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Abstract 

The remarkable successes of the physical sciences have been built on highly general 

quantitative laws, which serve as the basis for understanding an enormous variety of 

specific physical systems. How far is it possible to construct universal principles in the 

cognitive sciences, in terms of which specific aspects of perception, memory, or decision 

making might be modelled? Following Shepard (e.g., 1987), it is argued that some 

universal principles may be attainable in cognitive science. Here we propose two 

examples: The simplicity principle (which states that the cognitive system prefers 

patterns that provide simpler explanations of available data); and the scale-invariance 

principle, which states that many cognitive phenomena are independent of the scale of 

relevant underlying physical variables, such as time, space, luminance, or sound pressure. 

We illustrate how principles may be combined to explain specific cognitive processes by 

using these principles to derive SIMPLE, a formal model of memory for serial order 

(Brown, Neath & Chater, in press), and briefly mention some extensions to models of 

identification and categorization. We also consider the scope and limitations of universal 

laws in cognitive science.  
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A central question in cognitive science is the extent to which mental phenomena are 

subject to law-like regularities such as those observed in many aspects of the physical 

world. Additionally, how far might such regularities be general, or indeed, universal, in 

the same sense as, for example, the Newtonian principles that govern the movements of 

the planets, the behavior of falling bodies, and the properties of pendulums? The search 

for such laws has a long history. The German psychophysicists, for example, explored 

whether there were law-like dependencies in the process of sensory transduction (most 

notably leading to Weber‘s Law; and, more controversially, Fechner‘s Law). In the 

domain of learning, the programme of behaviorism took a strong universalist stance, 

aiming to formulate laws of learning (albeit typically in qualitative rather than 

quantitative form) concerning relationships between stimuli and responses that were 

intended to underpin the acquisition of all forms of behavior, in any species. While the 

scope of this program now appears to have been radically overambitious, it is nonetheless 

still true that theories of associative learning (e.g., Shanks, 1995) and their rivals (e.g., 

Gallistel & Gibbon, 2000) provide quantitative and, potentially, general accounts of many 

learning phenomena.  

The cognitive revolution, however, can be viewed as largely focussing attention 

away from the attempt to build universal laws. By viewing the mind as a highly complex 

computational device, it becomes natural to think of cognitive science as a process of 

‗reverse engineering‘---or more specifically, ‗reverse computer science‘---rather than 

following in the mould of physics. Computer science does not seem to be full of 

quantitative universal laws---instead, its focus is on representations, and algorithms 

operating over those representations. Cognitive science has taken the same tack, 

exploring the multiple mental representations appropriate for perception, motor control, 

language, and common-sense reasoning, and considering computational frameworks, and 

specific processing algorithms, in which calculations over these representations can be 

defined. Thus, the projects of discovering how people recognize speech (e.g., Norris, 

McQueen & Cutler, 2000), compute depth from stereo (e.g., Marr & Poggio, 1976), or 

control the motor system (e.g., Wolpert & Ghahramani, 2004). It is tempting to suspect 

that each such problem is sui generis; and that the mechanisms involved will have no 

more in common that the properties of the liver and the properties of the heart (e.g., 



Fodor, J. A., 1983). From this perspective, the quest for universal laws might seem 

inappropriate in the context of cognitive science, and as resulting from a false comparison 

with the physical sciences.  

The correct locus for general principles in cognitive science, if any, might 

naturally be viewed as the computational architecture. Attempts to provide architectural 

frameworks which might provide a universal, or near-universal, structure into which 

specific cognitive theories may be implemented, have been central to the development of 

the field (e.g., production system architectures, e.g., Newell, 1990; Anderson, 1983; and 

various kinds of connectionist architectures, e.g., Rumelhart & McClelland, 1986; as well 

as symbolic-connectionist hybrids of various kinds, e.g., Smolensky & Legendre, 2006). 

Roger Shepard (Shepard, 1957, 1958a, 1958b, 1962a, 1962b, 1964, 1965, 1966, 1980, 

1982, 1987, 1994), in a remarkable sequence of publications, has argued that, 

nonetheless, quantitative universal principles are possible in cognitive science---and 

indeed that such principles may serve as crucial building blocks for the construction of 

cognitive theories in specific domains. Two proposals have been particularly influential: 

Shepard‘s Universal Law of Generalization; and the ―geodesic‖ account of mental 

transformations (e.g, Carlton & Shepard, 1990a, 1990b). These proposals seek to drive 

quantitative laws into the very heart of central cognitive phenomena---which might seem 

to be governed by endlessly capricious representations and algorithms. In this paper, we 

will focus on the Universal Law, which will be central to the later discussion in this 

paper. 

 

Candidate Principles 1: Scale Invariance 

One of Shepard‘s most distinctive contributions to psychological theory has been an 

emphasis on the importance of symmetries in cognitive processes (e.g., Carlton & 

Shepard, 1990a, 1990b; Farrell & Shepard, 1981; Shepard & Cooper, 1982; Shepard & 

Zare, 1983). One of the most basic symmetries, and one that plays a central in the 

physical sciences, concerns scale. Scaling laws reveal so-called self-similarities: patterns 

that repeat in time, space, or other dimensions. From planetary motion, to shock waves 

and fluid flow, self-similarity is a ubiquitous feature of the physical world. Such patterns 

of scaling are so familiar that they may escape our notice. For example, as a pendulum is 



lengthened by a factor f, its dynamics are invariant, except that its period increases by a 

factor f . Suppose that we record the pendulum‘s behavior; but we forget to record 

either spatial or temporal scale. Self-similarity implies that we can never recover this 

scale information. If our data are consistent with one combination of spatial and temporal 

scales, then they will be consistent with a combination in which the spatial scale is f 

times larger; and time is flowing f times more slowly. Thus, the motion of the 

pendulum is scale-invariant. Remarkably, it turns out that many subtle problems in 

physics can be solved by making scale-invariance assumptions alone (Barenblatt, 1996)
i
.  

  A particularly notable feature of self-similar phenomena is that the relevant 

descriptive laws are power laws, i.e., laws of the form:  

 

mi n

m

n

i

n
xxaxy ......1

1        (1) 

 

where a, and n1,…ni,…nm are arbitrary constants. Power laws embody self-similarity--- 

their structure is the same, whatever scale we consider. That is, merely by looking at the 

form of the data, it is impossible to discover the absolute scale (and hence the units of 

measurement) of the variables  y, and x1,…xi,…xm.  Figure 1 illustrates this point with a 

simple example y=1/x
3
. Note that the shape of the function is identical when we ‗zoom-

in‘ on it, in this case by a factor of two on the x-axis, and by a factor 2
3
=8 on the y-axis. 

Note that any other functional relationships between variables are not scale invariant. For 

example, exponential decay has a specific scale (the ‗half-life‘); and the Gaussian has a 

specific scale (i.e., standard deviation). While scale-invariance is well-enough understood 

to be widely practically applied throughout the physical sciences; nonetheless, its precise 

conceptual foundationa are still a question for active research (e.g., Barenblatt, 1996). 

Physics aside, scale-invariance applies across a wide range of social/economic 

(e.g., Gabaix, 1999; Ijiri & Simon, 1977; Mantegna & Stanley, 1995), biological (e.g., 

Gisiger, 2001; Goldberger, Amaral, Hausdorff,  Ivanov, Peng & Stanley, 2002; West & 

Brown, 2005) and cognitive phenomena. In cognitive science, scale invariance applies to 

many of the best claims to be psychological laws (Table 1). Thus, the power laws of 

forgetting, the power law of practice, and Stevens‘ law (that perceptual inputs and 



judgments are related by a power law) are instances of scale invariance. So too is 

Weber‘s Law, which states that the precision of the encoding of a stimulus is proportion 

to the magnitude of a stimulus. Weber‘s Law is an example of scale-invariance, because 

the ratio of precision and absolute magnitude is constant---and hence this ratio is the 

same at all scales (Figure 2). Weber‘s Law is, of course, violated for extremely stimulus 

values, where the sensory system is either overloaded, or at the limits of stimulus 

detection. In both cases, it is the departures from scale-invariance---cognitive bumps---

that are revealing about underlying cognitive mechanisms.  

There is also a wide range of phenomena which have a complex pattern that is 

invariant over changes of scale. For example, patterns of recall often appear invariant to 

changes in time-scale, in a range of paradigms. Maylor, Chater and Brown (2001) asked 

people to recall events that had happened in the last day, week or year, and found that the 

speed at which they were able to retrieve these memories was the same for each 

condition. Of course, the type of event recalled at each time-scale was very different 

(e.g., we might recall a holiday, in the ‗year‘ condition; or eating breakfast in the ‗day‘ 

condition). Had people not made this ‗significance‘ adjustments, participants could 

clearly have retrieved more items for the longer time periods, as any event recalled in the 

last day is a fortiori a memory from the last week and year. In fact, people adjusted what 

counts as significant in a way that maintained scale-invariance---the rate of retrieving 

items was independent of time-scale (Figure 3). As also shown in Figure 3, the same 

effect occurred with prospective memories, i.e., memories for things that will happen in 

the future. 

Another example concerns the shape of serial position curves in serial and free 

recall which may exhibit scale invariance with respect to time. Scale-invariance is 

consistent, in particular, with the much discussed ratio rule: that the slope of the recency 

curve is determined by the ratio of the rate at which items are presented and the time 

since the last item (e.g., Bjork & Whitten, 1974; Glenberg et al. 1983; but see Davelaar, 

Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005). Thus, if the entire schedule of 

learning and test is scaled multiplicatively (see Figure 4), then the slope of the recency 

curve should be unchanged. Similar effects are seen in memory for temporal order. Neath 

and Brown (2006) note that when the position of items separated by 50 ms in a list must 



be recalled, or the day of the week on which an event occurred must be remembered, 

similar serial position curves are observed over timescales that vary by six orders of 

magnitude. 

Finally, note that scale-invariance is ubiquitous in many aspects of the perceptual 

and motor system. In the context of perception, scale invariance is sometimes so natural 

that it is scarcely noticed---for example, object, text, or face recognition is roughly 

invariant to the retinal size of the stimulus; recognition of melodies is roughly invariant 

both to the volume and pitch, and so on. These invariance of scale are, of course, part of a 

wider set of symmetries (e.g., in the visual world, involving translations and rotations), 

which Shepard and colleagues have explored, both in perception and imagery (e.g., 

Farrell & Shepard, 1981; Shepard & Cooper, 1982). Similarly, scale invariance is 

widespread in the motor system. For example,  Schmidt, Zelaznik, Hawkins, Frank and 

Quinn (1979) developed a motor analog of Weber‘s Law, showing that the variable of a 

forced produced scales linearly with the magnitude of that force; and both simple 

movements (e.g., pointing, Soechting & Lacquaniti, 1981) and extremely complex 

movements (e.g., handwriting, Viviani & Terzuolo, 1980) are scale-invariant in both 

space and time.  

We have argued that scale-invariance applies across a wide range of cognitive 

phenomena. Indeed, we suggest that, unless there is reason to suppose that some aspect of 

the environment and agent depends on a specific scale (as, for example, in speech 

processing) scale-invariance may be expected. Thus, a wide variety of psychological 

regularities, many of which are viewed as requiring special theoretical explanation, may 

be viewed as coming from a common source, the symmetry induced by the lack of any 

special phenomena at any particular scale. We suggest, therefore, that it is departure 

from, rather than adherence to, scale-invariance, that requires theoretical explanation.  

Thus, for example, Gilden, Thornton and Mallon (1995) asked people to tap each 

time they thought that a specific time interval had elapsed (in the range 0.3 to 10s). They 

then calculated the temporal displacement from a ―regular‖ rhythm from each successive 

interval. These displacements showed correlations across a wide range of time-scales---

and indeed, the power spectrum of revealed a power law, which is characteristic of scale-

invariance (the exponent of this power law was roughly -1, a noise-structure often 



observed in physical data, Handel & Chung, 1993). Crucially, though, the power 

spectrum also shows a well-defined kind, at high temporal frequency, after which the 

power spectrum has the flat structure characteristic of white noise. Gilden et al. (1995) 

argued that this kink, indicating a violation of scale invariance, is evidence for two 

cognitive processes underlying performance: a scale-invariance timing mechanism 

combined with high frequency ―jitter‖ from the motor system, a viewpoint for which 

there is independent support (e.g., Wing, 1980).  

Violations of scale-invariance may be informative at a qualitative level, too. 

Whereas the human auditory system generally processes acoustic signals in a similar way 

across a wide range of temporal frequencies (i.e., reflecting scale-invariance), there may 

be characteristic psychophysical transitions around frequencies where the dominant 

coding mechanism for frequency changes (i.e., around 4-5 kHz, after which at which 

neural phase locking does not occur, Moore, 2003). And whereas music and ambient 

sounds typically sound qualitatively similar when shifted in frequency, speed sounds that 

are shifted in frequency typically sound utterly bizarre. This presumably arises because 

there is a characteristic band of frequencies in human speech, which is itself a function of 

the fact that the human vocal chambers have a characteristic size, rather than being scale-

invariant (see Lewicki, 2002). The fact that scale-invariance in frequency is violated for 

human speech processing is, therefore, interesting and informative; the maintenance of 

scale-invariance for many other types of stimuli is, by contrast, merely the natural 

default. More broadly, we suggest that violations of scale-invariance are likely to be 

especially revealing of the underlying neural and cognitive mechanisms.  

 

Candidate Law 2: The Simplicity Principle 

Many problems faced by the cognitive system can be viewed as a type of inductive 

inference---as finding patterns in data. The perceptual system finds patterns, providing 

information about the external world, from input to the sensory receptors. Acquiring a 

language involves finding the wide variety of levels of structure described by linguistic 

theory. Learning to classify items, on the basis of experience, involves deriving category 

structures from experience (Feldman, 2000; Tenenbaum, 1999).   



Inductive inference problems of this form can be formulated in terms of Bayesian 

inference (e.g., Chater, Tenenbaum & Yuille, 2006). Accordingly, the probability of each 

pattern or structure, after the data is received, is proportional to the product of the 

conditional probability of the data, given that structure (i.e., how well the structure ‗fits‘ 

the data); and the prior probability of that structure. A central issue in the Bayesian 

program is how these prior probabilities should be set.  

One approach is to set the priors using simplicity---specifically, we assume that 

the probability of a model, grammar, or pattern is inversely proportion to its complexity. 

How can this intuition be made precise? The mathematical theory of Kolmogorov 

complexity (Li & Vitányi, 1997) provides a natural framework. The complexity of a 

formal object, x, is defined as the length of the shortest code in a universal programming 

language that generates x. This code length, the Kolmogorov complexity of x, is written 

K(x). A variety of mathematical considerations
ii
 suggest that the most natural prior 

distribution over possible probabilistic models, M, of the data is proportional to 2
-K(M)

 

(deterministic models are, of course, merely a special case in which all probabilities are 0 

or 1).
iii

 This conclusion can be viewed as a mathematical version of Occam‘s razor---that, 

other things being equal, simple theories should be preferred.  

Suppose we collect data D. From a probabilistic standpoint, a natural objective is 

to choose the most probable model, i.e., the M that maximizes Pr(M|D). By Bayes‘ 

theorem, we know that this will be the M that maximizes:  

 

Pr(D|M)Pr(M)        (2) 

 

which, substituting the universal prior into (2), gives:  

 

Pr(D|M)2
-K(M)

        (3) 

 

and, of course, the M that maximizes (3), also maximizes  

 

log2(Pr(D|M)2
-K(M)

)        (4) 

 



by the monotonicity of log. This M therefore also minimizes  

 

-log2(Pr(D|M)2
-K(M)

)        (5) 

 

  = -log2(Pr(D|M)) + K(M)      

 

An elegant result from Kolmogorov complexity theory is that, for a computable 

probability distribution Pr, -log2Pr(x) = K(x) up to a constant term independent of x , for 

almost all x (strictly, with probability of measure 1, if the x are drawn from Pr---i.e., there 

are counterexamples, but they are rare).
iv

 An analogous result holds for conditional 

probabilities: i.e., with high probability: 

 

 -log2Pr(D|M) = K(D|M)      (6) 

 

where the conditional Kolmogorov complexity, K(y|x), is the length of the shortest 

program that yields y, given x as input. Roughly, conditional complexity is small where 

there is a simple transformation which maps input to output---we shall see that this notion 

of simple transformation provides the basis for an interesting general notion of similarity, 

below, in our discussion of the universal law of generalization.  

Combining (5) and (6), we conclude that, with high probability, the models M 

with maximal, or near maximal, posterior probability, will also be the M with minimal 

code length, i.e., in symbols:  
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This derivation, which is derived and presented rigorously by Vitányi and Li (2000), can 

be informally stated as follows: Models that have high a priori probability according to a 

Bayesian analysis using any computable prior probability, will (with high probability) 

correspond to models which allow short two-part descriptions of the data, and vice versa. 

This result
v
 provides a fundamental normative underpinning for the simplicity principle--



-that the cognitive system should prefer models that provide the shortest codes for the 

data, where such codes consist of (i) a specification of the model or hypothesis; and (ii) 

an encoding of the data, given that model.  

 In the light of the close relationship between Bayesian and simplicity-based 

reasoning, how should we conceive of the relationship between them? Some theorists, 

both in statistics (Rissanen, 1987) and cognitive science (Leeuwenberg & Boselie, 1988) 

argue that simplicity should be viewed as basic---essentially because the Bayesian 

approach attempts to assign probabilities of regularities in the ―real‖ world, and it may be 

doubted that such regularities are, at least outside fundamental physics, likely to be 

anything more than approximations. Others, in machine learning (e.g., Wallace & 

Freeman, 1987) and cognitive science (Chater, 1996; Mumford, 1996) view simplicity 

and Bayesian inference as equivalent—and view the choice of theoretical framework as a 

matter of methodological convenience. A simplicity approach is particularly useful in 

situations where it is easier to form hypotheses about cognitive representations than to 

form hypotheses about appropriate probability distributions. For example, theories about 

the representation of formal languages provide a framework for coding grammars; and 

hence this framework will induce code-lengths for such grammars. But it is arguable less 

clear how directly to specify a probability distribution over grammars, and hence in this 

case, a simplicity-based perspective may be more useful. Conversely, specific 

background knowledge, or statistical information, is easier to incorporate in a 

probabilistic framework. Hence a Bayesian framework may be more appropriate for 

ecological stimuli (e.g., natural textures or images), where underlying physical 

regularities are fairly well-understood (e.g., concerning the physical regularities, 

including optics, that generate natural images, Richards, 1988) and where statistical 

properties of the stimuli can be measured empirically (e.g., Field, 1987).
vi

  

This result provides reason to believe that the simplicity principle is a reasonable 

principle of inductive inference. Another normative justification concerns prediction, 

which arises in the slightly different setting in which a corpus of data accumulates at each 

time step. A fundamental result, which we call the prediction theorem (Solomonoff, 

1978), shows that for any sequence of data produced by a computational process (which 

can be combined with randomness), prediction of the next item based on simplicity 



converges with high probability on the ‗true‘ probabilities. Specifically, the expected 

sum-squared error of the infinite number of predictions of the next item, as the sequence 

unfolds, is bounded by a finite sum, proportional to the Kolmogorov complexity of the 

data-generating process (see Li & Vitányi, 1997) which can be viewed as indicating the 

possibility of induction, under very general conditions. 

How far, though, is the simplicity principle not merely normatively justified but a 

useful description of how the cognitive system finds structure? A direct test is difficult 

because detailed predictions from the principle in any domain appears to require having 

independent, and fairly detailed, knowledge of the relevant mental representations---

because code lengths are defined in terms of these representations.
vii

  

Now, one of the attractions of the theoretical notion of Kolmogorov complexity is 

that it allows us to abstract away from details concerning the precise coding language (as 

long as the language is sufficiently powerful---i.e., as powerful as a universal 

programming language, which turns out to be a surprisingly low hurdle). Indeed, the 

celebrated invariance theorem  (see Li & Vitányi, 1997) shows that, for any two coding 

languages, the difference between their code lengths, for all objects that can be coded at 

all, cannot exceed a constant. This result allows us to abstract away from coding 

languages, and make mathematical progress (just as computational complexity theory, 

Garey & Johnson, 1979), allows computer scientists to describe the time-complexity of 

algorithms, independent of the details of the machine on which the algorithms run). We 

shall see the usefulness of this level of abstraction, in considering Shepard‘s Universal 

Law, and psychological models to which it can be related, below.  

From the point of view of providing detailed psychological predictions, however, 

the need for a theory of mental representation, in terms of which codes can be 

constructed, remains (just as, if we are interested in building a model of reaction times for 

a particular task, assumptions concerning the specific computational and neural 

machinery involved will be of crucial importance; computational complexity theory is 

not, of course, enough). Fortunately, however, a great deal of work within cognitive 

science has been devoted to building theories of mental representation, in particular 

domains; for example, in the case of language processing, linguistics provides a rich set 

of potential levels of description, which have been enriched, modified and extended by 



work in psycholinguistics and computational linguistics. Similarly, psychological, 

neuroscientific and computational, work has provided a rich range of hypotheses 

concerning the representation of the perceptual world. Given a representational system, 

the simplicity principle predicts that the cognitive system will prefer to encode the 

available data using the structure or model that provides the shortest encoding of the 

available data. This program has been investigated by a range of formal and 

computational models, in language (e.g., Brent & Cartwright, 1996; Dowman, 2000; 

Goldsmith, 2001) and perception (e.g., Attneave & Frost, 1969; Bienenstock, Geman & 

Potter, 1998; Hochberg & McAlister, 1953; Leeuwenberg, 1971).  

Keeping the argument at a general level, however, still allows us to draw on 

number of lines of evidence that appear consonant with the simplicity viewpoint (Table 

2) (that have been reviewed elsewhere, see Chater, 1999; Chater 2005; Chater & Vitányi, 

2003).  For example, a vast range of phenomena in perceptual organization, including the 

Gestalt laws of closure, good continuation, common fate, and so on, have been widely 

interpreted as revealing a preference for simplicity (see Figure 5). Moreover, grouping 

effects that may be determined by simplicity also have wide ramifications for other 

aspects of perception (e.g., Adelson, 2000). Items with simple descriptions are typically 

easier to detect in noise and easier to detect
 
(Garner, 1974). Finally, note that the 

physiology of early vision, including receptive field shapes, and phenomena such as 

lateral inhibition, seems adapted to maximize information compression in vision 

(Blakemore, 1990).  

Moving to higher level cognition, the simplicity of a code for a stimulus is related 

to the amount of structure uncovered in that stimulus. The more structure people can find 

in a stimulus, the easier they find it to process and remember and the less random it 

appears (Falk & Konold, 1997; see also Griffiths & Tenenbaum, 2003). The speed of 

learning for Boolean concepts (e.g., A OR B OR C; A AND (B OR C) etc) is well 

predicted by the shortest code length for those concepts (Feldman, 2000, 2006). 

Moreover, as we shall now see below, the simplicity principle provides a natural 

machinery for building a general theory of similarity (Chater & Vitányi, 2003; Hahn, 

Chater & Richardson, 2003).  



The simplicity principle relates closely to a number of other approaches to 

inference. As we noted in deriving (7), the simplicity principle typically favours models 

with high Bayesian a posteriori probability. Indeed, the simplicity principle can be 

viewed as corresponding to Bayesian inference, using a particularly general ―ignorance‖ 

prior---i.e., one for which hypotheses, H, have a prior probability given by 2
-K(H)

, where 

K(H) is the length of the shortest code for H.
viii

 The simplicity principle, as stated in 

terms of Kolmogorov complexity, is a highly idealized notion; practical statistical 

methods based on simplicity ―scale-down‖ the approach, to consider the shortest code 

length given restricted coding schemes, typically assuming, for example, that data is 

independently drawn of each trial from a single distribution; that it is generated from 

some particular class of probability distributions, etc. Statistical perspectives include 

Rissanen‘s (1987) Minimum Description Length, Wallace and colleagues‘ Minimum 

Message Length (Wallace & Freeman, 1987), and Dawid‘s (1984) prequential approach 

to statistical inference.  

Given these close relationships between concepts based on coding and based on 

probability, a natural question is: which should be viewed as basic? We suggest that, 

from a theoretical point of view, coding and probabilistic concepts may be viewed as 

equivalent; but that, in practice, the most workable framework should be selected. In 

many areas of cognition, we suggest, we can make reasonable assumptions about mental 

representations (especially in language and in early vision), and, indeed, much of 

cognitive psychology has been oriented towards questions of representation. In such 

cases, viewing coding and simplicity as basic, and probability as a derived notion, may be 

most appropriate.  

 

The Universal Law of Generalization: A Derivation from Simplicity 

The Universal Law of Generalization (Shepard, 1987) considers the question of 

generalization from observation of one item, Si, to a second item, Sj. In abstract terms, 

this can be viewed as a problem of induction, with just one prior specific instance (Heit, 

2000). That is, suppose that I learn that Daisy the cow has property X; how likely do I 

believe it is Bill the horse has property X; or that Herbie the car has property X. At first 

sight, it might seem that type of problem is entirely resistant to quantitative analysis (e.g., 



Bush & Mosteller, 1951; Fodor, 1983; Oaksford & Chater, 1998; Pylyshyn, 1987). Such 

problems appear to depend crucially on how different kinds of object are represented and 

the nature of the property X under consideration. Furthermore, the process of inductive 

inference can potentially depend on arbitrary amounts of relevant background knowledge  

The elegance of the Universal Law of Generalization is that it aims, not to deny, 

but to cut through such complexity. The proposal is that the probability of generalizing 

from one stimulus item, Sa, to another, Sb, is proportional to the negative exponential of 

the psychological distance, D(a, b), between them. In symbols:  

 

),(
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The elegance of the approach is that, while both quantities may be influenced by any 

number of specific representational or algorithmic constraints, the law states that they 

will be influenced in corresponding ways. Specifically, if, for whatever complex reasons, 

two items are nearby in psychological space, then generalization between them will be 

high; if they are not, generalization will be low.  

For the Universal Law of Generalization to be practically useful, it is of course 

crucial to be able to independently measure the psychological distance between pairs of 

items. A key breakthrough in achieving this arises from Shepard‘s pioneering work on 

non-metric multi-dimensional scaling. This method takes as input an ordering of the 

distances between all pairs of items. That is, all that is required is that we can determine 

whether the psychological distance between, say, A and B, is greater or less than the 

distance between C and D; no ‗metric‘ assumptions are required concerning the size of 

these distances or the size of the difference between them. The output is a ‗map‘ with 

each point embedded in a (typically Euclidean) space, where each item is located in the 

space so that the ordering of the distances between points matches the ordering of 

distances that were the original data. Thus, this space now provides an estimate of the 

relative psychological distance between the items; and this measure of psychological 

distance can be used to make predictions concerning generalization.  

The key ideas behind the simplicity principle can also be applied to provide a 

general picture of similarity and confusion between them. Intuitively, it is natural to 



suggest that the similarity between two representations is, to some degree, related to the 

complexity of the transformation required to turn each representation into the other. Thus, 

two nearby points in a geometric space can be viewed as similar, because a small shift in 

locations suffices to map one to the other; and a pair of items with highly overlapping 

features may be viewed as similar, because relatively few ‗flips‘ will be required to map 

one set of features onto the other. This general idea can, of course, apply to 

representations of any kind: We may view two sentences as similar if they can be related 

by a simple grammatical transformation; or two pictures of the same object may be 

viewed as similar if they can be related by a change of viewpoint or lighting.  

 These intuitions are the starting point for the Representational Distortion theory of 

similarity (Hahn, Chater & Richardson, 2003), according to which the dis-similarity 

between a pair of mental representations x and y is a function of the complexity of the 

transformation between them, given a particular representational coding language. The 

conditional Kolmogorov complexity, K(x|y), the length of the shortest code that 

transforms y into x, is the natural starting point for this kind of account, although a variety 

of specific formulations are possible (e.g., imposing symmetry or allowing asymmetry; 

applying various types of normalization; factoring apart structure from noise for each 

object, and so on). Just as the invariance theorem, described above, allows us to abstract 

away from specific coding languages, and just speak of the complexity of a particular an 

object, x, i.e., K(x), so the analogous result for conditional Kolmogorov complexity, 

allows to us abstract away from specific coding languages, and speak of the complexity 

of a transformation between two objects, K(x|y). Note that we do not have to assume a 

specific coding languages for transformations—rather we can merely appeal to the 

representation language in terms of which the objects x, y and so on are coded. As we 

noted above, while this abstraction is mathematically useful (as we shall see shortly), 

precise behavioral predictions concerning the similarities of individual stimuli will, of 

course, depend on the coding language used, just as we described above, when describing 

the simplicity principle. Of course, the same goes for feature-based (Tversky, 1977) or 

geometric theories of similarity (Shepard, 1980)—only when specific features, or 

dimensions, are specified for the set of objecs under consideration, can we make precise 



behavioral predictions, even though general properties of the accounts can be analysed in 

the absence of such detailed information.  

Hahn et al. (2003) provide empirical evidence for the representational distortion 

account, in experiments in which people judge the similarities of three dimensional 

arrangements of blocks (items which, they argue, cannot readily be captured in either 

Euclidean or featural terms, and need a more general ‗structured‘ representation). The 

account of similarity is attractive because it provides a general notion of similarity which 

may be relevant to wide variety of representations used in cognitive science (e.g., Fodor 

& Pylyshyn, 1988; Russell & Norvig, 2003; Tenenbaum, Griffiths & Niyogi, 2007); and 

also because it collapses into geometric and feature-based models of similarity, in special 

cases.  

 Here, though, we focus instead on more formal aspects of this approach.  

Conditional Kolmogorov complexity can be the basis for a ―universal‖ measure of 

(dis)similarity, DU, the ‗information metric‘ (Bennett, Gács, Li, Vitányi & Zurek, 1998), 

which can be defined as:
ix

  

 

DU(x,y) = ½(K(y|x)+K(x|y))      (9) 

 

This metric is universal in the sense that, if any cognitively plausible distance measure 

treats two items as similar, the information metric also treats them as similar. 

Specifically, if we impose some mild restrictions on the notion of distance---call these 

admissible distances,
x
 the informational distance is, in a sense, a minimal distance 

between any pair of items (for discussion, see Chater & Vitányi, 2003; for technical 

details, see Bennett et al., 1998).  

More formally, an admissible distance D(x, y) is universal if, for every admissible 

distance D’(x, y), we have 

 

D(x, y) ≤ D’(x, y) + cD       (10)  

 

where cD is a constant that depends on D, but not on x and y. It turns out that, remarkably, 

that universal distances exist; and that DU(x,y) is, indeed, a universal distance. This 



implies that it assigns nearly as small a distance between two objects as any cognitive 

distance will do. Thus, for example, while the positive and negative image of the same 

picture are far away from each other in terms of Euclidean distance (because each pixel 

value is different), they are at almost zero distance in terms of universal distance because 

interchanging the black and white pixels transforms one picture into the other. The 

universal similarity metric is, like other notions rooted in Kolmogorov complexity, an 

‗ideal‘ notion in the sense that it ignores the limitations on processing capacity, or the 

goals of the cognitive system.  

D may therefore be viewed as a ―default‖ distance metric---that is, if we know 

nothing about the particular similarity metric that the cognitive system uses, in some 

context, we know at least that it is not ―too far from‖ D. Yet, as we noted above D can 

also be viewed as providing a positive theory of similarity---a theory that states that 

cognitive distance is determined by the complexity of the transformations required to turn 

the representation of one object into the representation of the other, and vice versa. 

Rather than describe empirical evidence of this approach here (Hahn, Chater & 

Richardson, 2003), we focus on how the application of simplicity to similarity can 

generate non-trivial psychological generalizations. Specifically, and especially relevant to 

the theme of this Special Issue, Shepard‘s contribution to cognitive science, we show that 

psychological distance between mental representations yields Shepard‘s Universal Law 

of Generalization (Chater & Vitányi, 2003).
xi

  

Although intended to have broader application, the Universal Law of 

Generalization is primarily associated with a specific experimental paradigm—the 

identification paradigm (for other derivations of the Universal Law, focusing on 

generalization rather than confusability, see Shepard, 1987; Tenenbaum & Griffiths, 

2000). In this paradigm, humans or animals are repeatedly presented with stimuli 

concerning a (typically small) number of items. We denote items, e.g., phonemes, 

colours, or tones, as a, b, x, the representations of the corresponding perceptual stimuli as 

Sa, Sb, Sx; and the representation of the corresponding distinct responses as Ra, Rb, Rx. In 

the identification paradigm, experimental participants are required to associate a specific, 

and distinct, response with each item—a response that can be viewed as ‗identifying‘ the 

item concerned. The stimulus Sa is associated should evoke response Ra. In practice, this 



occurs only probabilistically—the more similar a and b are, the greater the chance that Sa 

might evoke Rb. We leave open, for now, the question of whether these responses arise 

from confusion of perception, or memory, or through deliberate generalization from one 

item to another. 

Shepard uses a specific, symmetric, measure, G(a, b), to capture what he terms 

the ‗generalization‘ between items a and b.  
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Now we are in a position to directly relate G(a, b) to information distance.  

Recall that, for a computable probability distribution Pr, with high probability, -log2Pr(x) 

= K(x) up to a constant term independent of x. 
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          (12) 

 

We assume mapping an item onto itself can be achieved by a fixed finite program, 

independent of the particular items a and b (this is essentially an identity mapping)
xii

, and 

hence the terms )|Pr(log 2 aa SR  and )|Pr(log 2 bb SR can be collapsed into the o(1) 

term. Replacing the )|Pr(log 2 ba SR  with )|( ba SRK , and )|Pr(log 2 ab SR with )|( ab SRK , 

we obtain:  

 

)1()|()|(2/1),(log 2 oSRKSRKbaG abba
   (13) 

 

where the o(1) indicates that (12) holds up to a constant. Assuming that there is a fixed 

program that maps the one-to-one correspondence between the Sx to Rx, this means that 

complexities will be invariant (up to a constant, and depending on the complexity of this 

mapping) if responses are replaced with stimuli, throughout (or, indeed, vice versa). This 



is typically a reasonable assumption---e.g., in phoneme identification, the correspondence 

between the sound /b/ and the production of a /b/ sound by the learner can be taken as 

built in, before the experiment begins. In an identification paradigm, it is particularly 

natural, because we assume that the participant has learned the labels of the stimulus 

items during a training phase. In cases where the mapping is complex and must be 

learned, collapsing the Sx to Rx would be inappropriate.
xiii

 Making this substitution and 

applying (9), we obtain:  
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Rearrangement leads to:  
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where A and B are arbitrary constants
xiv

. This is the Universal Law of Generalization, 

defined over representations of arbitrary form.  

Two questions arise regarding the scope of this derivation. The first question is 

whether the derivation is too general. Does the Universal Law hold for data that are not 

best modeled by data derived using a Euclidean metric? Evidence on this question 

appears to be sparse, perhaps because scaling techniques that embed items in Euclidean 

spaces are particularly well-developed and widely used. One piece of evidence that the 

law may extend to other metrics is given in Cunningham and Shepard (1974). 

Confusability data for Morse Code signals collected by Rothkopf (1957) were analysed 

by a very general scaling method, which makes only the metric assumptions. These data 

showed qualitatively the same pattern as in conventional non-metric multidimensional 

scaling analysis, consistent with the Universal Law. Moreover, Tenenbaum and 

colleagues (e.g., Tenenbaum, this issue) has used generalizations of multidimensional 

scaling, for example, modeling taxonomic hierarchies using tree structures, or causal 

dependencies in terms of directed causal graphs. These methods provide a rich set of 

tools for studying the scope of the Universal Law for broader classes of representation. 



The second question concerns whether the present analysis can be adapted to deal with 

the case of deliberate generalization, rather than mere stimulus confusion, as considered 

here---and, indeed, an interesting question concerns the strength of the empirical basis for 

the universal law in this case (see Chater & Vitányi, 2003, for discussion). In any case, 

though, the analysis for confusability will turn out to supply a robust empirical 

generalization; and, as we now see, one that can be combined with assumptions about 

scale-invariance to provide an account in a different area of psychological theory: 

memory for serial order.  

 

Constructing models from principles:  

The SIMPLE model of memory for serial order 

We noted at the outset that one of the attractions of general cognitive principles is that 

they provide a set of building blocks out of which models of specific cognitive 

phenomena may be constructed. Here, we provide a concrete example---indicating how a 

theory of memory for serial order, SIMPLE can be constructed by assuming both scale-

invariance  and the simplicity-based generalization of Shepard‘s universal law (Brown, 

Neath & Chater, in press; Surprenant, Neath & Brown, 2006). SIMPLE was originally 

developed from ideas of scale-invariance, and strongly influenced by Shepard‘s 

Universal Law; the precise derivation presented here, relating simplicity and scale-

invariance together, is, however, new. An interesting future direction will be to see if it is 

possible to successfully constrain new theories using general cognitive principles; here, 

though, we consider the derivation of existing theories.  

Let us begin, by simplicity, considering to-be-recalled items as indexed along a 

single psychological dimension: the length of time that has elapsed since they were 

encoded. Consider an experiment in which participants are presented with a sequence of, 

say, five items. They are then probed with a particular location in the sequence (i.e., 

asked ―what was the fourth item in the sequence?‖). Participants will give a range of 

responses, typically peaked, of course, around the correct answer (see Figure 6). Let us 

assume that the items themselves are easily distinguishable, and hence that errors arise in 

confusion between the times at which those items are encoded. We assume that times are 



encoded independently for each item and that errors occur because of uncertainty about 

these times.  

This set-up can be viewed as an identification paradigm---in which the objects to 

be identified are locations in time, and their labels are the memory items, I1, I2…I5 (as in 

Figure 6). Thus, we can immediately apply a slightly variant of our generalization of 

Shepard‘s universal law, to describe the probability of confusion between items. Using 

the law in a simplified form (which follows directly from the derivation outlined above): 
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Where )|"Pr(" ji II  is the probability of mistakenly responding with item Ii, when the 

correct item in that position is item Ij. Now, by the assumption that the confusion between 

item arises because of confusion between their times (rather than the items themselves), 

the key question is how to measure the code length D(ti|tj) where ti and tj represent how 

long ago items Ii, Ij occurred at the point of testing.
xv

 Notice that his assumption crucially 

depends on viewing time as an explicitly encoded psychological dimension---otherwise 

the question of encoding time would not arise. Thus, we face the question: how complex 

is it to code time ti, given the ‗hint‘ of time tj? By standard information theory, we can 

view this problem of coding in terms of probability---i.e., how likely is an item at time ti 

to occur, given that we know that an item at time tj has occurred. Specifically, we can use 

the relation:  

 

ijiji tttttD )|Pr(log)|( 2      (17) 

 

where it is the precision of the encoding of tj. Weber‘s Law (and scale-invariance) 

imply that ii tt .  

 Scale invariance implies that the probability of encountering an item at ti (within  

a precision it ), given a prior input tj, must be the same as the probability of 

encountering αti (within a precision α it ), given a prior input αtj. That is, iji ttt )|Pr(  is 



purely a function of the ratio between ti and tj. We assume, further, that this probability is 

symmetrical, so that only the absolute value of the ratio is important. Let us define the 

function r(x,y) to be min(x/y, y/x).  
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A further application of scale-invariance is to assume the function f itself is scale-

invariant, and hence a power function:  
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Connecting (16-19) together, and simplifying, we can reason that:  
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where a, b, c, d are arbitrary real constants. Hence, we can conclude that: 
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Given an input Ij, we will produce some output, so that 1)|"Pr("
k

jk II . Hence, we 

can normalize (21) to write the probability of responding Ii, when probed with the 

location of Ij, as:  
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This equation is the core of a model of memory for serial order, SIMPLE (Brown, Neath 

& Chater, in press). The scope of SIMPLE is broad---indeed, much broader than the 



derivation here would suggest. Indeed, SIMPLE provides a fairly comprehensive model 

of data on serial and free recall, and provides a single mechanism that explains many data 

that are typically viewed as arising from a variety of distinct memory stores.  

Figure 6 illustrates how SIMPLE provides excellent fits to data from a serial order 

reconstruction experiment (Nairne, 1992). Participants viewed lists of five items and 

rated them for pleasantness; at test participants were provided with the items required to 

arrange them in the order of presentation. The positional uncertainty gradients in Figure 6 

show the different output positions into which an item was placed after 30 s (panel a); 4 h 

(panel b), and 24 h (panel c). 

The model fit illustrated is with the model described in Equation 22, with the 

single parameter d allowed to vary with retention interval (see Brown et al., in press, for 

details). We note that such scaling will be needed if performance is to be invariant with 

respect to the psychological spacing of items in temporal memory, as is (within limits) 

observed for the analogous case of absolute identification. In practice, perhaps due to the 

infeasibility of capturing all possible sources of memory interference, perfect scale-

invariance is seldom observed in estimated model parameters. This is not surprising, 

because changes of scale tend to lead to other changes (e.g., changes in the number of 

intervening items that may cause proactive or retroactive interference); and aspects of 

memory performance do have a characteristic scale (e.g., the rate at which items are 

rehearsed, or the rate at which they are reported at recall). Nonetheless, we suggest that, 

other things being equal, the more it is possible to minimize the effect of such factors 

(e.g., by using high distinctive items, with which intervening material does not interfere), 

the more closely observed behavior should fit with the predictions of scale invariance.  

We have illustrated how general principles can be used as a basis for constructing 

cognitive models in specific domains. We do not, of course, take this process to be 

merely algorithmic---i.e., there will be many assumptions and idealizations that may be 

adopted, that will utilize basic principles in different ways (just as in the physical 

sciences). Nonetheless, working with a set of basic principles substantially constraints the 

process of developing specific theories; we may hope that these constraints will assist the 

development of cognitive models, rather than unhelpfully restricting it. The present 

derivation is an indication that, in some contexts at least, there is cause for optimism. 



 

Extensions to identification and categorization 

The derivation that we have outlined can be applied more broadly. We noted above that 

SIMPLE depends on the confusability of pairs of items, and we focussed purely on a 

single dimension, time. But, if time is not different (at least, in relevant respects) from 

any other psychological dimension the same derivation can be applied to confusability 

between items on any dimension, e.g., weight, brightness, or loudness. Neath et al. (2006) 

note, indeed, that the application of SIMPLE successfully captures a wide range of 

phenomena in the task of absolute magnitude identification, where participants assign 

numerical labels to a fixed set of stimuli, with feedback (although see Stewart, Brown 

and Chater, 2005, for a more precise model).  

 If, by contrast, we consider more complex stimuli, distance is often not measured 

in physical terms (i.e., in terms of underlying physical parameters of sound pressure 

level, Newtons, and so on), but is left as a psychological primitive (and may, for example, 

be measured by the application of multi-dimensional scaling, Shepard, 1962a, 1962b). If 

we re-run the derivation above, but leave the distance D unanalyzed, we obtain:  
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which is a special case of the Nosofsky‘s (1986) model of identification (see also Luce, 

1963; Shepard, 1957). Specifically, this special case lacks multiplicative ―bias‖ weights, 

which can be used to capture response bias (i.e., an intrinsic tendency to choose some 

responses over others, independent of the stimulus). Note, too, that this formulation 

assumes, in line with Shepard‘s universal law, that generalization is an exponentially 

decreasing function of psychological distance. In some contexts, however, particularly 

when stimuli are readily confusable, a Gaussian, rather than exponential, function appears 

to provide a better fit with the empirical data (e.g., Nosofsky, 1986), i.e.,  
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 When the Gaussian model is appropriate, scale-invariance is violated—and hence, 

according to our earlier arguments, we may expect that this reveals some interesting 

cognitive discontinuity. Shepard (1986) and Ennis (1988) provide arguments supported 

this viewpoint—arguing that generalization follows the exponential universal law 

(following scale-invariance), except where the stimuli are difficult to discriminate, and 

hence where the accuracy of the representation of the stimuli is the limiting factor on 

performance. Thus, perceptual noise introduces a ‗scale‘ when working at the limits of 

stimulus discriminability, just as motor noise introduces a scale, at very high frequencies 

in timing behavior (Gilden, Thornton & Mallon, 1995), as we discussed above. In both 

cases, scale-invariant behavior informatively breaks down at the performance limits of 

the system.  

Nosofsky (1986) notes a natural extension of this model to categorization based 

on labelled examples. Specifically, if the identifying labels for the examples are not 

unique, but can be shared between exemplars (i.e., examples with the same label are 

viewed as belonging to the same category), then the probability of producing a particular 

category label, C, is the sum of the probabilities of the exemplars, i, with that label (the i 

such that i C. Specifically, this yields:   
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This is Nosofsky‘s (1986) influential model of categorization, but, again, without free 

parameters to deal with the possibility of response bias.  

   

General Discussion 

The scope of universal laws 

We noted at the outset that cognitive science looks to computer science, and allied 

disciplines, as its source of theoretical hypotheses---and that computer science, unlike 

physics, is not replete with universal laws. Indeed, it might be tempting to conclude that 

understanding the detailed computational principles of the brain might be no more 



amenable to general laws than the computational principles underpinning a complex 

piece of software, such as a word processor, statistical software package, a data-base, or, 

indeed, a model in traditional symbolic artificial intelligence. Such a piece of software is, 

of course, highly structured; the representations and methodologies it uses are carefully 

constrained; and there are many common features across different aspects of its behavior. 

But its behavior does not seem to exhibit quantitative universal laws.  

It seems entirely possible, and indeed seems highly likely, that there are many 

aspects of cognition that must be understood in terms of specific representations and 

algorithms, which will not be neatly described by universal principles. But each 

individual case should, we suggest, be considered on its merits---and the possibility that 

general principles may combined to explain apparently complex phenomena should not 

be discounted. After all, the physical world too, is full of extremely diverse and 

idiosyncratic objects and processes (e.g., stars, comets, tides, earthquakes)---yet many 

aspects of these can usefully be understood in terms of basic physical theory.  

Language provides a particularly interesting example. Chomsky (e.g., 1965, 1980) 

has influentially argued for a genetically encoded ―universal grammar‖ which specifies 

information that is specific to language, and does not derive from functional 

considerations. If this picture is correct, then universal grammar is the antithesis of 

universal principles as stated here: it focuses, not on general cognitive principles, but on 

information specific to a particular (linguistic) domain. For example, binding constraints 

(Chomsky, 1981) provide elaborate, subtle and apparently arbitrary restrictions on co-

reference. For example, consider examples (26a-26d), where the subscripts indicate co-

reference, and asterisks indicate ungrammaticality.  

  

Johni likes himselfi      (26a) 

*Johni likes himi      (26b) 

Johni said hei/j is happy     (26c) 

*Hei said Johni is happy     (26d) 

 

In (26a), the pronoun himself must refer to John; in (26b) it cannot. In (26c), the pronoun 

he may refer to John or to another person; in (26d), it cannot refer to John. While 



apparently arbitrary, these constraints can, however, be explained in terms of pragmatic 

factors (Levinson, 1987)---e.g., in (26b), the availability of the more specific himself to 

corefer with John has the implicature that if the less specific him is used, then co-

reference is not intended; in (26d), the use of John is unnecessarily specific, as a second 

pronoun would successfully co-refer to the first he); and alternative explanations have 

been govern in terms of processing preferences (O‘Grady, 2005; for a more general 

account of grammatical patterns as arising from processing constraints, see Hawkins, 

1990); and both pragmatic and processing biases may themselves become part of the 

grammar over generations of language change, e.g., through grammaticalization (Hopper 

& Traugott, 2003).  

According to explanations of this type, it is possible that the linguistic patterns 

may arise from the confluence of a range of more basic cognitive principles, rather than 

being determined by genetically encoded language-specific principles. This raises the 

possibility that the interaction of relatively simple cognitive principles, of learning, 

processing, and pragmatics, might explain language structure, just as the interaction of 

basic physical principles is assumed to underpin the enormous variety and complexity of 

macroscopic physical phenomena. This style of explanation is consonant with much 

recent linguistic work, including construction grammar (e.g., Goldberg, 2006), and usage-

based models of language more generally (e.g., Barlow & Kemmer, 2000; Tomasello, 

2003). Interestingly, it may also be consistent with Chomsky‘s recent thinking. Hauser, 

Chomsky and Fitch (2002) suggest that much of language may be explicable by general 

cognitive mechanisms; and even the exception they suggest, recursion, appears to be 

widespread across cognitive domains (e.g., in planning and motor control) as well as 

arising across species (Conway & Christiansen, 2001).   

How far it proves to be possible to provide useful explanatory purchase on 

complex areas of cognition, including language, using an inventory of general cognitive 

principles is currently uncertain. Yet we suggest that the apparent variety and complexity 

of cognitive domains and phenomena should not be taken as evidence against general 

principles, any more than this is appropriate in the physical sciences. Indeed, this very 

variety should, we suggest, be a stimulus to the search for underlying generality. If 



general principles cannot be found, the cognitive sciences are likely to be highly 

fragmented, piecemeal, and intractable.  

 

Universal laws as reflections of the world 

If we suppose that there are broad regularities in mental phenomena, what is their origin? 

One possible source of universality is common processing mechanisms, whether 

understood and an algorithmic or neural level. For example, common principles in 

memory might arise from a common neural substrate, in terms of many or all memories 

might be encoded. Alternatively, however, it might be that some universal aspects of 

cognition have a functional, rather than a mechanistic, basis—they may arise as 

adaptations to the structure of the environment, and the agent‘s role within it. In an 

important sequence of papers, Anderson and colleagues have argued that many features 

of memory can be understood as adaptive in this way (Anderson & Milson, 1989; 

Anderson & Schooler, 2000; Schooler & Anderson, 1997). The core idea is that, in the 

environment, items occurs in a highly clustered way. For example, if a particular word or 

object has occurred at one time, the probability that it will occur at later times is not 

constant, but decreases systematically with time. Specifically, this decrease with time is 

modelled be a power law---this is, of course, a further example of scale invariance. 

Anderson and colleagues make the reasonable assumption that an adaptive memory 

system should make items available in proportion to their likely occurrence. This leads to 

the prediction that forgetting should also have a power law, and thus scale-invariant, 

structure. 

How can the adaptive and mechanistic viewpoints be distinguished? Perhaps the 

most straightforward line of argument concerns whether the regularity of interest arises 

across a range of different mechanistic systems---e.g., across a wide range of stimulus 

materials (presumably engaging different neural machinery), or across species. To the 

extent that very different underlying machinery leads to the same regularity, it is 

reasonable to suspect that the regularity has some adaptive basis. Thus, for example, 

temporal and spatial scale-invariance in the motor system seems to apply across a wide 

range of different effectors and tasks, ranging from handwriting, to gross body 

movements (e.g., Viviani & Terzuolo, 1980). A second line of argument concerns 



whether the cognitive regularity follows ‗bumps‘ in environmental structure. For 

example, human perception is roughly invariant to pitch (e.g., the same tune can readily 

be identified, even if shifted through several octaves); but speech perception is not 

invariant in this way. Thus, we have the familiar observation that music played at the 

wrong speed sounds only mildly odd until singing begins. From an adaptive point of 

view, this makes good sense---because the human vocal tract, and hence the sounds that it 

produces, have a particular scale, to which the auditory/speech processing system is 

attuned. Anderson and Schooler (1991) use this type of argument in supporting their 

rational analysis of memory retrieval based on the repetition structure in the 

environmental. Suppose that a particular item is presented ten times over a period of 

time; or in rapid succession. On the latter account, a natural assumption of an adaptive 

memory system adjusts its assessment of how likely an item is to recur, based on the 

spacing of occurrences in learning, and the spacing between the last such item, and the 

test item. Thus, if we fix the gap between the last study item and test to be, say, 20 trials, 

then memory should be better if previous items were spaced at roughly 20 trial intervals, 

rather than spaced much more densely. Thus, we should expect that forgetting should be 

slower, if the prior items are further back in time---a phenomenon that appears 

counterintuitive, in the light of the natural assumption that memory traces are active in 

proportion to their recency. Nonetheless, such ‗spacing‘ effects are observed (e.g., 

Bahrick, 1979; Glenberg, 1976), providing evidence for an adaptive interpretation of the 

scaling properties of memory. 

An important open question concerns which aspects of the scale-invariance in 

cognition should be viewed as reflections of scale-invariant environmental structure, and 

which should be viewed as arising from cognitive mechanisms. We suggest that this 

question should be addressed piecemeal for each scale-invariant aspect of cognition---i.e., 

we do not propose that there is a single ‗unified‘ origin for scale-invariance in cognition. 

Scale-invariance is, after all, a null hypothesis, in the sense that it proposes the absence of 

effects that are specific to particular scales. Indeed, rather than attempting to provide a 

‗deep‘ explanation of this ‗null‘ case, it may, in general, be more appropriate to focus 

attention on explaining departures from scale-invariance---what might term ‗cognitive 



bumps‘---and whether these appear to be best explained in mechanistic or functional 

terms.  
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Figure titles and captions 

 

Figure 1. Self-similarity of power laws.  

Changes of scale on both x and y axes simultaneously leave the function invariant. Thus, 

the form of the function cannot provide information about absolute scale. Power laws 

exhibit scale invariance.  

 

Figure 2. Scale-invariance and Weber’s Law.  

If we assume that sensory magnitudes (here, judgements of distance) have scale invariant 

sensory noise, then this implies that the ratio of magnitude to error will be constant. This 

is Weber‘s Law. At the limits of the sensory system (e.g., when magnitudes become 

extremely small), error will increase disproportionately. Thus, the departure from scale-

invariance reveals the mechanistic properties of the sensory system. By contrast, where 

scale-invariance holds, this provides little diagnostic information concerning cognitive 

mechanisms (see Chater & Brown, 1999).  

 

Figure 3. Scale-invariance in recall over different time intervals.  

Maylor, Chater and Brown (2001) asked people to recalls events that had occurred (a) or 

were going to occur (b) within a day, week or year. The number of items retrieved was 



invariant to the time interval probed. This implies that the ‗salience‘ of items considered 

worth reporting for each of these intervals scales with the size of that interval. In the 

absence of such scaling of salience, it would be natural to assume that more items should  

be retrieved for longer intervals, because all items that occurred over a short interval 

necessarily also occurred during the longer interval.  Data replotted from Maylor et al 

(2001).  

 

Figure 4. Scale-invariance, the ratio rule, and serial position.  

a. Three learning schedules, which differ purely by temporal scale. Thus the ratio 

between the intervals between items, and the interval from the final study item to test is 

held constant. The ratio rule (Bjork & Whitten, 1974; Glenberg et al., 1983) states that 

the slope of the recency curve should depend only on this ratio---i.e., should be invariant 

across these cases, as is observed. 

 

Figure 5. Simplicity and Gestalt principles. 

The Gestalt principles of perceptual organization can be explained in terms of the 

simplicity principle. a. Grouping by similarity. We assume that objects are encoded 

separately; or, more modestly, that sharing information is more difficult between objects 

than it is within objects. This assumption is consistent with object-based views of 

attention (e.g., Duncan, 1984). If the top array is organized in terms of columns, colour is 

easy to encode—each column is either black or white. Hence, coding colour requires just 

1 bit of information for each column. By contrast, if the array is organized by rows, each 

row has an irregular structure, which must be coded separately, and will require a longer 

code length. Hence, according to the simplicity principle, the column organization is 

preferred; more generally, groups containing similar items can be encoded more briefly. 

b. Common fate. Objects with the same motion, such as flocks of birds, tend to be 

grouped together. When the objects are grouped together, the stimulus can be coded by a 

vector indicating the location of each object, and a single vector for the movement of 

each group. The ungrouped code would require a separate vector for the motion of each 

item.  

 



 

Figure 6. Memory for serial order over three time-scales.  

Proportion of responses in a serial order reconstruction task. Each graph indicates the 

serial position of the items that participants produce, typically peaking on the correct 

serial position. The three panels indicate performance for delays before testing of 30s, 4h 

and 24. Notice that, while performance is clearly degraded after a longer retention 

interval, the pattern of results is qualitatively the same. The solid lines give fits from 

SIMPLE are shown alongside each set of data. Data replotted from Nairne (1992). 

 

                                                 
i
  For example, Barenblatt (1996) describes the example of how Taylor (1950a, 1950b) was able to 

derive that the radius of the fireball of an atomic explosion is proportional to  
5/15/25/1 tE  where E is 

the energy released, t the time elapsed since detonation, and ρ the initial air pressure, purely from 

considerations of scale-invariance. This analysis agreed astonishingly well with experimental data.  

ii
  This is an example of the so-called universal prior, that the prior probability of any object x is 2

-

K(x)
. One justification of this prior is that it is, in a specific sense, as neutral as possible. That is, if any 

computable prior gives some x a certain probability, the universal prior gives x ‗nearly as much‘ 

probability---i.e.., for any computable prior Pr, there is a constant m such that for all x, m2
-K(x)

 ≥ Pr(x). For 

discussion, see Li and Vitányi (1997).  

iii
  The class of possible models or hypotheses is restricted only by the requirement that the 

probability of the data must be computable (strictly, semi-computable from below, see Li & Vitányi, 1997). 

This is a very mild restriction---and it seems reasonably to assume models with uncomputable predictions 

would be of limited practical utility to the cognitive system. 

iv
  Intuitively, this result holds because –log2Pr(x) is the code length for x, given Pr, according to 

standard information theory; and the Kolmogorov complexity, as the shortest code, must be at least this 

short. It is possible, but unlikely, that the converse is violated---i.e., that Pr can generate objects, x, which 

have much shorter description than the -log2Pr(x) from standard information theory. For example, suppose 

we consider a uniform distribution on strings of length n, so that for each x, Pr(x)=2
-n

. Standard information 

theory will assign each x a code length of -log2Pr(x) = log2(2
-n

) = n bits of information. Some strings, e.g., 

000…000 will have shorter codes (e.g., using a simple looping program); but there will be few of these, by 

a counting argument---i.e., while there are 2
n
 strings of length n, there can only be at most 2

k
 codes of 

length k, where k < n, and hence at most a fraction 1/2
n-k

 strings of length n which have codes as short as k. 

More generally, for any computable Pr, a similar argument shows that the probability of generating an item 

with a shorter code is small. Thus, K(x) approximates to Pr(x); and the argument extends to the conditional 

case, so that K(y|x) approximates Pr(y|x), up to a constant term, with high probability.  



                                                                                                                                                 
v
  This result suggests that induction is possible in principle, from the available data, given the very 

modest restriction that the data is generated by computable and/or probabilistic processes. A restriction, 

though, is that the simplicity principle cannot be implemented accurately in practice, because calculating 

Kolmogorov complexity is itself, in general, uncomputable. An interesting research question is far how the 

theoretical results we have outlined apply to practical approximations to the simplicity principle. The 

successful application of minimum description length, and related, methods in statistics and machine 

learning indicate that such approximations are often reliable in practice (Rissanen, 1987; Grünwald, Myung 

& Pitt, 2005).  

vi
   The divide between cases in which simplicity or probability is most usefully viewed as basic may, 

however, be less than straightforward. For example, Chandler and Field (2007) argue that, despite the 

intense study of the underlying physics and statistical structure of natural images, the best estimates of the 

information content of natural images comes from directly applying a coding method.  

vii
  Kolmogorov complex is, notably, invariant up to a constant, between any two universal 

programming languages; and for these reason it is possible to develop an abstract theory of Kolmogorov 

complexity in general; and to prove asymptotic results such as the prediction theorem. Nonetheless, in 

deriving predictions concerning specific, finite, sets of sensory, linguistic, or other, data, the ‗constant‘ that 

can be ignored in theoretical analysis, may turn out to be important. Thus, it may be important to have 

some prior knowledge of the representations in terms of which the cognitive system operates. Theories of 

representation are, though, highly developed in some areas of cognitive science; for example, linguistic 

theory provides a potential starting point for a theory of representations of linguistic knowledge.  

viii
  Interestingly, scale-invariance can also be viewed as providing an ignorance prior (albeit an 

improper prior—i.e., a prior probability that sums to greater than 1), over continuous quantities. 

Kolmogorov complexity, by contrast, is most readily defined over discrete objects. Whether scale-

invariance may usefully be viewed as derivable from simplicity, or whether should be viewed as separate, 

is an interesting question for future research.  

ix  There are various variants of information distance, of which the formally most elegant is 

Dmax(x,y)=max{K(y|x), K(x|y)}). 

x
  We say that a distance is normalized if, for every binary string x,  

xyy

yxD

:

),( 12 where y ranges 

over all other binary strings. If the constraint is violated by some cognitive metric, the constraint requires 

simply that all distances are scaled-up, e.g., by a multiplicative factor, until the constraint does hold. An 

admissible distance D(x, y) is a total nonnegative function on the pairs x; y of binary strings that is 0 if and 

only if x = y; is symmetric, satisfies the triangle inequality, is upper-semicomputable (roughly, can be 

approximated from above arbitrarily closely, by a computational process) is normalized, and is a metric (in 

the standard mathematical sense). 

xi
  Note that this derivation assumes that cognitive distance is well-approximated by the average 

conditional Kolmogorov complexity required to transform each item into the other (in line with the 



                                                                                                                                                 
Representational Distorition theory of similarity, Hahn, Chater & Richardson, 2003). Thus if, in some 

context, cognitive distance, e.g., of two locations on a computer screen, were closely related to physical 

distance, then the derivation would not hold---and, indeed, we should not predict Shepard‘s Universal Law 

to hold good.  

xii
  Note that this is a fairly innocuous assumption: we simply assume that the participant knows the 

relationship, in principle, between the inputs and the outputs. That is, if the confusion were between 

phonemes, we begin by assuming that participants already know the relevant inventory of phonemes, and 

hence can provide the appropriate response in the task, under ideal conditions. Errors in the task are 

presumed to arise when performance is difficult (e.g., under noise). 
xiii

  This case does not arise in the identification paradigm. It does, however, arise in paired associate 

learning. Here, confusion errors are a function both of the similarity of the ‗stimulus‘ items and the 

‗response‘ items, and also, potentially, similarity of the relationship between them. For example, if many of 

the pairs were synonyms and antonyms, this might substantially increase the probability of saying white in 

response to black. This type of case can, nonetheless, be analyzed given the machinery described here.  

xiv
  It might seem that the constant B is not arbitrary, but has a fixed value, but in reality it is a free 

parameter, because Kolmogorov complexities themselves can be rescaled by a linear multiplicative factor. 

This corresponds to changing the number of primitive symbols in the assumed coding language.  

xv
  We assume that there is no absolute ‗clock,‘ but that time in the past is estimated by reference to 

the present.  


