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Abstract 

 

The representation of word meaning has received substantial attention in the psycholinguistic 

literature over the past decades, yet the vast majority of studies have been limited to words 

referring to concrete objects. The aim of the present work is to provide a theoretically and 

neurally plausible model of lexical-semantic representations, not only for words referring to 

concrete objects but also for words referring to actions and events using a common set of 

assumptions across domains. In order to do so, features of meaning are generated by naïve 

speakers, and used as a window into important aspects of representation. A first series of 

analyses test how the meanings of words of different types are reflected in features associated 

with different modalities of sensory-motor experience, and how featural properties may be 

related to patterns of impairment in language-disordered populations. The features of meaning 

are then used to generate a model of lexical-semantic similarity, in which these different types of 

words are represented within a single system, under the assumption that lexical-semantic 

representations serve to provide an interface between conceptual knowledge derived in part 

from sensory-motor experience, and other linguistic information such as syntax, phonology and 

orthography. Predictions generated from this model are tested in a series of behavioural 

experiments designed to test two main questions: whether similarity measures based on speaker-

generated features can predict fine-grained semantic similarity effects, and whether the 

predictive quality of the model is comparable for words referring to objects and words referring 

to actions. The results of five behavioural experiments consistently reveal graded semantic 

effects as predicted by the feature-based model, of similar magnitude for objects and actions. 

The model's fine-grained predictive performance is also found to be superior to other word-

based models of representation (Latent Semantic Analysis, and similarity measures derived from 

Wordnet).  
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Representing meaning: A feature-based model of object and action words 

 

Chapter 1: Introduction 

 The aim of the present work is to provide a psychologically and neurally 

plausible model of lexical-semantic representations for words referring to concrete 

objects and actions and events by collating features of meaning generated by naïve 

speakers. These features can be viewed as an indication of semantic representations, and 

when combined across multiple individuals, should provide some general insights into 

the meanings of words. Employing a feature-based semantic theory will allow the 

generation of a model of lexical-semantic similarity, in which different types of words 

are represented within a single system. This model will then be tested against 

behavioural data, and its predictive power will be assessed against extant models of 

semantic representation. The inclusion of the domain of actions and events into the 

model is important and innovative because nearly all previous research on word 

semantics has focused upon words referring to concrete objects and entities only. 

The representation and organisation of word meaning 

Meaning is a centrally important aspect of language which lies at the heart of 

communication. In language production, speaking is a continuous process of selecting 

the words that best correspond to the meaning of a message the speaker wishes to 

express (Levelt, 1989). Similarly, comprehending language is a continuous process of 

attempting to discern the meaning of a speaker's or writer's message. Word meaning 

provides the core information upon which all communication is built, and similarity in 

the meanings of words is invaluable in serving communication, for example, in 

providing definitions of technical terms (e.g. "The word deictic means 'pointing' or 

'showing.'", Ballard, Hayhoe, Pook & Rao, 1995, p.725). Such uses of similarity is not 

restricted to formal written or instructional materials, but also occur in numerous 
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situations in which an interlocutor is not familiar with a particular word being used, a 

situation in which it is quite normal to produce similar alternatives for explanatory 

purposes.  

Such consequences of similarity in meaning may not necessarily reflect the 

underlying representations that are automatically consulted in normal conversational 

situations, but come into play only in situations in which word meaning are explicitly 

being discussed, and thus reflect a speaker's intuition about language rather than 

language itself. A more convincing demonstration of the impact of semantic similarity 

arises in cases in which semantic similarity does not facilitate communication, but 

instead has counterproductive consequences during online language processing. In 

production, this is particularly evident in slips of the tongue, where a substitution 

between one word and another (related in meaning) can result in a sensible sentence 

whose meaning is very different than the speaker intended:  

 

"US President Gerald Ford toasted Egyptian President Anwar Sadat and 'the  

 great people of Israel--Egypt, excuse me.' " Dell (1995), p.183 

 

In instances like these, semantic similarity between words can have undesired 

consequences. On the other hand, in online comprehension processes, semantic 

similarity can facilitate word recognition. For example, in the lexical decision paradigm, 

response time to a target word is faster if it is preceded by a semantically-related word 

than if it is preceded by an unrelated word (Meyer & Schvaneveldt, 1971). Such priming 

may serve the purpose of speeding up lexical processing, or at least improving the 

efficiency of accessing the correct meaning during comprehension. 

Semantic similarity effects, both of a facilitatory and of an interfering nature, 

have been extensively studied in behavioural and neuroscientific research. Systematic 
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investigation of spontaneously occurring speech errors reveals that lexical substitution 

errors are among the most frequent type of slips of the tongue (e.g. Fromkin, 1973; 

Garnham, Shillock, Brown, Mill & Cutler, 1981). The precise nature of similarity 

between the target and error word seems to vary, depending upon the semantic domain, 

but is predictable within a given domain (e.g., errors involving the names of body parts 

tend to be physically close to the intended body part, Garrett, 1992). Garrett's analyses 

of speech errors shows that, for nouns, most substitutions involve category coordinates 

(for example, shoulders/elbows, eyes/ears). In contrast, for verbs, errors of antonymy 

(remember/forget) are frequent, while coordinates (drink/eat; looks/sounds) are much less so.  

More evidence of the consequences of semantic similarity comes from studies 

of semantic interference in naming tasks. This was pioneered in the work of Stroop 

(1935), who presented participants with words referring to the names of colours, 

printed in various colours of ink, and asked them to name the ink colour whilst ignoring 

the word itself (e.g., given the word "RED" printed in green ink, to say the word 

"GREEN"). The meanings of the written words had severe consequences on naming 

the ink colour: longer latencies and higher error rates. In the picture-word interference 

paradigm (a variant of the Stroop task) in which participants are asked to name a picture 

while ignoring a simultaneously appearing written word, semantically-related words 

interfere with picture naming (e.g. Glaser & Düngelhoff, 1984; Schriefers, Meyer & 

Levelt, 1990; Vigliocco, Vinson, Lewis & Garrett, 2004; Vigliocco, Vinson & Siri, 2005). 

In other contexts, semantic similarity has a facilitatory effect, such as semantic priming 

in comprehension as mentioned above  (Meyer & Schvaneveldt, 1971; reviewed in 

Neely, 1991;  Vigliocco, Vinson, Arciuli & Barber, 2008).  

Semantic similarity also has consequences for patients whose semantic 

knowledge has been disrupted following brain injury. Especially relevant here are 

category-specific deficits, a phenomenon where patients are selectively impaired in some 
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categories of knowledge and spared in others. The dissociation between the domains of 

living and non-living entities is best documented (e.g., Basso, Capitani, & Laiacona, 

1988; Farah, Hammond, Metha, & Ratcliff, 1989; Hillis & Caramazza, 1995; Moss & 

Tyler, 2000; Sacchett & Humphreys, 1992; Sartori & Job, 1988; Sheridan & Humphreys, 

1993; Vinson, Vigliocco, Cappa & Siri, 2003; Warrington & McCarthy, 1987; see 

Caramazza & Shelton, 1998), but numerous different patterns of finer-grained 

dissociations have also been reported, including selective impairment for body parts 

(McKenna & Warrington, 1978), animals (Caramazza & Shelton, 1998), fruits & 

vegetables (Hart, Berndt & Caramazza, 1985) and medical terms (Crosson, Moberg, 

Boone, Gonzales Rothi & Raymer, 1997; see Rogers and Plaut, 2002 for a review). 

Some patients with impairments for living things may also show a deficit for other 

(non-living) categories such as musical instruments, materials and liquids (Borgo & 

Shallice 2001; Siri, Kensinger, Cappa, Hood & Corkin, 2002; Warrington & Shallice, 

1984). Patterns of impairment and sparing in category specific impairments offer further 

evidence for the psychological reality of semantic similarity because many such 

impairments seem to disproportionately affect semantically related clusters of items; 

they also provide important constraints on accounts of semantic representation, as will 

be discussed later. 

Theories of semantic representation 

How is semantic similarity represented in the mind and brain? Before 

attempting to answer this question, it is first necessary to outline the different 

theoretical frameworks within which the meanings of words corresponding to concepts 

may be represented. Theoretical accounts concerned with the representation of word 

meaning are strongly linked with conceptual categorisation and equivalence 

classification. In particular, they focus upon how different exemplars of a concept can 

be treated as equivalents, and can be assigned the same lexical label in a language. 
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Important issues in semantic theory are identifying the content of word meaning, the 

organisation of word meaning, and how the link between referent and word can be 

characterised. 

Distinguishing semantics from concepts. Before describing the various theoretical 

perspectives, it is necessary to discuss the difference between conceptual-level 

representations and semantic representations. It is relatively uncontroversial that word 

meaning (i.e., lexical-semantics) is grounded in conceptual knowledge. More difficult is 

the question if the two are distinguishable from each other. The closeness of semantic 

and conceptual representations is clearly demonstrated by brain imaging research that 

shows, for example, that primary motor areas are activated when speakers see or hear 

words or sentences referring to actions (e.g. Hauk, Johnsrude & Pulvermuller, 2004; 

Martin & Chao, 2001; Tettamanti et al., 2005; Vigliocco, Warren, Siri, Arciuli, Scott & 

Wise, 2006). Moreover, it is often assumed that word meanings are indistinguishable 

from conceptual knowledge (e.g. Humphreys, Price & Riddoch, 1999).The working 

hypothesis of the present work, however is that conceptual and semantic knowledge are 

distinct levels of representation, each with its own distinct organisation. The present 

work also assumes that speaker-generated features provide a window into fundamental 

aspects of non-linguistic conceptual representations (such as the modality by which 

different types of information are learnt and experienced), and that the meanings of 

words are organised along different principles.  

A number of arguments have been made in favour of the distinction between 

conceptual and semantic representations. For example, it has been pointed out that 

speakers of a language have many more concepts than words. For example, “the actions 

of two people maneuvering for one armrest in a movie theatre or airplane seat” is a 
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familiar concept for which no verbal label exists (Murphy, 2002, p.389)1. This "more 

concepts than words" argument requires some sort of semantic level of representation 

(or at least a purely lexical level at which individual words are represented in some way, 

distinct from those concepts that are not lexicalised in a language), but does not require 

a separate level of organisation of this level. For example, concepts could be organised 

according to meaning whether they are lexicalised or not, and the semantic level of 

representation could simply be mapped from the relevant concepts on a one-to-one 

basis. Such a representational framework can be seen in the WEAVER++ model of 

lexical retrieval in production (Levelt, Roelofs & Meyer, 1999) in which the meanings of 

lexical concepts (and of lemmas) are not interconnected (i.e., there is no local 

organisation at this level).  

Another argument that has been presented in favour of the conceptual-

semantics divide is the cross-linguistic differences in mapping between conceptual and 

linguistic domains (see Vigliocco and Filipovic, 2004; Vigliocco & Vinson, 2007 for 

discussion). For example, English speakers have different words for foot and leg, while 

Japanese speakers have a single word (ashi) which refers to both. Similarly, English has 

numerous verbs corresponding to different manners of jumping: leap, hop, spring, bounce, 

caper, vault, hurdle and so on, while Italian does not (Slobin, 1996a). Differences of this 

nature can even be seen in how spatial situations are realised in two closely related 

languages such as English and Dutch. While English has two terms, on and in, Dutch 

has three: aan, in and op (Bowerman & Choi, 2003). Under the assumption of identity 

between conceptual and semantic knowledge, these language differences would require 

that the speakers of different languages also have different conceptual representations - 

                                                            
1 Although nothing prevents speakers of a language from coining or adopting a new term for any 
concept. For example, the situation described above has been labelled "elbonics", originally by comedian 
Rich Hall, who has published a number of collections of such "missing lexical items" (e.g., Hall, R., 1984, 
Sniglets (Snig'lit : Any Word That Doesn't Appear in the Dictionary, But Should). Collier Books). 
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 the view known as linguistic relativity (e.g. Davidoff et al., 1999; Levinson, 1996; Lucy, 

1992; Roberson et al., 2000; Sapir, 1921; Sera et al., 2002; Slobin, 1996a, b; Whorf, 

1956). But this conclusion only applies if conceptual and semantic representations are 

one and the same. If they are distinct levels of representation, these findings can be 

accommodated in the same manner as the "more concepts than words" argument. 

Conceptual organisation would be the same across languages; the only differences lie in 

which concepts are lexicalised.  

However, there is evidence that seems to require not only a distinction between 

conceptual and semantic levels of representation, but also different principles of 

organisation at these distinct levels. These come from some language-specific effects 

related to meaning, which appear to be limited to semantic representations as they are 

only present in tasks that require verbalisation, but not in nonverbal tasks (Brysbaert et 

al., 1998; Kousta, Vinson & Vigliocco, in press; Malt, Sloman, Gennari, Shi & Wang., 

1999; Vigliocco, Vinson, Paganelli & Dworzynski, 2005; see Slobin, 1996b). 

Brysbaert et al. (1998) tested for language-specific effects of the manner in 

which speakers' languages require them to produce number words, either in forms like 

"four-and-twenty" (Dutch) or "twenty-four" (French). Participants were asked to report 

the solutions of simple mental calculations (e.g. "20 + 4 = ?" or "4 + 20 = ?"), either 

verbally or by typing the numbers on a keyboard. Cross-linguistic differences were 

observed such that participants were faster in providing the answers when the addends 

were presented in an order that matched the language (e.g. "20+4" when the answer is 

expressed "twenty-four", or "4+20" when the answer is expressed "four-and-twenty"). 

However, this pattern was only observed when responses were made verbally. The 

differences disappeared when participants were asked to type their responses in digits. 

This suggested that these differences were a product of verbal encoding rather than 

cross-linguistic differences at a conceptual level related to arithmetic operations. 
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Relevant results also come from investigations of the relationship between syntactic 

properties and semantic representations. Vigliocco, Vinson, Paganelli and Dworzynski 

(2005) investigated the effects of grammatical gender of Italian words on semantic 

relatedness and found that Italian words referring to animals sharing grammatical 

gender were judged to be semantically more similar, and were more likely to replace one 

another in slips of the tongue than words that were of different gender. Thus, 

grammatical gender, a syntactic property of words had semantic consequences. Crucially 

for the argument here, the effects of grammatical gender disappeared in similarity 

judgements upon pictures, a task that is most likely to tap conceptual knowledge. The 

study therefore was able to demonstrate the separability of conceptual and semantic 

levels of knowledge, and their separate respective organisation. In a follow-up study, 

Kousta, et al. (in press) induced slips of the tongue in bilingual speakers of Italian (L1) 

and English (L2) who performed the same task in both of their languages on different 

days. This study was designed to assess whether the above effects of grammatical 

gender would also be observed in a bilingual's second language – a pattern of results 

that would be predicted if such effects arise at a conceptual level (and/or if conceptual 

and semantic levels of representation are identical or mapped on a one-to-one basis). 

Instead, the errors made by bilingual speakers were comparable to those made by 

monolingual speakers, at least where grammatical gender is concerned.2 Grammatical 

gender was reflected more in the bilinguals' errors in Italian than their errors in English 

for the same pictures, and this was true even when phonological similarity of the target 

and error words was taken into account (Kousta et al., in press). This provides strong 

support for an informational distinction between conceptual and semantic 

representations, showing not only that these effects of grammatical gender are limited 

                                                            
2 The only qualitative differences in the errors came from certain errors that were related to cross-
linguistic phonological effects, such as mistakenly producing horse for bear in English (the Italian word for 
bear is orso). 
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to semantic representations rather than arising at the conceptual level, but also that they 

do not extend to the semantic representations of a speaker's second language. 

It is important to note that many theories concerning the representation of 

meaning are concerned with conceptual representations rather than semantic 

representations, or contain the implicit assumption that concepts and semantics are one 

and the same. Nonetheless, their stances with respect to content, organisation, and links 

between words and referents are still relevant to any discussion of semantic 

representation, particularly as the model of meaning that will be presented here 

addresses both conceptual and semantic levels of representation. 

Classical view of meaning. Due to the importance of meaning in language, it is no 

surprise that questions related to the meanings of words have captured the interest of 

scholars since antiquity. Early theories of meaning, often termed the "classical view" 

(Smith & Medin, 1981, for a review), were based upon the assumption that the meaning 

of a concept (represented by a word) is its definition - a set of necessary features which 

would include all exemplars of the concept and exclude all others. Such a view of 

meaning, often couched in terms of formal logic, have been pervasive since classical 

times (e.g. Aristotle's Categories, 350 BCE/1941), and dominated theorising through 

much of the 1900s (e.g. Cassirer, 1953; Bourne, 1970; Katz & Fodor, 1963). The 

classical view, however, fell under severe criticism (see Smith & Medin, 1981; Mervis & 

Rosch, 1981; Murphy, 2002; Wittgenstein, 1953/2001). Wittgenstein (1953) 

demonstrated the apparent impossibility of producing adequate definitions to 

encompass all the meanings of a word, using the much cited example of the concept 

game. "Game" evades attempts to define it, as games need not be competitive, nor have 

scores, nor involve multiple participants, nor any other property of a subset of games 

that comes to mind. Wittgenstein points out that this difficulty extends to most 

concepts, not just game. Work by Rosch and colleagues provided further arguments 
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against the classical view. They argued that category boundaries are fuzzy rather than 

sharply delimited (Rosch, 1973; see also Hampton, 1979, for behavioural evidence), and 

they further developed Wittgenstein's notion of "family resemblance" in which 

prototypical members of a category are those which have the most attributes in 

common with other members of the category (Rosch & Mervis, 1975). Although a few 

researchers of semantics continue to pursue theoretical approaches similar to the 

classical view, most famously, Jackendoff (1990; 1992; 2002) who continues to explore 

the possibility of semantic representations in terms of primitives, most theories have 

diverged from the classical approach. 

Relational theories of meaning. A broad class of alternative theories to the classical view 

focuses on characterising semantic representations by investigating meaning relations 

between words, rather than attempting to dissect the meanings of individual words 

themselves. A pioneer in this approach was Charles Osgood (see Osgood, 1962; 

Osgood, May & Miron, 1975; Osgood, Suci & Tannenbaum, 1957; Snider & Osgood, 

1969), who developed the method of "semantic differential" that quantifies semantic 

relations between words by asking participants to rate individual words on a variety of 

attitude scales (e.g. good-bad, strong-weak, tense-relaxed). Crucially, rather than 

claiming that ratings for a given word on these individual scales revealed the 

componential features of the word's meaning, Osgood and colleagues used the semantic 

differential scale responses to generate measures of psychological distance between 

words (where greater proximity reflects higher similarity between words). Rather than 

treating each scale as independent, Osgood et al. applied factor analysis to reduce a 

high-dimensional representation space (one dimension for each of the attitude scales) 

into one of lower dimensionality. This allowed them not only to obtain a measure of the 

overall similarity between pairs of words, but also to evaluate the dimensions along 

which the words differed. Three distinct dimensions were repeatedly observed in these 
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kinds of studies--dimensions which, Osgood argued, were universal and allowed 

evaluation of any semantic space in any situation: evaluative scales (e.g., good-bad); 

power scales (e.g., strong-weak); and activity scales (e.g., active-passive). These scale 

labels are descriptive of the first three dimensions obtained from factor analysis (i.e. 

those which explain the most variance in the data) across the scales that entered the 

factor analysis, and can be applied to nearly all semantic domains. Although Osgood’s 

approach remains in use today in contexts such as advertising and marketing where 

evaluative judgments are important, the dimensions of evaluation, power and activity 

characterise semantic representations only in the broadest of terms, and relate only to a 

number of limited, relatively abstract domains. A bird, for example, is surely more than 

a combination of its ratings on evaluative, power and activity scales, which have nothing 

to do with specific physical form, activities performed, habitat, diet, or any other 

information that is important for the meaning of bird. 

Similarly to Osgood's approach, according to semantic field theory (Trier, 1931; 

see Lehrer, 1974; Kittay, 1987), semantic representations arise from relationships among 

the meanings of different words. Semantic fields are considered to be a set of words 

that are closely related in meaning. The meaning of a word within a field is determined 

in terms of contrast to other words within the semantic field. In contrast to Osgood’s 

approach, semantic field theory does not focus upon identifying broad dimensions that 

apply universally across all concepts, but instead attempts to identify the principles of 

contrast applicable within a field. For example, the semantic field of colour words is 

distinguished by hue and brightness (Berlin & Kay, 1969), kinship terms by age, sex, 

degree of relation (Bierwisch, 1969), cooking terms by factors like heat source, utensils 

involved and materials cooked (Lehrer, 1974), and body parts by function and proximity 

(Garrett, 1992).  
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Network models of semantic representation, while very different from semantic 

differential scaling or semantic field theory, also belong to the class of relational 

approaches to semantics. Network models go beyond earlier relational theories by 

specifying the details of the semantic relationships among words, rather than simply 

describing their distribution across the distinguishing dimensions of meaning. Early 

network models were semantic networks in which words are represented as nodes, and 

semantic relationships are expressed by labelled connections between nodes (e.g. Collins 

& Loftus, 1975). In this approach, a word’s meaning is expressed by the links it has to 

other words, which other words is it connected to, and what types of connections are 

involved. Of paramount importance for network-based theories is the type, 

configuration and relative contribution of the links that exist between words. Numerous 

alternative frameworks have been developed (see Johnson-Laird, Herrmann & Chaffin, 

1984 for a review) which differ along these dimensions. Importantly, these models have 

in common a focus upon (explicit) intensional relations, and a necessity to explicitly 

designate those relations.  

Perhaps the most extensive model which implements distinct representational 

themes is Wordnet (Miller & Fellbaum, 1991), a network model of the representations 

of a large number of nouns, verbs and adjectives in English. In Wordnet, “nouns, 

adjectives and verbs each have their own semantic relations and their own organisation 

determined by the role they must play in the construction of linguistic messages” 

(p.197). These relations and organisation are constructed by hand based on the relations 

that are believed to be relevant within a given class of words. For nouns, the most 

important relations are synonymy, hierarchy and part-whole relations. For verbs, 

relations of troponymy (hierarchical relations related to specificity in manner), 

entailment, causation and antonymy are important. 
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All the relational theories described above depend upon deciding which 

relationships are most relevant in representing meaning, and then deciding upon a 

manner of implementation. An entirely different relational approach, however, seeks to 

discover representations of words in terms of their relationship to other words without 

making any assumptions about the organisational principles involved. This approach 

can be found in global co-occurrence models such as Latent Semantic Analysis (LSA, 

Landauer & Dumais, 1997) and Hyperspace Analogue to Language (HAL, Burgess & 

Lund, 1997). These models use large corpora of texts, computing aspects of a word’s 

meaning based on other words found in the same linguistic contexts under the 

assumption that words that tend to share the same linguistic contexts will be similar in 

meaning. The resulting representations remain purely abstract, denoting a word’s 

similarity to other words without revealing which aspects of meaning contribute to the 

observed similarity. Measures of similarity based on these models have been 

demonstrated to predict behavioural performance to some extent (see Burgess & Lund, 

1997; Landauer & Dumais, 1997) suggesting that abstract relational representations 

derived from words’ contexts (e.g. LSA and HAL) reflect patterns of similarity that have 

psychological plausibility. 

Relational theories, however, have in common a serious flaw in that they focus 

only upon relationships among words and are not grounded in perception and action. 

As Johnson-Laird et al. (1984) wrote, “The meanings of words can only be properly 

connected to each other if they are properly connected to the world” (p. 313). Although 

Johnson-Laird referred to semantic network models, his criticism is relevant to any 

theory of representation that is not embodied in experience, at least, to some extent. It 

is largely with this concern in mind that many researchers developed perspectives that 

owe much to the classical view. 
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Featural theories of meaning. Although severe criticisms have been applied to the 

classical view, its general assumption that word meaning is componential in nature 

offers a way to ground meaning in perception and action. Different featural theories of 

meaning (e.g. Rosch & Mervis, 1975; Smith, Shoben & Rips, 1974; Collins & Quillian, 

1969; Jackendoff, 1990; Minsky, 1975; Norman & Rumelhart, 1975; Shallice, 1993; 

Smith & Medin, 1981) consider the representation of meaning in terms of feature lists - 

those properties of meaning which, taken together, express the meaning of a word in 

some way. One class of these theories can be described as a modified version of the 

classical view with the incorporation of additional assumptions to avoid the criticisms 

aimed at it (Miller & Johnson-Laird, 1976; Smith & Medin, 1981). These accounts 

assume the existence of definitions for concepts in the classical sense (core features), 

but also another set of relevant features. These features (nonnecessary features) reflect 

information that is not necessarily part of the definition itself, but instead, properties of 

some, but not all, exemplars of a category. Although core features will always be 

relevant (because they are common to all members of a category), nonnecessary features 

would be used for identification procedures, as they are more accessible than the core 

features (Smith & Medin, 1981). The postulation of nonnecessary features answers 

many of the problems of the classical view. For example, the fuzziness of category 

boundaries could arise because of the presence of a nonnecessary feature of a particular 

exemplar of a category. Likewise, typicality/category goodness effects could arise for 

the same reason. However this additional assumption comes at a high cost with respect 

to the classical view: core features become less and less important thus rendering the 

classical view essentially irrelevant (Smith & Medin, 1981). 

Perhaps the most influential work of this nature was that of Rosch and 

collaborators. Taking seriously the notion that the boundaries of categories are vaguely, 

rather than well, defined (Rosch, 1973), this work led to the notion of family 
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resemblance. Their work was guided by the notion that categories are formed along two 

basic principles: cognitive economy (optimising the number of possible categories to a 

manageable extent) and real-world structure (the fact that many features of meaning 

naturally occur in tandem) (Rosch & Mervis, 1975). The best representatives of a 

category (prototypes) were found to be those exemplars which shared the most features 

of meaning with other members of the category, and shared the least with members of 

another category: a principle of family resemblance coupled with contrast to other non-

family-members. This led to the notion of the basic level of representation: the level of 

specificity at which the combined within-category resemblance and between-category 

dissimilarity is the greatest (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). For 

example, in the hierarchy {animal, mammal, pet, dog, collie, Lassie}, dog would be the basic 

level. Most of the work by Rosch and colleagues focused on category membership and 

addressed some of the dominant theoretical controversies of the time, and many 

researchers of semantics have adopted assumptions and methodologies of this theory, 

particularly the possibility that category boundaries can be vaguely defined, and the 

resulting constructs related to family resemblance rather than all-or-nothing category 

membership.  

A particularly useful application of Rosch's approach is the use of features of 

meaning as a tool to provide insight into word meaning. One method is to assemble 

sets of words from a semantic domain of interest and decide a priori upon their features 

but without claiming that these features constitute a complete set, and then use those 

features to build a computational model of representation which can then be tested 

against data. This method was taken by Hinton & Shallice (1991, also see Plaut & 

Shallice, 1993), who created a set of semantic features which intuitively capture 

properties of common objects (e.g. <has-legs>, <hard>, <made-of-metal>, <part-of-

limb>), and used these features to train an attractor network to learn the mapping 
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between orthography and semantics. Lesioning this network produced semantic, visual, 

and visual/semantic errors consistent with patterns of performance in deep dyslexia. 

Plaut (1995) used the same approach to investigate dissociations between reading 

concrete and abstract words. A particular characteristic of the representations was that 

abstract words had fewer features than concrete words. This difference in featural 

properties between concrete and abstract words (possibly in conjunction with other 

differences) translated into different consequences when different aspects of the model 

were damaged: abstract words were more impaired when the feedforward connections 

were lesioned, while concrete words were more impaired when the recurrent 

connections were lesioned. Such findings suggest that even double dissociations can 

arise from a model with a (single) common level of semantic representation, depending 

upon underlying characteristics of the featural input. 

Theories based on independently-generated input. One possible problem with the 

computational models discussed in the previous section is the fact that the semantic 

features used were chosen by the investigators, and may, therefore, reflect the 

investigators' theoretical biases, or may not be true of the full range of meaning of the 

words in question. Other authors have addressed this concern by investigating those 

dimensions of meaning that are considered to be psychologically salient by others. 

Several models of semantic representations based on this kind of input have been 

implemented to date, differing mainly in the manner in which semantic representations 

are derived from the input. One class of models employs connectionist frameworks 

which develop representations from semantic input. These models are used in order to 

demonstrate how particular patterns of semantic impairment may be observed as a 

consequence of differential featural composition. This entails training a connectionist 

network with input that, although not directly obtained from speakers, is informed by 

characteristics of feature norms that are hypothesised to play a role. For example, Farah 
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and McClelland (1991) constructed a model in which words referring to living or 

nonliving entities were associated with different proportions of visual-perceptual and 

functional features (the former predominant for living things, the latter predominant for 

nonliving entities). In this case, the proportions were derived from dictionary 

definitions, which were presented to naïve participants who were asked to rate the 

individual elements of meaning in each definition in terms of sensory/perceptual or 

functional content. When the model was lesioned, different category-related effects 

were found, depending upon whether the lesion targeted the visual-perceptual features 

(with living things more impaired) or functional features (with non-living things more 

impaired). A similar approach was taken by Devlin, Gonnerman, Andersen and 

Seidenberg (1998) who investigated the role of intercorrelated features (those features 

which frequently co-occur, e.g., <has wings> and <has a beak>) and distinguishing 

features (those which allow similar entities to be distinguished from each other) upon 

impairment over time for living or nonliving things as a consequence of dementia. Since 

living things have many intercorrelated features but few distinguishing ones, and the 

situation is reversed for nonliving entities (McRae, de Sa & Seidenberg, 1997), 

differences in their composition were able to explain the progression of relative 

impairment for living and nonliving things in dementia, within a single representational 

system (see also Rogers et al., 2004) 

In these examples, semantic representations are based on specific characteristics 

derived from independently-generated information about meaning (e.g. more visual-

perceptual features for living things, as in Farah & McClelland, 1991; more 

intercorrelated but fewer distinguishing features as in Devlin et al., 1998). Such 

approaches, however, require making a priori assumptions about the particular 

properties that are relevant to explain a particular pattern of data, and do not allow for 

the possibility that other properties not explicitly embedded in the semantic 



25 

representations may also play important roles. Indeed, the theories of Farah & 

McClelland and Devlin et al. are not necessarily incompatible with each other, but their 

implementations do not permit direct comparison. This is because each model only 

embeds certain specific properties of featural input, and not others which are 

hypothesised to play a role under other theories, rather than simultaneously embedding 

multiple characteristics of featural input.  

Another class of models based on independently-obtained input avoids the need 

of deciding in advance which properties are relevant to explain a given pattern of data 

by using speaker-generated features: separable aspects of meaning that naïve 

participants believe are important in defining and describing the meaning of a given 

word. These features are used to develop a model of representation, and then the 

properties of the resulting model are analysed to identify those properties that affect the 

representations (Hampton, 1979; 1981; Hampton & Gardiner, 1983; Rosch & Mervis, 

1975; Rosch et al., 1976; Smith et al., 1974; Tversky & Hemenway, 1984). The first work 

along these lines to be carried out on a larger scale was conducted by McRae et al. 

(1997), who collected speaker-generated features for a large number of nouns referring 

to concrete objects (animals, plants, fruits, vegetables, artefacts, vehicles, etc.). 

Subsequent work by McRae and colleagues has used these features to address a number 

of questions of semantic representation and impairment (e.g. Cree & McRae, 2003; 

Cree, McNorgan & McRae 2006; Cree, McRae & McNorgan, 1999; McRae & Cree, 

2002; McRae, Cree, Seidenberg & McNorgan, 2005; McRae, Cree, Westmacott & de Sa, 

1999). Similar work based on speaker-generated features for nouns referring to objects 

has also been conducted by other groups (Garrard, Lambon Ralph, Hodges & 

Patterson, 2001; Randall, Moss, Rodd, Greer & Tyler, 2004; Rogers & McClelland, 

2004), collectively providing comprehensive data sets which allow investigation of 

semantic representations from numerous directions. However, one crucial characteristic 
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of many of these models is that they still tend to discuss the featural input in terms of 

one particular dimension (or just a few) to explain particular patterns of data. To permit 

the evaluation of such models more generally as theories of semantic representation, it 

is necessary to consider classes of models which do not depend on selecting particular 

characteristics of the featural input, but which still permit features to be analysed in 

such terms if desired (Vinson & Vigliocco, 2002; 2008; Vigliocco et al., 2004). This is 

one of the central aims of the present work. 

Going beyond semantic representations for words referring to objects 

Nearly all of the theoretical and behavioural research described above has 

focused upon nouns referring to concrete objects. As Miller and Fellbaum (1991) put it, 

“When psychologists think about the organisation of lexical memory it is nearly always 

the organisation of nouns they have in mind.” (p.204). But nouns referring to concrete 

objects are only one semantic domain, and it is unclear whether theoretical conclusions 

based only upon investigations of the semantics of concrete nouns can be generalised to 

other semantic domains. Words referring to actions3 is the only other domain beyond 

words referring to concrete objects that has received some attention (although see 

Gross, Fischer & Miller, 1989, for some discussions on the domain of words referring 

to properties). A first difference between words referring to objects and words referring 

to actions is referential: words referring to objects can be understood in isolation, while 

words referring to actions are relational in nature. One implication of this difference is 

that words referring to actions are more abstract than words referring to objects (Bird, 

Lambon Ralph, Patterson & Hodges, 2000; Breedin, Saffran & Coslett, 1994). Some 

authors have also argued that words referring to objects and actions differ in featural 

properties (Graesser, Hopkinson & Schmid, 1987; Huttenlocher & Lui, 1979). For 

words referring to objects there are more features referring to narrow semantic fields 



27 

(e.g., <domesticated> vs. <wild> for animals). For words referring to actions, instead, 

there are more features that broadly apply across a wide range of semantic domains 

(e.g., <intentionality>, <involves motion>). As a consequence of this, the patterns of 

correlation among semantic features would also differ for words referring to objects and 

actions; features should be much more strongly correlated within semantic fields for 

words referring to objects (e.g., <having a tail>, and <having four legs> for mammals) 

than for words referring to actions. 

Research on categories also demonstrates that distinguishing between different 

levels (superordinate, basic, subordinate) (Rosch & Mervis, 1975; Rosch et al., 1976) is 

relatively simple for words referring to (most) concrete objects; the situation is different 

for words referring to actions, for which it is typically difficult to create comparable sets 

of hierarchies. For example, yell does not fall easily into a superordinate category, as it 

can be considered communication, noise, or mouth action, any one of which seems 

insufficient as a category label compared to something like animal or fruit. The word yell 

also appears to lack subordinates (more specific instances of yelling would probably be 

reflected in the use of modifiers rather than in selection of a different word). 

Nonetheless, there have been attempts to define basic level actions (Lakoff, 1987; 

Morris & Murphy, 1990) and some attempts have been made to describe words 

referring to actions in hierarchical terms (Jackendoff, 1990; Keil, 1989). Differences 

between the domains, however, persist. For example, in Keil (1989), the hierarchical 

organisation of words referring to actions has fewer levels (generally two) and with 

fewer distinctions at the superordinate level. Other attempts to capture a level of 

organisation for actions have included distinctions between light (e.g., do) and heavy 

(e.g., construct) verbs (Jespersen, 1965; Pinker, 1989) and distinctions between general  

                                                                                                                                                                        
3 The term "action" is used here in a broad sense, encompassing both words referring to physical actions 
(e.g. run, throw, eat) and events of various kinds (e.g. clatter, glow, preach).   
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(e.g., move) and specific (e.g., run) actions (Breedin, Saffran & Schwartz, 1998). However, 

the light/heavy dichotomy only allows drawing a distinction between verbs used as 

auxiliaries and those that participate in phrasal verbs (e.g., get up, throw away) on one hand 

and all other verbs on the other (and permits no such distinction for nouns referring to 

actions), and drawing the line between general and specific actions is not an easy or 

agreed-upon exercise. A related issue is that distinctions between close semantic 

neighbours differ across the domains of words referring to objects and to actions. For 

many domains of basic-level concrete objects, close neighbours offer true distinctions (a 

goat is not a sheep; an apple is not a pear) while this is not true in many action domains 

which seem to overlap to a greater extent (e.g. to shout, to yell, to scream; none of which 

necessarily exclude any of the others). 

 Words referring to objects and actions also differ in syntactic terms, particularly 

considering that all object words are nouns, while the typical action word is a verb. As 

such the syntactic information associated with words referring to actions tends to be 

richer than for words referring to objects: the lexical-semantic representations of actions 

are considered to contain not only the core meaning (the action or the process denoted) 

but also the thematic roles associated with the verb. For example, the core meaning of 

to kick is something like "striking out with the foot" and it is associated with the 

thematic roles of Agent and Patient, the arguments of the verb that specify "who did 

what to whom". (Grimshaw, 1991; Jackendoff, 1990; Levin, 1993). The same could also 

be said of nouns referring to actions, which despite fulfilling the same syntactic roles as 

nouns referring to objects (e.g., subject, object, head of noun phrases) also take 

arguments in the same manner as verbs referring to actions (Collina, Marangolo & 

Tabossi, 2001).  

Such differences between the semantic representations of words referring to 

objects and words referring to actions have led to some independently-developed and 
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distinct models of representation for the two. As discussed above, in Wordnet (Miller & 

Fellbaum, 1991), different types of relational links have been implemented for objects 

and actions to accommodate the various differences between the domains. For nouns 

referring to objects, relations such as synonymy, hyponymy (e.g., dog is a hyponym of 

animal), and meronymy (e.g., mouth is part of face) are argued to play a primary role in 

semantic organisation. For nouns and verbs referring to actions, relational links include 

troponymy (i.e., hierarchical relation in which a subordinate term expresses the manner 

of its superordinate, such as the relation between crawling and travelling/ going/ moving/ 

locomoting), entailment (e.g., snoring entails sleeping) and antonymy (e.g., coming is the 

opposite of going). It is possible, however, that an assumption of separate 

representational systems is not necessary. After all, work by researchers using speaker-

generated features has revealed that substantially different semantic domains (e.g. living 

vs. nonliving things) can be represented in a single model, using a common set of 

implementational assumptions. Differences between these domains of knowledge come 

about because of differences in the types of properties speakers generate for words in a 

given domain. The present work extends this notion even further, investigating whether 

even more diverse domains of meaning, words referring to objects and words referring 

to actions, can be successfully represented in a single system.  

The present work 

Moving on from the extensive work by McRae and colleagues, the central question in 

the present study is whether the same speaker-generated semantic feature approach is a 

suitable way to investigate and model semantic representations for words referring to 

objects and actions despite the numerous differences between the two domains. This 

question will be addressed by a series of parallel studies based on speaker-generated 

features, collecting and analysing features of words referring to objects (for which much 

is known thanks to the work by McRae and others), and also words referring to events, 
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in order to assess differences between the domains, and to find out if the 

representational assumptions provide similarity measures of comparable quality for 

object-nouns and for words referring to actions. Chapter 2 introduces the item set and 

describes the feature collection methodology. Chapter 3 contains analyses of the nature 

and content of features that were generated for words from various semantic domains. 

In Chapter 4, an implementation of a model with distinct conceptual and lexical-

semantic levels of representation is introduced and described. Chapter 5 explores the 

characteristics of the resulting lexical-semantic similarity space at different levels of 

specificity. Chapter 6 presents four behavioural experiments that tested the ability of the 

model to predict fine-grained word-level semantic similarity effects in comprehension 

and production, and compares the performance of the model for words referring to 

objects and words referring to actions. Chapter 7 uses data from the experiments in 

Chapter 6 to assess the quality of the speaker-generated feature model against two other 

models from which word-level semantic similarity measures are available (Latent 

Semantic Analysis (LSA), and Wordnet). Chapter 8 presents an additional experiment 

exploring the ability of the speaker-generated feature model to predict category-level 

semantic effects, and Chapter 9 offers discussion and conclusions. 
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Chapter 2: Feature collection  

In order to provide a suitable basis for a model of semantic representation 

based on speaker-generated features, it is first necessary to select the model’s vocabulary 

from the entire English lexicon. After all, collecting and processing speaker-generated 

features is a very time-consuming process. At the same time, however, it is necessary 

that the words included in a model are suitably broad in scope and relevant to important 

issues in the literature.  

We begin with nouns referring to concrete objects, as a substantial literature 

already exists concerning this domain, particularly concerning category-related deficits, 

and because several sets of speaker-generated feature norms already exist to serve as 

comparison (e.g., Garrard et al., 2001; McRae et al., 1997; Randall et al., 2004; Rogers & 

McClelland, 2004). Patterns of category-related deficits suggest that it is especially 

important to include a variety of living and nonliving things, including fruits and 

vegetables, animals, clothing, furniture, vehicles, tools, and other artefacts. The field of 

body parts is particularly interesting in this regard, belonging to living things but for 

which it might be argued that functional properties are particularly important, thus more 

like nonliving things according to the distinctions described by Farah and McClelland 

(1991). Other considerations for selection of words referring to objects were that they 

should be familiar (so that participants would be able to generate features for the words 

rather than generic features referring to superordinates), relatively unambiguous or at 

least with a dominant meaning (so that participants would not produce diverse sets of 

features referring to different meanings of a given word), and ideally picturable (to 

permit their use in behavioural experimentation). A variety of exemplars were included 

within each category in order that a range of semantic similarity would be represented 

within the set, thus allowing the quality of the resulting model to be assessed at a variety 

of levels of specificity. 
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Since less is known about the semantic organisation of words referring to 

actions, it was more difficult to decide which of these to include in the list. This 

selection process began with verbs referring to actions. An initial set were selected 

because they describe actions that are associated with words already included in the 

object set (e.g., words related to cooking, to the use of tools, and body actions). Other 

words referring to actions were selected because intuitively they offered variability in 

their featural composition: words referring to light and sound emission which were 

expected to have sensory-related features; words referring to manner and direction of 

motion for which motion features are expected to be important; and words referring to 

communication and exchange for which features related to purpose/function may 

dominate. Again, words were selected with familiarity and limited polysemy in mind, 

and picturable actions were selected where possible. Finally, a set of nouns referring to 

actions were included in the set. All of these were homonymous or derivationally related 

to the verbs in the list (e.g., plea/plead; donation/donate).  

Method 

Item selection 

A total of 456 words were selected. This list included 216 verbs referring to 

actions and 240 nouns, 169 referring to objects and 71 to actions. A complete list of the 

words, along with their semantic field labels, is given in Appendix A. The 456 words 

were pseudorandomly assigned to 14 lists, each of which contained 30 to 40 words. 

Nouns referring to objects, nouns referring to actions and verbs referring to actions, as 

well as exemplars from any given semantic field4 (i.e., animals, tools, verbs of body 

action, verbs of light emission etc.) were distributed across the lists as evenly as 

possible. In English, many noun and verb forms are homonymous, therefore, in order 

                                                            
4 Henceforth the term “semantic field” will be used to refer to groups of words related in meaning. For 
many types of object nouns this term is synonymous with “category”, but this latter term does not apply 
so clearly when actions and events are also considered. 
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to obtain features for both the noun and verb versions of the same word form, all 

nouns and verbs were disambiguated by presenting them in a minimal syntactic context: 

verbs were presented in the infinitival, with to, and nouns were preceded with the 

determiner the. Noun-verb homonyms (e.g., the hammer, to hammer) were always assigned 

to different lists, as were derivationally-related nouns and verbs (e.g. donate/donation). 

The order of items in each list was randomised, and words were printed six to a page, 

each with ten blanks in which participants were to record their features. 

Procedure 

Two hundred eighty undergraduate students from the Department of 

Psychology at University of Wisconsin, Madison, participated in exchange for extra 

credit. Twenty participants completed each list. For each item they were asked to write 

down those features of meaning which, taken in conjunction, were sufficient to define 

and describe that word. The instructions defined features as "words or phrases that, 

taken alone, provide a single piece of meaning information". Features for two examples 

(one noun referring to an object and one verb referring to an action, neither occurring 

on that list) were provided as a model5. Participants were instructed to avoid producing 

pure associations ("for the word 'cat', you would not produce the feature 'mouse', 

because although cat and mouse are related, 'mouse' does not reflect what a cat is"). 

Although the response sheets contained ten blank lines for each word, participants were 

not explicitly instructed to produce ten features per word, but rather, to produce 

"enough features to define and describe the word" (with a maximum of ten responses). 

Finally, participants were instructed to produce features for each word in turn, and not 

to return to a word once they had begun generating features for the following word. 

The task lasted approximately 45 minutes. Five participants who failed to comprehend 

the task were replaced. 

                                                            
5 These features were obtained on the basis of features generated for items during a pilot study. 
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When participants missed a word, generated features for the wrong word (or 

wrong meaning), or did not know a word, that word was added to one of three follow-

up lists. Follow-up lists were presented to additional participants to ensure that there 

were 20 participants' responses for each word in the set. During the feature collection 

process some words were shown to be problematic. For example, to trill was not known 

by almost half of the participants, and features for the twist almost always referred to a 

type of dance rather than to the intended noun depicting the physical action of twisting 

(features for the related verb to twist never referred to the dance). Features for the foot 

were (almost) evenly divided between referring to the body part and to the unit of 

measurement. Words with problems of this type were eliminated from the set. Although 

an effort was made to select words that were not polysemous, some degree of polysemy 

was unavoidable. In order to minimise the effects of polysemy, participants were 

instructed with the following, "Sometimes you might think of more than one meaning 

of a particular word. When this occurs, please write down features only for the most 

common meaning of this word, in your opinion". Indeed, nearly all participants 

generated features only for the most common meaning. Words for which some 

participants generated other meanings were added to one of the follow-up lists. 

Analysis 

Data consisted of a large quantity of hand-written speaker-generated features for 

each word from 20 participants. Initial data entry consisted of entering each feature into 

a feature x participant matrix for each word. Thus, this phase of data entry reflected the 

participants' intent as closely as possible. When a participant produced a given feature 

for a given word, a value of 1 was entered for that feature x participant cell (indicating 

that the feature was present), otherwise that cell was left blank and subsequently a value 

of 0 was entered (indicating that the feature was absent).  
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Once the numeric data were entered for each word, the post-processing of the 

featural data involved making a number of decisions in order to capture aspects of 

similarity among speaker-generated features. For example, individual participants 

occasionally produced conjoint features (i.e. <red fruit> for the apple), while others 

produced such features separately (<fruit>, <red>, etc.). If other participants produced 

both features separately for the same word (as in <red fruit> above) these cases were 

considered to be unambiguously separable, and were converted into their separate 

features. For those situations in which this was not the case (e.g., if one participant 

produced <red fruit> but no other participant produced both <red> and <fruit> as 

separate features) this was decided on a case-by-case basis: a decision of whether the 

conjoint features (<red fruit>) had a substantially different meaning than its 

contributing features (<red> and <fruit>) taken separately. When a conjoint feature 

was separated, a value of 1 was entered for both features for that participant. Along 

similar lines, participants produced a wide range of variations in wording or synonyms 

to express the same feature (e.g. <4-legged>, <has four legs>, <quadruped>, etc.). 

Synonymous features were collapsed into a single feature, and the shortest, most-

frequent variation was chosen from the different alternatives. This procedure was 

carried out for each of the 456 words in the set. Sometimes, a participant produced two 

(or more) synonymous features in response to a single target word. Such cases were 

treated as if the speaker had produced the feature only once (in other words, a binary 

coding of present or absent for each participant).  

Because the above analyses were carried out on a word-by-word basis, the 

treatment of synonymous features proved somewhat problematic: a "synonymous 

feature pair" for one word might be missed when another word is considered (for 

example, if <fast> and <quick> are considered synonymous, and all instances of 

<quick> converted to <fast>, this could easily be missed for a word for which the 
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feature <quick> is produced but <fast> is not). Therefore, once all synonymous 

features were dealt with, a complete list of features was prepared, consisting of one 

instance of each feature that occurred across the entire set of words. This list was 

examined independently from the target words, and each feature was examined in 

relation to all other features in the list, to identify further possible synonyms, on an 

intuitive basis and with the aid of a thesaurus (for example, given the feature <fast>, the 

list was searched for other words referring to speed such as <quick>, <speedy>). A 

feature was considered as "synonymous" if it appeared in a thesaurus entry for another 

word such as <noisy> for <loud>. When a feature pair was judged to be synonymous, 

it was changed across all target words in the set. Feature weight values were determined 

for each feature in that word, as the number of speakers who generated that feature for 

that word (for example, 19 participants produced the feature <red> for the cherry, so the 

feature <red> was given a weight value of 19 for cherry). Feature weight vectors for 

each word were then prepared by enumerating all of the feature weight values of that 

word, assigning values of zero to all features not produced for a given word. Finally, a 

word x feature matrix was created by combining the feature weight vectors across all 

456 words in the set. In this matrix, values represented the number of speakers who had 

produced a given feature for a given word. At this point, idiosyncratic features (those 

produced by nine or fewer participants across all words, i.e., with summed feature 

weight values of less than 9) were discarded, resulting in a feature weight matrix of 456 

(words) by 1029 (features). Features and their weights for each word are published as 

online supplementary materials accompanying Vinson and Vigliocco (2008; see 

Appendix A for details). 



37 

Chapter 3: Properties of the speaker-generated features. 

 

Once the feature x word matrix was completed, it was then possible to evaluate 

the extent to which properties of the features differ across words from different 

domains of meaning (words referring to objects and actions), and across words from 

different semantic fields (e.g., words referring to animals, body parts, artefacts; manner 

of motion, tool action, communication, etc.). Beyond providing descriptive information 

about the different domains and semantic fields, analysis of the featural space also 

allows us to assess specific claims within cognitive psychology and neuroscience. These 

include differences between semantic representations of objects and actions (both in 

terms of their content and their organisation) and between living and nonliving domains 

for which many specific claims have been made. They also allow us to assess claims 

concerning category-related deficits, such as the different role of sensory, functional and 

motoric features, and different patterns of correlations among features. 

 

Here we report the following analyses: 

Characteristics of the general featural properties of the words themselves (number of 

features and total weight of features). These general properties can reveal aspects of 

representation such as semantic richness which might presumably differ across domains 

of knowledge. For example, words referring to objects might be semantically richer than 

words referring to actions because the latter are relational (and thus not containing 

semantic content related to the participants involved in the activity); this could be 

reflected in higher number/weight of features for object-nouns than for action-words. 

The reverse could also be true, if words referring to actions also include content related 

to the participants involved in the activity. These analyses can also reveal fine-grained 

differences between semantic fields in a broad domain (e.g., whether different categories 
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of words referring to objects exhibit different featural characteristics, or if categories of 

words referring to objects are homogeneous in this regard). 

Distribution of features of a given type (visual, other perceptual, motional and 

functional) among words in a given field. A number of theories explaining differential 

patterns of impairment following brain injury are based upon distinctions between 

different feature types (e.g. the sensory-functional theory, Warrington & Shallice, 1984) 

Analysis of these characteristics of words across domains of words referring to objects 

and to actions, and also fine-grained analysis at the level of semantic fields, can provide 

further insight into the applicability of these theories which have mainly addressed 

representations of nouns referring to objects only.  

Relationships among features in words: the extent to which words of different domains 

share features, the extent to which features correlate, and the role of distinctive features 

in words from different domains. Some theories rely upon these aspects of meaning to 

explain differential patterns of impairment, though only in the domain of nouns 

referring to objects, as discussed below. 

 

General featural properties 

Number of features. First the number of features generated for each word 

regardless of the number of participants who generated them was calculated. The 

average number of features per word was 28.33 (SD=6.09). Second, the average number 

of features for individual words in a given semantic field was calculated, as a measure of 

semantic richness. The first column of Table 1 gives a summary of mean number of 

features, organised by semantic field.  
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Table 1. Average number of features, average sum of feature weights, and their ratio, as a function of 

semantic field (standard deviation in brackets) 

Mean # features  Mean feature weight Weight/number ratio 
_________________________________________________________________________________ 
Objects 
Animals   30.96 (7.47)   126.2 (24.65)  4.08 (0.70) 
Fruit & vegetables  26.88 (5.00)   115.8 (21.59)  4.31 (0.69) 
Tools   30.48 (6.44)   109.9 (18.56)  3.61 (0.60) 
Vehicles   31.00 (6.41)   109.8 (24.62)  3.54 (0.53) 
Body parts  32.46 (5.93)   116.4 (18.40)  3.59 (0.65) 
Clothing   27.18 (5.21)   108.4 (16.69)  3.99 (0.49) 
Misc. artefacts  32.45 (5.17)   106.6 (17.73)  3.29 (0.59) 
 
Actions 
Body actions  29.15 (5.80)    98.0 (17.23)  3.36 (0.86) 
Body sense  26.17 (7.38)    89.7 (20.01)  3.43 (0.90) 
Change of location 29.36 (7.29)    86.4 (15.39)  2.94 (0.68) 
Change of state  25.40 (4.86)    76.4 (15.93)  3.01 (0.36) 
Noises   28.17 (3.58)    93.6 (29.10)  3.32 (0.91) 
Communication  28.89 (7.97)    88.8 (23.36)  3.07 (0.74) 
Construction  27.29 (6.00)    95.1 (26.23)  3.48 (1.00) 
Contact   27.33 (5.92)    91.5 (17.77)  3.35 (0.84) 
Cooking   24.43 (5.79)    95.9 (18.25)  3.93 (0.80) 
Destruction  31.88 (6.52)    89.4 (24.61)  2.80 (0.59) 
Exchange  23.50 (5.39)    80.3 (16.92)  3.42 (1.00) 
Heat/light emission 25.54 (6.09)    88.8 (20.04)  3.48 (0.48) 
Motion direction  22.00 (5.32)    73.6 (25.83)  3.35 (1.02) 
Motion manner  29.12 (6.78)    95.9 (23.33)  3.29 (1.06) 
Tool action  34.22 (5.59)   104.1 (14.03)  3.04 (0.51) 
________________________________________________________________________________ 
 

In order to statistically compare the number of features for words from 

different semantic fields, we started by formally comparing object and action words 

using a two-tailed t-test. To examine finer-grained semantic field effects, we conducted 

separate analyses for objects and actions, first conducting omnibus F tests comparing all 

of the semantic fields listed in Table 1. When an omnibus F-test was significant, we 

followed up with one-tailed t-tests (Bonferroni-corrected) contrasting semantic fields 

that appear to exhibit large numeric differences on a given measure. This approach is 

necessary in order to reduce the number of comparisons to a manageable level; there 

are 105 possible comparisons involving pairs of the 15 action semantic fields listed, and 

21 possible comparisons involving pairs of object fields. Comparisons were therefore 

restricted to testing apparent differences, and cases for which specific claims have been 
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made in the literature. This same procedure was also carried out for the other semantic 

field comparisons reported later in this chapter. 

In general, more features were generated in response to words referring to 

objects than to words referring to actions (t(383) = 3.4196, p < .001), though this was 

not true for all semantic fields. For example, speakers generated numerically more 

features for tool actions than for any of the object fields, and fruit/vegetables and 

clothing had an average number of features similar to that of an average action field. 

Among words referring to objects, the highest number of features were produced for 

body parts and miscellaneous artefacts, and the fewest, for clothing and fruit/vegetables 

(Body vs clothing t(38) = 2.59, p = .014; body vs. fruit/veg t(57) = 4.64, p < .001; misc 

artefacts vs clothing t(36) = 2.50, p = .017; misc artefact vs. fruit/veg t(55) = 4.41, p < 

.001). Among the words referring to actions, the highest number of features were 

produced for tool actions and actions referring to destruction, and the fewest, for more 

abstract words, such as those from semantic fields like direction of motion and 

exchange (tool action vs. motion direction t(22) = 6.08, p < .001; tool action vs 

exchange t(23) = 4.54, p < .001; destruction vs motion direction t(21) = 4.60, p < .001; 

destruction vs exchange t(22) = 3.33, p = .003). 

 

Summed feature weight. Although feature number indicates semantic richness 

to some extent, it does not capture the whole nature of semantic representations, 

because the binary distinction between presence/absence of a feature for a word does 

not take into account how salient features are (see Smith & Medin, 1981 for a number 

of arguments in favour of variable, rather than binary, values of semantic features). This 

is especially important because for most words in the set, the vast majority of features 

had very low weights (i.e., they were produced only by a few participants). For example, 

the word lemon had a total of 31 features, but only three of them had weights greater 
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than 10 (<yellow>, <sour>, <fruit>) and only three more had weights greater than 5 

(maximum = 20). Here, feature weights (the number of participants who produced a 

feature for a given word) were used as a more informative measure of semantic 

composition and a more precise reflection of the underlying meaning representations of 

words. The measure used here is summed feature weights: the total number of different 

features produced by all participants for a given word (after the post-processing 

procedure and removal of idiosyncratic features described in chapter 2). 

Unlike the number of features, feature weights clearly distinguished between 

words referring to objects and words referring to actions. All object fields exceeded all 

action fields in mean summed feature weights and they were significantly different when 

analysed by items (t(383) = 13.32, p < .001).(although this was not always true of 

individual exemplars of low-weighted objects such as ceiling [70], shield [73], wing [85], tail 

[85], dress [87] and a few high-weighted actions such as breathe [140], speak [132], swim 

[129], write [127], cook [124]). Again, fine-grained semantic field distinctions were 

observed, but not necessarily in the same way as for number of features. Within the 

object domain, largest weights were observed for animals, fruit/vegetables and body 

parts, and lower weights for tools, vehicles, clothing and other artefacts (Animals were 

significantly higher than all four of the latter categories (vs tools t(48) = 3.44, p = .001; 

vs vehicles t(36) = 2.90, p = .006; vs clothing t(39) = 3.33, p = .002; vs misc artefacts 

t(45) = 4.03, p < .001). Fruit/veg were significantly greater than misc artefacts only: 

t(55) = 2.33, p = .024, all other p > .10. Body parts exhibited the same pattern: vs. misc 

artefacts t(44) = 2.49, p = .017, all other p > .05). For actions, largest weights were 

observed for tool actions, body actions, cooking, manner of motion, and lower weights 

for change of state, direction of motion and exchange (Tool action vs change state t(17) 

= 4.84, p < .001; tool action vs. motion direction t(22) = 6.28, p < .001; tool action vs. 

exchange t(23) = 3.73, p = .001. Body action vs change state t(48) = 3.24, p = .002; 
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body action vs. motion direction t(53) = 4.45, p < .001; body action vs exchange t(54) = 

3.13, p = .003; cooking vs change of state t(15) = 3.30, p = .005; cooking vs motion 

direction t(20) = 4.41, p < .001; cooking vs exchange: t(21) = 2.24, p = .035 (n.s. after 

correction for multiple comparisons); manner vs change state t(33) = 2.94, p = .006; 

manner vs direction t(38) = 4.08, p < .001; manner vs exchange t(39) = 2.66, p = .011) . 

The second column of Table 1 above gives the average feature weights of the different 

semantic fields.  

The relative difference between the values of feature numbers and feature 

weight (for example, fruits/vegetables had the lowest number of features produced yet 

were among the highest in terms of summed feature weight), is due to the fact that 

feature weight takes into consideration not only the number of features generated but 

also inter-participant agreement. Some words elicited relatively small number of features 

overall, but for which participants were largely in agreement. This was reflected in the 

relatively high weights assigned to those features (e.g., zebra had only 19 features but 

with a high summed weight of 147; shirt had only 17 features with weight of 113; peach, 

21 features with weight of 136). Words with high levels of inter-participant agreement 

tend to be uniquely defined and concrete nouns referring to objects. Other words may 

have elicited many features, but they were not highly weighted, because of less 

agreement among participants as to their meaning characteristics (e.g. argue elicited 33 

features with a summed weight of only 57; preach, 36 features with weight of 66; give, 35 

features with weight of 74). Because of the mismatch between feature number and 

feature weight, the ratio of weight per feature was also calculated for each word, as 

illustrated in the last column of Table 1. The largest ratio of weight to features was 

observed for words referring to objects (objects vs actions: t(383) = 7.93, p < .001): 

living things (animals and fruit/vegetables) with a ratio above 4 and other object fields 

with a ratio above 3.5 (except for miscellaneous artefacts, with a ratio of 3.29). In 
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contrast, no action field exceeded a ratio of 3.5, and much more variability was 

observed among semantic fields. Construction and heat/light emission had the highest 

ratio (3.48), and destruction, change of location, change of state and tool actions had 

the lowest (all below 3.1) (Construction vs destruction t(13) = 2.77, p = .016; 

construction vs change location t(16) = 2.62, p = .018; construction vs change state 

(n.s.) t(15) = 1.96, p = .069; construction vs tool actions (n.s.) t(14) = 1.88, p = .080; 

heat/light emission did not significantly differ from the others due to the small number 

of words in this category). 

Taken together, these results indicate that most words referring to objects in the 

set - measured in terms of the speaker-generated features - are semantically richer than 

words referring to actions: they had more features, with greater weights, and a higher 

ratio of weight to features. This is consistent with previous claims in the literature 

concerning differences between object and action representations (e.g. Plaut, 1995), and 

is the first indication that some of the important differences between words referring to 

objects and words referring to actions are reflected in basic properties of speaker-

generated features. 

 

Types of features  

A second question of interest was whether words from broadly different domains 

(objects and actions) and within different semantic fields (animals, tools, 

communication, manner of motion, etc.) differ in terms of feature types. Previous 

studies (discussed in more detail below) suggest that three major differences are 

expected: (a) more perceptual features are expected for words referring to objects than 

for words referring to actions, (b) more perceptual features are expected for living 

things than for artefacts, and (c) motion features are expected to be more common 

among the words referring to actions than among the words referring to objects. 
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Identifying the feature types associated with different domains and semantic 

fields would allow the evaluation of the claims of the sensory-functional hypothesis that 

has been put forward to account for category-specific deficits (Warrington & Shallice, 

1984). In order to do so, a finer-grained criteria than in previous studies (e.g., Farah & 

McClelland, 1991; Garrard et al., 2001) was used for classifying the speaker-generated 

features. Instead of distinguishing only between sensory and functional features, the 

present study made further distinctions between functional and motoric features, and 

also between visual and other perceptual features. The contrast between motoric and 

functional features was introduced because of evidence that knowledge of how to use 

an object (motoric) and knowledge of what the object is used for (functional) can 

dissociate in some patients (Buxbaum, Veramonti & Schwartz, 2000), an especially 

important finding considering that motoric features are not mentioned by sensory-

functional accounts of impairment. Note that to some extent, the distinction between 

functional and motoric features may correspond to explicit and implicit knowledge of 

action, and both functional and motoric features tend to be very general in nature (for 

example, the specificity of motoric features related to grasping are limited to the 

observation that a particular implement is used with the hand, rather than any further 

details such as hand configuration, orientation, muscles used for action, and so on). The 

speaker-generated features were classified into five categories by two native English 

speakers. Any disagreements were discussed and agreed upon. First, all perceptual 

features, using the definition of “features that describe information gained through 

sensory input, including body state and proprioception” were identified. Perceptual 

features were subdivided into Visual Features (constituted 22.2% of all features), and 

Other Perceptual Features that refer to any other sensory modalities (which constituted 
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 19.7% of all features)6. Next, features were classified into Functional (features referring 

to the purpose of a thing, "what it is used for", or the purpose or goal of an action. 

These constituted 26.5% of all features), Motoric ("how a thing is used, or how it 

moves", or any feature describing the motor component of an action. These constituted 

12.0% of all features), and Other Features (those meeting none of the previous 

classification schemes, constituting 37.6% of all features) The class of Other features 

contains the largest proportion of all the features, and is highly heterogeneous. Some of 

the features classified as Other are encyclopaedic (e.g., [comes from] <Africa>); while 

others refer to relationships among meaning components, (e.g., ISA <animal>; PART 

OF <face>, relationships that are particularly common in taxonomies developed by 

lexicographers; (see Miller & Fellbaum, 1991). As such these are highly variable among 

items. 

For the purpose of the current work, Other Features were not further classified, 

since these do not play a role in previous theories of semantic organisation. Figure 1 

represents the distribution of feature types in object semantic fields, and Figure 2 

represents the distribution of feature types in action fields, (taking weights into 

account). As can be seen in the following Figures (see next page), words referring to 

objects and to actions appear to differ in their featural composition.  

 

                                                            
6 These feature type classifications were not mutually exclusive; for example, some sensory properties can 
be experienced through multiple channels, such as <smooth> which has visual implications as well as 
tactile. Features of this kind were permitted multiple classifications, so the total number of features 
exceeds 100%. 
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Figure 1. Percentage of feature types in exemplars from various object semantic fields, 
adjusted by weight. Error bars reflect standard error of the mean by items. 

Figure 2. Percentage of feature types in exemplars from a subset of action semantic fields, adjusted by 
weight. Fields were selected to be indicative of the range of featural composition in the complete set of 

semantic fields. Error bars reflect standard error of the mean by items. 
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Perceptual features. First, all perceptual features were considered together. 

Words referring to objects were found to be more dependent upon sensory features 

than words referring to actions (t(454) = 6.215, p < .001)7, with the exceptions of light 

emission (77.3% of all features) and noise making words (46.6%) which were the only 

action categories above the group mean for objects. Within object domains, living 

things were most dependent upon sensory features (48.0% for animals, 47.5% for fruit 

and vegetables), and other artefact fields appeared to be less so (tools 34.5%, clothing 

32.2%, vehicles 32.2%, other artefacts 33.0%), while body parts had an intermediate 

number of perceptual features (38.0%). However none of these within-category 

differences reached significance, likely due to variation of individual items within each 

class (all p-values > .03, not significant when corrected for multiple comparisons). The 

difference between living and nonliving things (excluding body parts) was significant; 

t(142) = 5.860; p<.001. This finding is consistent with the claims of the sensory-

functional hypothesis. In contrast to the object fields, most action fields had 

substantially lower proportions of sensory features (e.g., change of state, 14.9%; 

communication, 11.1%), suggesting the prediction that action naming (relative to object 

naming) should be relatively spared when sensory features are impaired. Nevertheless, 

despite the finding in the present study that some words referring to actions (e.g., noise 

making, communication, light emission labels) had far more sensory features than any 

object domain, there are no reports in the literature of impairments of words belonging 

to these semantic fields associated with impairments to sensory features (possibly 

because no one has tested patients on words from these fields). Next, more specific 

analyses were conducted, focusing on visual features (the dominant modality among the 

perceptual feature types). 

                                                            
7 All t-tests reported in this thesis are two-tailed unless otherwise specified. 



48 

Visual features. Among the words referring to objects, visual features were most 

salient for animals (43.9% of all features) and fruits and vegetables (36.8%), moderately 

salient for vehicles (29.4%) and body parts (30.1%), and less so for other (artefact) fields 

(26.4% for tools, 21.3% for clothing and 27.1% for miscellaneous artefacts), (animals 

vs. clothing: t(39) = 4.210, p < .001; animals vs tools: t(48) = 3.671, p < .001; animals 

vs misc artefacts t(45) = 3.815, p < .001; fruit/veg vs clothing t(49) = 2.991, p = .004; 

fruit/veg vs tools t(58) = 2.656, p = .010; fruit/veg vs misc artefacts t(55) = 2.42, p = 

.019)This tendency is in line with the distinction between living and nonliving categories 

and with the claims of the sensory-functional account. Living things had significantly 

higher weighted feature composition than nonliving things, t(142) = 4.151, p < .001 

(this comparison includes all object fields except body parts). Fine-grained differences 

were also observed within these fields: among living things, animals were more 

dependent upon visual features than fruits and vegetables (t(57) = 2.990, p = .002) and 

among artefacts, vehicles were more dependent upon visual features than tools or 

clothing (t(57) = 2.451, p < .001). Considering words referring to actions, visual 

features were predominantly salient only for the narrow semantic field of light emission 

(e.g. "glow", "shine"), for which visual features were by far the dominant feature type, 

amounting to 64.6% of all features. Other action fields had little, if any, dependence 

upon visual features. This finding lends credence to the suggestion that loss of visual 

features can result in category-specific impairments of object naming, and within object 

fields, of living things (e.g. Allport, 1985; Farah & McClelland, 1991). 

Other perceptual features. In relation to other perceptual features, among words 

referring to objects, again, consistent differences between fields were observed. Fruit 

and vegetable (10.8% of all features) and clothing (10.9%) were most dependent upon 

nonvisual perceptual features, tools (8.1%) and body parts (7.9%) moderately so, but 

other fields less so (animals, 4.2%; vehicles, 2.8%; other artefacts, 5.8%). Again, some 
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fine-grained differences were observed within artefact and living domains: e.g., clothing 

had significantly more other-perceptual features than tools (t(44) = 1.813, p = .038); 

tools had more than vehicles (t(41) = 2.162, p = .019); fruit/vegetable had more than 

animals (t(57) = 4.684, p < .001). Several action fields, noise making (43.6%), cooking 

actions (21.4%), communication (10.4%) and light emission (12.7%), were more 

dependent than any object field on nonvisual perceptual modalities. 

Functional features. Artefacts and living things were consistently distinguished 

insofar as nonliving things were more dependent on functional features than living 

things (t(142) = 8.152, p<.001). Among the nonliving things, clothing (25.0% of all 

features) and miscellaneous artefacts (27.2%) were most reliant upon functional 

features, followed by tools (20.8%), body parts (22.0%) and vehicles (19.1%). Clothing 

had significantly more functional features than either tools or vehicles (respectively, 

t(44) = 1.982, p = .031; t(27) = 1.996, p = .028). Living things - animals (6.8%) and fruit 

& vegetables (7.3%) were considerably less dependent on functional features, 

significantly differing from all of the nonliving categories (all pairwise comparisons 

yielded t > 3.5, p < .001, significant after correcting for multiple comparisons). 

Considering words referring to actions, purposeful acts such as change of state (20.9%), 

communication (21.0%), cooking (21.2%) and tool actions (20.9%) relied most heavily 

on functional features. Other action fields relied on functional features to a considerably 

less extent (e.g., light emission (7.1%), noises (7.6%) and manner of motion (7.3%), all 

of which significantly differed from change of state, communication, cooking and tool 

actions; all pairwise comparisons yielded t > 3, p < .001). Overall, functional features 

were more important for the semantic makeup of words referring to objects than of 

words referring to actions (t(454) = 2.774, p = .003). This is contrary to the suggestion 

of Bird, Howard & Franklin (2000) that functional features are similarly important for 

actions and for inanimate objects (and that the loss of functional features should result 
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in impaired performance for artefacts and actions alike). Functional features were also 

more important for artefacts than for living things, a finding consistent with the 

suggestion that loss of functional features selectively affects artefacts (e.g. Allport, 1985; 

Farah & McClelland, 1991). Again, however, reports of impairments to action fields 

such as change of state, communication, cooking and tool actions, all of which have a 

relatively large proportion of functional features (in numbers comparable to artefacts) 

and, thus, predicted by Bird et al. (2000) to be selectively impaired along with artefacts 

hitherto have not been reported in the literature.  

Motoric features. Again, fine-grained differences between semantic fields were 

observed. Within words referring to objects, vehicles (27.6% of all features) were the 

most dependent upon motoric features, body parts (17.4%) and miscellaneous artefacts 

(15.4%) moderately so, along with fruits and vegetables (13.5%), where motoric features 

were related to food preparation e.g. <peel>, <cut>. Other fields were less dependent 

on motoric features (clothing for example, had virtually no motoric features: 1.5%). 

Vehicles had significantly more motoric features than body parts (t(40) = 3.01, p = 

.002), body parts had more than fruit and vegetables (t(52) = 2.380, p = .010), fruits and 

vegetables had more than animals (t(57) = 2.980, p = .002) and animals had more than 

clothing (t(43) = 4.652, p < .001). In contrast to objects, words referring to actions were 

far more dependent upon motoric features (t(454) = 15.182, p < .001). Among the 

action fields, especially, manner of motion (56.4%), but also change of state (41.1%), 

body action (36.3%) and tool action (38.0%) were highly dependent on motoric 

features. Fields of communication (15.0%) and cooking (16.5%) were moderately 

dependent on motoric features, and a few action fields (e.g. light emission at 6.6%) had 

hardly any motoric features. 

Overall, the present findings are consistent with the claims of accounts that 

assume differences across concepts in the number and weight of different feature types 
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(e.g. Cree & McRae, 2003; Farah & McClelland, 1991; Tyler et al., 2000). The 

investigation in the present study, however, went a step further than previous studies by 

making distinctions on a more fine-grained level by distinguishing between Visual and 

Other Perceptual features, and also between Functional and Motoric features. These 

distinctions are important with respect to predicting fine-grained patterns of 

performance. Although selective impairments for living things relative to artefacts have 

been claimed to be associated with the combined effects of impairments to visual and 

other sensory features, different patterns of performance may result depending upon 

which sensory classification is used. For example, animals and fruit/vegetables are 

indistinguishable when visual and other sensory features are combined, but are 

distinguished when only visual features are considered, animals being more dependent 

on visual features than fruit/vegetables. The fine-grained distinction here allows 

dissociations between animals on one hand and fruit/vegetables on the other, which 

could explain cases in which one of these fields is spared but not the other (e.g., Hart et 

al., 1985). 

The present data also provided novel predictions with respect to what type of 

impairments we should expect in the action domain, depending upon the type of 

features that make up the semantic organisation of the different words referring to 

actions. While motoric features were shown to be important for most of the semantic 

fields in the domain of words referring to actions, some action fields could be 

distinguished on the basis of feature types. For example, words referring to light 

emission were highly dependent on visual features, while noise making and cooking 

words were dependent on sensory features from other modalities. Interestingly, these 

distinctions in the domain of actions show a degree of similarity to the sensory and 

functional distinctions in the domain of objects. Therefore, assuming the sensory-

functional theory of naming impairments, "category-specific" effects should also be 
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observed for words referring to actions, provided that suitable items are used for 

testing. It remains to be seen whether the absence of reports of such cases in the 

literature is merely a consequence of the lack of attention of past research to 

impairments in the domain of actions. Alternatively the lack of selective deficits within 

the action domain may constitute evidence against the sensory-functional theory (for 

additional discussion and simulation results consistent with the analyses above, see 

Vinson & Vigliocco, 2002; Vinson et al., 2003). 

Relationships between words 

The previous analyses were concerned with the feature properties of individual 

words. Here, relations between words, as illuminated by their featural makeup, are 

explored, focusing upon a number of dimensions about which specific claims have been 

made. One set of analyses consider shared features and correlated features (e.g. Devlin, 

Gonnerman, Andersen & Seidenberg, 1998; Garrard et al., 2001; McRae et al., 1997; 

Tyler, Moss, Durrant-Peatfield & Levy, 2000), and ask whether words referring to 

objects and words referring to actions, and living and non-living things, differ along 

these dimensions. A second set of analyses consider the distinctiveness and correlation 

of features in the fields of animals and tools, testing specific claims made by Tyler and 

colleagues (Tyler et al., 2000) about the types of features that tend to be intercorrelated.  

Shared features. Traditional featural views of semantic representations (e.g. 

Norman & Rumelhart, 1975; Rosch & Mervis, 1975; Smith, Shoben & Rips, 1974) and 

current work (e.g. Maki, Krimsky, & Muñoz, 2006; see Lucas, 2000; Hutchison, 2003 

for reviews of the semantic priming literature) use some kind of feature overlap as the 

crucial measure of similarity between words' meanings. At least for some semantic fields 

of nouns referring to objects, shared features have been shown to have an effect on 

performance in behavioural tasks such as semantic priming (McRae & Boisvert, 1998). 

The notion of shared features is also important to many views of semantic 
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representation and impairment, even if they do not specifically rely upon shared features 

per se as the centrally important aspect of meaning. For example, theories such as the 

Conceptual Structure account (Tyler et al., 2000), and other theories in which 

intercorrelation or distinctiveness among features is important (e.g. Devlin et al., 1998; 

McRae et al., 1997), depend upon shared features as this is the only way intercorrelation 

can arise. Moreover, feature distinctiveness is defined in contrast to shared features: 

distinctive features are those that are not shared among many exemplars. 

The present study thus begins with analyses of shared features. The raw 

similarity among words within the complete featural space was assessed by considering 

the extent to which words had features in common. First, a measure of shared features 

was calculated on the basis of the number of features shared between two words (see 

the first column of Table 2).  

Table 2. Average number of shared features and shared feature weights (standard deviations in brackets) 
as a function of semantic field classification for words referring to objects and actions (for actions, 
semantic field labels are taken from Levin, 1993). 
 
Field  Mean shared number of features  Mean shared feature weights 
________________________________________________________________________ 
Animals   7.78 (3.36)   27.73 (11.20) 
Fruit & vegetables  9.38 (2.91)   34.88 (15.11) 
Tools   8.80 (3.39)   31.66 (13.58) 
Vehicles   9.44 (4.10)   27.14 (13.04) 
Body parts  6.56 (4.05)   18.84 (14.17) 
Clothing   8.48 (3.43)   31.39 (12.20) 
Misc. artefacts  5.65 (3.61)   12.17 (  9.91) 
ALL OBJECTS  3.00 (2.50)     7.26 ( 8.48) 
________________________________________________________________________ 
Body actions  4.47 (2.24)   11.34 (  5.86) 
Body sense  5.52 (2.84)   14.77 (  8.55) 
Change of location 6.44 (2.92)   17.91 (  7.53) 
Change of state  5.60 (2.60)   13.84 (  6.59) 
Noises   6.52 (3.09)   20.07 (  9.47) 
Communication  6.70 (2.79)   16.94 (  7.67) 
Construction  8.71 (3.65)   23.24 (  9.91) 
Contact   8.60 (4.09)   26.94 (14.16) 
Cooking   6.90 (2.92)   28.86 (13.21) 
Destruction  8.57 (4.11)   20.00 (  9.05) 
Exchange  7.07 (2.76)   20.63 (  8.67) 
Heat/light emission 4.65 (2.80)   15.71 (11.46) 
Motion direction  4.53 (1.80)   12.27 (  4.89) 
Motion manner  5.75 (2.20)   16.75 (  6.70) 
Tool action  8.44 (3.58)   18.75 (  8.31) 
ALL ACTIONS  3.33 (1.64)     8.16 (  4.24) 
________________________________________________________________________ 
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Substantial variability was observed. For words referring to objects, the number of 

features shared among exemplars in a semantic field was numerically largest for 

fruits/vegetables, tools and vehicles and smallest for animals, body parts and 

miscellaneous artefacts (although it should be noted that these differences do not reach 

statistical significance, a consequence of wide variability among items, stemming from 

the varying properties of similarity within a given category). These tendencies may 

reflect the existence of subfield distinctions in these latter fields such as, for example, 

wild vs. domestic animals, face vs. limb-related body parts, and furniture vs. buildings. 

In the action domain, the largest number of features were shared in fields of contact, 

construction, destruction and tool action, and the smallest number was shared among 

body action, heat/light emission and direction of motion. Importantly, comparing the 

domains of objects and actions, there were, roughly, similar numbers of semantic fields 

with many and few shared features (although fields with the fewest shared features were 

in the action domain), although considering objects and actions without regard to 

semantic field distinctions it is interesting to note that these objects tended to share less 

features than actions (t(383) = 6.75, p < .001), perhaps illustrating a general tendency 

for object-nouns to be organised into separable categories while action-verbs tend to 

share features more generally.  

In order to assess featural overlap taking weights into account, it was first 

necessary to create an index of shared weights between word pairs, which was 

calculated as follows. The weighted feature overlap measure for a given pair of words 

was defined as the sum, across all features, of the minimum feature weight for the two 

words, taking into account only those features with nonzero weights. Since only the 

total value of featural weight is taken into account (and not the number of features 

contributing to this measure), the measure is the same for two words sharing ten 

features with weights = 1, and for two words sharing only one feature with weight = 
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10). Shared (weighted) feature overlap was first assessed within semantic fields, to 

illustrate the characteristics of semantic fields as above (see the second column of Table 

2 above).  

Considering words referring to objects, the highest feature weight similarity was 

again found among fruit/vegetables, tools and clothing, with lowest similarity levels 

among miscellaneous artefacts and body parts, although again these differences do not 

reach statistical significance due to the extremely high variance at the item level. 

Considering words referring to actions, the highest weight similarity was observed 

among words referring to cooking, contact and construction, with lowest similarity 

among direction of motion, body action and change of state. Words referring to objects 

had higher within-field shared weights than words referring to actions (t(383) = 12.51, p 

< .001), although this may be a consequence of the higher weights for objects overall as 

discussed earlier in this chapter. Further, this pattern is reversed when semantic fields 

are disregarded and shared weights are considered within all objects and within all 

actions (t(383) = 6.75, p < .001): feature weights tend to be shared more widely across 

action-verbs while shared weights tend to be limited to members of the same 

superordinate category in the object domain. 

These patterns of similarity do not differ drastically whether feature weights are 

considered or not, at least when comparing semantic fields to each other, suggesting 

that they are quite robust in indicating a hierarchy of differences in shared features 

within semantic fields, possibly, illustrative of the relative semantic density of the fields 

investigated. 

Correlation among features. The pattern of correlation among features is closely 

related to featural overlap, because features that frequently overlap will be highly 

correlated to each other. Correlation, however, takes not only overlap into account, but 

also the relative amount of overlap for pairs of features vs. those instances in which 
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only one of a pair of features occurs for a given item. Analysis of correlation first 

considers how strongly correlated features are for different semantic fields, but can also 

be applied to questions related to specific types of features (whether different broad 

classes of features tend to co-occur depending upon the semantic field in question). The 

Conceptual Structure account by Tyler and colleagues (2000) makes specific claims 

about correlation, suggesting that living things have more strongly intercorrelated 

features than non-living things, and words referring to objects have more strongly 

intercorrelated features than words referring to actions. This is consistent with the 

analyses of shared features reported above: living things tend to share more features 

than artefacts, which in turn tend to share more features than action-words. Tyler et al. 

also make specific claims about the kind of features that are correlated, depending upon 

semantic domain. Sensory features of living things are, in general, less distinctive, and 

thus the strongest correlations between features are expected to be between sensory 

features shared among many exemplars, such as the fact that things that have tails also 

tend to have legs. Such features are typically strongly correlated (often with numerous 

other features as well) and shared among a number of exemplars). For artefacts, on the 

other hand, sensory features tend to be distinctive, and thus should be correlated not 

with other sensory features but with their related functions, such as the fact that things 

that are sharp are also used for the function of cutting, a correlation much stronger than 

between sensory feature <sharp> and other related sensory features like <hard>. 

However, counterevidence has been provided by Garrard et al. (2001) based on analyses 

of speaker-generated features. According to Garrard et al., the greatest degree of 

intercorrelation among features is observed for distinctive features of living things (e.g. 

beaks and wings are quite distinctive when considering all living things, but there are 

virtually no exceptions to their co-occurrence), higher than either shared or distinctive 
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features for artefacts. Garrard et al. further showed that the representations for artefacts 

are not strongly dependent upon distinctive form-function correlations.  

It is premature, however, to discount the Conceptual Structure account based 

on this evidence, because some criticisms may be levelled against the feature norms 

obtained by Garrard et al. (2001). First, they were obtained using a rather restrictive 

methodology in which participants were asked to generate a certain number of features 

of a given kind for each word in the set by completing phrase frames (six features for 

each of the phrase frames "IS ____", "HAS ____" and "CAN _____", plus one 

"category" feature, in which participants were meant to report a superordinate category). 

This method of feature collection, which was identical for all items, may have led 

participants to generate predominantly shared features for category exemplars. Second, 

Garrard et al. used a limited set of words, of eight semantic fields, and eight exemplars 

in each field. Third, all their items were labels of concrete objects. This point is 

important as the specific context in which feature generation is employed (i.e., the other 

words included in a feature generation list) could, in principle, bias participants to 

produce only those features sufficient to distinguish a given item from others in the set, 

which could be a crucial weakness of this methodology (see Murphy, 2002). It is 

therefore important to replicate Garrard et al.'s tests of the predictions of the 

Conceptual Structure account, using different methods of feature collection less 

susceptible to these criticisms. The methodology in the present study differed from 

those of Garrard et al. (2001) as a wide range of semantically unrelated exemplars 

(including numerous words referring to actions) were included and the participants were 

allowed to generate whatever type of features they felt were important to the describe 

the meaning of a given word rather than being constrained to produce only certain 

kinds of features, and in certain proportions.  



58 

In order to provide a close basis for comparison, these analyses focused upon a 

limited set of exemplars from three semantic fields: animals, tools and action words. A 

limited set of words was investigated in this case to allow equating the words for 

concept familiarity, an important consideration because less familiar items may exhibit 

less typical featural profiles (for example, participants might only produce generic 

features related to a superordinate if the item itself is not so familiar). Items used for 

this comparison were 12 animals (bird, camel, cat, dog, fish, fox, goat, horse, lion, mouse, sheep, 

tiger), 12 tools (fork, tweezers, brush, pencil, pen, pliers, chisel, scissors, razor, gun, file, hammer) and 

12 verbs referring to actions (touch, clang, smell, hold, throw, frown, drill, write, twist, spray, 

exchange, inhale).  

Following the analysis used by Garrard et al. (2001), first the value of the 

correlation coefficient for all possible pairs of features across exemplars (in the entire 

set of 456 words) were calculated (taking feature weight into account). For each of the 

words in the test set (12 animals, 12 tools, 12 actions), all possible pairings of that 

word's features were assigned average correlation values based on the correlations in the 

entire set of 456 words (e.g. if <wings> and <beak> had a correlation of r = +0.96 

across all items in the set, this value was assigned to the feature pair <wings>, <beak> 

for the item bird.). These values excluded the numerous instances where neither feature 

occurred for a given word, which would have produced inflated correlation measures 

due to the sparseness of the feature vectors. These values were then averaged across all 

feature pairs for a given word. The average correlation coefficient for each semantic 

field was 0.146 for animal features, 0.119 for tools, and 0.081 for actions; pairwise 

comparisons between feature pairs (items as a random factor) using nonparametric tests 

(Mann-Whitney U) revealed that all three correlations differed significantly from each 

other (all p<.001). This is consistent with other analyses of featural correlations within 

object domains (e.g. Garrard et al., 2001; McRae et al., 1997) in which the features of 
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animals are more highly intercorrelated than the features of tools, for which 

distinctiveness is argued to be more important. These results also provide novel 

information about the action domain for which correlations are overall lower than for 

objects despite the overall tendency for actions to share features more than objects. 

Distinctiveness and correlation. Differences between the semantic fields of 

animals and tools in terms of feature distinctiveness were assessed following Garrard et 

al. (2001). A feature's distinctiveness was operationalised as being the proportion of 

words within a semantic field that share that feature (weights > 0). Thus a value of 1.0 

indicates a feature that is shared among all exemplars within a field, and smaller values 

indicate higher level of distinctiveness (features with values of zero were excluded, as 

they are by definition not representative of any exemplars in a field). Features with 

values greater than 0.5 on this scale were considered to be "shared" and those 0.5 or 

below, "distinctive". To assess whether living things were predominantly characterised 

by shared and correlated sensory features, and artefacts by distinctive features (for 

which form and function are correlated, such as <sharp> and <cut>), the following 

analysis was performed. The dependent measure was the number of statistically 

significant correlation coefficients between pairs of features for each word. Two 

different types of feature pairings were considered: "intracorrelation" (as described by 

Garrard et al.), the pairing between two features of the same type (sensory-sensory or 

functional-functional); and "intercorrelation", the pairing between features of different 

types (sensory-functional). Feature pairs were also divided into two conditions 

according to their overall distinctiveness (shared vs. distinctive features), thus allowing a 

2x2 factorial analysis of pairing type and distinctiveness. Separate analyses were carried 

out for animals and tools. The overall proportion of statistically significant correlations 

(correlations that differed from zero, alpha = .05) in this set was very low (animals = 
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9.1%, tools = 8.4%, actions = 8.0%); proportion of significant correlations by condition 

is reported in Figure 3.  

 

Figure 3. Average proportion of feature correlations that were statistically significant for animals, tools 
and actions as a function of featural distinctiveness and feature-correlation type, considering only sensory 

and functional features. Error bars indicate standard error of the mean (by feature pairs). 
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Animals had a small but significant tendency to have more correlation involving 

shared features than distinctive features (F(1,11) = 5.21, p = .03); however the effect of 

correlation-type was not significant, nor did the two factors interact (Fs < 1). For tools, 

instead, main effects of distinctiveness (more distinctive features than shared; F(1,11) = 

7.36, p = .020), as well as a main effect of correlation-type (more correlations within 

features of the same type than across feature types; F(1,11) = 6.90, p = .024), but no 

interaction between the two (F < 1), were observed. This replicates the general pattern 

found by Garrard et al.--more correlation among shared than distinctive features for 

animals, more correlation among distinctive than shared features for tools--but runs 

counter to the prediction that form-function correlations (intercorrelations) should be 

more prevalent in artefact domains. In addition to this contrast, animals and tools were 

directly compared, by comparing distinctive features for animals to distinctive features 

DIFFERENT FEATURE TYPE 
 
SAME FEATURE TYPE 
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for tools. Distinctive features for animals were more likely to be significantly correlated 

(8.3% of cases) than those for tools (7.3%), a significant difference (t(22) = 2.49, p = 

.021). 

To summarise, in the analyses reported above, some--but not all--of the 

differences that have been claimed to be important in determining concept organisation 

for different fields were observed. Within the object domain, living things differed from 

non-living things with respect to correlated features (more common for living than non-

living) but not with respect to the number of features and the number of shared 

features, as has been argued by other accounts (e.g. Tyler et al., 2000). Furthermore, 

despite methodological difference in feature collection methods, these analyses 

replicated the general finding by Garrard et al. (2001) that distinctive features of living 

things were more correlated than features (distinctive or not) of artefacts, contrary to 

the predictions of Tyler et al. (2000). Hence, this work does not support Tyler’s account 

of category specificity. 

Finally, contrasting the domains of objects and actions, as suggested by 

Huttenlocher and Lui (1979), the two were found to differ along the dimensions of 

feature numbers (richer representations for words referring to objects than words 

referring to actions) and proportion of correlated features (more for objects than for 

actions). However, objects and actions differed with respect to number or weight of 

shared features, depending on whether the analysis was fine-grained (considering shared 

features within semantic fields, where objects exhibited more shared features than 

actions) or more coarse-grained (ignoring semantic field differences, objects exhibited 

less shared features than actions overall). These findings emphasised the importance of 

differences in terms of correlated features between domains, and highlight the possible 

problems in considering only a single measure of similarity such as shared features, 

which may not adequately characterise the true semantic relations among items in a set. 
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Chapter 4: Modelling the lexical-semantic level of representation 

 

The featural representations described in the previous chapter can perhaps best 

be described as representing conceptual knowledge - nonlinguistic mental 

representations of things, events, etc. However, as discussed in Chapter 1 there are 

compelling reasons to posit a distinction between conceptual and semantic 

representations. A way to conceptualise this distinction is to assume that only concepts 

have featural representations, and the lexical-semantic level of representation binds 

featural representations to serve language functions. This level, at least for concepts that 

are lexicalised in a language, serves to mediate between meaning, syntax and wordform. 

Representational architectures of this kind have been described in neural terms by 

Damasio et al. (2004) as convergence zones, which connect different brain areas 

responding to different streams of sensorimotor information. Such an architecture 

applied to the meanings of words would avoid the problems associated with theories 

which do not include a conceptual/semantic distinction (or which do not include 

separate organisation at these levels): only those concepts which are lexicalised would 

have representations at this lexical-semantic level, which could differ cross-linguistically. 

Further, the language-specific effects observed only in verbal tasks (e.g. Brysbaert et al., 

1998; Vigliocco et al., 2005; Kousta et al., in press) would arise at this lexical-semantic 

level of representation, leaving conceptual representations unaffected by linguistic 

differences. 

Conceptual basis of modelling 

 In the present study, properties of the speaker-generated features provide the 

basis for modelling semantic organisation. Note that this is importantly distinct from 

the features themselves, which are argued to represent conceptual information; 

properties of features concern their co-occurrence, patterns of correlation, and other 
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aspects concerning their combination into the meanings of words. This general 

framework will henceforth be termed FUSS: Featural and Unitary Semantic Spaces: a 

conceptual representational space which is operationalised by the speaker-generated 

features themselves, and a semantic representational space derived from properties of 

similarity among words' featural content.8 This latter space is obtained using a technique 

which does not require making a priori assumptions about which specific properties of 

features are responsible for characteristics of organisation at this level: self-organising 

maps (SOMs, Kohonen, 1997). This approach takes a multidimensional input and 

produce as output a lower-dimensionality space in which important relationships among 

entities in the input are preserved.  

Representing meaning with self-organising maps 

Self-organising maps are particularly well-suited for modelling lexical-semantic 

representations because they create a spatially-organised output network ("map") of 

units in an unsupervised manner based upon various differences between different 

representations in the input space without the need to identify which particular aspects 

of the input are important in determining similarity (Kohonen, 1997). Important 

elements of self-organising maps are first, the input vectors. Each input vector 

corresponds to a single concept to be represented by the output network, made up of 

numeric entries in an input space of high dimensionality. Sets of input vectors make up 

the training set, which represent the experience by which the model learns its 

representations. The output map is a low-dimensionality similarity space, intended to 

ultimately reflect similarity structure in the input space. Crucially, each unit in the output 

network is associated with two types of information: co-ordinates of its spatial location 

in the output map, and a prototype vector of equal dimensionality to the input. This  

                                                            
8 Reference in the text to the Unitary Semantic level of representation will often refer to "lexical-
semantics" as a reminder of the assumption that this level is separate from conceptual representation. 
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serves the dual roles of vector projection (nonlinearly projecting an input space of high 

dimensionality to an output space of much lower dimensionality) and vector 

quantisation (providing a point estimate for a region in the input space). This is 

achieved via a training regimen which allows the system to develop through experience, 

adjusting the spatial coordinates on the output map so that concepts with similar input 

vectors appear on nearby regions on the map. Each training event consists of 

presentation of an input vector, which is compared to all prototype vectors. The one 

unit whose prototype vector is most similar to that input (according to Euclidean 

distance) is selected as the "winner", and the values of that prototype vector are 

adjusted in the direction of the input vector according to some function (typically a 

decreasing function which applies the greatest amount of change at the early stages of 

training and reduces to a small amount over the course of training). These adjustments, 

however, are not limited to the winning unit, but also extend to its spatial neighbours on 

the output map, the extent of adjustment depending upon a neighbourhood function 

which, again, typically reduces in size over the course of training. This reducing 

neighbourhood function serves to organise the output space coarsely in the early stages 

of training (reflecting the greatest regular differences in the input), and then gradually 

narrows its focus, thus reflecting finer degrees of similarity as training proceeds. Finally, 

each self-organising map is characterised by an initial state; the initial prototype vector 

for each location in the output map is initialised to a starting value. This reflects the 

state of affairs before any training has occurred. Typically this is done either by 

assigning random weights, or by applying some regular function related to two-

dimensional position.  

In this case, the multidimensional input is the 1029-dimension space defined by 

the number of features, with one vector for each of the 456 words in the feature set 

(thus each word can be considered as a point in a 1029-dimensional conceptual 
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representation space), A two-dimensional output layer is taken to reflect the lexical-

semantic level of representation. Application of the SOM algorithms results in local 

clustering of words with shared features, emphasising those properties of features that 

are most crucial for distinguishing between features. Organisation occurs not only on 

the basis of whether words share features or not, but also on other properties of 

features such as the weights of features (higher weighted features have greater impact 

than lower weighted features), the distinctiveness of features (features shared by a large 

number of words have less impact than features shared by fewer words, although 

widely-shared features will have greater global impact), and co-occurrence of the 

features (features correlated with each other will offer mutual support to the 

development of the output map, while features that never co-occur may have opposite 

effects, not only upon each other, but also upon other features correlated to one but 

not the other). In short, the trained SOM output space reflects the combined influence 

of a number of properties of featural representations, and these properties need not be 

specified in advance (or even known). 

One concern about the use of SOMs involves the reduction of a space of high 

dimensionality into one of lower dimensionality is that the lower-dimensionality 

representation may result in coincidental proximity among concepts, especially because 

equal distances on the spatial map may not correspond to equal distances in prototype 

space. For example, consider the simple example of a linear sequence (1-2-3-4-5-…-n) 

mapped into two dimensions. Such a sequence can successfully be mapped into the bi-

dimensional space in any number of ways, provided that adjacent values are still 

adjacent in the final map. Figure 4 (see next page) illustrates two such cases. 
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Figure 4. Two possible configurations of the numeric sequence {1 ... 12}  
as it could be represented in a two-dimensional output space (4 x 3) 

 
1 2 3 4  12 11 2 3 

8 7 6 5  9 10 1 4 

9 10 11 12  8 7 6 5 

 

In both cases, the sequence was exactly preserved, but the constriction of the 

sequence into a two-dimensional space produced misleading conclusions about 

similarity of concepts in the space. In the example on the left, one might conclude from 

the spatial arrangement alone that 1 is equally similar to 2 and 8, more similar to 7 than 

to 3, etc. In the example on the right, instead, 1 is not at all similar to 8 but is instead 

equally similar to all members of the set {2, 4, 6, 10}. Such concerns can be reduced by 

starting with a large neighbourhood radius and gradually reducing the size of the 

training effects, thus serving to initially provide a very coarse-grained arrangement 

which reflects the most distinctive differences among the items in the training set (in the 

cases above, largest numbers vs. smallest numbers), and eventually capturing the finer 

qualities of the input set (e.g., local proximity between values adjacent on the number 

line). But this does not entirely eliminate such problems, especially when we consider 

cases more complex than the ordered numeric set illustrated above. However, if 

multiple SOMs are trained using the same input vectors, but using different (random) 

starting configurations of the output space, such coincidental (misleading) proximities 

will be reduced, while, instead, truly proximal concepts will remain proximal across 

output maps. Considering the examples in Figure 4 above, merely averaging across the 

two maps is enough to remove most of the coincidental proximities (e.g. the only 

immediate neighbours in common for 2 between the two maps are 1 and 3; the only 

common neighbours of 8 are 7 and 9) although a few instances still remain (e.g., these 

two maps together are not enough to rule out 7 and 10 as immediate neighbours). In 
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order to avoid problems of this nature in estimating semantic similarity in feature-based 

maps, ensemble average distances were calculated: the similarity of two words was 

determined by the average of their Euclidean distances across multiple output maps. 

This allows a means of preserving the regular relations based upon featural contrasts 

and similarities (see Kohonen, 1997), and is analogous to averaging across speakers, 

each of whom has idiosyncratic relations among lexical concepts based on personal 

experience, but who share overall commonalities based on common reference and 

linguistic convention. 

Method 

Input data consisted of the 456 x 1029 (word x feature) weight matrix, and each 

of 100 output maps was defined as a rectangular space of 40x25 units, arranged in a 

rectangular lattice. This dimensionality was determined based on the two principal 

eigenvectors of the input data vectors, and number of units based upon the number of 

input vectors (Kohonen, 1997). Each unit on the output map is associated with a 1029-

dimension prototype vector associated with a (two-dimensional) location on the output 

map. These prototype vectors were initialised to random values, independently for each 

output map. Training was conducted using SOM Toolbox 2.0 

(http://www.cis.hut.fi/somtoolbox/) which implements self-organising maps 

(Kohonen et al., 1996) within MATLAB. There were two steps in the training of each 

map: first a "rough" step intended to be sensitive to the most salient distinctions, 

followed by a "fine" step to make more sensitive adjustments at a local level. The rule 

for adjusting weights is as follows: 

w(t+1) = w(t) + a(t)K(t) [x - w(t)] 

where w(t) is the weight at time t, [x(t) - w(t)] is the difference between vector w and 

the input vector x (constant over t), a(t) is the learning rate (here, defined as a linear 

decreasing function, in the rough phase beginning at 0.5 and in the fine phase beginning 
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at 0.05, with an intercept of zero at ttotal+1 where ttotal is the number of training epochs 

in a given phase: 40 for the rough phase and 160 for the fine phase), K(t) is the 

Gaussian neighbourhood kernel function 

K =  exp (-d2 / 2σ(t)2 ) 

where d is the distance between a unit and the winner, and σ(t) is the neighbourhood 

radius at point t in time. Neighbourhood radius σ also decreases linearly: in the rough 

phase from 20 (half of the maximum map dimension) to 10, and in the fine phase from 

10 to 1. 

Each map was trained in batch mode, which means that all feature vectors were 

presented to it in a single epoch (rather than presenting one of the feature vectors and 

then adjusting the map based only on that item), and all adjustments based on the 

identification of the "winner" for each input vector and the application of the 

neighbourhood function were simultaneously applied at the end of a set of epochs 

(comprising one presentation of each feature vector). In essence, this means that each 

prototype vector is replaced with its weighted average over each of the input samples 

(i.e. one vector corresponding to each of the 456 words in the training set), where 

weights are assigned according to the neighbourhood function K above (given that the 

learning rate a(t) is constant for a single epoch). The use of batch mode thus minimises 

idiosyncratic fluctuations of the output map based on presentation order of the 

individual input vectors, and thus requires fewer training cycles to reach a stable 

configuration, similar to the end configuration resulting from randomly-ordered 

presentation of single vectors. It also has a significant advantage in the amount of 

time/computing resources required; batch mode requires only one application of the 

neighbourhood function for the entire set of words, vs. 456 applications if each word is 

presented individually. 
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Once the fine training phase was complete, the output map was considered to 

be complete.9 Each map was then labelled with the words in the training set: whichever 

unit was most similar to a given input vector was labelled with the corresponding word. 

Euclidean distances between all possible pairs of words were calculated, giving a 

measure of word-word similarity for that map10. Once this was complete, a composite 

distance measure was obtained, by averaging distances for each word pair across all 100 

maps. This distance measure serves as an estimate of semantic (dis)similarity based on 

characteristics of the featural input, and thus provides the basis for evaluating the 

lexical-semantic representations arising under the FUSS model as described above. 

Global and local properties of this lexical-semantic space will be discussed in the next 

chapter. 

                                                            
9 This procedure was judged to be sufficient based on visual inspection of the first few maps created with 
these parameters, which appeared to suitably reflect semantic similarity, at least according to intuition. In 
subsequent chapters this will be assessed more formally. 
10 In a few cases, a single unit in the output map could be the best matching unit for more than one input 
vector. In this event, that unit was given multiple labels, and the distance between them was zero. Such 
cases can be considered "true synonyms", i.e. indistinguishable according to that particular map. 
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Chapter 5: Properties of the lexical-semantic space in FUSS. 

 

Given the transformation of the speaker-generated features into a composite 

semantic similarity space as described in the previous chapter, it is first necessary to 

establish that the resulting representations actually do reflect semantic similarity. In 

other words, assessing whether words with similar meanings are close to each other, and 

words with dissimilar meanings are far apart. This serves as the most basic test of FUSS, 

because any acceptable model of semantics must be able to capture the gross distinction 

between related or unrelated words. Since independently-obtained measures of semantic 

similarity for the items included in the present set were unavailable, it was necessary to 

start by assessing whether the organisation of this space conforms to intuition about 

which items should be similar to each other and which should not (this will be 

complemented with behavioural evidence in subsequent chapters). This question about 

organisation will be examined at a number of levels of specificity, ranging from 

similarity among words, to similarity among semantic fields, to similarity across the 

object and action domains. Analysis of the clustering performance of nouns referring to 

actions will also reveal the relationship between grammatical class and semantic 

representation. This is an important question because many studies investigating 

grammatical class distinctions between nouns and verbs have conflated this grammatical 

class distinction with the semantic distinction between objects and actions (see Vinson 

& Vigliocco, 2002; Vigliocco, Vinson, Arciuli & Barber, 2008).  

 

Contrasting semantic fields 

The first analyses tested whether sets of words of the same (intuitively 

designated) semantic field are near each other and distant from members of other 

semantic fields in FUSS lexical-semantic representation space. These analyses also 
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indirectly provide information concerning proximity among semantic fields (i.e., groups 

of words related in meaning according to the similarity space) to evaluate whether the 

clustering patterns between semantic fields reflect (intuitive) semantic similarity. These 

analyses were conducted separately for words referring to objects and verbs referring to 

actions (for now, excluding nouns referring to actions). 

Here, the average semantic distance between words from a given field (e.g., all 

possible pairings involving two words referring animals) was compared to the average 

semantic distance between those exemplars and exemplars from other fields (e.g., all 

possible pairings involving one word referring to an animal, and one word from another 

semantic field). If FUSS semantic similarity measures reflect this kind of category-level 

similarity, the within-field distances should be much less than cross-field distances. 

Distances for object fields are reported in Table 3. 

 

Table 3. OBJECTS. Average distance between exemplars of the same semantic field, and between 
exemplars of different semantic fields (standard deviations in brackets). Distances are measured in 
arbitrary units based on ensemble averages of maps with dimensions 40x25 units. All within vs. between 
comparisons are significant using independent-samples t-tests; p < .001(one-tailed).  
 

Within-field distance  Between-field distance 
______________________________________________________________ 
Semantic field: 
fruit/vegetable     7.0 (3.4)   23.0 (1.7) 
body parts   16.0 (6.0)   18.7 (2.7) 
animals      6.1 (2.9)   20.5 (1.6) 
clothing     4.2 (1.8)   20.7 (1.2) 
tools      9.9 (3.4)   19.5 (2.2) 
vehicles     8.6 (5.8)   21.0 (2.3) 
other artefacts   12.0 (4.8)   19.3 (3.1) 
______________________________________________________________ 
 

In all of these cases, the average distance between exemplars of a single semantic field 

was significantly lower than distances between exemplars of different semantic fields, 

suggesting that distances are capturing properties of family resemblance associated with 

these semantic fields. This was so even for less-coherent fields. For example, body parts 
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were highly segregated into subfields, distinguishing between facial parts and 

limbs/extremities, which had very few features in common. Similarly, "other artefacts" 

included items of furniture; parts of buildings like wall, ceiling, floor; and other items such 

as bomb, book, box which are difficult to classify at a finer level. Nonetheless, these items 

were overall more similar to each other than to exemplars from other object semantic 

fields. The same analysis was carried out for action fields, as reported in Table 4. 

Table 4. ACTIONS. Average distance between exemplars of the same semantic field, and between 
exemplars of different semantic fields (standard deviations in brackets). Distances are measured in 
arbitrary units based on ensemble averages of maps with dimensions 40x25 units. All within vs. between 
comparisons are significant using independent-samples t-tests; p < .001(one-tailed). 
 

Within-field distance  Between-field distance 
______________________________________________________________ 
Semantic field: 
body action    16.4 (4.1)   18.1 (3.6) 
body sense   14.6 (3.6)   18.4 (2.4) 
change location    7.7 (3.2)   15.4 (1.9) 
change state     8.4 (3.7)   15.0 (2.1) 
communicate     9.8 (3.5)   16.7 (2.8) 
construct     5.9 (2.3)   16.0 (1.4) 
contact      6.5 (3.4)   16.3 (1.2) 
cook      5.4 (3.2)   19.5 (1.0) 
destroy      9.3 (4.4)   15.4 (2.4) 
exchange     5.7 (3.3)   16.7 (1.5) 
light emission     9.2 (6.1)   19.1 (1.6) 
motion direction    7.9 (2.6)   15.3 (1.8) 
motion manner  11.0 (3.7)   17.0 (2.3) 
noise      6.1 (2.5)   19.6 (1.5) 
noise animal     4.0 (2.1)   20.7 (0.7) 
tool action   10.4 (4.0)   17.2 (2.2) 
______________________________________________________________ 
 

As was the case for the object fields, within-field distance measures were significantly 

different from the between-field measures for every field listed. Again, this was even the 

case for the less coherent fields such as ‘body actions’, a somewhat generic semantic 

field encompassing verbs such as inhale, inject, itch, lick, retch, sit, spit, wash; or ‘body 

senses’, including disparate sensory verbs such as feel, hear, listen, look, smell (see Appendix 

A for a full set of items and their semantic field labels), reflecting the fact that even 
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these kinds of words were somewhat semantically clustered, and roughly separable from 

other action verbs as a whole. 

 Interestingly, the between-field distances for words referring to actions were 

notably smaller than between-field distances for words referring to objects. This is 

because action fields tended to be close to each other, while this was hardly ever the 

case for object fields (also illustrated in the analyses of shared features and shared 

feature weights reported in Chapter 3). For example, noises and animal noises were 

separated by an average of only six units, change of location and direction of motion by 

only nine, change of location and change of state by 10, tool action and construction by 

10, manner and direction of motion by 11, destroy and change of state by 12, exchange 

and change of location by 12, animal noise and communication by 15. For object fields, 

the most similar classes were body parts and clothing (15), tools and miscellaneous 

artefacts (16), animals and body parts (17), vehicles and tools (18). These relationships 

among relatively proximal semantic fields make intuitive sense, but this will be formally 

tested (at least for certain semantic fields) in the behavioural experiment reported in 

Chapter 8. 

Figure 5 (see next page) illustrates the general tendency for object semantic 

fields to be more strongly differentiated from each other than action semantic fields. A 

clear category division is observed between “fruits and vegetables”, while actions 

involving exchange blend into “communication” (exchange of information) which in 

turn blend into “manner of communication”, which in turn blend into “non-

communicative sounds”. Importantly, in both cases local proximity remains consistent 

with intuitive judgements of similarity. 

 



74 

Figure 5. Two-dimensional projection of semantic similarity space for fruit and vegetables (left panel) and 
selected words referring to actions (right panel). Distances between words reflect degree of semantic 

(dis)similarity. 
 

 

 

The different patterns of similarity for words referring to objects and words referring to 

actions are consistent with claims that have been made about the differences between 

the lexical-semantic organisation of objects and actions as discussed in Chapter 1. The 

words referring to objects in the model are organised categorically, with few 

intermediate exemplars (for example, onions and potatoes, which seem to form a 

separate subcategory from the majority of other vegetables, and watermelon which is 

somewhat distinct from other fruits), while category boundaries were shown to be 

essentially meaningless for the words referring to actions depicted above. 

Contrasting objects and actions 

Another crucial question is the extent to which words referring to actions and 

words referring to objects are separable in FUSS lexical-semantic similarity space. 

Because objects and actions are different in so many ways (e.g., objects refer to an 

identifiable entity and actions express inter-entity activities; they fulfil different 
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sentential functions; they differ in interconceptual organisation, Graesser et al., 1987; 

Huttenlocher & Lui, 1979) it is important to demonstrate that they are also separable in 

lexical-semantic space. Were this most basic distinction not reflected in the organisation 

at this level, it would cast doubt upon FUSS even if it proves able to capture fine-

grained similarity. 

In a first analysis, semantic field proximities were calculated across the 

object/action divide, with special attention paid to those object and action fields that 

were shown to be close to each other. Fruit/vegetables were close to cooking (average 

distance 15 units), and tools were close to tool actions (11 units), construction (12 

units), and destruction (16 units). These proximities were almost entirely due to item-

specific proximity between words referring to tools and their most closely associated 

actions (e.g. to shovel was close to the hoe and the shovel; to drill was close to the drill, etc.), 

but almost none of these actions was as close to its most associated object than that 

object was to other related objects (e.g. the hoe was 4.4 units from to hoe, but only 2.4 

units from the broom and the rake; the drill was 3.1 units from to drill, but only 2.2 units 

from the screwdriver, 2.3 from the wrench). 

In order to gain a more general view of the space as a whole, the semantic 

distances between all words of a particular pairing type in the similarity space (see Table 

5 below) were calculated, to see whether words referring to objects and words referring 

to actions exhibit similarity effects that would distinguish between the two domains, 

despite the wide range of concepts included in each. These comparisons also included 

the set of nouns referring to actions, in order to test whether these words' 

representations follow their grammatical class (in which case they should be most 

similar to nouns referring to objects) or their semantic content (in which case they 

should be most similar to verbs referring to actions). 
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Table 5. Average word-word distances in semantic similarity space, within and across category. Distances 
are measured in arbitrary units based on ensemble averages of maps with dimensions 40x25 units 
(standard deviations in brackets) 
 

Grammatical class comparison  
    Noun-noun  Noun-verb  Verb-verb 
Average distance    19.88 (4.05)  19.53(2.91)  16.12 (3.95) 
 

Semantic classification comparison (Within class) 
   Object noun  Action noun  Action verb 

Average distance   18.90 (4.90)  15.94 (4.95)  16.12 (3.95) 
  

Semantic classification comparison (Between class) 
    Object N-action N Object N-action V Act.N-act. V 

Average distance   21.91 (2.54)  20.70 (2.67)  16.53 (4.26) 
  

 

First, the comparison between all nouns referring to objects and verbs referring 

to actions (169 objects and 216 actions) showed a distinction between these two groups 

of words. The average word-word distances (derived from ensemble average distances 

across the 100 self-organising maps with dimension 40x25, as described in Chapter 4) 

were 19.82 units within object-nouns (a total of 14,196 unique combinations of two 

object-nouns), 16.55 units within action-verbs (23,220 unique combinations of two 

action-verbs), and 20.35 units between action-verbs and object-nouns (36,504 possible 

pairings between one action-verb and one object-noun in the set). Action-verbs were 

more similar to other action-verbs than object-nouns were to other object-nouns; 

independent sample t-tests comparing the 14,196 object-object pairings to the 23,220 

action-action pairings revealed a significant difference (t(37414) = 57, p < .0001). This 

difference may have resulted from the differences in distances between semantic fields, 

with object-nouns tending to be more segregated into specific categories than action-

verbs. The average distance between object-nouns and action-verbs (36,504 such pairs) 

was greater than either within-group average distance (within-object vs object-action 
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t(50,698) = 21, p < .0001; within-action vs. object-action t(59,722) = 106, p < .0001), 

demonstrating that the object-noun/action-verb distinction is reflected in the similarity 

space. This is a particularly important finding given the importance of this distinction in 

tasks involving meaning (Vigliocco, Vinson, Woolfe, Dye and Woll, 2005). 

Investigating grammatical class: nouns referring to actions 

Next, measures of semantic distances were used to calculate the extent to which 

grammatical class is reflected in FUSS. Grammatical class is one of the best candidates 

for being a language universal, and some researchers have claimed that grammatical 

class distinctions are emergent from semantic distinctions, beginning with the 

correspondence between objects and nouns on one hand, and actions and verbs on the 

other (e.g. Bates & MacWhinney, 1982, Elman, 2003). This would suggest that nouns 

and verbs should be semantically distinct from one another, a difference that should be 

reflected in behavioural tasks as well as neural organisation. Numerous studies in 

cognitive psychology, cognitive neuroscience and neuropsychology (reviewed in 

Vigliocco, Barber, Vinson, Druks & Cappa, in prep) have investigated this question by 

comparing performance of various impaired and unimpaired populations on tasks 

involving nouns and verbs, often showing substantial differences between the two. 

However, a majority of such studies fail to tease apart the grammatical class distinction 

between nouns and verbs from the conceptual distinction between objects and actions, 

so it is often unclear whether these findings are related to grammatical class or some 

other conceptual factor (see Vinson & Vigliocco, 2002; Vigliocco, Barber, Vinson, 

Druks & Cappa, in prep, for further discussion). In fact, the few studies of grammatical 

class that do control for conceptual factors have typically shown that grammatical class 

differences for nouns and verbs are not observed for tasks involving processing of 

(uninflected) single words (e.g. Chiarello, Liu, Shears & Kacinik, 2002; Vigliocco, 

Vinson, Arciuli & Barber, 2008; Vigliocco, Warren, Siri, Arcuili, Scott, & Wise, 2006). 
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This suggests that, contrary to views in which grammatical class is emergent from 

semantics, this might only be true for the strong correspondence between objects and 

nouns and not more generally of grammatical class. This question is examined through 

analysis of similarity within the lexical-semantic level of FUSS. 

In order to do this, it was necessary to focus upon a set of words for which the 

(grammatical) distinction between nouns and verbs does not also correspond to the 

(semantic) distinction between objects and actions: nouns referring to actions such as 

the blink and the scream. The question asked was whether action-nouns are more similar 

to other object-nouns than to their action-verb counterparts (to blink and to scream). If 

grammatical class per se is an organising principle that goes beyond the semantic 

distinction between objects and actions, or if grammatical class is emergent from 

semantics, action-nouns should exhibit more similarity to object-nouns than to action-

verbs. This could be expressed at various levels of specificity, ranging from the broadest 

(action-nouns should cluster among object-nouns and not among action-verbs) to the 

finest (action-nouns should exhibit a tendency to cluster among other action-nouns 

compared to similar action-verbs). 

Considering all nouns together (object-nouns and action-nouns), the average 

within-grammatical class distances were 20.16 units for nouns (compared with only 

16.55 for the verbs) . Moreover, the average distance between all noun-verb pairs was 

19.49, a value significantly smaller than the average distance between pairs of object-

nouns (t(66,034) = 7.332, p < .0001). This may be surprising until we consider the 

greater extent to which different categories of words referring to objects are 

distinguished from each other, while words referring to actions are much less separate 

(as illustrated by analyses of shared features and shared feature weights described in 

Chapter 3, and the analysis of distances between different semantic fields reported 

earlier in this chapter). By adding action-nouns to the set of object-nouns, the within-
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grammatical class coherence for the nouns was further reduced (and it was already fairly 

limited due to the categorical distinctions among object-nouns) and the difference 

between nouns and verbs was reduced. A follow-up distance analysis that compared 

distances within the class of action-nouns (17.40 units) to distances between action-

nouns and verbs (17.33), and between action-nouns and object-nouns (20.39) showed 

that action-nouns were significantly closer to each other than to object-nouns (t(14,482) 

= 43, p < .0001), and were no closer to each other than to verbs despite the huge 

number of comparisons and resulting power to detect even small differences (t(17,819) 

= 0.554, p = .579). This shows that action-nouns are (semantically) more similar to 

action-verbs (in fact, indistinguishable from them in this type of analysis) than to object-

nouns; that is, the semantic characteristics of actions vs. objects are responsible for the 

patterns of semantic similarity in FUSS, while grammatical class (verbs vs. nouns) does 

not have semantic consequences. 

To further measure the extent to which action-nouns' representations are more 

similar to action-verbs than to object-nouns, distances of action-verb/ action-noun 

pairs (e.g. to blink/the blink, to construct/the construction) were examined. If there is 

correspondence between grammatical class and semantic similarity, action-nouns' 

representations should be closer to object-nouns in the similarity space than their 

minimal-paired action-verbs (e.g. the blink/to blink; the construction/to construct). To test this 

prediction, the average distance between a given action-noun and all object-nouns was 

calculated and compared to the distance between the corresponding action-verbs and all 

object-nouns. This measured the extent to which action-nouns are perceived as being 

closer to the centre of mass of the "object-noun space" than action-verbs. Because the 

measures of distance were so similar (reflecting the fact that action-nouns are 

represented very near their verb counterparts), non-parametric sign tests were used to 

test for the presence of any effect of grammatical class. Of the 71 action-noun/action-
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verb pairs, nouns were nearer to the object-nouns 36 times; and verbs was nearer 31 

times (with 4 ties); a nonsignificant difference (sign test p = .625).  

These results seem to indicate that grammatical class does not have semantic 

consequences, at least for this set of action-nouns. However, it may be possible that 

grammatical class effects are observed in a more subtle manner rather than being 

reflected in some kind of semantic properties common to all nouns. Properties of the 

semantic similarity space may preclude action-nouns from being represented near the 

object space because of intervening concepts, but some kind of nounlike characteristics 

within a semantic field might still be observable. In order to investigate this possibility, 

one more analysis of semantic distance was conducted to investigate whether effects of 

grammatical class could be observed within semantic fields referring to actions of 

different kinds. Here, only sets of action words within semantic fields were investigated. 

If grammatical class has consequences for semantic similarity, action-nouns should 

generally be closer to the action-noun member of a (different) action-noun/action-verb 

pair. For example, the action-noun the request should be closer to the demand than it is to 

to demand, to demand should be closer to to request than the request, and so on. In order to 

provide minimal semantic contrasts, only the following sets of words that 

unambiguously represented the same narrow semantic fields were selected: direction of 

motion (ascent/ascend vs. descent/descend); eye action (blink, squint, wink), noises (clang, 

clatter, crackle), light emission (flicker, glow, shine, sparkle), communication (demand, 

plea/plead, request, suggest/suggestion), vocal noises (scream, screech, shout, yell), facial 

expressions (frown, smile), body action (pull, push), and exchange (trade, exchange, loan). 

Within each field, distances were compared between each action-noun/action-verb pair 

and the other nouns and verbs only within each subset. Again non-parametric sign tests 

were used to test whether nouns tended to be closer to other nouns than to the 

corresponding verbs, and whether verbs tended to be closer to other verbs than to the 
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corresponding nouns. Action-nouns were closer to other action-nouns in the same field 

in 15 comparisons, and to same-field verbs 14 times (1 tie), a non-significant difference 

(p > .90). A similar pattern appeared for verbs. Verbs were closer to the verb member 

of a pair 14 times, and closer to the noun 15 times. In short, there was no tendency for 

action-nouns to be semantically segregated from their action-verb counterparts: nouns 

and verbs appear to cluster together irrespective of grammatical class. 

Taken together, the above results present a picture of the semantic similarity 

space obtained from the speaker-generated features which is highly consistent with 

intuitive judgements of semantic similarity, ranging from coarse-grained distinctions 

between objects and actions; to distinctions of moderate grain such as the segregation 

between different semantic fields: object-noun categories like fruit/vegetables, vehicles, 

animals, and action fields like cooking, light/heat emission, sounds, to fine-grained 

distinctions such as farm animals vs. wild animals vs. small mammals. They also reveal 

that the patterns of similarity among speaker-generated features are not related to 

grammatical class: action-nouns were not distinguished from action-verbs, and both 

were separable from object-nouns. This finding is in contrast with any account by which 

grammatical class has a conceptual or semantic basis. 

These comparisons between distance measures in FUSS semantic similarity 

space and independently obtained semantic field relations reveal the utility of the 

dimensionality reduction techniques used in FUSS: similarity relations are respected, 

from very broad distinctions such as the divide between words referring to objects and 

to actions, down to very fine-level properties of similarity such as the semantic 

proximity of apple, pear, peach; or get, receive, acquire. However, a much more crucial test of 

the value of these measures is the extent to which they predict performance in 

behavioural tasks which are sensitive to semantic similarity, which will be addressed in 

the following chapters. 
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Chapter 6: Predicting fine-grained behavioural effects using measures of similarity from 

FUSS 

 

The previous chapters have described properties of speaker-generated features 

and the development of FUSS, a model of lexical representation based upon them. 

Although the properties of the features in the conceptual level of FUSS and of the 

resulting semantic space are consistent with previous claims about semantic 

composition, and with intuitive notions of categories and similarity, a more direct test of 

FUSS is necessary. If the semantic similarity measures obtained from FUSS are indeed 

psychologically real, they should be able to make fine-grained predictions of semantic 

effects in behavioural tasks. That is, they should go beyond previous studies by showing 

that semantically-related words produce measurable effects compared to unrelated 

words (for example, the oft-replicated semantic priming effect), and more importantly, 

by predicting how such effects are modulated by the degree of semantic similarity.  

 Of crucial interest at this stage is the relative predictive power of the semantic 

distance measures in domains of objects and actions. In the previous chapters it became 

clear that both can be represented in this framework, but it remains to be seen whether 

these representational assumptions benefit words referring to objects and words 

referring to actions similarly. While graded semantic effects within the object domain 

are predicted by most models of semantic organisation, it is not clear whether this 

would be the case for the action domain, given that most models to date do not deal 

with this domain of knowledge. So in addition to testing for graded behavioural effects 

of the semantic distance measures in comprehension and production of words referring 

to objects, of critical interest will be the ability of the semantic distance measures to 

predict performance for words referring to actions.  
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Two complementary behavioural methodologies will be used to this end. One 

tests the effects of fine-grained semantic similarity in comprehension on the degree of 

semantic priming in a lexical decision task (Experiment 1: objects, Experiment 2: 

actions), and the second tests the degree of semantic interference in picture naming 

(Experiment 3: objects, Experiment 4: actions). Both sets of experiments will test, first, 

whether FUSS can predict graded semantic effects for words referring to objects, and, 

second, whether the same patterns of results are obtained for words referring to actions. 

 

LEXICAL DECISION: SEMANTIC PRIMING 

Semantic priming refers to the robust finding that speakers respond faster to a 

target word when preceded by a semantically related word than when it is preceded by 

an unrelated word (Meyer & Schvaneveldt, 1971; see Neely, 1991 for a review). The 

phenomenon of semantic priming has been extensively investigated because it arises in 

a largely automatic manner, and has been considered to reflect the organisation of 

semantic memory (e.g., Anderson, 1983; Collins & Loftus, 1975; Cree, McRae & 

McNorgan, 1999; McRae & Boisvert, 1998). Cree et al. (1999) and McRae and Boisvert 

(1998), have shown that categorical priming (i.e., words from the same semantic 

category such as jar-bottle; subway-bus; raft-canoe) can be observed even when those 

words are not associated, if the related items are selected on the basis of empirically 

obtained measures of semantic similarity, showing that such effects are not simply the 

product of word association reflected indirectly through speaker-generated features. 

Further, semantic priming effects appear to be symmetrical (e.g. turkey primes goose as 

much as goose primes turkey; McRae & Boisvert, 1998), consistent with the assumptions 
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underlying the semantic distance model employed in FUSS, e.g., that a single distance 

measure between turkey and goose predicts behavioural effects in both directions.11  

In this section two experiments are reported. Experiment 1 replicates previous 

work for words referring to objects, given measures of semantic distance from FUSS. 

Most importantly, however, this experiment goes beyond previous work, in that FUSS 

distances are not only used to distinguish between related and unrelated words, but also 

at a finer level, assessing the role of fine-grained degree of similarity among words that 

are somewhat related in meaning. Graded effects of meaning similarity are predicted 

under most theories of semantic representation, but to date there have been only a 

limited number studies of semantic priming which have explored this possibility using 

single words.12. Experiment 2 extends the investigation to the action domain, applying 

exactly the same methodology but using different items and participants. With respect 

to words referring to actions, most studies tend to investigate verbs in phrase or 

sentence contexts, and/or priming effects across grammatical classes (for example, 

broom-sweep) rather than priming from one action-verb to another (see Vigliocco, 

Vinson, Arciuli & Barber, 2008, for discussion) Only a few studies have reported 

semantic priming effects for verb-verb pairs (Rösler, Streb & Haan, 2001;Vigliocco et 

al., 2008; see also Bushell & Martin, 1997), and only using synonymous prime-target 

pairs (Bushell & Martin; Rösler et al.) or at least highly related pairs (Vigliocco et al.). 

The present study, therefore, will establish whether semantic priming effects for words 

                                                            
11 Importantly, asymmetrical priming results can be observed when the relationship between words is 
primarily associative rather than semantic (e.g. Najmi & Wegner, 2008). It remains to be seen 
whether asymmetrical, purely semantic priming can be observed. If so, this would require a different 
set of processing assumptions than those employed here. 
12 Certain studies of morphological and phonological priming effects also embed items varying in 
semantic relatedness (in terms of the extent to which two words sharing the same stem or letter string 
are semantically related to each other), showing similar graded effects (e.g. Gonnerman, Seidenberg 
& Andersen, 2007). However, these studies typically focus upon gradation among words sharing 
orthographic or phonological overlap, with goals related to testing different account of morphology, 
while the present studies approach lexical-semantic representations across words typically without 
morphological or orthographic overlap. 
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referring to actions can be observed when prime and target are not synonyms, similarly 

to priming effects that have been repeatedly reported for nouns referring to objects.  

 

Experiment 1: Objects 

Method 

Participants. Sixty-four native English speakers from the UCL community13 

participated in this study and received £3 for their participation. All participants 

reported having normal or corrected-to-normal vision. Nine participants who had high 

error rates (>10%) or extremely slow response times (> 3 SD's from other participants) 

were replaced. 

Materials. Target items were selected from the list of words included in FUSS, 

and meeting various other restrictions as follows. First, target words and primes were all 

nouns depicting concrete objects, and were matched as closely as possible for verbal 

frequency, number of letters, and had minimal orthographic or phonological overlap 

with the target word. Primes were selected to be (1) very close to the target word 

(operationalised as word-word semantic distances in FUSS between 1.5 and 4.5), for 

example dagger – sword; (2) close (distances between 4.5 and 7.5), for example dagger – 

razor; (3) medium (distances between 7.5 to 10.5), for example, dagger - hammer; and (4) 

far (distances between 18 to 22), for example, dagger - tongue. Verbal frequency (Kucera 

& Francis, 1967) did not differ across conditions (average frequencies were 41.7 in the 

very close condition (SD = 16.7), 40.9 (14.6) for close, 41.5 (16.4) for medium and 42.0 

(15.9) for far; ANOVA revealed that the four conditions did not significantly differ in 

                                                            
13 Experiments 1-5 all included participants with various language backgrounds who reported their 
native language as English, and that they did not speak any other language fluently. Most of these 
participants spoke British English, but all experiments included some participants with other English 
backgrounds (Australia/New Zealand being most common, followed by US/Canada, and a few others 
such as South Africa and Singapore). Because these participants did not behave measurably 
differently from the British English speakers, their results were combined in all analyses reported. 
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terms of item frequencies: F(3, 93) < 0.1), nor in terms of length in letters (average 

length = 4.97, 5.19, 5.09, and 4.97 respectively: F(3,93) < 0.1). See Appendix B for a 

complete list of items used in the experiment.  

 Four lists were prepared from the experimental items, such that each target 

word appeared only once in a given list, and each prime word also appeared only once 

(although a single prime could appear for different targets across lists). Each list 

contained eight prime-target pairs from each of the four. There were altogether 32 

experimental items in each list. 

 The experimental items were presented within the context of a large number of 

filler items including 40 noun-noun prime-target pairs (all selected to be unrelated at an 

intuitive level), and 72 verb-verb prime-target pairs. The large number of filler trials was 

selected based on previous semantic priming studies, as one way to avoid the possibility 

that priming effects may occur due to strategies (see Neely, 1991). An equal number of 

word prime - nonword targets were also included. Each nonword was created by taking 

a noun or verb not appearing elsewhere in the experiment and altering one letter, such 

that the resulting string was orthographically acceptable but was not a real word. Each 

word and nonword appeared no more than once for each participant. The resulting 

prime-target pairs were combined in a pseudorandom order such that each test item was 

separated from the next by at least two fillers.  

 Procedure. Participants were told that the experiment focused upon word 

identification processes, and that they would see a variety of words or nonwords, and 

their task was to indicate by button press whether a presented letter string was a word 

or not. "Word" responses were always made with the right hand, and "nonword" 

responses with the left. Participants were urged to respond as quickly as possible while 

trying to minimize errors. All item presentation and data collection used IBM PC-

compatible computers running E-Prime software (Schneider et al., 2002). An initial 
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practice set of 20 single-word trials ensured that the participants understood the lexical-

decision task. The instructions then advised the participants that they would briefly see 

a word presented immediately before the target word or nonword, and they should 

attempt to ignore the prime word if possible, responding only to the target. Both the 

practice trials and experimental trials followed the same presentation mode: a central 

fixation point was displayed for 800 ms, followed by the prime word for 67 ms, 

followed by the target word, which remained on the screen until the participant pressed 

a button, followed by a 300ms blank interval. The short SOA between prime and target 

display (67 ms) was selected on the basis of previous studies showing that long SOAs 

permit strategic responding, and on the basis of a pilot study showing that a 67 ms SOA 

was sufficient to produce semantic priming (related vs. unrelated). The next trial began 

immediately thereafter. Every 100 trials the participant had the opportunity to take a 

short break. Reaction times and accuracy were recorded for each trial. 

At the end of the experiment, participants were debriefed, with particular 

attention paid to whether they noticed any relationship between targets and primes. 

Those participants who noticed a relationship tended to focus upon the phonological 

similarity between filler targets and primes, or upon the wordlike properties of the 

nonword target items. No participants reported noticing any similarity in meaning 

between targets and primes. 

Design and data analysis. The critical dependent measure was the time to 

respond, indicating that a critical target is indeed a word. Errors were recorded (false 

"nonword" responses to target words) and analysed separately. The independent 

variable was the semantic distance between target and prime, which was manipulated 

within (target) items and within subjects. The effects of semantic distance upon lexical 

decision reaction time were subjected to one-way ANOVA by subjects and items, with 

the linear trend component of particular interest. Trend analysis was performed using 
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contrast coefficients weighted on the basis of the semantic distances, both with subjects 

and items as random factors. 

 

Results 

 Participants' responses to the critical items were highly accurate, an overall 

accuracy above 98%. Correct reaction times, averaged by condition are reported in 

Table 6 (standard errors of the mean in brackets) along with error frequencies.  

Table 6. Average lexical decision latencies (RT, in ms; standard error of the mean in brackets) and error 
percentages as a function of semantic distance between target and prime. Experiment 1 (objects). 
__________________________________________________________ 
Semantic Distance Response latencies  Error rate (%) 
_______________ ________________  _____________ 
Very close  548 [ 8.1]   1.8 [1.2] 
Close   557 [ 9.3]   1.5 [1.1] 
Medium  567 [ 9.1]    1.8 [1.3] 
Far   572 [ 9.8]    1.3 [1.1] 
__________________________________________________________ 

 

Reaction times. Reaction times for correct responses were collapsed by subjects 

and then by items, and subjected to a one-way analysis of variance. The reaction times 

were submitted to an omnibus analysis of variance, which was significant both by 

subjects and items (F1(3,189) = 6.56, p < .001; F2(3,93) = 5.23, p < .001) This was 

followed up by testing the linear trend using contrast coefficients [-1.3, -0.7, -0.1, 2.1] 

corresponding to the average distances between target and distracters [very close, close, 

medium, far], reflecting decreased priming as distance increased. This linear trend was 

significant both by subjects and items (F1(1,61) = 5.21, p = .026; F2(1,31) = 4.48, p = 

.042). Orthogonal quadratic and quintic trends were also tested: quadratic term, 

although significant by items, was only marginally significant by subjects: F1(1,61) = 

2.99, p = .089, F2(1,31) = 4.26, p = .048; quintic term was nonsignificant either by 

subjects or by items F1(1,61) = 1.79, p = .196, F2(1,31) = 1.62, p = .213. These results 
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indicate that priming effects were modulated by the semantic distance measures 

obtained from speaker-generated features.  

 Errors. Errors did not occur differently for primes from different semantic 

distances (all Fs<1). 

Discussion  

The main result from this experiment is the finding that the semantic distance 

measures modulated the amount of priming observed for words referring to objects. 

These results replicate and extend what has previously been reported by McRae and 

Boisvert (1998) and Cree et al. (1999) who also used speaker-generated feature norms to 

simulate priming effects within attractor network models. The novel finding here is that 

such an effect is modulated by the feature-based measure of semantic distance, a result 

consistent with the notion that fine-grained differences in similarity measures reflect 

gradations in semantic similarity. Next, a parallel experiment was conducted in the 

action domain to assess whether this is also true for this very different semantic domain. 

 

Experiment 2: Actions 

Method 

Participants. Forty-eight native English speakers from the UCL community 

participated in this study and received £3 for their participation. All participants 

reported having normal or corrected-to-normal vision. Four participants who had high 

error rates (>10%) or extremely slow response times (> 3 SD's from other participants) 

were replaced. 

 Materials. Target and prime verbs were selected on the basis of the same 

distance criteria as Experiment 1. Verbal frequency did not differ across conditions 

(average frequencies from Kucera and Francis (1967) were 62.5 (SD = 28.5) in the very 

close condition, 52.9 (26.7) for close, 57.9 (25.4) for medium and 60.0 (28.1) for far; 
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ANOVA revealed these conditions did not significantly differ: F(3, 93) < 0.5), nor did 

length in letters (average length = 4.9, 4.9, 4.8 and 4.8 respectively, significantly different 

from each other: F(3,93) < 0.1). See Appendix C for a complete list of items used in the 

experiment.  

Four experimental lists were prepared as in Experiment 1. The experimental 

items were presented within the context of a large number of filler items. In order to 

ensure that targets and primes were interpreted as verbs, filler items consisted of 

unambiguous verbs (not having a noun homonym) or words with verb-dominant 

frequency of use. There were 112 such verb-verb prime-target filler pairs (all intuitively 

"unrelated"). An equal number of word prime - nonword targets were included. 

Nonwords (based on verbs) were created in the same manner as in Experiment 1.The 

procedure, design and data analyses were also exactly the same as in Experiment 1.  

 

Results 

 Participants performed the task with a high rate of accuracy (error rate for target 

items = 3.5%). Correct RTs were averaged across semantic distance by subjects and 

items; see Table 7 for response latencies and error rates. 

 

Table 7. Average lexical decision latencies (RT, in ms; standard error of the mean in brackets) and error 
percentages as a function of semantic distance between target and prime. Experiment 2 (actions). 
__________________________________________________________ 
Semantic Distance Response latencies  Error rate (%) 
_______________ ________________  _____________ 
Very close  602 [8.6]   3.6 [1.9] 
Close   613 [8.9]   3.1 [1.7] 
Medium  627 [9.4]    4.0 [2.0] 
Far   636 [10.0]    3.3 [1.8] 
__________________________________________________________ 

 

Reaction times. Reaction times for correct responses were collapsed by subjects 

and then by items, and subjected to a one-way omnibus analysis of variance. The effect 
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of semantic distance was significant by subjects and items (F1(3,141) = 5.01, p = .002; 

F2(3, 93) = 6.96, p < .001) As in Experiment 1 this omnibus test was followed up by 

trend analysis, with the linear trend as the measure of interest. This trend was significant 

both by subjects and items (F1(1,45) = 4.88, p = .032; F2(1,31) = 5.77, p = .023); 

neither quadratic and quintic terms were significant: quadratic term: F1(1,45) = 3.12, p 

= .084; F2(1,31) = 3.50, p = .071; quintic term: F1(1,45) = 1.94, p = .171; F2(1,31) = 

3.53, p = .070. Again, these results indicate that priming effects were linearly modulated 

by feature-based semantic distance measures.  

 Errors. Errors did not occur differently for primes from different semantic 

distances (all Fs<1). 

 

Discussion 

 This experiment established that graded semantic priming in the action domain 

can also be observed, going beyond previous studies that have investigated verb-verb 

priming in which the effects of highly related primes are compared to unrelated primes 

(e.g., Bushell & Martin, 1997; Rösler et al.,  2001; Vigliocco et al.,  2008). Hence, this 

experiment provides evidence in a lexical decision task, from the domain of actions, that 

important aspects of similarity among lexical-semantic representations can be captured 

across domains using the same general computational principles. In order to test the 

generality of these effects, it is important that they can also be observed in another 

behavioural domain in which semantic effects have been reported: the picture-word 

interference paradigm. 

 

PICTURE NAMING LATENCIES: SEMANTIC INTERFERENCE 

 In contrast to the facilitatory semantic effects arising in primed lexical decision 

(as reported in Experiments 1 and 2), semantically related words exert interfering effects 
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during picture naming, as shown in picture-word interference experiments in which a 

distracter word is presented immediately before a target picture to be named. In these 

experiments, speakers are slower to name the picture when the word is semantically 

related to the target than when the word is unrelated (Glaser & Düngelhoff, 1984; 

Schriefers et al., 1990)14. Interference effects have been reported for both object-nouns 

(e.g., Glaser & Düngelhoff, 1984; Lupker; 1979; Schriefers et al., 1990, and many 

others) and action-verbs (Roelofs, 1993; Vigliocco, Vinson & Siri, 2005). These studies, 

however, only contrasted related and unrelated words.. The experiments reported below 

extend previous work by manipulating the degree of semantic relatedness between the 

distracter word and the target picture name on the basis of the semantic distance 

measures in FUSS in the same way as in Experiments 1 and 2 above, to investigate 

whether the degree of similarity affects the amount of interference in naming, In 

Experiment 3, participants are asked to name pictures of objects while ignoring 

distracters which are object-nouns varying in semantic distance to the target noun, and 

in Experiment 4 participants name pictures of actions while ignoring distracter words 

referring to actions. If semantic distance predicts performance in this task, semantically 

related distracters should affect naming latencies as a function of their distance to the 

target word. 

  

Experiment 3: Objects 

Method 

 Participants. Thirty-six native English speakers from the UCL community 

                                                            
14 The difference between the direction of these semantic effects (facilitation in lexical decision, 
interference in picture naming) can be explained in terms of differences between the tasks. In lexical 
decision, participants are only required to recognise whether a given string of letters is a word or not, 
while in picture naming they must select and articulate a specific word, without any orthographic 
information being present (because the input is a picture). In this latter case, other semantically-related 
lexical representations could slow down the selection/naming process by competing to be selected. For 
lexical decision,  no such competition arises because it is not necessary for a unique word to be selected.  
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participated in exchange for monetary compensation. All participants reported having 

normal or corrected-to-normal vision. Six participants whose responses were unsuitable 

(e.g. stuttering or speaking too quietly to trigger the voice relay) were replaced. 

 Materials. Twenty-four target pictures were selected, along with distracter 

words. Target pictures were the pictures labelled by a subset of the object-nouns from 

the feature set. The nouns that were included among the targets all had high levels of 

name agreement (as indicated by ratings in Snodgrass and Vanderwart, 1980, and 

confirmed to hold for speakers of UK English based in a pilot study). Distracter words 

were selected on the basis of semantic distance as in Experiments 1 and 2: very close 

(1.5 to 4.5 units in FUSS lexical-semantic distances), close (4.5 to 7.5 units), medium 

(7.5 to 10.5 units), and far (or unrelated, distance > 18.5 units). Distracters never 

appeared as targets, and targets never acted as distracters. Distracters were also 

phonologically dissimilar to their targets. 

 Distracters were matched as closely as possible for frequency and length. 

Average frequency (Kucera & Francis, 1967) for distracters in the very close, close, 

medium and far distances were respectively (42.5 (SD=17.3), 42.9 (SD=15.6), 42.1 

(SD=15.9) and 42.7 (SD=14.9)). Repeated measures ANOVA revealed no significant 

differences between these groups, F(3,69) = .21, p = .60. Word length also did not 

significantly differ between conditions (mean length was 5.21, 5.38, 5.33, and 5.13 

letters); F(3,69) = .109, p = .744. A full list of materials used in this experiment can be 

found in Appendix D. Twenty-four filler pictures were also selected from semantic 

fields distinct from those represented in the target items (e.g. miscellaneous artefacts, 

plants, musical instruments); four distracter words for each filler picture were selected, 

one of which was from the same semantic field as the target picture, and three of which 

were from different semantic fields. 
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 The experimental structure consisted of four blocks of 48 trials each (24 targets, 

24 fillers). Target pictures were divided into four sets, so that an equal number of target-

distracter pairs from each semantic distance would appear in each block, and each target 

picture would appear only once in each block. For example, the six target pictures from 

Set A might appear in the first block with very close distracter words, in the second 

block with medium distracters, in the third with close distracters, and in the final block 

with far distracters. Different sequences of blocks were assigned to four different lists 

using an incomplete Latin square design. For the purpose of preparing lists, each filler 

picture was arbitrarily paired with a target picture and assigned to blocks in a parallel 

manner. Items in a block within each list were presented to each participant in a 

pseudorandom order, with the only constraint being that target pictures and filler 

pictures alternated.  

 Procedure. Participants were told that the experiment investigated word 

production processes. They were asked to name the pictures as quickly as possible 

trying to be as accurate as possible and ignoring distracter words. Item presentation and 

data collection used IBM PC-compatible computers running E-Prime software 

(Schneider et al., 2002). Vocal response latencies were measured using an E-Prime 

Deluxe Serial Response Box. Responses were also tape-recorded and monitored online 

for accuracy. 

 An untimed picture naming phase started the experiment. The pictures were 

presented to the participants, who were asked to name the picture aloud. This ensured 

that they recognised the pictures and confirmed that the pictures had high name 

agreement. A sequence of practice trials followed this phase. During the practice trials, 

the target pictures and filler items were presented once paired with an unrelated 

distracter. If a participant exceeded 10% errors, another practice block was performed.  
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Once the practice trials were complete, the experimental trials, divided into four 

blocks, were administered. A fixation cross appeared at the centre of the screen for 500 

milliseconds, followed by a 50 millisecond blank screen. The distracter word then 

appeared on the screen in a randomly-selected location either above or below the 

fixation cross, and 150 milliseconds later the target picture appeared in the location not 

occupied by the distracter. The target picture and distracter remained on the screen until 

triggered by vocal response (i.e. picture naming), or 2500 milliseconds elapsed. A blank 

screen was displayed for 300 milliseconds, followed by the fixation cross for the next 

trial. Between blocks participants were given the opportunity to take a short break.  

 Design and data analysis. The independent variable (manipulated within subjects 

and items) is the semantic distance between target and distracter. The main dependent 

measure was the duration between presentation of a target picture and a participant's 

(correct) response as measured by a voice relay. A secondary dependent measure was 

the number of errors. One-way analysis of variance (with trend contrast coefficients) 

was carried out upon the difference scores, with particular attention to the linear trend. 

As in the previous experiments reported here, trend contrast coefficients were weighted 

on the basis of the semantic distances, both with subjects and items as random factors. 

 Three types of errors were identified. Content errors were scored when the 

participant made an error in naming the target picture (including semantic substitution 

errors, recognition errors, stutters and dysfluencies). Detection errors were scored when 

the voice relay failed to detect the correct word onset (voice relay triggered too early, 

too late, or not at all). Finally, trials with response latencies deviating more than three 

standard deviations (by participant and condition) were classified as outlier errors. 

Analyses of variance, using semantic distance as the independent variable, were 

conducted on each error category separately. 
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Results 

Naming latencies. All three types of errors were excluded from the naming 

latencies analyses. Correct response latencies are reported in Table 8.  

 

Table 8. Average picture naming latencies (RT, in ms; standard error of the mean in brackets) and error 
percentages of different types as a function of semantic distance between target and distracter. 
Experiment 3 (objects). 
___________________________________________________________________ 
 
       Error type (%) 
 
Semantic Distance Response latencies Content Detection Outlier
 _____________________________________________________________ 
Very close  671 [ 8.8]  5.4  1.2  0.9 
Close   657 [ 8.2]  4.4  1.4  1.3 
Medium  648 [ 7.9]  4.2  0.9  1.1 
Far   642 [ 8.0]  3.6  1.1  1.2 
___________________________________________________________________ 
 

First, omnibus ANOVA was performed to test for the general effect of 

semantic distance. This was significant by subjects and items (F1(3,105) = 4.27, p = 

.007; F2(3,69) = 5.11, p = .003). Linear trend analysis was then performed using within-

subjects and within-items ANOVA, using contrast coefficients [-1.3, -0.7, -0.1, 2.1] 

corresponding to the average distances between target and distracters [very close, close, 

medium, far] to test the hypothesis of linear trend. This linear trend component was 

significant both by subjects and items (F1(1,35) = 5.59, p = .024, F2(1,23) = 4.71, p = 

.041), indicating that the semantic interference effect was modulated by semantic 

distance measures obtained from the speaker-generated features. Tests of orthogonal 

quadratic and quintic trends revealed only marginal significance of either: quadratic: 

F1(1,35) = 3.30, p = .078, F2(1,23) = 2.58, p = .122; quintic: F1(1,35) = 2.66, p = .120, 

F2(1,23) = 1.99, p = .172, indicating that the primary effect of semantic distance was 

linear. 
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 While very close and close distracter-picture pairs were always from the same 

semantic field, and far pairs never were, word-picture pairs in the medium distances 

range were not always from the same category. Distracter words at medium distance 

were sometimes from the same category as the picture and at other times from a 

different category, because otherwise it would have been impossible to have a sufficient 

number of items.. To check whether naming latencies were affected by this, a post-hoc 

test was conducted. Among the distracters of medium distance, 6/24 were from the 

same category as the target. Comparing the interference effects for these six items to the 

18 items from different categories, no significant difference was observed (t<1). In 

other words, there was no additional benefit of category membership beyond feature-

based semantic distance for these items.  

Errors. Analyses of variance by subjects and items were performed to determine 

whether errors (overall error rate reported in Table 8) of different types systematically 

varied by semantic distance between target and distracter. Only content errors were 

affected by semantic distance, F1(3,69) = 6.22, p < .01, F2(3,141) = 5.91, p = .02 

(errors were more common for distracters from closer semantic distances), all other Fs 

< 1. 

Discussion 

 The finding of an overall interference effect is not surprising, as it has been 

observed in a number of previous studies; as in Experiments 1 and 2 the novel finding 

is the modulation of this effect by FUSS semantic distance measures: interference was 

greatest for the most similar distracters according to FUSS measures. Next, a parallel 

experiment was conducted in the action-verb domain to assess whether FUSS measures 

of semantic similarity are equally good at predicting performance in this domain in 

terms of graded interference effects.  
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Experiment 4: Actions 

Method 

 Participants. Forty-eight native English speakers from the UCL community 

participated in exchange for monetary compensation. All participants reported having 

normal or corrected-to-normal vision. Eight participants' responses were inconsistent 

(e.g. stuttering or speaking too quietly to trigger the voice relay), and one participant was 

unable to comprehend the task; these participants were replaced. 

 Materials. Twenty-one target pictures depicting actions with high levels of name 

agreement (Druks & Masterson, 2000) were selected, along with associated distracter 

words meeting a series of criteria similar to those of Experiment 1. A critical additional 

criterion both for targets and distracters was that their names, if homonymous with 

nouns, were required to have a dominant frequency of verb usage (>90%). Distracter 

words were selected from the set on the basis of semantic distance: very close (1.5 to 

4.5 units of FUSS lexical-semantic distance), medium (4.5 to 10.5 units, but favouring 

items closer than 7.5 units whenever possible), and far (or unrelated, distance > 18.5 

units). Distracters were matched as closely as possible for frequency, length, and to 

minimise phonological dissimilarity to the target word. Frequencies (Kucera & Francis, 

1967) did not significantly differ between conditions (mean frequency was 58.2 

(SD=26.3) for very close, 57 (24.6) for medium, and 58.7 (25.7) for far distance; F(2, 40) 

< 0.2), nor did length (mean lengths 4.57, 4.67, 4.62 respectively, F(2,41) < 0.1). Only 

targets for which suitable distracters could be found at each distance were included; 

also, distracters never appeared as targets, and vice versa. A full list of the items used in 

this experiment can be found in Appendix E. One filler for each experimental item was 

created as in Experiment 3. Twenty-one filler pictures were selected; and three distracter 

words for each filler picture were selected, one of which was similar to the target picture 

(intuitively judged), and two of which were unrelated. 
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 The experimental structure consisted of three blocks of 42 trials each (21 

targets, 21 fillers). Target pictures were divided into three sets, so that an equal number 

of target-distracter pairs from each semantic distance would appear in each block, and 

each target picture would appear only once in each block (as in Experiment 3). 

Different sequences of blocks were assigned to three different lists using an incomplete 

Latin square design. Blocks were otherwise treated the same as in Experiment 3. 

 Procedure. The same basic procedure was followed as in Experiment 3. 

Participants were instructed to name each action using a stem+"ing" (e.g. jumping, 

walking), a response type heavily favoured by participants naming action pictures in 

unconstrained settings. Design and data analyses were the same as in Experiment 3, 

with the exception that there were only three semantic distance conditions in the 

present Experiment. 

 

Results 

Naming latencies. As in Experiment 3, all trials in which an error was recorded, 

or in which response latencies deviated more than three standard deviations (by 

participant and condition) were excluded from the naming latencies analyses. Correct 

response latencies are reported in Table 9. 

 

Table 9. Average picture naming latencies (RT, in ms; standard error of the mean in brackets) and error 
percentages as a function of semantic distance between target and distracter. Experiment 4 (actions). 
__________________________________________________________________ 
    
       Error type (%) 
 
Semantic Distance Response latencies Content Detection Outlier 
_______________ ________________ ______________________________ 
Very close  790 [ 8.0]  6.4  0.9  0.7 
Close-medium  778 [ 6.3]  4.4  1.1  0.9 
Far   761 [ 7.6]  4.4  0.8  0.9 
__________________________________________________________________ 
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First, omnibus ANOVA assessed the effect of semantic distance, which was 

significant by subjects and items (F1(2,94) = 9.42, p < .001; F2(2,40) = 7.90, p < .001)  

Trend analysis was performed using within-subjects and within-items ANOVA, using 

contrast coefficients [-0.7, -0.3, 1.0] corresponding to the average distances between 

target and distracters [very close, medium, far] to test the hypothesis of linear trend. The 

linear trend component was significant by subjects and items (F1(1,47) = 11.68, p = 

.001, F2(1,20) = 8.91, p = .007), while the corresponding orthogonal quadratic 

component was not significant (both Fs < 1.2). 

 Errors. Error frequencies are reported in Table 9. Analysis of variance by 

subjects and items was performed to determine whether errors of different types 

systematically varied by semantic distance between target and distracter. Only content 

errors were affected by semantic distance (F1(2,61) = 3.21, p = .046; F2(2,142) = 4.00, 

p = .028; all other Fs (by subjects and items) < 1). 

Discussion 

 The main result from this experiment, beyond replicating the finding of 

semantic interference for verb naming (Roelofs, 1993; Vigliocco, Vinson & Siri, 2005), 

is the observation of a modulation of the interference effect for words referring to 

actions, parallel to the effect observed for the object-nouns. Thus, the results of 

Experiments 3 and 4 converge in indicating that parallel effects can be observed for 

object and action domains, in support of the notion that a common semantic distance 

model based on speaker-generated features can predict performance in both domains 

despite the various differences in featural composition described in Chapter 3.  

 

General Discussion 

In all four experiments, FUSS semantic distance measures predicted fine-grained 

performance on tasks sensitive to semantic similarity, both for object and action 
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domains. These experiments provide important evidence that the semantic 

representations of words referring to objects and words referring to actions can be 

based on the same general principles despite the numerous differences between the 

content and functions of such words, and also that important aspects of the semantic 

organisation of words referring to actions can be captured through the assumptions of 

FUSS. Most importantly, graded effects were observed across the four experiments. 

Although these findings are consistent with many models of semantic representation, 

this is the first time such predictions have been tested in semantically complex domains 

of knowledge. Graded effects have previously been reported only in content domains of 

colour and number (Klopfer, 1996; Brysbaert, 1995; Moyer & Landauer, 1967; Pavesi & 

Umiltá, 1998) which may be special content domains for which it is easy to describe the 

underlying conceptual dimensions (hue and saturation for colours, quantity for 

numbers). This finding of gradation is particularly important in the action domain which 

has received much less attention in behavioural studies of this type, showing that 

gradation in similarity among representations of words referring to actions also is a 

good predictor of semantic effects despite the many differences between object and 

action domains (see Vigliocco et al., 2004).  

Although most other models of semantic representation also predict graded 

effects (at least for nouns referring to objects), whether on the basis of shared features, 

length of network connections, proportion of shared hidden units or proximity in 

attractor space, there are some exceptions where at least some knowledge (e.g. 

evolutionarily distinct categories) is strictly categorical in nature (e.g. Caramazza & 

Shelton, 1998). In such cases, these categories should be fully distinguished from each 

other and should not exhibit gradation. We will return to this issue in Chapter 8. In the 

next chapter, the behavioural results reported here are used to test the relative ability of 
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FUSS to predict fine-grained semantic effects for object and action domains, compared 

to other models which also predict graded semantic effects. 



103 

Chapter 7: Comparing models of fine-grained semantic effects 

 

The previous chapter demonstrated that fine-grained semantic effects can be 

predicted by FUSS, a model of lexical-semantic representation based on speaker-

generated features. The next question is whether other models of word meaning can 

also predict performance to a similar degree. After all, at least considering the object 

domain, it seems that nearly all models of semantic organisation would predict graded 

semantic effects (McRae; HAL; LSA; Wordnet; Network Models15; Semantic Fields). It 

is not clear, however, whether this would be the case for the action domain given that 

models usually do not discuss this domain of knowledge.  

Moreover, with the exception of two types of models: global co-occurrence 

models such as LSA (Landauer & Dumais, 1997) and HAL (Burgess & Lund, 1997) and 

certain hierarchical network models such as Wordnet (Aguirre & Rigau, 1996; 

Budanitsky & Hirst, 2001; Fellbaum, 1990; Miller, 1995; Miller & Fellbaum, 1991; 

Richardson, Smeaton, & Murphy, 1994), existing models of semantic organisation do 

not allow us to empirically evaluate graded effects. For example, connectionist models 

designed to account for semantic priming often use artificially-generated semantic 

representations instead of real words (e.g. Plaut, 1995 used "category prototypes", which 

were each a random pattern of activation across 100 semantic features, and generated 

"category exemplars" by randomly altering some of the features of a given prototype in 

a designated manner). Other models that have used actual words, such as McRae et al. 

(1997) and other similar models, are limited to the object domain. The models that 

allow the derivation of quantitative predictions, however, differ among themselves in 

terms of goals, representational assumptions and implementations. Comparing the 
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predictive power of similarity measures derived from FUSS to those derived from LSA 

and Wordnet allows an evaluation of the assumptions on which the different models are 

based. Here, using the data from Experiments 1-4 reported in the previous chapter, 

FUSS semantic distances are formally compared to similarity measures obtained from 

LSA and Wordnet.  

 

Method 

Operationalisation of Similarity Measures 

In order to draw comparisons between the different models' ability to predict 

performance, it was necessary to obtain measures of semantic similarity between pairs 

of words for each. For FUSS, these are the distances described in previous chapters. 

For LSA, measures of semantic similarity (cosines between words' representations in 

similarity space, higher values reflecting greater proximity) were obtained through LSA's 

web-based interface (http://lsa.colorado.edu), using the "General reading up to 1st year 

of college" topic space and the "Matrix comparison" application. For Wordnet, 

measures were obtained using the Wordnet 1.6 database (Miller & Fellbaum, 1991). 

Wordnet has a hierarchical link structure between representations, and a measure of 

semantic distance between two words was obtained by counting the number of 

hypernym/hyponym (superordinate/subordinate) links between them, based on the 

nearest shared hypernym (e.g. the most-specific shared superordinate term), using 

software developed by Lewis (2002). In Wordnet, homonyms and polysemous forms 

are encoded with different senses, therefore it was necessary to sense-encode each 

target word explicitly. This was done with reference to the target pictures used in the  

                                                                                                                                                                        
15 Network models only predict graded effects if they contain more information than simply <ISA> links 
between subordinates and superordinates. The latter type of strictly hierarchical models would only 
predict graded effects between categories (depending on shared superordinates at higher levels) and no 
graded effects among members of the same category. 
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experiment: senses best corresponding to each target picture were selected. In the case 

of ambiguous coding (e.g. carrot has two similar senses: "deep orange root of the 

cultivated carrot plant" and "orange root, important source of carotene"), distances 

based on both senses were evaluated; one set of distances was selected for such items, 

based on proximity to other exemplars from that semantic field. For the carrot example, 

the second sense was more similar to that of other vegetables (because it falls into 

"food" hierarchy, while the first sense falls into "plant organ" hierarchy), so it was 

selected for analysis. 

 Additional assumptions were necessary in order to obtain Wordnet distances for 

verbs referring to actions. This is a consequence of the differing organisation of the 

object and action spaces within Wordnet. Whereas object nouns are organised 

hierarchically on the basis of hypernym/hyponym relations, the action spaces are 

instead organised in a more complex manner, including hypernym/troponym (manner 

of doing something), entailment and antonymy. A consequence of this organisation is 

that finding the shortest path between two action verbs in Wordnet is more complex 

than doing the same within the object-noun space where it is almost always solved by 

identifying a common hypernym. Again, software designed by Lewis (2002), configured 

to investigate hypernym/ troponym/ entailment/ antonymy/ synonymy links, where 

the length of the shortest path indicates the degree of similarity, was used.. A further 

complication is that many of the target verbs have more than one sense (and also have 

more senses than the object nouns). For example, the verb run has 42 distinct senses. 

This renders the sense-coding effort more difficult. Nevertheless, the sense-coding 

criteria used for the object nouns remained useful in identifying the sense that most 

closely corresponds to a pictured action. Finally, in Wordnet there are multiple separate 

clusters of action verbs ("verb files") which are represented independently (i.e., no links 

exist between them). For verbs in separate clusters, a high value was assigned to the 
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Wordnet distance measure (n=12 nodes), comparable to the largest distance found in 

the experimental set of items to indicate their relative degree of isolation under 

Wordnet's similarity structure. 

 

Design and Analysis 

In order to compare FUSS to LSA and Wordnet semantic similarity measures, 

multiple regression models were used to establish the predictive power of each similarity 

measure on lexical decision RTs or naming latencies. Because all experiments were 

conducted within (target) items, multiple regression was performed, with target items 

treated as a categorical factor using dummy variables, entered at the first step, the 

residuals of which were passed to a second step in which one of the semantic similarity 

measures was used as a predictor. The resulting regression model fit separate parallel 

lines for each target item, whose slope corresponds to the effect of semantic similarity 

controlling for item variability. Because the semantic similarity measures tend to 

correlate with each other, partial correlations between the dependent measure and a 

given semantic similarity measure (controlling for variation due to items) were 

compared using Meng, Rosenthal and Rubin's (1992) Z test. These analyses were 

conducted to compare the level of correlation between RTs (or naming latencies) and 

FUSS distances, between RTs and LSA, and between RTs and Wordnet similarity 

measures. 

 Sequential multiple regression was performed in order to contrast the 

performance of the different semantic similarity measures. With lexical decision RT or 

naming latency as a response variable, a first step was always to enter in predictors 

consisting of dummy variables to code for target item, thus removing target item-

specific variability from the RT data. In a second step, either FUSS distances, LSA 

similarity measures, or Wordnet node counts were entered. 
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Results 

Experiment 1: Semantic Priming for Objects 

 For the model including FUSS, model R2 = .925 (regression ANOVA F = 

36.845, p<.001); partial correlation between FUSS and RTs controlling for items was 

.665 (feature distance term, t = 8.683, p<.001). For the model including LSA, model R2 

= .893 (regression ANOVA F = 24.482, p<.001); partial correlation between LSA and 

RTs controlling for items was -.442 (LSA term, t = 4.782, p<.001). For the model 

including Wordnet, model R2 = .902 (regression ANOVA F = 27.421, p<.001); partial 

correlation between Wordnet and RTs controlling for items was .519 (Wordnet term, t 

= 5.922, p<.001). 

 Partial correlations between semantic predictors and naming latencies 

(controlled for item variability) were compared using Meng et al.'s (1992) Z test on 

correlation magnitudes. For the comparison between FUSS and LSA (measures 

correlated at r = -.5202 for this set of items), Z = 3.269, p < .001 (one-tailed), indicating 

that FUSS was a better predictor of lexical decision RTs than was LSA. For the 

comparison between FUSS and Wordnet (measures correlated at r = +.7313), Z = 

2.884, p = .002, indicating that FUSS was also better than Wordnet at predicting RTs. 

LSA and Wordnet did not significantly differ on this measure (p = .3208). 

 

Experiment 2: Semantic Priming for Actions 

 For the model including FUSS, model R2 = .877 (regression ANOVA F = 

21.084, p<.001); partial correlation between FUSS and RTs controlling for items was 

.699 (feature distance term, t = 9.535, p<.001). For the model including LSA, model R2 

= .824 (regression ANOVA F = 13.923, p<.001); partial correlation between LSA and 

RTs controlling for items was -.589 (LSA term, t = 6.876, p<.001). For the model 
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including Wordnet, model R2 = .778 (regression ANOVA F = 10.416, p<.001); partial 

correlation between Wordnet and RTs controlling for items was .286 (Wordnet term, t 

= 2.909, p=.005). 

 Partial correlations between semantic predictors and naming latencies 

(controlled for item variability) were compared using Meng et al.'s (1992) Z test on 

correlation magnitudes. For the comparison between FUSS and LSA (measures 

correlated at r = -.4821 for this set of items), Z = 1.758, p =.039 (one-tailed), indicating 

that FUSS was better at predicting naming latencies than was LSA. For the comparison 

between FUSS and Wordnet (measures correlated at r = +.2774), Z = 4.854 p < .001, 

indicating that FUSS was also better than Wordnet at predicting latencies. LSA 

similarity was also significantly better than Wordnet (Z = 3.245; p < .001). 

 

Experiment 3: Picture-Word Interference for Objects 

 For the model including FUSS, model R2 = .891 (regression ANOVA F = 

24.267, p<.001); partial correlation between distances and RTs controlling for items was 

-.640 (feature distance term, t = 7.305, p<.001). For the model including LSA, model R2 

= .854 (regression ANOVA F = 17.115, p<.001); partial correlation between LSA and 

RTs controlling for items was .455 (LSA term, t = 4.452, p<.001). For the model 

including Wordnet, model R2 = .871 (regression ANOVA F = 19.948, p<.001); partial 

correlation between Wordnet and RTs controlling for items was -.546 (Wordnet term, t 

= 5.717, p<.001). 

 Partial correlations between semantic predictors and naming latencies 

(controlled for item variability) were compared using Meng et al.'s (1992) Z test on 

correlation magnitudes. For the comparison between FUSS and LSA (measures 

correlated at r = -.5493 for this set of items), Z = 2.480, p =.0066 (one-tailed), 

indicating that FUSS was a better predictor of naming latencies than was LSA. For the 
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comparison between FUSS and Wordnet (measures correlated at r = +.7267), Z = 

1.653, p = .0492, indicating that FUSS was also better than Wordnet at predicting 

latencies. LSA similarity measures and Wordnet did not significantly differ on this 

measure (p = .2857). 

 

Experiment 4: Picture-Word Interference for Events 

 For the model including FUSS, model R2 = .955 (regression ANOVA F = 

41.792, p<.001); partial correlation between feature-based distances and RTs controlling 

for items was -.681 (feature-based distance term, t = 5.961, p<.001). For the model 

including LSA, model R2 = .945 (regression ANOVA F = 32.671, p<.001); partial 

correlation between LSA and RTs controlling for items was .577 (LSA term, t = 4.464, 

p<.001). For the model including Wordnet, model R2 = .921 (regression ANOVA F = 

22.885, p<.001); partial correlation between Wordnet and RTs controlling for items was 

-.238, a nonsignificant correlation (Wordnet term, t = 1.567, p=.125). 

 Partial correlations between semantic predictors and naming latencies 

(controlled for item variability) were compared using Meng et al.'s (1992) Z test on 

correlation magnitudes. For the comparison between FUSS and LSA (measures 

correlated at r = -.5790 for this set of items), Z = 1.221, p =.111 (one-tailed), indicating 

that FUSS was not significantly better at predicting naming latencies than was LSA. For 

the comparison between FUSS and Wordnet (measures correlated at r = +.3754), Z = 

3.717, p < .001, indicating that FUSS was better than Wordnet at predicting latencies. 

LSA similarity was also significantly better than Wordnet (Z = 2.211; p = .027). 

 

Discussion 

The results of the model comparisons show not only that FUSS consistently 

predicts the degree of semantic effects observed in primed lexical decision and picture-
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word interference (as already illustrated to some extent by the linear contrasts described 

in the Results of Experiments 1-4), but also that FUSS's predictive power is superior to 

that of the other models tested. FUSS measures were superior to LSA-based measures 

for three of the four experiments, and superior to Wordnet-based measures for all four.  

The differences in performance between these models might be attributed to 

differences in the models themselves. LSA is primarily focused upon issues of 

acquisition and the development of semantic representations from a given input 

(particularly, extraction of meaning relations from text). Because of this, it is not 

necessary that LSA's representations are interpretable in any manner beyond abstractly 

representing a word's meaning in the context of other words (Burgess & Lund, 1998). 

The present focus, instead, is directly upon meaning representation, thus the 

information from which the FUSS similarity space is developed must be interpretable in 

order to allow us to evaluate assumptions concerning featural representations. They are 

thus constrained by neuroanatomical considerations grounding the featural descriptions 

in a manner that is not possible (or even desirable) for models such as LSA and HAL 

(Glenberg & Robertson, 2000). The greater predictive power of FUSS over LSA may be 

plausibly related to the different focus of the two approaches: because LSA is 

concerned with extracting meaning information from text, it cannot avoid embedding a 

certain degree of noise due to to homonymy and polysemy. Given the present focus 

upon meaning representation, words were selected and speaker-generated features were 

gathered in a manner designed to avoid homonymy/ polysemy as much as possible.  

FUSS also outperformed similarity measures derived from Wordnet in all of the 

experiments. With respect to words referring to objects (Experiments 1 and 3), the 

poorer performance of Wordnet-based similarity may be a consequence of its network 

structure. Nouns are organised hierarchically, which has a very straightforward 

consequence: all words under the same mother node and linked to the mother node by 
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the same relational link are equidistant. This implies the impossibility of graded effects 

between any pair of words under a given mother node. This has less of a detrimental 

effect in the object domain because of the large number of hierarchical levels in the 

object representation space. However, the same is not true for verbs referring to 

actions; Wordnet-based similarity was a very poor predictor of behavioural results for 

the action domain (Experiments 2 and 4). In particular, this measure was worse than 

FUSS or LSA in both experiments and did not even reach significance in Experiment 4. 

Unlike objects, actions in Wordnet are organised into far fewer levels, and into isolated 

networks. For example, intuitively cough and spit are very similar to sneeze. However, 

within Wordnet, cough and spit are represented within a network of words referring to 

acts of expulsion, while instead sneeze is represented in an independent network referring 

to involuntary acts. Both the existence of isolated networks and lack of depth in the 

hierarchical organisation within each network may contribute to Wordnet’s poor 

predictive performance in the domain of actions. 

It is important to consider, however, that some of the success of FUSS at 

predicting the semantic effects in Experiments 1-4 may be related to the fact that these 

experiments were designed in a manner that could have favoured FUSS over Wordnet 

or LSA. After all, all of the items in these experiments passed through selection and pre-

processing before they were included in FUSS, and they were selected on the basis of 

FUSS distances. Had these distances failed to correspond to some extent with intuition 

about semantic relatedness, these experiments would probably not have been carried 

out. The same is not true of Wordnet or LSA; the items were selected and the 

experiments carried out before these models were consulted. There is therefore an 

element of circularity involved; an ideal basis for comparison would involve a set of 

items chosen without reference to FUSS, Wordnet or LSA. Unfortunately FUSS has a 

very limited vocabulary for this purpose (most of the items used in published semantic 
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priming studies are not included in FUSS), and extending FUSS to include a 

substantially greater number of words would be an extremely time-consuming effort.  

In general, however, the results of these model comparisons show that FUSS 

can not only predict the degree of semantic effects for both object and action domains, 

but also that its predictive power is superior to other extant models of representation 

that allow the extraction of item-specific similarity measures. These results, however, are 

still relatively constrained, referring only to fine-grained similarity among pairs of words 

that are reasonably closely related. However, FUSS also makes predictions at a relatively 

coarser level--the relative proximity between semantic categories or groups of words 

(e.g. the analyses of between-field semantic distances reported in Chapter 6). In the next 

chapter, Experiment 5 tests whether proximity at this level also has behavioural 

consequences. 
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Chapter 8: Testing category-level predictions of FUSS 

 

The results of the four experiments reported in Chapter 6 clearly demonstrated that 

FUSS was a strong predictor of behavioural performance at the item-level: the degree of 

semantic priming or interference between two words was highly predicted by the 

feature-based distance between them in the object and action domains. Coarser-grained 

properties of similarity, measured as proximity among categories, were also observed, as 

discussed in the analyses of category-level semantic distances in Chapter 5. If it could be 

shown that these latter patterns of proximity are also reflected in behavioural 

performance, it would provide additional evidence for the implementational 

assumptions underlying the development of FUSS. 

Experiment 5: Semantic blocking in picture naming 

The "semantic blocking effect" in picture naming (Damian, Vigliocco & Levelt, 

2001; Kroll & Stewart, 1994) arises when speakers are asked to name pictures in the 

context of other pictures. When the pictures in a given block are from the same 

semantic field, naming a picture is slower than for the same picture when it is presented 

in a block with semantically-unrelated pictures. It is generally agreed upon that such 

effects arise from semantic competition during the conceptually-driven lexical retrieval 

process (Levelt, Roelofs & Meyer, 1999).  

Here, the semantic blocking effect is used to test whether graded similarity 

effects among groups of items can be observed, and whether these effects are similar 

for words referring to objects and words referring to actions. Within the object domain, 

as described previously, category membership has powerful effects, most striking in 

patients who are selectively impaired or spared in one category of knowledge, such as 

animals (Caramazza & Shelton, 1998); body-parts (Shelton, Fouch & Caramazza, 1998) 
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and fruits and vegetables (Hart, Berndt & Caramazza, 1985). These findings have led 

some researchers to postulate that domains playing a fundamental role for our survival 

(e.g. animals, plants and body-parts) are represented categorically in semantic memory 

within dedicated neural substrates (Caramazza & Shelton, 1998). In this view, semantic 

distance effects may not be observed between evolutionarily motivated categories. 

These should act as isolable clusters because they are independent from other domains 

of knowledge. In contrast, graded effects may be observed between categories which 

are not evolutionarily motivated. This contrasts with proposals like FUSS according to 

which graded effects should be observed only for certain categories of knowledge. For 

actions, instead, the first aim of this experiment is to assess whether the basic semantic 

blocking effect in the object domain is also observed in the action domain. Also of 

interest is whether graded effects are observed for actions, and whether the degree of 

gradation differs for the two domains. 

Method 

Participants 

Ninety-four native English speakers from the UCL community participated in 

the experiment in exchange for payments of £3. All had normal or corrected-to-normal 

vision.  

Materials 

Groups of action and object pictures were selected based upon FUSS semantic 

distance rather than on predefined categories such as tools, animals, etc. This was done 

beginning with all of the picturable words referring to objects and actions included in 

FUSS. Objects and actions were considered separately in this process as these semantic 

domains are largely separate (see chapter 5). From these sets of items, subsets were 

selected which exhibited both within-group semantic similarity (low semantic distances 

among them) and dissimilarity to other sets (high semantic distances between exemplars 
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of different sets). In order to allow the investigation of graded similarity effects between 

sets of items, three sets of objects and three sets of actions (each containing eight items) 

were selected: two sets relatively close to each other, and a third relatively far from the 

other two.  

 For objects, the sets of items came from three well-defined categories with 

obvious category labels: vehicles (average within-set distance = 2.71 units), clothing 

(5.35), and body-parts (7.35). Clothing and body-parts were "near" sets (with an average 

distance between exemplars from the two = 13.51 units) while the other two were "far": 

vehicles and clothing (18.30) and vehicles and body-parts (18.53). Most object pictures 

were taken from Snodgrass & Vanderwart (1980) with a few prepared in a similar style 

specifically for this experiment.  

For actions, the groups of pictures do not fall into such clearly-defined 

categories, but can be broadly designed as "body actions" such as hop, kick, walk (with 

an average within-set distance = 7.66), "tool actions" such as cut, draw, shovel (11.44), and 

"actions involving the mouth" such as drink, frown, yawn (12.21). Body and tool actions 

were "near" sets (16.74); body actions and actions involving the mouth (21.60), and tool 

actions and actions involving the mouth (20.45) were "far". Action pictures were taken 

from Druks and Masterson (2000), and additional pictures were drawn by the same 

artist who drew the pictures for Druks and Masterson. Semantic distances between the 

words referring to actions were somewhat larger than between the words referring to 

objects. This was necessary in order to ensure that the action pictures were 

distinguishable from each other. All items included in the experiment are listed in 

Appendix F. 

Visual similarity ratings. Because semantic distance is correlated with visual 

similarity (see Vitkovitch, Humphreys & Lloyd-Jones, 1993), it was important to 

consider if pictures in these sets (which differ in semantic similarity to each other) also 
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differ visually. Visual similarity ratings were collected for the object and action pictures 

(following the procedure used by Damian et al., 2001), by presenting all possible pairs 

of object or action pictures to participants who were asked to rate their similarity in 

appearance. Instructions emphasised the focus upon visual appearance over semantics, 

providing examples such as tennis racquet, guitar and piano where visual similarity was high 

for members of different semantic categories, and low for members of the same 

semantic category. The scale ranged from 1 (not similar at all) to 5 (very similar); see 

Table 10 for average ratings as a function of semantic condition (within-set, e.g. visual 

similarity between pairs of body parts; near, e.g. visual similarity between body parts and 

clothing; far, e.g. visual similarity between body parts and vehicles). Most of the 

conditions differed significantly from each other; for objects, within-set pictures were 

the most visually similar to each other, followed by close pictures, and far pictures the 

least visually similar. For actions, within-set pictures were the most similar to each 

other, but close and far did not differ. However, visual similarity was rated as very low 

overall regardless of condition, reducing the likelihood that any putative semantic effect 

is due to visual similarity. 

 
Table 10. Average visual similarity ratings between object and action pictures as a function of semantic 
condition (standard deviations in brackets). 

_____________________________________________ 

   Semantic condition 

  Within-set Close  Far 

  _________________________________ 

Objects 1.93 (1.14) 1.60 (0.97) 1.27 (0.87) 

Actions 1.71 (1.20) 1.60 (1.04) 1.50 (0.96) 

_____________________________________________ 

 

 Preparation of experimental lists. Parallel experimental lists were prepared for 

objects and actions, including three experimental conditions created from combinations 
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of the different sets of items (illustrated below with object-noun examples; action-verb 

lists were created in the same way): semantically far, semantically close, and within-set. 

Blocks of items representing the semantically far condition were created by selecting 

four items from each of two semantically far sets, e.g. {arm, finger, foot, hand; aeroplane, 

bicycle, bus, car}. Because there were eight items in each set, two such blocks were created 

(in this case, the second one would include {leg, neck, shoulder, thumb; helicopter, lorry, 

motorcycle, train}). The particular items that would appear in these two blocks were 

selected randomly for each participant. The semantically close condition was created in 

a similar manner, selecting four items from each of two semantically close sets (e.g. 

{arm, finger, foot, hand; belt, glove, hat, shirt} in the first set, and {leg, neck, shoulder, thumb; 

shoe, sock, trousers, waistcoat} in the other. Finally, the within-set condition was created 

using only members of a single set (e.g. {arm, finger, foot, hand; leg, neck, shoulder, thumb}). 

These conditions are summarised in Table 11: 

Table 11: Composition of the different semantic conditions for words referring to objects and to actions, 
Experiment 5. The number of different blocks in a given condition appears in parentheses. 
_______________________________________________________________________________ 
   Objects    Actions 

__________________________________________________________ 
Semantically far  Body parts and vehicles (2)  Body actions and mouth actions (2) 
   Clothing and vehicles (2)  Tool actions and mouth actions (2) 

__________________________________________________________ 
Semantically close  Body parts and clothing (2)  Body actions and tool actions (2) 

__________________________________________________________ 
Within-set  Body parts (1)   Body actions (1) 
   Clothing (1)   Tool actions (1) 
   Vehicles (1)   Mouth actions (1) 
_______________________________________________________________________________ 
 

As can be seen from Table 11, there is only one instance of each within-set 

block, compared to the semantically close and semantically far conditions. In order to 

make these conditions statistically comparable to each other, two versions of each 

within-set block were created. In both cases, they contained all eight exemplars of a set, 

but half were treated as fillers: for example, among {arm, finger, foot, hand; leg, neck, 

shoulder, thumb}, in a first block {arm, finger, foot, hand} would be treated as experimental 
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items (named in the context of other body parts) and as filler items in the second. The 

experimental items in the second block would be {leg, neck, shoulder, thumb} (again, 

named in the context of other body parts), and those items would be treated as fillers in 

the first block. This allows identical treatment of the three semantic conditions for each 

participant: four pictures from a set, named in the context of other items from within 

the set, in the context of items from a semantically near set, and in the context of items 

from a semantically far set. This resulted in 12 different blocks for object-nouns and 12 

for action-verbs.  

Within a block, each of the eight pictures was presented to be named a total of 

four times (32 trials per block). Pictures were ordered pseudorandomly: each picture 

was sampled once before any picture was repeated in a block, and no picture appeared 

twice in succession.  

Each block was presented twice in the course of the experiment (thus a total of 

24 blocks). Blocks were presented in pseudorandom order (each block was sampled 

once before any block was repeated in the experiment, and no block appeared twice in 

succession). Stimuli were presented using E-Prime experimental software (Schneider, 

Eschman & Zuccolotto, 2002) on IBM-PC compatible computers; response latencies 

were collected using a PST Serial Response Box (Psychology Software Tools) and tape 

recorded for error analysis. 

Procedure 

 Participants were assigned to a word type condition (object-noun naming, n = 

40; or action-verb naming, n = 54). They were instructed that pictures would be 

presented on the computer screen, and their task was to name the picture aloud as 

quickly as possible. They were asked to name the object pictures using single nouns and 

the action pictures, using the –ing form of the verb. Prior to the experiment proper, to 

ensure that they knew the target label of all the pictures, each picture was presented for 
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the participants to name, and the experimenter provided the label in the (few) instances 

in which participants failed to name a picture correctly. Then, participants were 

presented with a practice block.  

In the experiment proper, each block began with a button press of the 

participant. A fixation cross appeared on screen for 300ms, followed by a blank screen 

of 450ms. The target picture appeared in the centre of the screen and remained until the 

voice key detected a response, or 2500ms if no response was detected. Responses were 

followed by a 200ms blank screen, followed by the fixation cross for the next trial. Each 

session was tape-recorded and scored for accuracy. 

Results 

Response latencies 

Error trials and response latencies faster than 250ms or slower than 1500ms 

were excluded from the latency analyses. Figure 6 reports average response latencies for 

object-nouns and action-verbs in the different semantic conditions. 

Figure 6. Average correct naming latencies as a function of word type and semantic condition, 
Experiment 5. 
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First, a two (word type: objects vs. actions) by three (semantic condition: within-set, 

semantically close and semantically far) ANOVA was carried out, both on subjects and 

items The main effect of word type was significant (F1(1,92) = 11.61, p < .001, F2(1,30) 

= 14.54, p<.001), reflecting longer naming latencies for actions than objects. The main 

effect of semantic condition was also significant (F1(2,184) = 19.01, p < .001, F2(2,60) 

= 16.14, p<.001), reflecting the effects of semantic distance. The interaction was not 

significant (F1(2,184) = 1.34, p = .26, F2(2,60) < 1), indicating that the semantic 

condition had the same effect for object and action domains. 

Since semantic groups were at different distances for objects and actions, 

separate linear trend analyses were performed on the simple main effects of semantic 

blocking to assess the role of semantic distance. Linear contrasts were calculated on the 

basis of the semantic distances between items in within-set, semantically close, and 

semantically far conditions, as intervals were not equidistant. The resulting contrast 

coefficients were [-6.4, 0.8, 5.6] for objects, and [-6.2, 1.0, 5.2] for actions. The linear 

trend was significant for objects (F1(1,39)=20.87, p<.001, F2(1,15)=18.30, p<.001); it 

was also significant for actions (F1(1,53)=24.44, p<.001, F2(1,15)=21.73, p<.001). 

Corresponding quadratic trends were not significant (Fs < 1). In both cases this pattern 

of data reflects a graded increase in naming latencies, with the fastest latencies observed 

in the semantically far condition, medium latencies in the semantically near condition, 

and the slowest latencies in the within-set condition. 

Errors  

Errors occurred on 6.9% of the trials and involved failure to detect initial word 

onset, cases in which the voice relay detected sounds before the initial word onset, and 

erroneous or dysfluent utterances. Analysis of variance showed no significant effect of 

semantic blocking condition on the number of errors, either for object or action naming 

(all Fs < 1).  
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Discussion 

Parallel, graded patterns of semantic blocking interference were observed for 

separate sets of words referring to objects and to actions, selected not on the basis of a 

priori category membership, but from FUSS semantic distances. These results cannot be 

attributed solely to visual similarity, which is correlated to semantic similarity, mainly 

because graded semantic effects were observed for action-verbs even though visual 

similarity ratings did not significantly differ for semantically near and semantically far 

conditions. If visual similarity were playing a role in these results, it might be expected 

that word type would interact with semantic condition (because object-noun pictures 

were rated as more visually similar for semantically near than for semantically far items). 

 These results are important because they complement the results presented in 

Chapter 6 which showed that FUSS can predict graded semantic effects between pairs 

of highly-related words. FUSS can also predict graded semantic effects between groups 

of words; thus its representations also accurately reflect a higher level of organisation, in 

addition to being indicative of similarity among individual words. Most important is the 

fact that these effects are not only observed for words referring to objects for which 

category-level organisation is quite clear, but also for words referring to actions where 

this is less so. These results also are contrary to theories of organisation that do not 

permit gradation between categories (e.g., Caramazza & Shelton, 1998), but instead are 

consistent with views in which semantic fields in a given domain (object, action) are not 

strictly distinct from each other (consistent with the notion that category boundaries are 

only vaguely defined, perhaps best described in terms of family resemblance; Rosch & 

Mervis, 1975). 
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Chapter 9: Discussion and conclusions 

General summary 

Previous chapters describe the implementation and testing of FUSS (Featural 

and Unitary Semantic Spaces), made up of a conceptual representational space which is 

operationalised by the speaker-generated features themselves, and a separate level of 

semantic representation,  operationalised as a space derived from properties of similarity 

among words' featural content. Crucially, this model included representations not only 

of nouns referring to objects, a domain which has already received substantial attention 

using similar approaches, but also nouns and verbs referring to actions, using a 

common set of representational assumptions across domains. 

This work began with the collection of speaker-generated features for a 

collection of words referring to objects and actions, described in Chapter 2. Analysis of 

featural content (Chapter 3) reveals how the broad domains of objects and actions 

differ from each other, but also highlighted substantial differences between semantic 

fields within each domain. The distribution and patterns of feature types across 

semantic fields are consistent with a wide range of evidence from a number of research 

domains. For example, feature type composition of living things vs. artefacts converge 

with results of imaging studies showing that sensory-motor areas are differentially 

activated for these types of words (e.g. Martin & Chao, 2001; Hauk et al., 2004; 

Tettamanti et al., 2005; Vigliocco et al., 2006). They can also account for patterns of 

category-related impairment after brain damage (particularly the living/nonliving 

distinction) in terms of feature types, also making additional novel predictions about the 

extent to which other domains of knowledge should also be affected. For example, 

words referring to actions related to sensory experience (e.g. light emission, sounds and 

noises) should be impaired along with living things if such impairments hinge on 

dependence on sensory features.  
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 As a next step, the speaker-generated features were used to generate a separate 

level of lexical-semantic representation, modelled using self-organising maps. Properties 

of similarity between words' featural input led to patterns of organisation at this level as 

described in Chapter 4, ranging from the broad distinction between objects and actions, 

to category-level organisation, to fine-grained organisation among individual words in a 

semantic field (Chapter 5). Differences between words referring to objects and actions, 

often used as motivation for entirely separate representation schemes, emerged despite 

a single set of assumptions underlying the representation of both in FUSS. For example, 

words referring to objects exhibited strong categorical distinctions for the most part, 

while this was seldom true for words referring to actions, a difference emergent from 

characteristics of the featural input rather than any differences in the representational 

space per se. These analyses also revealed that words' grammatical class did not exert any 

effects on their semantic representations beyond the semantic distinction between 

objects and actions: nouns referring to actions were not distinguished at the lexical-

semantic level from verbs with similar meanings. 

 In a series of experiments, behavioural consequences of FUSS's semantic 

similarity were tested, using tasks where semantic effects arise automatically in language 

processing. FUSS measures of fine-grained similarity among pairs of words predicted 

the degree of semantic priming in lexical decision, both for objects (Chapter 6, 

Experiment 1) and for actions (Chapter 6, Experiment 2), and predicted the degree of 

interference from distracter words in picture naming, again both for objects (Chapter 6, 

Experiment 3) and actions (Chapter 6, Experiment 4). Crucially, comparison of FUSS 

with other models of semantic representation from which word-level similarity 

measures can be derived (LSA, Wordnet) revealed that FUSS outperformed the other 

two models across these four data sets (Chapter 7). Predictions derived from FUSS also 

predicted effects beyond the word level: graded semantic blocking effects in picture 
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naming were observed based on FUSS relatedness of sets of words, again both for 

objects and actions (Chapter 8, Experiment 5). Together these results show how the 

assumptions of FUSS lead to properties of lexical representation and processing that are 

consistent with a wide range of data from behavioural experimentation, patterns of 

impaired performance after brain damage, and imaging results.  

 

FUSS as a theory of lexical-semantic representation 

We now return to the central questions raised in the Introduction. What is the 

content of word meaning? How is word meaning organised? What is the relation 

between words? In FUSS, it is clear what makes up word meaning: first, featural 

properties of meaning corresponding to concepts, some of which are organised 

according to the sensory/motor channel by which they are experienced (e.g. visual, 

auditory, tactile, motoric, etc.). This conceptual level of representation is thus organised 

by modality, although any given concept should be considered as a group of coactivated 

features across multiple modalities. Speaker-generated features serve as a verbal proxy 

for this input and allow us to investigate how different words' meanings depend upon 

different input channels. Words' meanings are represented separately, in a supramodal 

system that serves to integrate information across modalities, a system that further 

serves to bridge between concepts and lexical information such as syntax, orthography 

and phonology. This system is organised according to properties of similarity among 

sets of features for different words. Implemented here using self-organising maps 

(Kohonen, 1997), similarity among words emerges on the basis of characteristics of the 

featural input such as shared and distinctive features, feature salience and patterns of 

correlation and decorrelation among features, expressed in terms of spatial proximity in 

a low-dimensionality space ("map") derived from the high-dimensionality featural input. 
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Of course, as described here, there are several important potential weaknesses 

of FUSS which should be addressed at this stage. Foremost among these is the verbal 

nature of the featural input: all of the input to FUSS as implemented here is speaker-

generated features: written words or phrases referring to properties that make up 

meaning. After all, the actual input to the system is meant to be via sensory-motor 

systems rather than verbal descriptions. As such it might be argued that these features 

merely reflect verbal knowledge (thus, information represented at the lexical-semantic 

level) rather than providing any insight into nonlinguistic (i.e. perceptual/motoric) 

information. This can be addressed, however, by reference to the imaging literature; 

there are now a large number of studies showing that processing words produces 

activation in sensory-motor areas that correspond very well to the featural makeup of 

such words in FUSS's feature set (e.g. Martin & Chao, 2001; Hauk et al., 2004; 

Tettamanti et al., 2005; Vigliocco et al., 2006). If the sensory-motor properties of 

speaker-generated features were only informative about verbal knowledge and not 

about sensory-motor knowledge, such correspondence would not be expected. Featural 

makeup in FUSS also corresponds well with patterns of impairment that have often 

been attributed to differential impairment to sensory or functional properties of objects 

(particularly the distinction between living and nonliving entities), e.g. (SFT cites). 

There is also, however, an additional concern also related to the verbal nature of 

the speaker-generated features: there are certain kinds of featural input difficult to 

describe verbally (at least in English). This was particularly noticeable when participants 

attempted to describe shapes and sizes of objects. Beyond simple descriptors of shape 

(e.g. <round>, <straight>, <long>, <thin>) and size (e.g. <big>, <small>), 

participants diverged greatly in the way they attempted to express finer details of shape 

and size, nearly all of which had to be discarded as "idiosyncratic" given the feature 

collection methods, despite containing important information clearly relevant to the 
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objects in question. For example, some participants attempted to estimate size precisely 

(e.g. hammer is <between six and 12 inches long, and about one inch wide>, apple is 

<about six inches around>), others relatively using arbitrary anchors (e.g. cat is <smaller 

than a dog> and <larger than a mouse>, elephant is <larger than a person>), and others 

in terms of relative dimensions (e.g. hammer is <wider than it is long>). Concerning 

shape, a similar range of strategies were observed. Some participants attempted to 

describe objects using idiosyncratic descriptions of combinations of simple verbalisable 

shapes (e.g. scissors has <two rings, attached to two long triangles, joined together part 

way down>, pear is <like a circle with a bump on top>), others used shape analogies 

(e.g. drill is <shaped like a gun>), and a number of participants reported after the 

experiment that they would have liked to describe the shapes of some things but were 

unable to do so clearly (e.g. a few instances of features like <shape?> which appeared to 

reflect the same kind of difficulty). Issues like these could result in problems for 

representations of those words for which properties like size and shape are important, 

under-representing them due to difficulty in verbalising them. However, this potential 

problem also seems to have limited consequences. This can be seen from the results of 

the behavioural experiments presented in Chapters 6 and 8. If some types of words 

have inaccurate or limited featural representations, this should have translated into poor 

performance by FUSS in predicting fine-grained behavioural effects. Instead, FUSS 

consistently exhibited strong performance in predicting the results of multiple tasks 

involving words referring to objects and to actions, and did not appear to be particularly 

worse for any of the semantic fields from which words were selected for these 

experiments. Presumably, then, other properties that participants were able to verbalise 

were sufficient to make up for this particular limitation of FUSS. 

Another potential criticism of FUSS applies to its apparent inflexibility in 

representation. After all, the featural input corresponding to each word is a fixed vector 
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of feature weights, and each word's representation at the lexical-semantic level 

corresponds to a single point in representation space (defined via ensemble averages 

across multiple self-organising maps). Words, however, are used flexibly, as illustrated 

for example by the existence of strong context effects. To exemplifiy the importance of 

context effects, Barclay, Bransford, Franks, McCarrell, and Nitsch (1974), in a classic 

experiment showed that when participants saw words like piano in sentences that either 

stressed a piano's weight ("The man lifted the piano") or its sound ("The man tuned the 

piano") their recall of the word piano was better in response to a cue that was related to 

the original context: heavy cued piano better than with a nice sound when the weight had 

been stressed in the initial sentence; and the reverse pattern was true when the sound 

had been stressed. This pattern of results is difficult to accommodate within a binary 

featural system. The differential effects of context seem to require that features like 

<heavy> and <makes sound/music> can have differential weights, depending on the 

context. However, speaker-generated features used in FUSS were collected in a neutral 

context, in lists consisting of other (unrelated) words, suggesting that FUSS may only be 

capable of representing words in neutral contexts (or prototypical contexts). Properties 

of FUSS, however, enable it to deal straightforwardly with flexibility in representation 

and context effects. First, although this particular implementation of FUSS was trained 

with a single training vector with fixed weights for each word in the set, a more realistic 

model of language experience would instead include a variable set of featural inputs 

corresponding to the features that are important for that word in that particular episode. 

This serves to set up distributional conditions making it more likely that a new instance 

will be encompassed or at least near existing regions of conceptual/feature space that 

map onto words in lexical-semantic space. For example, exposure to piano in the two 

different contexts above would include many features in common, but very different 

weights related to its weight or its sound. Over multiple exposures to different sets of 
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featural inputs, a region of multidimensional featural space will come to be associated 

most strongly with piano and thus any subsequent activation falling within this region of 

feature space will also correspond to piano. This does not even require that the model 

has received input spanning the entire potential range of contexts, but even permits it to 

respond correctly in novel contexts. This is because the algorithms underlying self-

organising maps are designed to select a "winner": the best-matching output unit (here, 

"word"), corresponding to any possible input in feature space. In other words, effects of 

context such as those of Barclay et al. (1974) would arise as variation from the 

prototypical weights of a word's features, which nonetheless are still most similar to that 

word than to any others, according to the model's representation state at that point in 

time. 

One other potential concern reflects FUSS's ability to represent other domains 

of knowledge. Although FUSS represents an important move forward from models that 

concern only words referring to concrete objects, it still has a highly limited range of 

domains (some objects, actions and events). Although the success of FUSS at 

representing action words as well as object-nouns should not be underestimated, future 

work should also consider other domains of words. For example, consider the case of 

properties and qualities (somewhat corresponding to adjectives and adverbs) – data 

from speech errors (Garrett) and semantic field analysis suggest these are typically 

organised around poles of opposition which could be roughly considered to be 

something like basic level for objects, e.g. large-small; smooth-rough; dark-light; fast-slow. 

Some properties (of various kinds) were included in a pilot stage of the feature 

collection phase, and participants tended to produce features of the following sorts. 

First, superordinate features were quite common, such as <size>, <texture>, 

<brightness>, <speed>; also common were features referring to the sensory channel 

through which a property could be experienced, such as <vision>, <touch>, 
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<hearing>. Both features referring to superordinates and sensory channels are also very 

typical of object and action words. For properties and qualities, participants were also 

very likely to generate lists of entities for which a given property is prototypical (e.g., 

perhaps <elephant>, <house>, <tree> for large; <sun>, <light bulb>, <fire> for 

bright), and they were also much more likely to produce antonymic features (e.g. <not 

large> for small). Within certain relational accounts such as network models, both of the 

latter would straightforwardly correspond to types of labelled links between concepts. 

In FUSS, instead, patterns of lexical-semantic similarity would result from sets of 

properties that are prototypical for the same entities, in addition to shared superordinate 

and sensorimotor features. Of course this cannot be the end of the story, because 

mutual relationships of various kinds are lost. For example, the feature <not black> is 

not linked to the word black, nor is there a mutual relationship between the feature 

<red> of the word apple, and the word red  with feature <apple>, or vice versa (see also 

Hampton, 1981, for a discussion of how more complex relationships between features 

may be needed when considering featural representations of abstract concepts). 

Nonetheless, other shared properties should be sufficient to provide a high quality 

estimate of semantic similarity among words of these kinds. This suggests that FUSS 

can be a promising approach beyond objects, actions and events.  

 

FUSS in the context of other theoretical approaches 

Concerning the various theoretical approaches to representing meaning, FUSS 

can be seen as a sort of hybrid, incorporating both elements of featural views and 

elements of relational views. This dual nature is in contrast to many models of meaning, 

as it arises because FUSS draws a strong distinction between conceptual and lexical-

semantic levels of representation, in each of which different principles are instantiated. 

Featural views are reflected straightforwardly in the model's reliance upon speaker-
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generated features to reflect the conceptual level of representation (e.g. Rosch & 

Mervis, 1975; Smith, Shoben & Rips, 1974; Collins & Quillian, 1969; Hampton, 1979; 

1981; Hampton & Gardiner, 1983; Jackendoff, 1990; Minsky, 1975; Norman & 

Rumelhart, 1975; Shallice, 1993; Smith & Medin, 1981; and on larger scales by Cree & 

McRae, 2003; Cree et al., 2006; Cree et al., 1999; Garrard et al., 2001; McRae & Cree, 

2002; McRae et al., 2005; McRae et al., 1999; Randall et al., 2004; Rogers & McClelland, 

2004). Like many of the featural models developed in the 1970s, a strength of FUSS 

derives from its flexibility. Word meaning is not considered to be strictly based upon 

certain features, but instead upon sets of co-occurring features, weighted according to 

salience, and considering a word to correspond to a probabilistic volume in 

multidimensional feature space rather than a single point (akin to views permitting fuzzy 

category boundaries, and using principles of family resemblance, (e.g. Hampton, 1979; 

Rosch, 1973; Rosch & Mervis, 1975; Rosch et al., 1976). FUSS goes beyond typical 

featural models developed in the cognitive tradition, however, by explicitly linking some 

of these features to sensorimotor experience, and as such grounding representation in 

reality. As such it is strongly influenced by models developed in cognitive neuroscience 

and neuropsychology (e.g. Farah & McClelland, 1991; Devlin et al., 1998)..  

But FUSS is also relational in nature, when it comes to the lexical-semantic level. 

Here, semantic similarity measures are strictly relational in nature, corresponding as they 

do to ensemble average distances between points in the multiple self-organising maps 

that reflect this level of representation as implemented here. Crucially, and unlike many 

relational models (e.g., HAL: Burgess & Lund, 1997; LSA: Landauer & Dumais, 1997; 

Osgood, 1962; Osgood et al., 1975; Osgood et al., 1957; Snider & Osgood, 1969), these 

similarity measures are interpretable, corresponding as they do to aspects of the featural 

input. This also obviates a major concern that has generally been levelled at relational 

models: that they do not tend to be grounded in reality in any way. Here, the relational 
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lexical-semantic level is grounded in reality through its featural input. The particular 

relations between items in FUSS's lexical-semantic space, however, cannot be directly 

analysed in the same manner as is possible with relational models where the relations 

are contentful, such as network models where relational links are labelled (e.g. Collins & 

Loftus, 1975; or Wordnet: Miller & Fellbaum, 1991), or semantic field theory where 

relations are straightforwardly described in terms of specific principles that are relevant 

only to certain fields of knowledge. 

Grounding language in experience 

One of the fundamental assumptions underlying FUSS is the importance of 

sensorimotor experience to the development and representation of word meaning. In 

this particular implementation, such experience is represented by verbal speaker-

generated features referring to information gained through sensorimotor channels. 

Although it is uncontroversial that word meaning is learned to an important extent 

through interactions with the world through sensorimotor experience, various theories 

differ with respect to extent to which linguistic representations and processes are linked 

with sensory and motor representations and processes. As discussed by Meteyard & 

Vigliocco (in press), classes of theories of semantic representation can be considered to 

fall along a continuum in this regard. At one end of the continuum are strong 

embodiment hypotheses which embed assumptions of necessary and direct 

engagement: semantic representations of (concrete) entities and events necessarily 

depend upon primary sensory and motor systems, and that those systems are directly 

engaged during semantic processing rather than being transduced or mediated by other 

systems. The tight link and shared characteristics of the two systems would create 

strong dependency relations between the two: semantic processing would necessarily 

engage sensorimotor systems, and vice versa. Such theories are exemplified by Gallese 

and Lakoff (2005) who propose that all aspects of semantic representation and 
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processing are contained across multimodal sensorimotor systems rather than being 

reduced to a common (amodal or supramodal) system. Similar in character are theories 

by Pulvermüller (2001), Barsalou and colleagues (Barsalou, 1999; Barsalou, Kyle 

Simmons, Barbey & Wilson, 2003), and Glenberg and colleagues (Glenberg & 

Robertson, 2000; Glenberg & Kaschak, 2002, 2003) all of whom propose that semantic 

representations and processes are automatically and necessarily linked to low-level 

sensory and motor systems (see Meteyard, 2008; Meteyard & Vigliocco, in press). At the 

other extreme of this continuum are purely symbolic, amodal theories where semantic 

representations are fully independent from sensorimotor content, with any links 

between the two occurring outside the semantic system. Any exchange of information 

between the two systems would thus be necessarily mediated by other cognitive 

systems. Examples of such theories include the WEAVER++ model of lexical retrieval 

(Levelt, 1989; Levelt et al, 1999), global co-occurrence models such as LSA (Landauer & 

Dumais, 1997) and HAL (Burgess & Lund, 1997), and relational similarity accounts as 

described by Osgood and colleagues (Osgood, 1962; Osgood et al., 1975; Osgood et al., 

1957; Snider & Osgood, 1969).  

The two contrasting classes of theories above, however, are not the only 

possibilities, but merely the extremes of a continuum. For example, "weak 

embodiment" hypotheses (Meteyard, 2008; Meteyard & Vigliocco, in press) are those in 

which semantic representations are grounded in low-level sensorimotor systems, but the 

semantic system itself is supramodal, serving to bind together information from 

different modal systems. FUSS falls into this class of theories: semantic representations 

(whether implemented as self-organising maps as described in Chapter 4, or any other 

implementation whereby this level of representation is conceived as a single 

representation space uniting featural information across modalities) are supramodal but 

grounded in low level sensorimotor systems. Like the strong embodiment hypotheses, 
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these theories hold that sensorimotor systems are essential underpinnings of semantic 

representations, but they diverge in that these systems are not so strictly linked, either in 

terms of the necessity for these systems to be invoked in all semantic processing, or in 

terms of the direct processing links between the two (the degree of directness thus 

defining a particular theory's position along the continuum between strongly embodied 

and abstract/amodal). Effects showing interdependence between semantic and lower-

level sensorimotor systems should be observed under some conditions (depending 

upon the processing assumptions of a particular model), but unlike strong embodiment 

hypotheses such effects need not necessarily be symmetrical nor arise in all 

circumstances. 

 There is now a substantial and growing body of evidence concerning the 

relation between low-level sensorimotor systems and language processing, generally 

favouring embodied hypotheses over strictly amodal ones (see Meteyard & Vigliocco, in 

press, for an extensive review). In behavioural experimentation, evidence of this nature 

can be seen in studies showing that "purely linguistic" tasks are affected by perceptual 

or motor processing, or that "purely perceptual" or "purely motor" tasks are affected by 

semantic content of language stimuli. Such findings are inconsistent with the central 

assumptions of amodal theories, under which these kinds of processes should be 

independent of each other, but fall naturally from embodied assumptions under which 

they are closely linked. For example, a close link between motor systems and sentence 

processing systems has been demonstrated in a number of studies. For example, 

Glenberg and Kaschak (2002) presented participants with sentences describing motor 

actions in the imperative form (e.g. "Close the drawer"), or as transfer actions involving 

themselves (e.g. "Courtney handed you the notebook") and asked them to judge their 

sensibility by button presses. Crucially, the buttons were laid out in a configuration that 

required participants to move their hand either away from or toward their body. 
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Participants were faster to respond when the direction of response was consistent with 

the physical motion implied in the sentence content (e.g. moving the hand away from 

the body for "Close the drawer", or toward the body for "Courtney handed you the 

notebook") than when it was inconsistent (see also Borreggine & Kaschak, 2006). Such 

results should not be observed given the assumptions of amodal systems, because the 

type of response should be irrelevant to the task of deciding whether a sentence makes 

sense or not if semantic processing is independent from motor systems. Many other 

studies have shown the same kinds of effects using a range of motor responses: 

responding with hand vs. foot in judging sentences involving hands or feet (Buccino, 

Riggio, Melli, Binkofski, Gallese, & Rizzolatti, 2005); responding with rotary motion to 

sentences implying rotation in a particular direction (Zwaan & Taylor, 2006); and 

performing manual sorting tasks involving directional motion while producing 

sentences referring to directional motion (Casasanto & Lozano, 2007).   

Results consistent with embodiment have also come from tasks related to visual 

perception of motion. For example, Meteyard, Bahrami and Vigliocco (2007) asked 

participants to do a difficult perceptual task involving identification of coherent visual 

motion near threshold, and at the same time they were listening to blocks of words 

referring to directional motion not relevant to the task. When the two were inconsistent 

(e.g., visual motion was upwards and words referred to downwards motion), 

participants were less able to detect coherent visual motion, reflected in reduced d'. This 

indicates effects of (passive) lexical processing on a low-level perceptual task, consistent 

with embodiment hypotheses where these would be closely linked. Meteyard, Zokaei, 

Bahrami and Vigliocco (in press) also found effects of motion perception on language 

processing: threshold-level patterns of directional motion impeded lexical decision on 

words referring to direction when the two were inconsistent. Any number of findings 

consistent with embodiment hypotheses can also be found in the imaging literature 
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(reviewed in Meteyard & Vigliocco), where it has long been taken for granted that 

meaning must be grounded in sensorimotor experience, in part because neuroscientific 

theorising mostly does not make a distinction between conceptual and semantic 

representations.  

 Together these findings provide strong evidence against strictly amodal accounts 

of semantic representation, but are not definitive with respect to contrasting strong 

from weak embodiment hypotheses. One possible angle for gaining leverage on this 

issue may come from the distinction between semantic and conceptual levels of 

representation. As discussed in the introduction, cross-linguistic evidence seems to 

demand not only that these levels of representation be distinguished from each other, 

but also that they embed (at least some) different principles of organisation. This is 

particularly evident from the results of Vigliocco, Vinson, Paganelli and Dworzynski 

(2005) and Kousta et al (in press), where effects of Italian gender are observed at the 

semantic level but not at the conceptual level. Under weak embodiment hypotheses like 

FUSS, such findings can be easily accommodated due to the different principles of 

organisation of the (modal) conceptual system and the (supramodal) lexical-semantic 

system. For strong embodiment theories, however, these findings seem to demand that 

some differences exist between semantic and conceptual systems, an arrangement 

difficult to implement given the strong dependency between these both in terms of 

representation and processing. 

 

Going beyond purely sensory and motor information 

 Up to this point, the discussion of FUSS has revolved around the extent to 

which its representations can be derived from sensorimotor input, without much regard 

for the other kinds of information that make up a sizeable fraction of the speaker-

generated features that are produced across different types of words. As discussed in 



136 

Chapter 3, "Other" features, those which did not fall into any category of sensory, 

functional or motoric, account for 37.6% of all feature weights among the words in the 

set, and were even higher in some domains of knowledge (e.g. half of all feature weights 

for words referring to clothing and communication were classified as "Other"). Such 

features reflect a wide range of types, including encyclopaedic information (e.g. that 

zebras and elephants come from Africa; that tomatoes grow in gardens and onions 

grow in the ground; that cows give milk and live on farms); compositional information 

(e.g. that combs are made of plastic, and daggers are made of metal); information about 

the kinds of participants that can perform a particular action (e.g. that punching and 

arriving are done by humans, while licking, drinking and tasting are done by humans 

and by animals); information about superordinate category labels (e.g. that dogs are 

pets, mammals and animals; or that knives are utensils, tools, weapons and objects); 

information about higher-order cognitive processes (e.g. that giving is intentional and 

involves generosity; or that hiccuping is involuntary, embarrassing and disruptive), and 

many other sorts of features that also do not easily fall into sensorimotor classes. In 

fact, a large proportion of "Other" features seem to be best described as being learnt 

through experience with language much more than direct sensorimotor experience. It is 

therefore important to consider how such information could come to play a role in 

semantic representation, particularly given the crucial role of sensorimotor experience as 

discussed above, and the apparent need for a linguistic system to be in place before 

language information can contribute meaningfully. 

 A developmental framework within which this apparent paradox can be 

explained has been advanced by Gleitman and colleagues (Gleitman, 1990; Gleitman, 

Cassidy, Nappa, Papafragou & Trueswell, 2005; Landau & Gleitman, 1985; Trueswell & 

Gleitman, 2004). Under this account, multiple sources of information contribute to the 

development of the lexicon. Different sources contribute differentially depending on 
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the domain of knowledge, and the availability of these different sources evolves over 

time. More specifically, the initial state is one where the only available information is the 

extralinguistic context accompanying a word, sensorimotor information in other words. 

This serves well for the sensorimotor properties of concrete objects for which such 

properties are especially salient, but less so for actions and even less so for more 

abstract concepts ("hard words", Gleitman et al. 2005). Once these basic-level object 

representations develop, they serve as a foundation for the development of syntactic 

knowledge, which in turn can contribute to further lexical development (e.g., learning 

action verbs). More abstract words would be learnt through a similar developmental 

process, as metalinguistic knowledge builds even further upon ordered, contentful 

linguistic content. In FUSS, representing a mature (adult) system, this developmental 

trajectory is no longer evident. Instead, all of these multiple sources of information are 

in place and contribute to word meaning appropriately depending on the domain of 

knowledge.  

Current research in our lab is exploring these issues in more depth, assessing the 

extent to which the development of semantic representations can benefit from 

interaction between sensorimotor information and linguistic contexts, rather than a 

system which treats the two as independent sources of information (Andrews, Vigliocco 

& Vinson, 2005a, b; submitted). We are also beginning to investigate the meanings of 

abstract words, which are not included in the implementation of FUSS presented here. 

After all, any theory of word meaning should also account for representations of 

abstract words, which have been relatively neglected in theories of semantic 

representation. It is often considered that abstract words are solely or mostly 

represented linguistically while concrete words are also grounded in perception and 

action. Although this is most evident in dual coding theory (Paivio, 1971; 1986; 1991; 

2007) where concrete words benefit from access to a nonlinguistic "imagistic" system, 
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such views are widely prevalent (see Kousta, Vinson, Andrews & Vigliocco, submitted, 

for a review). However, initial evidence is strongly suggestive that, just like concrete 

words, the representations of abstract words may also develop through links with lower-

level systems—those involved in processing emotions (Barsalou & Wiemer-Hastings, 

2005; Kousta et al., submitted). These lines of work should further illuminate the extent 

to which sensorimotor, emotional and linguistic input converge in providing input to 

developing the meanings of words. 
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Appendix A. Items for which speaker-generated features were obtained, and their semantic field labels. 
Words referring to actions are classified generally following Levin (1993).  
Complete featural data, including feature weights for each word, and feature type classification as 
described in Chapter 3, have been permanently archived online, and may be downloaded from 
www.psychonomic.org/archive (search for Author: Vinson; Year: 2007). 
 
the loss noun: action 
the ache noun: body-action 
the blink noun: body-action 
the burp noun: body-action 
the cough noun: body-action 
the frown noun: body-action 
the hiccup noun: body-action 
the itch noun: body-action 
the smile noun: body-action 
the sneeze noun: body-action 
the snore noun: body-action 
the squint noun: body-action 
the throw noun: body-action 
the touch noun: body-action 
the tremble noun: body-action 
the wink noun: body-action 
the yawn noun: body-action 
the pull noun: change-location 
the push noun: change-location 
the call noun: communication 
the challenge noun: communication 
the chat noun: communication 
the command noun: communication 
the cry noun: communication 
the demand noun: communication 
the plea noun: communication 
the request noun: communication 
the scream noun: communication 
the shout noun: communication 
the sigh noun: communication 
the suggestion noun: communication 
the threat noun: communication 
the whine noun: communication 
the whisper noun: communication 
the yell noun: communication 
the construction noun: construction 
the repair noun: construction 
the crash noun: contact 
the hit noun: contact 
the knock noun: contact 
the slap noun: contact 
the bombardment noun: destruction 
the destruction noun: destruction 
the murder noun: destruction 
the donation noun: exchange 
the exchange noun: exchange 
the loan noun: exchange 
the trade noun: exchange 
the flame noun: light-emission 
the flash noun: light-emission 
the flicker noun: light-emission 
the glow noun: light-emission 
the shine noun: light-emission 
the sparkle noun: light-emission 
the approach noun: motion-direction 
the arrival noun: motion-direction 
the ascent noun: motion-direction 
the descent noun: motion-direction 
the entry noun: motion-direction 
the escape noun: motion-direction 
the return noun: motion-direction 
the chime noun: noise 

the clang noun: noise 
the clash noun: noise 
the clatter noun: noise 
the crackle noun: noise 
the screech noun: noise 
the chirp noun: noise-animal 
the growl noun: noise-animal 
the meow noun: noise-animal 
the oink noun: noise-animal 
the bear noun: animal 
the bird noun: animal 
the camel noun: animal 
the cat noun: animal 
the cow noun: animal 
the dog noun: animal 
the donkey noun: animal 
the duck noun: animal 
the elephant noun: animal 
the fish noun: animal 
the fox noun: animal 
the giraffe noun: animal 
the goat noun: animal 
the horse noun: animal 
the leopard noun: animal 
the lion noun: animal 
the mouse noun: animal 
the pig noun: animal 
the rabbit noun: animal 
the sheep noun: animal 
the swan noun: animal 
the tiger noun: animal 
the wolf noun: animal 
the zebra noun: animal 
the ankle noun: body part 
the arm noun: body part 
the beak noun: body part 
the chin noun: body part 
the ear noun: body part 
the elbow noun: body part 
the eye noun: body part 
the face noun: body part 
the feather noun: body part 
the finger noun: body part 
the fur noun: body part 
the hair noun: body part 
the hand noun: body part 
the head noun: body part 
the knee noun: body part 
the leg noun: body part 
the lips noun: body part 
the mouth noun: body part 
the neck noun: body part 
the nose noun: body part 
the paw noun: body part 
the shoulder noun: body part 
the tail noun: body part 
the teeth noun: body part 
the thumb noun: body part 
the toe noun: body part 
the tongue noun: body part 
the wing noun: body part 
the wrist noun: body part 
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the belt noun: clothing 
the blouse noun: clothing 
the coat noun: clothing 
the dress noun: clothing 
the glove noun: clothing 
the hat noun: clothing 
the mitten noun: clothing 
the pants noun: clothing 
the scarf noun: clothing 
the shirt noun: clothing 
the shoe noun: clothing 
the skirt noun: clothing 
the sock noun: clothing 
the suit noun: clothing 
the sweater noun: clothing 
the vest noun: clothing 
the apple noun: fruit and vegetable 
the artichoke noun: fruit and vegetable 
the asparagus noun: fruit and vegetable 
the banana noun: fruit and vegetable 
the bean noun: fruit and vegetable 
the broccoli noun: fruit and vegetable 
the cabbage noun: fruit and vegetable 
the carrot noun: fruit and vegetable 
the cauliflower noun: fruit and vegetable 
the celery noun: fruit and vegetable 
the cherry noun: fruit and vegetable 
the corn noun: fruit and vegetable 
the cucumber noun: fruit and vegetable 
the eggplant noun: fruit and vegetable 
the grape noun: fruit and vegetable 
the grapefruit noun: fruit and vegetable 
the lemon noun: fruit and vegetable 
the lettuce noun: fruit and vegetable 
the lime noun: fruit and vegetable 
the mushroom noun: fruit and vegetable 
the onion noun: fruit and vegetable 
the orange noun: fruit and vegetable 
the pea noun: fruit and vegetable 
the peach noun: fruit and vegetable 
the pear noun: fruit and vegetable 
the pepper noun: fruit and vegetable 
the pineapple noun: fruit and vegetable 
the plum noun: fruit and vegetable 
the potato noun: fruit and vegetable 
the pumpkin noun: fruit and vegetable 
the raisin noun: fruit and vegetable 
the raspberry noun: fruit and vegetable 
the spinach noun: fruit and vegetable 
the strawberry noun: fruit and vegetable 
the watermelon noun: fruit and vegetable 
the bomb noun: misc. artefact 
the book noun: misc. artefact 
the box noun: misc. artefact 
the carpet noun: misc. artefact 
the ceiling noun: misc. artefact 
the chair noun: misc. artefact 
the couch noun: misc. artefact 
the curtain noun: misc. artefact 
the door noun: misc. artefact 
the doorknob noun: misc. artefact 
the fence noun: misc. artefact 
the floor noun: misc. artefact 
the fork noun: misc. artefact 
the gate noun: misc. artefact 
the roof noun: misc. artefact 
the rug noun: misc. artefact 
the seat noun: misc. artefact 

the sofa noun: misc. artefact 
the stool noun: misc. artefact 
the table noun: misc. artefact 
the wall noun: misc. artefact 
the window noun: misc. artefact 
the axe noun: tool 
the broom noun: tool 
the brush noun: tool 
the chisel noun: tool 
the comb noun: tool 
the crowbar noun: tool 
the dagger noun: tool 
the drill noun: tool 
the dustpan noun: tool 
the file noun: tool 
the gun noun: tool 
the hammer noun: tool 
the hatchet noun: tool 
the hoe noun: tool 
the knife noun: tool 
the pen noun: tool 
the pencil noun: tool 
the pliers noun: tool 
the rake noun: tool 
the razor noun: tool 
the saw noun: tool 
the scissors noun: tool 
the screwdriver noun: tool 
the shield noun: tool 
the shovel noun: tool 
the spoon noun: tool 
the sword noun: tool 
the toothbrush noun: tool 
the tweezers noun: tool 
the wrench noun: tool 
the airplane noun: vehicle 
the bicycle noun: vehicle 
the boat noun: vehicle 
the bus noun: vehicle 
the car noun: vehicle 
the helicopter noun: vehicle 
the motorcycle noun: vehicle 
the raft noun: vehicle 
the ship noun: vehicle 
the train noun: vehicle 
the tricycle noun: vehicle 
the truck noun: vehicle 
the van noun: vehicle 
to find verb: action 
to lose verb: action 
to bleed verb: body-action 
to blink verb: body-action 
to breathe verb: body-action 
to burp verb: body-action 
to cough verb: body-action 
to cry verb: body-action 
to drink verb: body-action 
to drool verb: body-action 
to eat verb: body-action 
to feel verb: body-sense 
to frown verb: body-action 
to grin verb: body-action 
to hear verb: body-sense 
to hiccup verb: body-action 
to hold verb: body-action 
to inhale verb: body-action 
to inject verb: body-action 
to itch verb: body-action 
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to kick verb: body-action 
to knock verb: body-action 
to lick verb: body-action 
to listen verb: body-sense 
to look verb: body-sense 
to notice verb: body-sense 
to retch verb: body-action 
to see verb: body-sense 
to sense verb: body-sense 
to shave verb: body-action 
to sit verb: body-action 
to smell verb: body-sense 
to smile verb: body-action 
to smoke verb: body-action 
to sneeze verb: body-action 
to sniff verb: body-sense 
to snore verb: body-action 
to spit verb: body-action 
to squint verb: body-action 
to stand verb: body-action 
to stay verb: body-action 
to swallow verb: body-action 
to taste verb: body-sense 
to throw verb: body-action 
to tickle verb: body-action 
to touch verb: body-sense 
to tremble verb: body-action 
to vomit verb: body-action 
to wash verb: body-action 
to watch verb: body-action 
to wink verb: body-action 
to yawn verb: body-action 
to ache verb: body-sense 
to die verb: body-action 
to carry verb: change-location 
to drag verb: change-location 
to drop verb: change-location 
to eject verb: change-location 
to lift verb: change-location 
to move verb: change-location 
to place verb: change-location 
to pull verb: change-location 
to push verb: change-location 
to put verb: change-location 
to send verb: change-location 
to bend verb: change-state 
to blend verb: change-state 
to empty verb: change-state 
to fill verb: change-state 
to mix verb: change-state 
to pour verb: change-state 
to shake verb: change-state 
to spray verb: change-state 
to stir verb: change-state 
to twist verb: change-state 
to admit verb: communication 
to advise verb: communication 
to argue verb: communication 
to ask verb: communication 
to call verb: communication 
to chat verb: communication 
to command verb: communication 
to demand verb: communication 
to greet verb: communication 
to invite verb: communication 
to plead verb: communication 
to preach verb: communication 
to read verb: communication 

to request verb: communication 
to say verb: communication 
to scream verb: communication 
to shout verb: communication 
to speak verb: communication 
to suggest verb: communication 
to talk verb: communication 
to teach verb: communication 
to tell verb: communication 
to threaten verb: communication 
to warn verb: communication 
to whine verb: communication 
to whisper verb: communication 
to write verb: communication 
to yell verb: communication 
to build verb: construction 
to construct verb: construction 
to draw verb: construction 
to fix verb: construction 
to make verb: construction 
to paint verb: construction 
to repair verb: construction 
to bump verb: contact 
to crash verb: contact 
to hit verb: contact 
to press verb: contact 
to punch verb: contact 
to slap verb: contact 
to bake verb: cooking 
to boil verb: cooking 
to cook verb: cooking 
to fry verb: cooking 
to grill verb: cooking 
to roast verb: cooking 
to steam verb: cooking 
to bomb verb: destruction 
to break verb: destruction 
to chop verb: destruction 
to destroy verb: destruction 
to kill verb: destruction 
to murder verb: destruction 
to smash verb: destruction 
to stab verb: destruction 
to accept verb: exchange 
to acquire verb: exchange 
to borrow verb: exchange 
to buy verb: exchange 
to donate verb: exchange 
to exchange verb: exchange 
to get verb: exchange 
to give verb: exchange 
to lend verb: exchange 
to loan verb: exchange 
to pay verb: exchange 
to receive verb: exchange 
to sell verb: exchange 
to take verb: exchange 
to trade verb: exchange 
to want verb: exchange 
to burn verb: light emission 
to flame verb: light-emission 
to flicker verb: light-emission 
to glow verb: light-emission 
to shine verb: light-emission 
to sparkle verb: light-emission 
to approach verb: motion-direction 
to arrive verb: motion-direction 
to ascend verb: motion-direction 
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to come verb: motion-direction 
to descend verb: motion-direction 
to enter verb: motion-direction 
to escape verb: motion-direction 
to fall verb: motion-direction 
to follow verb: motion-direction 
to go verb: motion-direction 
to lead verb: motion-direction 
to leave verb: motion-direction 
to return verb: motion-direction 
to rise verb: motion-direction 
to sink verb: motion-direction 
to bounce verb: motion-manner 
to chase verb: motion-manner 
to creep verb: motion-manner 
to dive verb: motion-manner 
to drive verb: motion-manner 
to fly verb: motion-manner 
to halt verb: motion-manner 
to hop verb: motion-manner 
to jog verb: motion-manner 
to limp verb: motion-manner 
to march verb: motion-manner 
to pedal verb: motion-manner 
to ride verb: motion-manner 
to run verb: motion-manner 
to skid verb: motion-manner 
to slide verb: motion-manner 
to stagger verb: motion-manner 
to step verb: motion-manner 

to stop verb: motion-manner 
to swerve verb: motion-manner 
to swim verb: motion-manner 
to travel verb: motion-manner 
to wade verb: motion-manner 
to walk verb: motion-manner 
to wander verb: motion-manner 
to chime verb: noise 
to clang verb: noise 
to clatter verb: noise 
to crackle verb: noise 
to rattle verb: noise 
to screech verb: noise 
to sigh verb: noise 
to sing verb: noise 
to snap verb: noise 
to bark verb: noise-animal 
to chirp verb: noise-animal 
to growl verb: noise-animal 
to meow verb: noise-animal 
to oink verb: noise-animal 
to brush verb: tool-action 
to cut verb: tool-action 
to drill verb: tool-action 
to hammer verb: tool-action 
to hoe verb: tool-action 
to pound verb: tool-action 
to rake verb: tool-action 
to saw verb: tool-action 
to shovel verb: tool-action
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Appendix B. Items used in Experiment 1 (semantic priming in lexical decision, objects) 
 
               Primes                                                 
 __________________________________________________ 
Target Very close Close Medium Far 
 
apple peach lemon bean raft 
artichoke carrot pepper lime comb 
axe hammer spanner pencil ceiling 
banana peach melon potato broom 
cabbage onion pepper lime rug 
camel zebra mouse swan sofa 
celery aubergine* mushroom watermelon dustpan 
cherry pear lemon bean spoon 
chin lips tongue nose donkey 
coat suit shoe belt bus 
corn bean pea pear sofa 
cucumber broccoli pumpkin strawberry shield 
dagger sword razor hammer tongue 
dog rabbit tiger duck comb 
elbow wrist ankle thumb tiger 
fence gate wall roof bus 
finger thumb wrist knee couch 
hat scarf shoe belt bomb 
hoe chisel hatchet tweezers tricycle 
neck hair ear arm tail 
orange plum raisin pumpkin dustpan 
pig goat lion duck bomb 
pliers hammer hatchet scissors tricycle 
rake shovel hatchet sword carpet 
raspberry plum lemon bean broom 
saw hammer drill pencil curtain 
screwdriver chisel hatchet sword feather 
sheep goat zebra swan beak 
shoulder arm leg thumb bus 
toe leg knee wrist van 
trousers* shirt glove belt couch 
wolf fox cow duck pen 
 
* Semantic features for this word were obtained for its US English translation 
equivalent. 
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Appendix C. Items used in Experiment 2 (semantic priming in lexical decision, actions) 
 
               Primes                                                 
 __________________________________________________ 
Target Very close Close Medium Far 
 
ascend rise walk march write 
bake grill cook eat drop 
break drop lose kill cook 
buy trade demand accept drive 
carry hold press stop look 
chat speak write ask drive 
clatter screech snore whine roast 
construct build draw bend flash 
descend rise enter press speak 
dive swim wade boil knock 
drink swallow vomit frown whine 
empty pour mix spray bark 
fill spray blend invite blink 
fix repair build destroy touch 
hiccup cough sigh yell shave 
hop run rise leave trade 
kick walk stand rise build 
lend trade demand accept touch 
lift hold press fall write 
listen hear sing call hit 
oink chirp clang snore squint 
plead demand accept suggest drive 
preach suggest argue smoke steam 
punch slap stab ache yawn 
read write speak ask eat 
scream yell chirp snap eject 
sell borrow acquire invite sparkle 
shout yell clang rattle itch 
sneeze breathe smell vomit shake 
stir twist bounce wander flame 
taste eat cook spit pull 
teach advise suggest request swallow 
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Appendix D. Items used in Experiment 3 (picture-word interference, objects) 
 
            Distracters  
 __________________________________________________ 
Target Very close Close Medium Far 
apple peach lemon bean raft 
axe hammer spanner pencil ceiling 
banana peach melon potato broom 
camel zebra mouse swan sofa 
celery aubergine* mushroom watermelon dustpan 
cherry pear lemon bean spoon 
coat suit shoe belt bus 
corn bean pea pear sofa 
cucumber broccoli pumpkin strawberry shield 
dog rabbit tiger duck comb 
fence gate wall roof bus 
finger thumb wrist knee couch 
hand arm leg thumb bus 
hat scarf shoe belt bomb 
hoe chisel hatchet tweezers tricycle 
lettuce onion pepper lime rug 
orange plum raisin pumpkin dustpan 
pig goat lion duck bomb 
pliers hammer hatchet scissors tricycle 
rake shovel hatchet sword carpet 
saw hammer drill pencil curtain 
screwdriver chisel hatchet sword feather 
sheep goat zebra swan beak 
trousers* shirt glove belt couch 
 
* Semantic features for this word were obtained for its US English translation 
equivalent. 
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Appendix E. Items used in Experiment 4 (picture-word interference, actions) 
 
                           Distracters 
 _________________________________ 
Target Very close Medium Far 
 
bleed ache stab sigh 
bounce shake push wash 
cough hiccup snore squint 
dive swim pour glow 
drill build repair smile 
drink swallow grin warn 
eat taste vomit kill 
hop step rise buy 
kick run stand trade 
knock rattle growl shine 
pound slap bump lick 
press hold carry speak 
slide push drag argue 
sneeze breathe smell borrow 
stop enter fall touch 
talk call read follow 
throw hold leave call 
wade swim steam twist 
walk jog wander donate 
bleed ache stab sigh 
bounce shake push wash 
cough hiccup snore squint 
dive swim pour glow 
drill build repair smile 
drink swallow grin warn 
eat taste vomit kill 
hop step rise buy 
kick run stand trade 
knock rattle growl shine 
pound slap bump lick 
press hold carry speak 
slide push drag argue 
sneeze breathe smell borrow 
stop enter fall touch 
talk call read follow 
throw hold leave call 
wade swim steam twist 
walk jog wander donate 
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Appendix F. Items used in Experiment 5 (semantic blocking in picture naming) 

 

Objects: 

Body-parts: arm; finger; foot; hand; leg; neck; shoulder; thumb 

Clothing: belt; glove; hat; shirt; shoe; sock; trousers*; waistcoat* 

Vehicles: aeroplane*; bicycle; bus; car; helicopter; lorry*; motorcycle; train 

Actions: 

Body actions: hop; kick; march; run; sit; slide; stop; walk 

Mouth actions: drink; eat; frown; smile; sneeze; spit; taste; yawn 

Tool actions: cut; dig; draw; drill; paint; rake; saw; shovel 

* Semantic features for this word were obtained for its US English translation 

equivalent. 
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