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Abstract: This study sought to evaluate the in utero exposure to aluminum and status of selected
trace elements in South African women at delivery since aluminum is known to be toxic in all
developmental stages even at low concentrations. Serum aluminum was negatively correlated with
aluminum in urine, both uncorrected and corrected for creatinine, which suggests the retention
of aluminum in body stores. Serum copper and zinc levels were found to be high in this study
population. Serum copper levels were negatively correlated with aluminum in serum (β = −0.095;
p = 0.05). There was a marginal negative correlation between aluminum levels in serum and
manganese levels in whole blood (β = −0.087; p = 0.08). Copper levels in maternal serum were
negatively correlated with birth weight and the length of neonates. There were a number of positive
correlations between maternal characteristics and birth outcomes. Mothers who consumed root
vegetables frequently appeared to be protected from aluminum retention and increased body burden
since their serum aluminum levels were found to be significantly lower. The findings of the current
study can be used as a baseline for further research on aluminum exposure and its associated
interactions and outcomes in vulnerable populations.

Keywords: aluminum; maternal serum and urine; essential trace elements; in utero exposure;
birth outcomes

1. Introduction

Aluminum (Al) is the third most abundant element in the Earth’s crust. Human exposure to
Al from various sources is very common and increasing constantly [1]. Even though it has been
estimated that, to meet the current global demand for Al, 11 kg of the metal must be produced yearly
for every person on Earth, the use and efficiency of extraction by the Al industry cannot match that
of the geochemical cycling of the metal since almost half of cast Al is destined to end up as waste [1].
Both newly extracted and waste Al has the potential to enter the biotic cycle. The consequences have
already been manifested in the death of fish and trees in acidified surface waters and catchment areas,
respectively, as well as limited plant growth on 30% of the Earth’s ice-free land [2,3].
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Al is widely used in many industries such as engineering, food processing, in drinking water
treatment as a flocculent, in pharmaceutical preparations, cosmetics and hygiene products, and in
household implements such as Al cooking utensils. Inhalation, ingestion, and dermal absorption
are the primary routes of exposure to Al in humans with ingestion being the most common.
Individual exposure is also influenced by the geography, related anthropogenic activities, diets,
use of Al-containing medications and dietary supplements, and use of Al saucepans and foils for
cooking [4–7]. However, Al is still perceived to be a “safe” metal and there is no legislation limiting
human exposure to Al.

In humans, it has been shown that once the Al load exceeds the body’s excretory capacity,
the excess is deposited in various tissues (bone, brain, liver, heart, spleen, and muscle), which has a
negative impact on human health. Therefore, Al toxicity affects various systems and may manifest as
encephalopathy, various bone disorders, proximal myopathy, increased risk of infection, increased
left ventricular mass, decreased myocardial function, and microcytic anemia [8]. Al is known to be a
neurotoxin and chronic exposure to even low levels of Al may lead to neurological disorders. As such,
Al has been implicated in the etiology of Alzheimer’s disease and Parkinsonism-dementia even
though the association between Al and the various types of dementia requires further investigation [9].
Adverse effects of non-occupational Al exposure in individuals with impaired renal function are
well documented. These patients are typically exposed to Al through dialysate fluid or medicinal
sources [10]. Therefore, Al plays a role in the etiology of many diseases with neurotoxicity being of
particular concern. It is especially problematic in susceptible populations and in the developmental
stages [11].

Although the knowledge base of Al toxicity has increased markedly in recent decades, very little
is known regarding the reproductive toxicity of Al in humans [12]. To date, most studies have been
performed in laboratory animal models. For example, in mice, it has been shown that intraperitoneal
injection of Al sulphate at a dose of 200 mg/kg at 10 to 13 days of gestation not only lowered maternal
weight but also produced behavioral and neurochemical alterations in newly born mice that persisted
into adulthood [13]. This indicates that, at the perinatal stage, Al is highly neurotoxic and inhibits
prenatal and postnatal brain development [13,14]. Other studies have shown that, although an excess
intake of Al through the maternal diet during gestation and lactation did not produce maternal toxicity,
it caused permanent neurobehavioral deficits in weaning mice and rats [15].

The research currently points to a possible Al role in human reproduction. High concentration of
Al in human semen as well as the presence of Al in spermatozoa have been reported in patients with
deteriorated semen quality, which suggests possible implications of Al in spermatogenesis and sperm
count [16]. An analytical study on placenta tissues showed that Al was present in 95% of placenta
body samples and 81% of placenta membrane samples, but only in 46% of umbilical cord samples,
which indicates that the placenta acts as a partial barrier to Al exposure in utero [17]. The authors
concluded that the developing fetus may still be vulnerable to cumulative Al exposure and that it
is, therefore, important to establish reference ranges for Al levels in placental tissues [17]. Exposure
to toxic metals including Al has been recently investigated as a potential cause of miscarriages [18].
This study identified increased levels of Al and other toxic metals in miscarried embryonic material
and suggested some causative environmental and lifestyle factors. Prenatal exposure to Al during
pregnancy has not been studied in any great depth in humans even though it is well established
that the unborn infant is at an increased risk of Al toxicity in utero due to its immaturity related to
anatomical and physiological factors [19]. In addition, Al overload has been demonstrated in neonates
and pre-term infants requiring parenteral nutrition or intravenous fluid therapy [20–22]. Furthermore,
neonatal Al exposure from parenteral nutrition in the high-risk pre-term infant may have adverse
effects on bone health at a later stage as well as on short-term cognitive outcomes [20]. These studies
all reinforce the well accepted vulnerability of the fetus, the neonate, and the developing infant to the
toxicity of Al exposure.
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The extent of the toxic effects of Al can also depend on the status of essential elements such as
copper (Cu), zinc (Zn), selenium (Se), manganese (Mn), and other elements since these trace metals
are needed for enzymatic reactions, metabolic processes, and vital physiological and biochemical
functions [23]. Therefore, their imbalance can be detrimental to health. For example, Cu is essential for
hemoglobin synthesis, normal bone formation, and maintenance of myelin within the nervous system.
Zn is required for protein and nucleic acid synthesis [24]. Increasingly, studies are demonstrating
the importance of trace essential metals such as iron (Fe), Zn, and Cu in supporting a successful
pregnancy [25]. Since essential elements are known to play significant roles in mediating the immune
system and inflammatory responses, there may be an association between deficiencies of essential
elements during pregnancy and the development of pregnancy complications mediated by oxidative
stress and inflammation [26]. A recent study in a cohort of pregnant women in Australia found that a
combined low Cu and Zn status was associated with a reduced risk of any pregnancy complications
when compared with a high Cu and Zn status [26].

Since there is a scarcity of studies about the association between Al exposure in utero and the
status of essential trace elements, the main aim of our study was to evaluate exposure levels to Al in
the prenatal stage, which is measured in serum and urine samples from rural populations of South
African women during delivery. The study also measured concentrations of selected essential elements
(Cu, Zn, Se, and Mn) and their correlation with Al levels. Lastly, the possible associations between Al
levels and certain factors (e.g., birth outcomes, socio-economic, housing, dietary, and lifestyle factors)
were also investigated.

To the best of our knowledge, this is the first study that examines in utero exposure to Al and its
effects on selected essential trace elements in a large cohort of South African delivering women.

The current study is part of an international collaborative research being carried out under the
umbrella of the Arctic Monitoring and Assessment Program (AMAP), which evaluates the outcomes
of exposures to hazardous substances in vulnerable populations (such as pregnant women and their
fetuses and infants). The AMAP research collaboration also compares the various study findings
between the northern and southern hemispheres with the aim of informing policy and decision-making
processes in the interests of environmental and public health.

2. Materials and Methods

2.1. Study Population

This cross-sectional study took place in four rural sites situated along the coastal regions of South
Africa. The study participants were women admitted for delivery at the local maternity sections at
local public hospitals. Women were informed about the study by admitting medical personnel on duty
and given an information sheet about the study. Women who agreed to participate in the study signed
an informed consent form and agreed to donate blood and urine samples before delivery. Participants
agreed to answer a socio-demographic questionnaire by interview and consented to access and use of
hospital birth outcome data (including maternal characteristics and neonate characteristics such as
weight, length, and head circumference, gestational age, Apgar score), as well as birth complications,
if any, for research purposes. The participation rate was high with 96% of approached women agreeing
to take part in our study. In total, samples of blood and urine were collected from 450 women.
Participation in the study was voluntary, confidentiality was assured, and participants were informed
that they could withdraw from the study at any time.

2.2. Sample Collection

From each pregnant woman participating in the study, two samples of venous blood were
collected using the Venoject sterile system and BD collection tubes. The process included one sample
into (10 mL) EDTA-containing BD Vacutainer tube for whole blood analyses and one sample into
a non-additive tube for serum analyses. The serum tubes were centrifuged and the serum was
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transferred to acid-washed polypropylene tubes using acid-washed plastic pipettes. For the collection
of blood samples, non-powder gloves were used when handling and collecting samples. Midstream
urine was collected into (30 mL) polypropylene acid-washed containers and, thereafter, decanted into
polypropylene acid-washed tubes. The plastic containers had no metal caps or glued inserts and were
not colored due to the metals found in dyes. All precautions to eliminate and prevent contamination
at collection and sample preparation were applied throughout. Samples of collected whole blood,
serum (post-centrifugation), and urine were stored at −20 ◦C and couriered in a frozen state to the
National Institute for Occupational Health (NIOH) laboratory, Johannesburg, South Africa for analysis.
The NIOH participates in a proficiency testing scheme for whole blood and urine.

2.3. Analytical Procedures for Al, Cu, Zn, Se in Serum and Mn in Whole Blood

2.3.1. Analysis of Al, Cu, Zn, Se in Serum

For the measurement of Al, Cu, and Zn in serum, 0.5 mL volumes of serum samples, internal
standard solution containing 45Sc, 72Ge, (50 µL), 65% ultrapure nitric acid (50 µL) and ultra-pure water
(4.4 mL) were pipetted into a polypropylene tube. The diluted serum samples were analyzed for
element content using an Agilent 7500ce Inductively Coupled Plasma Mass Spectrometer (ICP-MS)
with an Octopole Reaction System. The instrument was calibrated with calibration standards prepared
using SeronormTM Trace Elements in serum (Sero Ltd., Billingstad, Norway) for matrix matching.
For 27Al, 45Sc was used as the internal standard and analysis was performed in the no gas acquisition
mode. 63Cu and 66Zn were measured in the helium gas mode with 72Ge used as the internal standard.
Aliquots of each sample were analyzed in triplicate. The detection limits for Al, Cu, and Zn were
0.17 µg/L, 0.50 µg/L, and 0.40 µg/L, respectively. SeronormTM Trace Elements in serum (Sero Ltd.,
Billingstad, Norway) were analyzed with every analytical run in intervals of 10 samples for quality
assurance of all element measurements.

For the Se assay, samples were diluted three-fold with equal amounts of a diluent solution
(1.35% sodium chloride and 0.017% ammonium dihydrogen phosphate) and a palladium modifier
solution (60% palladium 2000 mg/L in 0.5% Triton X-100). Se in serum measurements were carried
out on a Thermo Scientific (Waltham, MA, USA) iCE3000 series spectrometer with graphite furnace
and autosampler. A Se calibration curve was prepared by dilution of a 10 mg/L Se working stock
solution so that the concentration ranged from 50 µg/L to 200 µg/L. ClinCheck serum control for trace
elements level 1 and 2 were analyzed immediately after calibration and after every six samples for
quality assurance of the Se determination. The detection limit for Se in serum was 6.5 µg/L.

2.3.2. Analysis of Mn in Whole Blood

For the measurement of Mn in whole blood, 0.5 mL of the blood sample was pipetted into a
polypropylene digestion tube, which is followed by the addition of 65% ultrapure nitric acid (1 mL).
The mixture was digested at 90 ◦C for 2 h. Once cooled, 70 µL internal standard solution containing
45Sc was added and further diluted with ultrapure water to a final volume of 7 mL. The digested
blood samples were analyzed using an Agilent 7500ce (ICP-MS) with an Octopole Reaction System.
The instrument was calibrated with calibration standards prepared using SeronormTM Trace Elements
in whole blood level 1 for matrix matching. The analysis was performed in a helium acquisition
mode. Aliquots of each sample were analyzed in triplicate. The detection limit for Mn was 0.07 µg/L.
Two certified reference controls known as SeronormTM Trace Elements in whole blood levels 1 and 2
(Sero Ltd., Billingstad, Norway) were analyzed with every analytical run in intervals of 10 samples for
quality assurance of all element measurements.

2.3.3. Analysis of Al in Urine

Urine samples (1 mL volumes) were acidified with 0.1 mL of 65% ultrapure nitric acid (Fluka,
Munich, Germany). An internal standard solution containing 72Ge was added (50 µL) to all
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samples, reagent blanks, reference controls, blank urine collection tubes, and calibration standards.
The measured solution held 5 mL (5 times sample dilution) with deionized water. Urinary Al levels
were measured in the no gas acquisition mode. The percentage recovery, when using certified controls
(Lyphochek level 1 and 2), was 95.1% and 97.6% for level 1 and 2, respectively. The detection limits for
urinary Al was 1.71 (SD 0.41) µg/L.

2.3.4. Analyses of Creatinine in Urine

The creatinine concentration in urine samples was determined by using the Jaffé rate method
and an automated Roche Cobas 111 analyzer. Urine samples were dispensed into the Cobas cups,
which were automatically injected in a reaction cell containing an alkaline picrate solution (Cobas
111 creatinine Jaffé CREJ2 reagent 1 and 2). The sample combined with the reagent to produce a
yellow-orange colored complex (alkaline-picrate creatinine complex), which is directly proportional to
the creatinine concentration in the sample. The Cobas Calibrator for automated systems, Ref 10759300,
was used for the assay. Certified controls, ‘Liquichek Urine Chemistry Control’, level 1 and 2 (Bio-Rad,
Hercules, California, USA) were run before and after every 20 samples.

2.4. Covariates

Covariate information was obtained during the questionnaire-based interview and from medical
records. Maternal weight and height were recorded at the hospital on admission. From the
medical records, the neonate characteristics retrieved include birth weight (g), birth length (cm),
head circumference (cm), and gestational age (weeks). Pre-term labor was defined as mothers giving
birth at less than 37 weeks of gestational age. Education was categorized as no education to completed
primary school, completed secondary school, and any level of tertiary education attained. Maternal
tobacco smoking during pregnancy was defined as yes or no. Exposure to environmental tobacco
smoke (ETS) was defined as exposure to tobacco smoke from smoking by others in the household.
A binary classification was used for exposure to indoor smoke from the burning of fossil fuel (wood and
coal) for the purpose of heating or cooking as well as separating study participants into those exposed
to fossil fuel and those not exposed (for example, those using electricity). Dietary questions relating
to the intake of proteins, carbohydrates, dairy products, tea, coffee, bottled water, fruits, and vine,
root and leafy vegetables were assessed and classified as daily, at least once a week, and seldom (both
for pre-pregnancy and during pregnancy).

2.5. Statistical Analyses

The statistical analyses were performed using STATA (StataCorp, 2013. Stata Statistical Software:
Release 13. College Station, TX, USA: StataCorp LP). Al was detected in all serum and urine samples.
Bivariate analyses between maternal serum Al exposure and covariates were evaluated by using
the Spearman’s correlation coefficient. The distribution of maternal serum Al was skewed and was
square-root-transformed after exploring the best fit for transformation. Multivariate linear regression
was carried out using a backward deletion approach by starting with a full model of factors significantly
associated with natural square-root-transformed maternal serum Al levels in the univariate analysis.
All statistical tests were two-tailed and statistical significance was set at p < 0.05.

2.6. Ethical Considerations

The work was carried out in accordance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki). Ethics approval for the study was obtained from the Human Research Ethics
Committee of the University of Witwatersrand in Johannesburg (Protocol no. M10742), and from
the relevant provincial Departments of Health. In addition, CEOs of the respective hospitals had to
confirm that he/she allowed the research work to proceed. Identical procedures were followed in terms
of obtaining consent from participants. Confidentiality was maintained by assigning identification
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numbers to all study participants. During the informed consent process, it was emphasized that
participation was voluntary and could be withdrawn at any time.

3. Results

3.1. Participant Characteristics

The background characteristics of study participants are presented in Table 1. Most of the mothers
were single and of African Black ethnicity. They were well educated with one-third obtaining tertiary
level education. Many resided in formal housing with most of the households having access to potable
municipal tap water but 15.3% of participants had to rely on rivers and borehole sources for drinking
water. Self-reported smoking prevalence and alcohol consumption was very low.

Table 1. Socio-economic characteristics of study population.

Characteristic N = 450

Mothers’ characteristics

Age (years) [mean, (SD)] 24.8 (6.2)

Marital status (n, %)
Married 73 (16.5)
Single 294 (66.5)
Co-habiting 71 (16.1)

Education (n, %)
None/Primary 51(12.2)
Secondary 223 (52.1)
Tertiary 153 (35.8)

Race/ethnicity (n, %)
African Black 383 (86.7)
Others 51 (11.5)

Percentage unemployed (n, %) 361 (81)

Ownership of home (n, %)
Owned 396 (89.2)
Rented 48 (10.8)

Housing type (n, %)
Formal housing 361 (81.7)
Flat 13 (2.9)
Backyard dwelling 9 (2.0)
Informal house (shack) 43 (9.7)
Other 16 (3.6)

Fuel used for cooking (n, %)
Electricity 287 (64.8)
Paraffin 31 (7.0)
Gas/Wood 125 (28.2)

Fuel used for heating (n, %)
Electricity 220 (50.1)
Paraffin 27 (6.2)
Gas/wood/coal 80 (18.2)
None 112 (25.5)

Source of drinking water (n, %)
Indoor tap 111 (25)
Outdoor tap 265 (59.7)
Other (borehole and river) 61 (15.3)

Perception that air quality is good in the neighborhood (n, %) 358 (80.8)
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3.2. Obstetric and Birth Outcomes

Table 2 shows the descriptive data for obstetrics and birth outcomes. The average weight [mean,
(SD)] of the mothers before delivery was 72.1 (13.1) kg and the average birth weight of their infants
was 3055 (484.8) g, which ranged from 1300 g to 5150 g. The average birth length was 49.3 (3.5) cm and
head circumference was 34.8 (1.8) cm, which ranged from 25 cm to 47 cm. The average gestational age
was 38.1 weeks, which ranged from 29 to 47 weeks. A total of 50.5% of neonates were male. Most of the
infants (76.27%, n = 315) had an Apgar score of 9 at 1 min while 93.95% (n = 388) scored 10 as an Apgar
score at 5 min. Almost 45% of women were primiparous and more than 55% had one or more children.

Table 2. Obstetric and birth outcomes.

Characteristic/Parameter Total (N = 450) Range

Maternal age (y) 24.8 (6.2) 14–49
Maternal weight (kg) 72.1 (13.1) 41–128
Maternal height (cm) 158.1 (9.6) 123.4–176
Gestational age (weeks) [mean, (SD)] 38.1 (1.9) 29–47
Birth weight (g) [mean, (SD)] 3055 (484.8) 1300–5150
Birth length (cm) [mean, (SD)] 49.3 (3.5) 34–57
Head circumference (cm) [mean, (SD)] 34.8 (1.8) 25–47
Apgar score 1 min [mean, (SD)] 9.1 (8.9) 2–10
Apgar score 5 min [mean, (SD)] 9.9 (0.7) 3–10
Sex (% male) 50.5
Parity (%)

0 44.9
1+ 55.1

3.3. Concentration of Serum Al, Urinary Al, and Selected Essential Elements

Concentrations of Al, Cu, Zn, and Se in serum, Mn in whole blood, and Al in urine (uncorrected
and creatinine corrected) within the study cohort at delivery are shown in Table 3. The average
maternal serum concentration of Al was 10.1 (7.95) µg/L with geometric mean (GM) of 6.79 µg/L
(95% CI: 6.12–7.53). The mean concentration of Al in urine was 18.1 (14.9) µg/L with GM of 13.10 µg/L
(95% CI: 11.97–14.35). After correction for creatinine, the mean Al levels in urine were 21.4 (20.03)
µg/g and creatinine with GM of 15.09 µg/g creatinine (95% CI: 13.75–16.55).

Table 3. Concentration of Al in serum and urine, Cu, Zn, and Se in serum and Mn in whole blood in
South African delivering women.

Element N * Mean (SD) Range GM 95% Confidence Interval

Al serum (ug/L) 425 10.1 (7.95) 0.25–59.42 6.79 6.12; 7.53
Al urine (ug/L) 318 18.1 (14.92) 2.21–106.3 13.10 11.97; 14.35

Al urine (ug/g creatinine) 318 21.4 (20.03) 1.45–28.1 15.09 13.75; 16.55
Cu serum (ug/L) 447 2496 (539) 204.8–458 2433 2379; 2488
Zn serum (ug/L) 446 518.8 (156.7) 127.7–1810 497.8 484.5; 511.4
Se serum (ug/L) 444 65.69 (20.4) 10–182.5 62.82 61.08; 64.61
Mn blood (ug/L) 441 17.13 (7.03) 4.49–3.88 15.85 15.28; 16.45

N *—total number of samples analyzed may differ.

GM for Cu levels in serum was 2433 µg/L (95% CI: 2379–2488,) and for Zn serum 497.8 µg/L
(95% CI: 484.5–511.4). Se concentration in serum (GM) was 62.82 µg/L (95% CI: 61.08–64.61) and GM
of Mn in whole blood was 15.85 µg/L (95% CI: 15.28–16.45).

3.4. Association between Serum Al and Selected Essential Elements

A bivariate analysis was performed to determine the association between serum Al levels and
selected essential trace elements (Table 4). Negative correlations were shown between maternal serum
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Al and serum Se as well as between maternal serum Al and Mn in whole blood. The study found a
positive correlation between maternal serum Al and maternal serum Zn. However, the correlation was
not statistically significant. The only significant correlation was between the maternal serum Al and
the maternal serum Cu, which was found to be negative (β = −0.095, p = 0.05).

Table 4. Spearman’s rank correlation coefficient (p-value) of association between maternal serum Al
and essential elements (Cu, Zn, and Se in serum and Mn in blood) at delivery (n = 416).

Element β p-Value

Copper (serum) −0.095 0.05 *
Zinc (serum) 0.035 0.48

Selenium (serum) −0.059 0.23
Manganese (whole blood) −0.087 0.08

* Statistically significant.

3.5. Association between Serum Al, Selected Essential Elements, Maternal Covariates, and Infant
Anthropometry

A negative correlation was found between maternal serum Al and maternal urine Al (rho = −0.222,
p = 0.001) as well as for creatinine corrected urine Al (rho = −0.266, p < 0.001). A significant negative
correlation was found between maternal serum Al and serum Cu (rho = −0.187, p = 0.007). Similarly,
a negative correlation was evident between the maternal serum Al and the maternal blood Mn
(rho = −0.168, p = 0.015) (Table 5). Levels of Al, Zn, and Se in maternal serum and Mn in whole blood
did not seem to affect anthropometry of infants in our study cohort. However, maternal serum Cu was
negatively correlated with infant birth weight (rho = −0.144, p = 0.037) and birth length (rho = −0.152,
p = 0.028). Parity was positively correlated with birth weight (rho = 0.171, p = 0.013).

Table 5. Spearman’s rank correlation coefficient (p-value) of association between maternal serum Al,
the status of selected essential elements, maternal covariates, and infant anthropometry.

Covariates Birth Weight (g) Birth Length (cm) Birth Head
Circumference (cm)

Maternal Serum
Al (ug/L)

Maternal serum Al 0.087 (0.207) −0.057 (0.409) 0.128 (0.064) -
Maternal urine Al 0.037 (0.593) 0.071 (0.305) 0.052 (0.455) −0.222 (0.001) *

Maternal urine Al/Creatinine corrected 0.020 (0.775) 0.024 (0.731) 0.055 (0.426) −0.266 (<0.001) *
Maternal serum Cu −0.144 (0.037) * −0.152 (0.028) * −0.067 (0.335) −0.187 (0.007) *
Maternal serum Zn −0.047 (0.499) −0.013 (0.850) 0.051 (0.464) 0.007 (0.917)
Maternal serum Se 0.114 (0.099) 0.094 (0.175) 0.075 (0.279) −0.022 (0.750)
Maternal blood Mn −0.123 (0.076) −0.024 (0.730) −0.095 (0.172) −0.168 (0.015) *

Age 0.241 (<0.001) * 0.207 (0.003) * 0.053 (0.448) −0.076 (0.270)
Parity 0.171 (0.013) * 0.124 (0.072) 0.053 (0.444) 0.006 (0.930)

Maternal weight 0.175 (0.011) * 0.150 (0.030) * 0.043 (0.537) −0.010 (0.882)
Maternal height 0.237 (<0.001) * 0.069 (0.320) 0.052 (0.452) 0.001 (0.988)

* Statistically significant.

Furthermore, a positive correlation was observed between maternal age and birth weight
(rho = 0.241, p < 0.001), maternal weight and birth weight (rho = 0.175, p = 0.011), and maternal
weight and birth length of infants (rho = 0.150, p = 0.030). There was also a positive correlation between
the maternal height and birth weight (rho = 0.237, p < 0.001) (Table 5).

3.6. Univariate and Multivariate Analysis of Association

3.6.1. Univariate Analysis

In the univariate analysis (Table 6), no association was found between serum maternal Al and
essential elements. Maternal serum Al levels were not associated with the neonate gender. Mothers
who did not smoke during pregnancy were less likely to have elevated maternal serum Al levels
when compared to mothers who smoked during pregnancy (β = −0.542, 95% CI: −0.808 to −0.277,
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p ≤ 0.001). Mothers who ate tinned meat almost every day before pregnancy were more likely to
have elevated serum Al levels than mothers who seldom ate tinned meat before pregnancy (β = 0.531,
95% CI: 0.180 to 0.882, p = 0.003). Similarly, mothers who ate tinned meat almost every day during
pregnancy were more likely to have higher levels of serum Al than mothers who seldom ate this type
of meat during pregnancy (β = 0.373, 95% CI: 0.011 to 0.735, p = 0.03).

3.6.2. Multivariate Analysis

In the final multivariate analysis (shown in Table 6), the factors associated with maternal serum
Al were identified. Mothers of other races were most likely to have lower serum Al levels compared to
African Black mothers (β = −0.662, 95% CI: −1.06 to −0.263, p = 0.001). Mothers using paraffin as a
source of heating in the home were less likely to have high maternal serum Al levels when compared
to mothers using electricity (β = −0.539, 95% CI: −1.044 to −0.035; p = 0.036). However, there was
no significant difference in the levels of maternal serum Al in mothers using gas/wood/coal and
electricity for heating. Mothers who ate root vegetables during pregnancy almost every day were
less likely to have high maternal serum Al levels compared to those who ate these vegetables rarely
or at least once per week. The study did not find any significant correlations between serum Al
concentrations and other dietary intakes including beverages.

Those who reported that their houses were not regularly sprayed with insecticides as part of a
malaria control program were less likely to have higher serum Al levels when compared to those who
had their houses sprayed regularly.

Table 6. Factors predicting Al levels in maternal serum: univariate and multivariate analyses.

Characteristics
Univariate Analysis Multivariate Analysis

β

(Unadjusted) p-Value 95% Conf.
Interval

β

(Adjusted) p-Value 95% Conf.
Interval

Maternal urine Al −0.133 0.062 −0.273 to 0.007 - - -

Maternal urine (Al/creatinine corrected) −0.152 0.030 −0.288 to −0.015 - - -

Maternal serum Se −0.144 0.478 −0.542 to 0.254 - - -

Maternal serum Zn 0.163 0.424 −0.238 to 0.564

Maternal serum Cu −0.427 0.084 −0.911 to 0.058 - - -

Maternal blood Mn −0.250 0.081 −0.530 to 0.031 - - -

Gender of baby
Male Reference
Female −0.034 0.780 −0.272 to 0.205 - - -

Smoked during pregnancy
Yes Reference
No −0.542 <0.001 −0.808 to −0.277 - - -

Ate tinned meat before pregnancy
Seldom Reference
At least once/week 0.136 0.414 −0.191 to 0.464 - - -
Almost every day 0.531 0.003 0.180 to 0.882 - - -

Ate tinned meat during pregnancy
Seldom Reference
At least once/week −0.017 0.921 −0.352 to 0.318 - - -
Almost every day 0.373 0.043 0.011 to 0.735 - - -

Race/Ethnicity
African Black Reference
Other −0.760 <0.001 −1.41 to −0.379 −0.662 0.001 −1.060 to −0.263

Fuel used for heating
Electricity Reference Reference
Paraffin −0.429 0.106 −0.949 to 0.092 −0.539 0.036 −1.044 to −0.035
Gas/Wood/Coal 0.155 0.339 −0.164 to 0.473 −0.199 0.236 −0.530 to 0.131
None 0.343 0.019 0.057 to 0.629 −0.260 0.130 −0.597 to 0.077

Ate root vegetables during pregnancy
Seldom/At least once/week Reference Reference
Almost every day −0.481 0.001 −0.754 to −0.207 −0.383 0.009 −0.668 to −0.098

House regularly sprayed by malaria control
program

Yes Reference Reference
No −0.727 <0.001 −0.992 to −0.463 −0.664 <0.001 −0.990 to −0.339
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4. Discussion

The current study has assessed exposure to Al in utero at delivery in a rural population of
pregnant women in South Africa. The study also measured selected essential trace elements (Cu, Zn,
Se, and Mn) and identified the potential effects of contributing socio-economic and lifestyle factors on
Al levels.

Al was detected in all serum and urine samples. The study has found statistically significant
negative correlations between Al levels in maternal serum and Al levels in maternal urine (both
uncorrected and corrected for creatinine). This finding may indicate limited Al excretion in the study
population and subsequent Al deposition in tissues. It is very difficult to postulate if Al levels in serum
in this study population are high enough to result in toxicity since, at present, there are no referenced
serum Al levels for pregnant women [27].

In terms of reference values, early reports published from 1980 to 1985 showed mean serum Al
values in healthy subjects ranging from 1.9 µg/L to 10.3 µg/L and an overall median of 6.2 µg/L [28].
A review of further reports published from 1986 to 1992 showed a range of 0 µg/L to 5.97 µg/L for Al
in serum with an overall median of 3.25 µg/L [29].

Presently, according to the Agency for Toxic Substances and Disease Registry (ATSDR) of the US
Department of Health and Human Services, Public Health Services, Atlanta, GA, USA, Al serum levels
in healthy individuals who are not pregnant range from 1 µg/L to 3 µg/L. Serum Al levels above
50 µg/L are considered toxic [30].

The mean Al serum level in pregnant women at delivery in our study was 10.1 µg/L with an
overall median of 6.79 µg/L, which is above the ATSDR guidance. These results are comparable to
the 13.92 ± 14.09 µg/L concentrations of Al in plasma, which were measured in a cohort of pregnant
women practicing the ancestral cultural custom of ingestion of earth (geophagy) in French Guiana [31].
A comparable study measured Al in maternal blood in Japanese women and the Al levels reported
were 7.83 µg/L [32]. In most of the reported studies, a direct comparison with our results and the
measured umbilical serum Al in neonates is not possible. For example, Sedman et al., in 1985, reported
serum Al levels of mean 5.17 µg/L in neonates and a similar study in 1989 reported serum Al levels
of 8 µg/L to 12 µg/L [33,34]. The study by Rahbar et al., in 2015, measured Al in the umbilical cord
blood as well as Mn levels in Jamaican newborns. The findings indicated mean concentrations of 10.9
(9.2) µg/L and 43.7 (17.7) µg/L for Al and Mn, respectively [35].

Furthermore, significant differences in Al levels were reported at different gestational stages.
Bougle et al., in 1992, investigated plasma Al concentrations in infants born at different gestational
ages. The mean plasma Al level in pre-term infants born at gestational ages between 28 to 32 weeks,
pre-term infants born at gestational ages between 33 to 36 weeks, and full-term (mean 39 weeks)
infants were 13.2 µg/L, 10.5 µg/L, and 7.8 µg/L, respectively [36]. Urinary Al concentrations in the
present study are negatively correlated with Al in serum. This may be an indication of retention of Al
in storage organs.

Recently, awareness has increased with regard to the consequences of overexposure to biologically
reactive Al at both pre-natal and post-natal stages. This overexposure may impact the health of the
developing infant and increase infant susceptibility to a range of diseases [15]. Additionally, since
2004, the Food and Drug Administration (FDA) has recommended restricting daily Al administration
to 5 µg/kg of body weight for parenteral nutrition and intravenous fluid therapy products in neonates
and pre-term infants precisely because of the well-established adverse health effects of Al [37].

During pregnancy, fetal exposure to Al is influenced not only by the maternal environment
and diet but also by maternal use of Al-containing antacids and other Al-containing medications.
In addition, it has been shown that concomitant consumption of citrate-containing beverages by
pregnant women significantly increases absorption of Al in the gut [38,39]. The same Al absorption
effect has been shown in hemodialysis patients [40]. After birth, infants continue to ingest Al from
human breast milk or infant formulas. Therefore, Al content in human breast milk ranges from
15 µg/L to 30 µg/L. The content of Al in infant formulas especially in soy-based preparations has
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been found to be many times higher. It was found to range from 100 µg/L to 900 µg/L [37]. In short,
exposure to Al during the developmental stages produces toxicity that may impair fetal growth
or development by interfering with the GTPase cycle, the free radical-mediated cytotoxicity, lipid
peroxidation, and changes in serum essential elements [41,42]. Therefore, the vulnerability of infants
to early exposure of Al points to an urgent need to reduce the Al content of infant formulas to as low a
level as possible [43].

The current study also measured the levels of essential trace elements in delivering women.
The concentrations of Cu and Zn in serum exceeded reference values for the general population [27].
In contrast, levels of Se in serum in our study population were similar to those reported for the general
population while the concentrations of Mn in whole blood were higher [44]. The recent Jamaican study
already mentioned measured Al and Mn concurrently in the umbilical cord blood and reported higher
levels of Mn (43.7 µg/L) [32].

Most of the studies that investigated concentrations of essential trace elements in populations
of pregnant women elsewhere in the world did not measure associated Al levels. Therefore, direct
comparisons cannot be made with the results of our study, but the levels of the trace elements can be
used as indicators.

A Turkish study found a significant low level of serum Se and Zn and a high level of serum Cu
in pregnant women when compared to reference populations of non-pregnant women and men [45].
In contrast, our study found high serum levels for both Cu and Zn, and the level of serum Se was
comparable to reference populations. The ranges identified in our current study are reasonably aligned
with the values obtained for Se, Zn, and Cu in a study carried out in Arctic Canada while, in the latter
study, the biological samples were plasma and not serum [46]. A cohort of pregnant women in Pakistan
found Zn levels to be higher in the pregnant population when compared to non-pregnant controls [47].
A similar study, comparing populations of pregnant women in Malawi and the Philippines [48], found
decreased levels of Se in plasma samples from the Malawi study population when compared to a
similar population from the Philippines, which is mainly attributed to reduced dietary intake and
differing soil compositions. However, another study, in a USA cohort near a mining impacted site,
investigated Mn levels in paired maternal and cord blood samples at delivery. This study found that
the median blood Mn levels were lower than a comparable cohort in China, but higher than similar
study cohorts reported elsewhere including Germany, France, Canada, and South Africa [49]. It has
been postulated that competition between Al and essential trace elements during pregnancy may be
one of the possible mechanisms for explaining adverse reproductive outcomes related to Al toxicity
since it is well recognized that oral Al exposure during pregnancy can produce significant changes
in the tissue distribution of a number of essential elements [50]. This concept has been investigated
mainly in patients undergoing hemodialysis [Navarro et al., 1989 [51]] and occupationally exposed
workers [52]. Our previous study on foundry workers found an increase in serum Al levels at low
exposures to Al dust (1 mg Al/m3), an incomplete excretion of Al in the urine but a significant decrease
in Cu and increase in Zn serum levels [53].

However, very few studies to date have investigated the impact of Al exposure on the status
of essential trace elements in vulnerable populations such as pregnant women and their developing
fetuses. This is particularly the case in the southern hemisphere and in developing countries where
almost no information is available. The demand for energy and nutrients is increased during pregnancy
especially for micronutrients such as Cu, Zn and Se, which are involved in numerous biological
processes for the maintenance of life [54]. Since most toxic and essential metals share chemical
properties, it has been suggested that a number of metabolic interactions takes place between essential
and toxic metals (like Al), which could reduce the levels of essential metals or increase the health risks
associated with toxic metals [23] through the subsequent impact on cellular enzymatic and metabolic
processes [52]. Similarly, it is well recognized that high maternal intake of Al can result in the altered
metabolism of trace elements in the offspring [50]. By altering the levels of essential trace elements,
Al may introduce an added dimension to its well established toxicity.
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Our current study has found statistically significant negative correlations between Al and Cu
levels in maternal serum as well as between Al levels in maternal serum and Mn levels in maternal
whole blood. The latter finding warrants further investigation. For example, it is widely accepted
that Mn supplements should not be taken together with Al-containing medications such as antacids
because of the known interaction between the two metals. As an essential metal, Mn is involved in
the formation of bone and in the metabolism of amino acids, cholesterol, and carbohydrates. It is
an enzyme activator and a component of metallo-enzymes. It is also involved in the maintenance of
healthy reproductive, nervous, and immune systems [55]. An inverted U-shape relationship between
maternal Mn levels and infant birth weight has been shown by Zota el al. [56]. No correlation was found
between Al and Zn or between Al and Se in maternal serum. Elevated Cu serum levels are known to
cause Zn levels to deplete even though this is not the case with the population of this study, which
also shows high concentrations of serum Zn and a positive correlation between Al and Zn despite
not being statistically significant. Cu deficiency is known to provoke iron deficiency and microcytic
anemia [52]. In addition, maintaining a healthy Cu to Zn ratio is extremely important for healthy brain
function since elevated Cu levels can alter the activity of dopamine and nor-epinephrine [24]. In the
current study, the concentrations of Al in maternal serum and urine did not affect infant anthropometry
outcomes. However, this study found that maternal serum Cu levels were negatively correlated and
statistically significant in terms of two of the infant anthropometry measures, which are infant birth
weight and infant birth length. Positive and statistically significant correlations were also found
between the age and weight of the mother and the birth weight and length of the infant. A positive
and statistically significant correlation was also found between the infant birth weight and both parity
and maternal height.

Both in univariate and multivariate analysis, no associations were found between maternal Al
levels and essential elements measured. Maternal serum Al levels were not associated with the neonate
gender. Mothers who consumed root vegetables frequently before and during their pregnancies appear
to be protected from Al retention and increased body burden since their serum Al levels were found
to be lower (statistically significant). Al levels in plant foods reflect the Al content of the soil and
water from where they were grown. There may be considerable variation in the Al concentrations of
fresh foods depending on environmental factors, soil contamination, or failure of adequate washing of
the food products. In the absence of contamination, the Al concentrations in fresh vegetables range
from around 0.5 to 3.0 mg per kg of weight in a number of countries despite the fact that some herbs,
teas, and spices are known to absorb and retain much higher concentrations of Al [57]. In the main,
unprocessed foods like fresh fruits, vegetables, and meat contain very little Al and exposure through
ingestion is more likely to be brought about by external contamination such as the use of Al pots for
cooking. The findings observed in our study may indicate that there is very little Al in the environment
where the vegetables were grown and that the study group may not have made use of Al cookware on
a daily basis.

Mothers who lived in houses that were not regularly sprayed with malaria control chemical
agents were found to have lower serum Al concentrations (statistically significant) than those whose
homes were regularly sprayed. A number of pesticide preparations are known to contain toxic metals,
which, in turn, can be absorbed into the environment where they persist and accumulate in the soil
and water, which ultimately impacts human and environmental health.

5. Conclusions

The present study has evaluated the in utero exposure to Al in a large cohort of rural South
African women and can be used as a baseline for further investigations. Scientific consensus indicates
that Al is toxic in all developmental stages and may produce irreversible health effects even at low
levels. Since Al is known to cross the placental barrier, pregnant women should be advised against
consumption of Al-containing antacids and the use of Al utensils for cooking. They should also be
informed about avoiding post-natal exposure of their children to Al.
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The current study has also addressed potential metabolic interactions between Al and essential
trace elements during pregnancy and our findings indicate a significant correlation between low
Al levels and some of the selected essential elements, which indicates competition between Al and
essential elements for common binding sites. It is widely accepted that essential trace elements
are critical for fetal development even though their associated mechanisms in pregnancy are not
fully understood.

From a public health perspective, further investigations are required for preventing the
detrimental health effects of Al exposure and its associated interactions and outcomes in vulnerable
populations such as pregnant women and their developing fetuses. Limitations identified for this
study include the cross-sectional design and a failure to interrogate the intake of antacids during
pregnancy as part of the questionnaire administered to the study participants. Although our study
cohort was large, we collected samples of blood and urine only at the delivery stage. Collections
during the first and second trimesters were not possible due to financial constraints and because large
distances had to be traversed to reach the study participants at various rural sites across South Africa.
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