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The figure continues on the next page 
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The figure continues on the next page 
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The figure continues on the next page. 
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Vi856

Fig. S 1: FISH analysis in neuroblastoma cell lines. 

FISH analysis of 25 neuroblastoma cell lines reveals the copy number status of 

chromosome arm 1p. Six probes have been used (Cy3, FITC, Cy5, Cy3.4, DEAC, 

Cy5.5), the chromosomes are stained with DAPI.  
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Tab. S 2: Selected genes which knock-down reduces cell confluency in 1p-deleted and 1p non-

deleted cells.  

Function Gene 

concluency 
score 1p-
deleted 

concluency 
score 1p 
non-
deleted 

  ARID1A -0.27 -0.96 

  ATP13A2 -0.54 -0.49 

  CHD5 -0.36 -0.18 

  EPHA2 -0.19 -0.15 

Neuonal EPHA8 -0.15 0.00 

genes EPHB2 -0.28 -0.18 

and/or FBXO44 -0.23 -0.05 

embryonic  GABRD -0.41 -0.22 

development GRHL3 -1.37 -1.58 

  HTR1D -0.70 -0.22 

  HTR6 -0.50 -0.35 

  MMEL1 -0.45 -0.07 

  MMP23B -0.40 -0.46 

  PAX7 -0.22 -0.61 

  SCNN1D -0.53 -0.38 

  ZBTB17 -0.06 0.11 

  ASAP3 -0.56 -0.72 

  CDC42 -1.18 -0.73 

  CDK11B -1.96 -1.18 

  CNKSR1 -0.14 -0.58 

Cell growth DFFA -0.70 -0.80 

and  CASP9 -0.79 -0.29 

proliferation EFHD2 -0.14 -0.27 

  IL22RA1 -0.05 -0.48 

  NR0B2 -0.09 -0.64 

  NUDC -0.65 -0.27 

  SLC9A1 -0.84 -0.73 

  TNFRSF18 -0.48 -0.55 

  TNFRSF4 0.15 -0.34 
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Tab. S 3: Differentially expressed genes in IMR-32 after EphB2 siRNA knock-down. 

Gene 
p-

value 
Fold 

Change 
Gene 

p-
value 

Fold 
Change 

FCF1P1 0.0096 6.48 STC2 0.0330 1.78 

HGF 0.0096 6.19 RP11-244O19.1 0.0330 1.74 

AC083867.4 0.0096 5.77 RPL23AP50 0.0105 1.74 

RP11-548N1.1 0.0366 5.60 CTC-268N12.3 0.0330 1.71 

LRRC4B 0.0096 5.19 SRGAP3 0.0190 1.70 

GBP1 0.0176 4.68 RP11-317G6.1 0.0105 1.69 

TCEAL7 0.0366 4.38 ABCC5-AS1 0.0190 1.68 

NAV2-AS2 0.0187 2.83 AC138035.2 0.0105 1.67 

RP11-778J15.1 0.0325 2.67 RP11-367O10.1 0.0105 1.64 

NAV2-AS3 0.0103 2.56 RP4-633I8.1 0.0330 1.63 

GDNF 0.0330 2.53 EEF1A1P25 0.0105 1.58 

AC073109.2 0.0105 2.47 PCDHB18 0.0330 1.58 

RBP1 0.0330 2.41 ZNF883 0.0330 1.55 

RP11-134O21.1 0.0105 2.38 RP11-457M11.5 0.0190 1.52 

CTD-2215E18.3 0.0103 2.34 RP11-326L2.1 0.0105 1.51 

RPL7AP31 0.0325 2.33 CTB-176F20.3 0.0190 1.51 

AC013472.3 0.0325 2.32 LL22NC03-2H8.5 0.0190 1.50 

TRABD2B 0.0105 2.32 RPL5P3 0.0105 1.48 

RP1-296L11.1 0.0105 2.30 RP3-472M2.2 0.0105 1.46 

ZBTB12P1 0.0190 2.09 RP11-887P2.5 0.0105 1.41 

KRT18P55 0.0330 2.06 ABCA12 0.0105 1.36 

TTC18 0.0105 1.97 CTD-2293H3.1 0.0105 1.26 

PCDHA6 0.0190 1.95 DHRS2 0.0330 -1.51 

AC093390.1 0.0325 1.89 VN1R80P 0.0330 -1.68 

AC106801.1 0.0325 1.87 P2RY6 0.0325 -2.02 

IFIT3 0.0330 1.87 TMEM255B 0.0309 -2.48 

RP11-764K9.1 0.0190 1.86 PRAME 0.0521 -2.64 

RP11-354P11.8 0.0105 1.85 RAB33A 0.0176 -2.87 

RP11-162A12.3 0.0105 1.84 YBX3 0.0477 -3.19 

PSAT1 0.0190 1.83 RP11-120K18.2 0.0477 -3.25 
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Tab. S 4: Shared differentially expressed genes in IMR_shEphB2 #2/#3 in absence (EphB2 On) 

and presence (EphB2 Off) of doxycycline, all results are at least significant (p<0.05). 

Gene 

Fold 
change 

shEphB2 
Off 

Fold 
change 

shEphB2 
On 

Gene 

Fold 
change 

shEphB2 
Off 

Fold 
change 

shEphB2 
On 

Gene 

Fold 
change 

shEphB2 
Off 

Fold 
change 

shEphB2 
On 

ABCC8 2.037 1.835 EYA4 1.576 1.694 PITPNM3 -2.871 -2.875 

ABCC9 -2.190 -2.069 F3 -2.391 -2.551 PLCB2 -1.841 -1.538 

ADAMTS4 -2.376 -2.238 FBLN2 -2.195 -1.862 PPP1R17 -1.654 -1.535 

AFF3 2.685 2.665 GKAP1 -2.344 -2.331 RAMP1 -2.176 -1.902 

ALPK2 -2.691 -2.751 GLB1L3 1.675 1.527 RNF112 -2.128 -2.316 

ANGPT1 1.653 1.596 GPX8 -2.952 -3.059 ROBO2 1.589 1.848 

ANKFN1 -2.108 -2.145 GRIK3 1.818 1.725 RTL1 -1.744 -1.542 

ANKRD18A 2.120 1.990 GRIP2 1.850 1.871 RXRG -2.927 -2.508 

ARHGEF28 1.718 1.702 HERC5 1.695 1.604 S100A6 1.640 1.748 

BMP7 2.038 2.110 HS3ST3A1 1.730 1.509 SEMA5A 1.570 1.559 

BOK -2.094 -1.998 HTR3A -1.587 -1.592 SHTN1 -1.816 -2.037 

BTBD11 -3.373 -3.335 IFI44 -2.695 -2.577 SLC6A2 2.154 1.699 

CA12 -1.743 -1.632 IL13RA1 2.069 2.155 SSFA2 -1.753 -1.660 

CCKAR -2.420 -1.906 IL1RAPL1 1.746 1.949 STIM2 -1.511 -1.576 

CCSER1 2.159 2.142 ISLR2 -2.193 -2.340 STRA6 -2.424 -2.509 

CDH10 1.964 2.158 ITPKB -1.508 -1.506 STUM -1.836 -2.053 

CELF3 1.799 1.572 KAT2B 2.063 2.013 STX3 -2.651 -2.508 

CHL1 -1.960 -2.106 KCNJ6 2.975 2.833 THSD7A -2.268 -2.523 

CHRNA9 -4.539 -4.590 KCNJ9 1.739 1.610 TIMP1 -3.044 -2.959 

CNR1 -1.636 -1.591 LITAF -2.302 -2.214 TMEFF2 1.728 1.549 

CNTNAP3 1.559 1.571 LR 2.395 2.669 TOM1L1 -1.881 -1.953 

COLEC12 2.148 1.959 MAMDC2 2.395 2.669 TUBA4A -2.368 -2.302 

CRABP1 -3.872 -3.612 ME3 -2.326 -2.263 UGT8 -1.791 -1.850 

CRHR1 -1.801 -2.006 MEG3 -3.625 -3.646 VEGFD -3.040 -2.929 

CXCL12 -2.227 -2.398 MEG8 -2.779 -2.822 WNT5A 2.700 2.320 

DLK1 -1.562 -1.591 MTTP -1.555 -1.941 ZFAND4 -1.685 -1.828 

DMRTA1 -1.839 -1.846 NELL1 1.971 1.744 ZIC5 1.561 1.694 

DOCK11 2.695 2.925 NDRG2 1.688 1.630 ZNF264 -1.687 -1.605 

ELOVL6 -1.907 -2.011 NEUROD2 -1.505 -1.500 ZNF334 2.284 1.897 

EMC10 -2.206 -2.041 NEUROG2 -1.985 -1.971 ZNF521 -1.748 -1.709 

EML5 2.538 2.559 NOS1AP 1.831 1.701 ZNF677 -2.964 -2.958 

ENPP2 -2.240 -2.310 NRP1 2.457 2.472 ZNF835 -1.606 -1.538 

EPHA4 1.813 1.903 NRP2 -2.683 -2.404 ZNF844 -2.505 -2.643 

EPHB4 -3.886 -3.749 NWD2 3.827 3.703 ZNF876P -2.842 -2.926 

ESYT3 -1.810 -1.701 PIGM 1.896 1.824 
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Tab. S 5: Genes uniquely differentially expressed in shEphB2 Off and EphB2 Off condition in 

IMR32_shEphB2 #2/#3, all results are at least significant (p<0.05). 

 

 

 

  

shEphB2 Off shEphB2 On 

Gene 
Fold 
change Gene 

Fold 
change 

BCAN 1.78229263 GJA1 3.10443033 

C1orf226 1.69249093 PDE1A 2.23474781 

PLPPR4 1.64018427 LMX1A 1.82782285 

ZNF551 1.63885236 DNAH7 1.78796 

CYTOR 1.5540148 PFKFB2 1.64740008 

HS3ST3B1 1.54777595 CCDC80 1.60277526 

POGZ 1.53871545 DPM3 1.58998197 

GATA2 1.53773161 TMEM74B 1.58024689 

ZNF107 1.53704625 PCDH9 1.57814376 

CASQ1 1.52073287 EPB41L4B 1.54482017 

KIAA1549L 1.50627167 TTC9B 1.52819272 

KIF1A -1.51074132 NACC2 1.51735093 

ACKR3 -1.51242559 TBX2 1.51516316 

SERINC2 -1.51488745 MYCBP2 1.50123209 

TNC -1.51930241 CORO2B -1.50790262 

CSPG4 -1.51999631 BAALC -1.52427941 

NHLH2 -1.52426802 PDE3A -1.52550556 

GOLGA7B -1.53114532 PLEKHA6 -1.54563012 

CD163L1 -1.53417393 ARHGAP28 -1.56324447 

HIST3H2A -1.57005974 PXDNL -1.57761276 

PID1 -1.5821893 JPH4 -1.61196847 

SRPX -1.58592947 GPR26 -1.63474383 

IGDCC3 -1.58874127 KCNK3 -1.71459188 

GPC1 -1.60263508     

ETV5 -1.6387073     

HES6 -1.65091155     

HIST3H2BB -1.6533431     

NHS -1.67565417     

PCSK9 -1.68112456     

AL353743.1 -1.69400468     

DCLK3 -1.7122369     

APCDD1 -1.72587985     

CNN1 -1.77051922     

DUSP6 -1.78283935     

AL117190.1 -1.80888155     
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Tab. S 6: Differentially expressed genes in TR14 after EphB2 siRNA knock-down 

Gene p-value 
Fold 

Change 

C10orf53 0.0176 5.87 

CSMD2 0.0366 5.29 

RNU6-31P 0.0366 5.27 

ADAMTS14 0.0366 4.86 

TMEM178A 0.0366 4.50 

CHST13 0.0325 2.89 

GUCY1A2 0.0103 2.77 

PARK2 0.0190 2.70 

RP11-736K20.5 0.0187 2.59 

RP11-617D20.1 0.0325 2.31 

CTB-33G10.1 0.0330 1.98 

RNF180 0.0330 1.94 

PGBD4P3 0.0190 1.94 

INSM1 0.0330 1.80 

RP11-181C3.1 0.0325 1.69 

ASPRV1 0.0105 1.68 

DAB1 0.0330 1.64 

DISC1FP1 0.0330 1.51 

RP11-586D19.1 0.0190 1.51 

MEIS1-AS1 0.0105 1.51 

RP11-74C1.4 0.0190 -1.52 

MEIS1-AS2 0.0103 -1.52 

PCDP1 0.0187 -1.56 

LMCD1 0.0330 -1.57 

CD101 0.0187 -1.60 

PCDH19 0.0190 -1.70 

RP11-3D4.3 0.0190 -1.83 

RNU6-875P 0.0105 -2.08 

ERP27 0.0105 -2.10 

AMER2 0.0325 -2.24 

ADAM21 0.0309 -2.70 

RP11-382A20.1 0.0477 -3.84 

LINC00444 0.0083 -3.91 

CTC-268N12.3 0.0477 -4.74 
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Fig. S 3: EphB2 knock-down in combination with MAKP inhibition has no impact on cell confluency 

in 1p non-deleted cell lines. 

The 1p non-deleted cell line TR14 was treated with three different siRNAs against EphB2 

in combination with the selective MAPK inhibitor FR180204 [5 µM]. All results are 

compared to a non-targeting scrambled siRNA as negative control (NC). The cell 

confluency was assessed after 0, 6, 12, 24, 36, 48 and 72 h. One exemplary result in 

triplicates, +SD.  
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Fig. S 2: EphB2 knock-down has no impact on phosphorylated MAPK and Akt levels in 1p non-

deleted cell lines. 

EphB2 was knocked-down in the 1p non-deleted cell line TR14 with three different siRNAs. 

After 96 h the protein levels of HGF, MAPK, Akt and EphB2 through western blot. All 

results were compared to a non-targeting scrambled siRNA as negative control (NC). 
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6.2 Abbreviations 

A, C, T, G, U, N adenine, cytosine, guanine, thymine, uracile, any 

nucleotide 

APS     ammoniumpersulfate  

ATP     adenosine-5´-triphosphat  

BAC bacterial artificial chromosome 

BCR     RhoGEF and GTPase activating protein 

Bp     base pair  

BSA     bovine serum albumin  

cDNA     complementary DNA 

cm centimeter 

CPM counts per million  

Cy3/ Cy3.5/ Cy5/ Cy 5.5 Cyanine 3/ 3.5/ 5/ 5.5 

CYCLOPS copy number alterations yielding cancer liabilities 

owing to partial loss 

DAPI     4,6-diamino-2-phenylindol  

dATP     2'-deoxyadenosine 5’-triphosphate  

DAVID database for annotation, visualization and integrated 

discovery tool 

dCTP     2'-deoxycytidine 5’-triphosphate  

DEAC 7-diethylaminocoumarin-3-carboxylic acid 

dGTP 2'-deoxyadenosine 5’-triphosphate 

DM     double minutes 

DMSO     dimethylsulfoxid 

DNA      deoxyribonucleic acid 

DNA desoxyribonucleic acid  

DNase     desoxyribonuclease  

dNTP     2'-deoxyribonucleoside 5’-triphosphate  

dTTP     2'-deoxythymidine 5’-triphosphate 

dUTP     2'-deoxyuracil 5’-triphosphate  

E. coli     Escherischia coli  

EDTA     ethylendiamintetraacetic acid, Na-salt  

ELISA      Enzyme-linked Immunosorbent Assay 

et al.     et alii (and other)  

FACS     fluorescence activated cell sorting  

FBS fetal Bovine serum 
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FISH fluorescence in situ hybridization 

FITC fluorescein isothiocyanate 

for forward 

FSC     forward scatter 

g gram 

G0/G1/G2 gap 0/ gap 1/ gap 2 phase in cell cycle 

GO gene ontology 

h hour 

H20dd double-distilled water 

HDACs    histone deacetylases 

HPV     human papilloma virus 

HRP horseradish peroxidase 

HSR     homogeneously stained region 

INSS     International Neuroblastoma Staging System 

kDa     kilodalton  

l     liter  

LB     Luria-Bertani  

LOH     loss of heterozygosity 

m     milli  

M     molar  

mA     millampere  

min     minute(s)  

miRNA     microRNA 

ml milliliter  

mRNA     messenger RNA 

mRNA messenger RNA 

n nano 

nm nanometer 

p     piko 

PAGE     polyacrylamide gel electrophoreses  

PBS     phosphate buffered saline  

PCR     polymerase chain reaction  

pH  potentia Hydrogenii  

PI propidium iodide 

qRT-PCR    quantitative real-time PCR  

rev reverse 
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RISC RNA-induced silencing complex 

RNA     ribonucleic acid 

RNA     ribonucleic acid  

RNase     ribonuclease  

rpm     rotation per minute  

RPMI1640 Rosvell Park Memorial Institute, medium formulation 

1640  

RT     room temperature  

RT-PCR    real time PCR 

s second 

S.D.     standard deviation  

SDS sodiumdodecylsulfat 

SE super enhancer 

sec     second(s)  

siRNA small interfering RNA 

SRO     smallest region of overlapping deletion 

SSC     side scatter 

TBE Tris/Borate/EDTA, 

TBS-T tris-buffered saline with Tween 20 

TEMED N, N, N´, N´-tetramethylethylendiamin 

TF     Transcription factor 

Tris     tris-(hydroxymethyl)-aminomethan  

Triton X-100 octyl-phenoxy-ethylenoxide 

TSG     tumor suppressor gene 

U     unit (a determinate of an enzyme activity)  

UV     ultra violet 

UV     ultraviolet  

V     Volt  

W     Watt  

z-VAD-FMK carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- 

fluoromethylketone 

μ     micro  
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