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Abstract

In this paper we examine the panel data estimation of dynamic models for count
data that include correlated fixed effects and predetermined variables. Use of
a linear feedback model is proposed. The standard Poisson conditional max-
imum likelihood estimator for non-dynamic models, which is shown to be the
same as the Poisson maximum likelihood estimator in a model with individual
specific constants, is inconsistent when regressors are predetermined. A quasi-
differenced GMM estimator is consistent for the parameters in the dynamic
model, but when series are highly persistent, there is a problem of weak instru-
ment bias. An estimator is proposed that utilises pre-sample information of the
dependent count variable, which is shown in Monte Carlo simulations to possess
desirable small sample properties. The models and estimators are applied to
data on US patents and R&D expenditure.
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1. Introduction

Count data processes are commonplace in empirical microeconomics. In panel
data applications of count models it will often be the case that the process under
study is inherently dynamic so that the history of the count process itself becomes
an important determinant of current outcomes. As in other panel data applications
it is also likely that unobserved heterogeneity will be present, inducing persistently
different counts across individuals or firms. This paper makes two contributions to
the development of a modeling framework that allows for dynamic feedback and un-
observed heterogeneity. First, the use of pre-sample information is investigated as a
method of improving the efficiency of estimators in panel count models with predeter-
mined covariates. Second, a linear feedback model for dynamic panel data applications
is proposed. This modeling approach is then applied to the analysis of the relationship
between R&D and patents for a panel of US firms.

In count data models, where a natural non-linearity is produced by the non-
negative discrete nature of the data, standard Generalised Method of Moments (GMM)
methods for the estimation of dynamic fixed effects models! are not directly applica-
ble. The standard panel data estimator for count models with correlated fixed effects
is the Poisson conditional maximum likelihood estimator proposed by Hausman, Hall
and Griliches (1984). We show that this estimator is the same as the Poisson maxi-
mum likelihood estimator in a model with individual specific constants, as the Poisson
model does not suffer from the incidental parameter problem. This estimator is equiv-
alent to a moment estimator in a model where the fixed effects are replaced by the
ratio of within group means. It is therefore inconsistent for the parameters of interest
if the regressors are predetermined and therefore are not strictly exogenous.

For the case of predetermined regressors, Chamberlain (1992, 1993) and Wooldridge
(1997) have developed a consistent quasi-differenced GMM estimator. This has been

!See Holtz-Eakin, Newey and Rosen (1988), Arellano and Bond (1991) and Ahn and Schmidt
(1995), for example.



applied to the estimation of count data models with predetermined regressors by Mon-
talvo (1997), Crépon and Duguet (1997), and Cincera (1997). In this paper we extend
this quasi-differenced GMM estimator to the dynamic linear feedback model, and
investigate its small sample behaviour by means of a Monte Carlo study.

Our investigations show that the quasi-differenced GMM estimator can be severely
biased in small samples when regressors are highly persistent, and the instruments
therefore weak predictors of the endogenous variables in the differenced model. As an
alternative estimator we propose a pre-sample mean (PSM) estimator that replaces
the fixed effect by the pre-sample mean of the dependent variable. This estimator is
specifically designed to exploit data sets where information on the dependent variable
is available for earlier years than information on the regressors. This is a common
situation where administrative data, such as patents or innovation series, is matched

2 This estimator is consistent when the number of

with survey or accounting data.
pre-sample periods gets large.

To explicitly model the dynamics of the count process in panel data we consider
the linear feedback model (LFM). This has its foundations in the Integer Valued
Autoregressive (INAR) generalisation of the Poisson model to the ARMA process
developed by Al-Osh and Alzaid (1987), McKenzie (1988) and Brénnds (1994). In
this model the conditional mean of the count variable is modelled linearly in the
history of the process. This specification is shown to be well adapted to economic
applications and especially convenient for understanding the dynamic properties of
count data processes.

An application is made to the data set of US firms’ R&D expenditure and patenting
activity used in Hall, Griliches and Hausman (1986) and related work. The issues

addressed in this earlier work relate to quantifying the R&D cost of a patent and
assessing the timing of returns to R&D. This is made difficult by the fact that not

2Examples of these types of data sets include the SPRU data in the UK, see Pavitt, Robson and
Townsend (1987), and patent and R&D series in many countries.



only may R&D expenditures lead to patents but also patents may themselves induce
future R&D expenditures. Consequently, R&D is unlikely to be strictly exogenous.
The layout of the paper is as follows. In the next section we discuss the Pois-
son maximum likelihood estimator for count data in a model with individual specific
constants and show its equivalence with the Poisson conditional maximum likelihood
estimator. The use of a quasi-differenced GMM estimator for a model with predeter-
mined regressors is considered, and the pre-sample mean estimator is introduced. In
section 3, the linear feedback model is presented and the estimation of the model is
discussed. Section 4 presents results of a Monte Carlo simulation study and in section

5 the dynamic model and various estimators are applied to the patent-R&D data.

2. Fixed Effects Models for Count Data

Let y;; denote the discrete count variable to be explained for subject ¢, i =1, ..., N,
at time ¢, t = 1,...,T; and let x;; denote a vector of explanatory variables. The

exponential (or log-link) model of the form

E (yit|zi) = exp (z;tﬁ) ) (2.1)

is commonly used for count data.®> An important feature in panel data applications
is unobserved heterogeneity or individual fixed effects. For count data models these

effects are generally modelled multiplicatively as

E (yit|$z’t, 7]z') = €xp (m;tﬁ + 7]2') (2'2)

= MitVi,

where p; = exp (2,3), and v; = exp (1;) is a permanent scaling factor for the individ-

ual specific mean. This implicitly defines a regression model

Yit = UitVi + Ut (2.3)

3See Gourieroux, Monfort and Trognon (1984), McCullagh and Nelder (1989), Cameron and
Trivedi (1986) and Winkelmann (1997) for good general discussions of these models.
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In general, it is likely that the unobserved fixed components n; are correlated with the
explanatory variables, E (z;1;) # 0, and therefore standard random effects estimators

will be inconsistent.
2.1. Strictly Exogenous Regressors

When the z;; are strictly exogenous, the conditional mean of y;; satisfies
E (yit|Vz'7 xz’t) =F (yit|Vz'7 Ti1y -y xz’T) . (2-4)

For this case, several estimators for 3 have been proposed that allow for individual ef-
fects to be correlated with the regressors. Hausman, Hall and Griliches (1984) use the
Poisson conditional maximum likelihood estimator (CMLE), conditioning on Y7 | vy,
which is the sufficient statistic for 7;. This method mimics the fixed effect logit ap-
proach of Chamberlain (1984). However, the Poisson maximum likelihood estimator
(MLE) for § in a model with separate individual specific constants does not suffer
from the incidental parameters problem, and is therefore consistent (and, we show
below, is the same as the CMLE). To see this, note that the maximum likelihood first

order conditions for the v; are given by

OlnL L0 (yir In (paevi) — pacvs) B L i .
814 N Z 81/1' N Z < ,U'1t> =0

t=1

and therefore the MLE for v; is given by

~ Y

ViimL) = )
where 7, = T 3Ly and i, = T-' L exp (2},3). The MLE of the fixed effect is
independent of ;. Substituting the fixed effects estimates in the first order conditions

for (8 results in

OolnL T g)
Vi) = it — Wit= | Tig = 0.
When x;; is strictly exogenous,
190InL 1 XL it
limy oo —=—F7— (7)) = plimy 0o it — — Ui | Ty =0,
Plmy -0 e (7;) = plimy N;t;(ut _iu Tit



with @ = T"'>7 | uy, and therefore the MLE for 3 is consistent.* It is further
identical to the CMLE. The latter can be seen as follows. The Poisson conditional log

likelihood function is given by®

N T N T
ln CL Z Z F Yit + 1 Z Zyzt ln Z eXp zzt zis)/ﬁ) )
i=1t=1 i=1t=1 s=1

where T'(.) is the gamma function. The first-order condition for [ is

OolnCL Yit

)

i=1t=1 2us= 1exp( (mzt—xzs

N T
_ s 11'188Xp( zsﬁ)
- Y- L BRI

LTit | Yir — Hie— | »
i

which is exactly the same as the MLE first order condition for f3.
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The first order conditions imply that the Poisson MLE for (3 is equivalent to the
moment estimator in a model where the ratio of individual, or within group, means
are used to approximate the individual specific effects. This mean scaling model is
given by

W—MZ+%, (2.5)

(2

where v, = uit—“ﬂ#m. We call this estimator the within group mean scaling estimator.
?

The results are summarised in the following lemma.

Lemma 1. The Poisson MLE for 3 in the model with separate individual constants
is consistent and the same as the Poisson CMLE. The estimator is identical to the
moment estimator in a mean scaling model solving the moment conditions

N T 7

ZZJM <yz't - ,Uz't:2> =0, (2.6)

i=1t=1 Fi

where jiy, = exp (x,8).

4Lancaster (1997) finds the same result for the Poisson model by means of a decomposition of the
likelihood.

5See Hausman, Hall and Griliches (1984, p. 919).

6Clearly, the Poisson pseudo-likelihood results are preserved.



2.2. Predetermined Regressors

In economic applications it is commonly the case that there is feedback from the
dependent variable to the explanatory variables. A regressor is predetermined when it

is not correlated with current and future shocks, but it is correlated with past shocks:

E(iﬂituz’tﬂ') =0, 720

E (ziui—s) # 0, s>1.

With predetermined regressors, condition (2.4) does not hold and therefore the esti-
mator of 3 that solves the sample moment conditions (2.6) is no longer consistent since
x; 1s now correlated with u}, through %;. This result is analogous to the inconsistency
result for the within group estimator for linear panel data models with predetermined
regressors in short panels.”

Chamberlain (1992) and Wooldridge (1997) have proposed transformations that
eliminate the fixed effect from the multiplicative model and generate orthogonality
conditions that can be used for consistent estimation in count data models with pre-

determined regressors.® The transformation is

Sit = yituitil_yz't—l (2-7)
Mit
Hit—1
= Ui — Ugt—1-
it

Let 2t ' = (2i1,...,2is_1). When zy is predetermined, the following T (T — 1) /2

moment conditions hold:
E (sula™") = Eyuer (E (silvi,2i™)) =0, (2.8)

using the law of iterated expectations.

"See Nickell (1981).
8For quasi-differenced moment conditions that are valid when x;; is endogenously determined, see
Wooldridge (1991) and Windmeijer (2000).



Orthogonality condition (2.8) can be used to consistently estimate the model pa-

rameters 3 by the GMM estimation technique.® This estimator minimises
1 ¥ 1 Y
N Z SQZz) Wy' <— Z Z{&) )
(N i=1 N =

where s; is the T'— 1 vector of residuals {s;}, Z; is the matrix of instruments and Wy

is a weight matrix. The optimal weight matrix is given by

N ~ ~
Wy = %ZZQSz’(ﬁ)Sz’(ﬁ)'Zi
i=1

where s;(f3) is based on an initial consistent estimate f.
When only x;;_; is used as an instrument, the GMM estimator solves the sample
moment conditions
N T N T Vit
K2
S rase =~ (y - um—> ~0, 29)
i=1 t=2 i=1t=2 Hit

which are similar to the first-order condition of the mean scaling estimator (2.6), but

leads of y and p are used to estimate v; instead of sample means.
2.3. Pre-Sample Mean Estimator

A common problem with the GMM estimation of (quasi-)differenced models us-
ing lags as instruments to predict future changes is that when economic series are
highly persistent the instruments are very weak predictors. This results in a small
sample bias of the GMM estimator in the direction of the estimator that uses the
explanatory variables themselves, which are endogenous in the differenced equation,
as instruments.'?

In the patents and R&D application presented below, as in many applications,
both series are highly persistent over time and there is pre-sample information (i.e. a

longer time series) on the dependent variable (the patent series). An estimator that

9See Hansen (1982).
10Gee Staiger and Stock (1997), and Blundell and Bond (1998).



utilises this pre-sample information is a moment estimator in the model

Yit = €xp (ﬁg + 2,0 + gblnyip) + €it,
where 7, = 75 S TE 40—, is the pre-sample mean of y; TP is the number of pre-
sample observations and ¢ is a parameter to be estimated. For convenience, we assume
that there is a single regressor in the model, the extension to multiple regressors is

straightforward. The moment estimator solves the just identified sample moment

conditions

i Zit (yz't — exp (58 + xS + qbln@-p)) =0, (2.10)

\\Mz

1
N 1t=
where z; = (1 Ty, In y2p> We call this estimator the pre-sample mean estimator. The
following lemma and corollary state the general conditions under which this estimator

is consistent.

Lemma 2. The moment estimator that solves the sample moment conditions (2.10)

is consistent for N — oo and TP — oo, if
TP-1

_ 1
In (y’ip) =In <ﬁ rgo ?/z‘oT) =a+ bn; + Op(TP) (1) ) (2-11)
where a random variable qrp is oprpy (1) if plimrp_.oo (grp) = 0. The parameters are

then given by ¢ = + and By = Bo— %

Proof: Using property (2.11), the moments conditions (2.10) can be written as

1 i izzt (exp Bo + ziuB + 1;) — exp (ﬁg +zufB+ & (a + bn; + op(rp) (1))) + uz-t) = 0.

zltl

The corresponding population moment conditions hold for ¢ = ¢ and Bo = Po— 7§ as
in that case
T
Erpoo Y Zit (exp (Bo + B + ;) (1 — exp (Op(TP) (U)) + uz’t) =0,
t=1

as the term involving (1 — exp (op(Tp) (1))) vanishes when TP — oo.

The next corollary states the conditions that the x;; process has to satisfy in order

for the conditions of Lemma 2 to hold.



Corollary 3. The condition (2.11) holds and the pre-sample mean estimator is con-
sistent for N — oo and T'P — oo if the x; process is a stationary i.i.d. process with

finite moments and its (long-run) mean proportional to ;.
Proof: Write the x;; process that satisfies the conditions of the corollary as
Tit = AN); + Vit

Using a Taylor series expansion, the expectation of y;; conditional on 7; is then given

by

E(yi|n:) = E(exp (8o + zauf + m:) + i)

= E(exp(Bo+ (14BN n) v},),

where vj; = 372 f—fvft Therefore, by the law of large numbers, the logarithm of the

pre-sample mean is equal to
In (gzp) =a-+ (1 + ﬂ/\) i + Op(TP) (1) ,
where a = 3y + In (Z]‘?';O %E (vj)>.

An example of a stationary x;; process that satisfies the conditions of the corollary
is xyy = pxyy_1 + T + €, with the g; i.i.d with finite moments. Then \ = 1%,3
and v;; = Z]O-';O P’ €it—;j. Note that if z; is further normally distributed, a is given by

Bo + %5205 .
3. Linear Feedback Model

Introducing dynamics into models of the form (2.2) is not straightforward since
the conditional mean is required to remain positive. Inclusion of functions of the
lagged dependent variable in the exponential function can lead to explosive series or

to problems with transforming zero values. The dynamic specification considered here



is a linear feedback model. The conditional mean in the linear feedback model (LFM)

is defined as

E(yit|yz't—1,90it,%) = 7?}it—1+exp($2tﬁ)% (3~1)

= VYit—1 T Uil

The LFM has its origins in the Integer-Valued Autoregressive (INAR) process,'!
and can be motivated as an entry-exit process with the probability of exit equal to
(1—7). The correlation over time in the INAR(1) model without additional regressors
is given by

corr (Yie, Yir—j) = v,
with v > 0, as only positive association is possible. Since pu;v; is non-negative, the
mean value for y;; is bounded below by v;;_1.

Even when the x;; are strictly exogenous, the within groups mean scaling estimator
will be inconsistent for small 7', as the lagged dependent variable is a predetermined
variable.'? For estimation by GMM, the quasi-differenced transformation for the LFM

model is given by

Hit—1 Hit—1
— = (Yit—1 — VWir—2) = Ui

Hit Hit

Sit = (yit - ’sz'tfl) — U1, (3-2)

where uy; = yi — E (Yit|Yir—1, Tit, ;). In the case of a single regressor x;;, which is
strictly exogenous, the following (7'— 1) (7' —2) /2 + T (T' — 2) moment conditions
hold

E(Sit’yﬂ; vy Yit—2y Lily oony xiT) = 0. (33)

For predetermined z;; the (T' — 1) (T'—2) /24T (T'— 1) /2—1 moment conditions are

E(S’it|yi17 ey Yit—2, Ljly oeey :Eitfl) - 0 (34)

1See Al-Osh and Alzaid (1987), McKenzie (1988), Ronning and Jung (1992), Brénnas (1994) and
Bockenholt (1999). For extension of the INAR(1) to the INAR(p) model see Alzaid and Al-Osh
(1990) and Jin-Guan and Yuan (1991).

2Note that for the LFM the within groups mean scaling estimator is no longer equivalent to the
Poisson fixed effects MLE.
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The just identified sample moments for the pre-sample mean estimator for the
LFM are given by

iifz@t (yzt — VYYit—1 — €XP (ﬁo + .thﬁ + ¢ln yzp)) =0, (35)

i=1 t=2
where z; = (1, Yit—1, Tit, In gip). This estimator is consistent under the same conditions
as stated in Lemma 2 and Corollary 3. The constant 3; is in this case further shifted
by In (1 — ) /¢, as the (long-run) mean of y;; conditional on 7; is given by

E(Yuln) = E (Z v exp (Bo + za—;8 + 771))

§=0

= FE (i 7 exp (Bo+ (L+AB)m; + ﬁvz’tj)>

§=0

_ ﬁ(exp(ﬁo—l— L+ BA)n) iﬁ? ( ))

4. Monte Carlo Results

Before turning to the empirical application it is important to provide an evaluation
of the performance of the estimators described in the previous sections for the linear
feedback model. First, results of some Monte Carlo experiments are presented with
a design where the explanatory variables are not very persistent, and so the quasi-
differenced GMM estimator is expected to perform relatively well. The performances
of the estimators are then investigated in the linear feedback model for x;; processes
that are more persistent over time. The pre-sample mean estimator is found to have
smaller bias and lower root mean squared error in almost all settings.

The data generating processes are

Yir ~ Poisson (yyi—1 + exp (Bxi +m;))
Tyt = PTyg1+ TN+ En

-
Tio = T + &
—p

11



Yo ~ Poisson (exp (zi0f + n;))
(2
o~ N _0"777}

Eit ~ N:O,ag}

N
Fifty periods are generated before the sample is drawn.

Results for the data generating process with parameter values v = 0.5, 3 = 0.5,
p=0.57=01,0; =05 and 07 = 0.5 are presented in Tables 4.1 and 4.2 for T'= 4
and T = 8 respectively and sample sizes N = 100, N = 500, and N = 1000. The bias
and root mean squared error (RMSE) are reported for various estimators of v and 3,
for 1000 replications.

The tables report results for a levels estimator that does not take account of un-
observed heterogeneity and solves the moment conditions

N T
> zit Wit — Vi1 — exp (Bo + z43)) = (4.1)
1t=2

i=
with z;z = (1,91, %). These estimates are denoted vlev and fSlev. As is clear from
the tables, these level estimates are considerably biased upwards.

Results for the within group mean scaling estimator are also reported. This esti-
mator solves the moment conditions

N T
Yi — VY~
Z Zzit <yzt — VYit—1 — /*th—1> = 07 (42)

i=11=2 i
with zi = (Yi—1, Tit), J; = T 1 Y it Yi,1 = T 1 Yo Yir—1, and TI; = T 1 Yo exp (zuf3).
These estimates are denoted ywg and Swg in the tables. As expected, the within group
estimates are biased downwards.

The pre-sample mean estimators that solve (3.5) are denoted ypsm and Bpsm.
Results are reported for 8, 25 and 50 pre-sample periods respectively. The bias and
RMSE of these estimates are relatively small, and both decrease as the number of

pre-sample periods increases. Increasing the sample size N and/or T' does improve

12



the RMSE, but only marginally so.?

Table 4.1: Monte Carlo results for Linear Feedback Model, T=4

7=0.5;6=0.5;,p=0.57=0.1;0. =0.5;02 =05

N =100 N =500 N = 1000

bias rmse bias rmse bias rmse
~vlev 0.262 0.270 0.274 0.276 0.276 0.278
Olev 0.547 0.669 0.506 0.581 0.505 0.561
Ywg -0.450 0.461 -0.445 0.448 -0.446 0.447
Bwg -0.262 0.275 -0.261 0.263 -0.262 0.263

ypsm8 0.054 0.095 0.066 0.076 0.065 0.070
Bpsm8 0.058 0.145 0.063 0.087 0.059 0.072
ypsm25 | 0.024 0.076 0.030 0.046 0.031 0.039
Bpsm?25 | 0.024 0.116 0.029 0.058 0.027 0.044
ypsmd0 | 0.009 0.072 0.015 0.036 0.016 0.028
Bpsmd0 | 0.009 0.107 0.015 0.050 0.013 0.035

yqdpr -0.236 0.311 -0.092 0.135 -0.060 0.094
Baqdpr -0.237 0.315 -0.122 0.184 -0.086 0.141

yqdse -0.236  0.295 -0.083 0.118 -0.050 0.082
Bqdse -0.180 0.222 -0.080 0.116 -0.050 0.090

Notes to Table: Number of replications is 1000, lev is levels without fixed effects,
wg is within group mean scaling, psmT P is pre-sample mean with T'P pre sample
periods, gdpr(se) is quasi-differenced GMM assuming z;; is predetermined (strictly
exogenous). The instrument set for the qd GMM estimator includes time dummies.

The final set of results are for the quasi-differenced GMM estimator. Assuming
that the x; are predetermined, and so only using moment conditions (3.4) results in
the estimates vqdpr and Bqdpr. Assuming that the regressor is strictly exogenous, and
therefore utilising the larger set of moment conditions (3.3) results in the estimates

vqdse and fqdse. Given the way the data is generated the strict exogeneity assumption

13Using both within and pre-sample information to construct the individual mean of the dependent
variable improves the performance of the estimator for «y slightly, but the bias and RMSE of the
estimator for 3 increase, especially for low values of T" and T P.

13



Table 4.2: Monte Carlo results for Linear Feedback Model, T=8

7=0.5;6=0.5,p=0.57=0.1;0. =0.5;02 =05

N =100 N =500 N = 1000

bias rmse bias rmse bias rmse
~ylev 0.263 0.268 0.274 0.275 0.278 0.279
Olev 0.504 0.617 0.505 0.565 0.554 0.561
Ywg -0.186 0.195 -0.184 0.18 -0.184 0.185
Bwg -0.125 0.140 -0.126 0.129 -0.128 0.129

ypsm8 0.074 0.089 0.084 0.087 0.087 0.088
Bpsm8 0.081 0.119 0.087 0.096 0.086 0.090
ypsm25 | 0.032 0.056 0.041 0.046 0.043 0.046
Bpsm?25 | 0.035 0.082 0.039 0.051 0.039 0.045
ypsmd0 | 0.015 0.047 0.023 0.032 0.025 0.029
Bpsmd0 | 0.018 0.071 0.022 0.038 0.021 0.030

vgdpr | -0.301 0.317 -0.097 0.106 -0.056 0.066
Bqdpr | -0.278 0.290 -0.137 0.147 -0.091 0.102

vgdse | -0.347 0.359 -0.105 0.113 -0.060 0.066
Bqdse | -0.256 0.261 -0.112 0.118 -0.072 0.078

Notes to Table: Number of replications is 1000, lev is levels without fixed effects,
wg is within group mean scaling, psmT P is pre-sample mean with T'P pre sample
periods, gdpr(se) is quasi-differenced GMM assuming z;; is predetermined (strictly
exogenous). The instrument set for the qd GMM estimator includes time dummies.

14



is valid. For both values of T" the quasi-differenced GMM estimator is downward biased
for small values of N. The bias and RMSE decrease when the sample size IV increases,
but the results are very similar for 7" = 4 and 7" = 8. Using the extra moment
conditions due to the strict exogeneity of the regressor improves the performance of
the estimator of 3 but not of that of v. Especially when T' = 8, ygdse performs worse
than ygdpr, both in terms of bias and RMSE.

Comparing the GMM quasi-differenced estimates (gdpr, gdse) to the pre-sample
mean estimates, it becomes clear that for this particular data generating process the
pre-sample mean estimator outperforms the GMM quasi-differenced estimator in al-
most all cases, even for a number of pre-sample observations as small as 8. In par-
ticular, the quasi-differenced GMM estimator for the linear feedback model seems to
suffer from a poor small sample performance.

The performance of the estimators in the linear feedback model for z;; processes
that are more persistent over time are considered next. The parameters are set to
a=0.7,8=1,7=0, so x; is not correlated with n; in this case, and ag = 0.5. The
sample size is N = 500, T' = 8. Two different processes for the regressor are considered,
a persistent process with p = 0.9 and ¢ = 0.05, and an even more persistent series
with p = 0.95 and o2 = 0.015. Bias and RMSE for the estimators for these two data
generating processes are given in Table 4.3, again for 1000 replications.

When p = 0.9 and 02 = 0.05, the results are very similar to those presented in
Tables 4.1 and 4.2, with the pre-sample mean estimator outperforming the quasi-
differenced GMM estimator. However, the bias and RMSE for the pre-sample mean
estimator of § increase when the x;; series become very persistent, when p = 0.95 and
0? = 0.015. This is due to the fact that the information contained in In7;, becomes
more and more like that contained in x; when the x;; process becomes more persistent.
Therefore, the separate estimation of 3 and the parameter on 7, becomes problematic
due to the multicollinearity. As the variance of the fixed effects 7; is relatively large,

the estimation of the parameter on 7,, will get a larger weight, with the estimate for
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(3 biased towards zero.

There is a very substantial downward bias when the parameters are estimated by
quasi-differenced GMM, and the problem of instrumenting the differenced z;; series by
lagged values becomes clear, as the RMSE of Bqdpr is large, much larger than those

for the pre-sample mean estimator.

Table 4.3: Monte Carlo results for Linear Feedback Model, persistent x series

a:0.7;ﬁ:1;7':0;0'727:0.5,N:500,T:8

p = 0.90; 052 =0.05 | p=0.95; Ug = 0.015

bias rmse bias rmse

ylev 0.181 0.182 | 0.183 0.184
Blev 0.433 0.481 | 0.249 0.316
Ywg -0.245 0.247 | -0.271 0.272
Bwg -0.367 0.374 | -0.361 0.380
YpsmS8 0.094 0.097 | 0.081 0.084
Bpsm8 | -0.099 0.146 | -0.366 0.382
ypsm?25 | 0.074 0.077 | 0.066 0.069
Bpsm?25 | -0.056 0.104 | -0.286 0.302
vpsmb0 | 0.056 0.060 | 0.055 0.059
Bpsmb0 | -0.028 0.080 | -0.195 0.215
yqdpr -0.128 0.142 | -0.127 0.146
Bqdpr -0.427 0.505 | -0.435 0.714
vqdse -0.161 0.172 | -0.160 0.175
Bqdse -0.344 0.363 | -0.314 0.366

Notes to Table: Number of replications is 1000, lev is levels without fixed effects,
wg is within group mean scaling, psm(s)TP is pre-sample mean (scaling) with T'P
pre sample periods, gdpr(se) is quasi-differenced GMM assuming x;; is predetermined
(strictly exogenous). The instrument set for the -d GMM estimators includes time
dummies.
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5. An Application to the R&D and Patents Relationship

The data used to examine the properties of the alternative dynamic specifications
are the patent-R&D panel data of Hall, Griliches and Hausman (1986).1* The data
contain information on R&D expenditures of large US firms between 1972 and 1979
and a count of patents applied for and subsequently granted between 1965 and 1979.
The firms in the data set are 407 firms for which there is a pre-sample history of the
dependent variable.!®

Some descriptive statistics and the first order autocorrelations of the InR&D and
patent series for the two groups are given in Table 5.1. Both series are highly autore-
gressive.

Before presenting the estimation results for the LFM specification, we give an
economic interpretation of the linear feedback model in terms of the R&D-patents
application. The relationship being estimated between patents and R&D can be in-
terpreted as a knowledge production function describing the production of patents

from current and past R&D investment. A simple way to write this relationship is

Qz’t = g(Rz't,Rz't—h---;ﬂ; Vz') (5-1)

where ();; is some latent measure of technological output of firm 4 in period t, R
measures the corresponding R&D investment, ( represents the vector of unknown
technology parameters and v; captures the firm specific propensity to patent. Observed

patents, Py, are a noisy indicator of a firm’s technological output,
Py = Qi + €ut, (5.2)

with E(Sit‘Rib Ritfl, ceey Vi) =0.

14This data set is described in Bound et al (1982) and derivative data sets have been used in many
applications including Hausman, Hall and Griliches (1984).

5Due to a large heterogeneity in estimated coefficients, we have excluded 37 firms from the ” Mo-
tors/Aircraft” industry.
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Table 5.1: The R&D and Patents Data

# firms 407
InR&D Patents
Mean 1.312 35.25
Std. Dev. 1.815 79.09
Between Std. Dev. 1.795 77.91
Within Std. Dev. 0.281 14.09
Median 1.267 6
Minimum -3.849 0
Maximum 6.682 906
Proportion of zeros - 0.154
First order autocorrelation 0.925 0.884
se 0.029 0.017

Notes to Table: The first order autocorrelation estimated by System GMM takes account of
fixed effects using the stacked linear and differenced GMM estimator for the mean stationary
linear dynamic error components model, see Blundell and Bond (1998), instruments used are
lagged levels dated t-j,..,t-5 for the differenced equation and lagged differences dated t-j+1
for the levels equation, where j=2 for the R&D series, and j=3 for the patent series.

Suppose that historic R&D investments are combined through a Cobb-Douglas

technology to produce knowledge stock. In this case (5.1) becomes
Qi = RI'RP (R .1, (5.3)

This motivates the conditional mean specification in a multiplicative distributed lag

model
E Y|z, Tit—1, - - - Tir—p, Vi) = exp(ay b1 + i1 F2 + ... + fE;t,pﬁpH)Vz' (5.4)

where y;; corresponds to P;; and x; to In R;. This is the standard model used in the

R&D-patents literature.'6

16For an evaluation of this model see Blundell, Griffith and Van Reenen (1995), and Blundell,
Griffith and Windmeijer (1999).
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If there is limited history on R&D in the data or the R&D series are highly persis-
tent so that the series of lagged values of R;;_; are collinear, the alternative dynamic
specification of the linear feedback model can be attractive. To provide an economic
motivation for the LFM specification (3.1), consider writing the relationship (5.1)
between patents and R&D as

Py =k (R’Z +(1-90) R’Z—JL + ) Vi + €4t (5.5)

in which £k is a positive constant and where R&D investment depreciates exponentially
at rate 6. Setting 3 < 1 allows for a decreasing return to within period investment.
The distributed lag term in brackets represents the process by which patents are
produced from R&D inputs.!” Ignoring any feedback from patents to R&D the long

run steady state for firm ¢ may be written

k
P, = ngui, (5.6)

so that 4 may be interpreted as the long run elasticity. Inverting (5.5) we have
Py = kRﬁw + (1 = 0) Py—1 + uq, (5.7)

in which E(u;t|Rit, Py 1,v;) = 0. Depending on the serial correlation structure of e;,
the process for u; may display some autocorrelation. Equation (5.7) is equivalent to
the LEM model given in (3.1) in which the autoregressive coefficient v estimates the
depreciation factor (1 — ¢) and the long run elasticity is given by f.

Results for the Linear Feedback Model are presented in Table 5.2. The levels esti-
mation procedure that does not take account of fixed effects results in coefficients on
the lagged dependent variable and In R& D of 0.89 and 0.90 respectively. In contrast,

the within groups mean scaling estimates are much lower, 0.41 and 0.34 respectively.

1"For example, using a specific parameterisation of the CES production function where (5.1) be-
comes

Qi =k(RS+(1—6)R>_ + ),

Setting the returns to scale parameter ¢ equal to 3 and using (5.2) results in (5.5).
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Table 5.2: Results for the Linear Feedback Model

(1) (2) (3) (4) (5)
Levels Within PSM QD(A) QD(B)

Pat_, 0.891 0.030 | 0.413 0.055 | 0.841 0.031 | -0.192 0.047 | -0.215 0.085

In R&D 0.898 0.069 | 0.342 0.075 | 0.506 0.148 | 0.033  0.085 | 0.173 0.053

Sargan (p) 87.05 (0.003)

Notes to Table: The model includes year dummies. Standard errors are shown in small font
and allow for a general covariance matrix over firms and time. Levels’ is the estimator solving
sample moments (4.1) , not taking account of individual effects. ‘Within’ is within group
mean scaling, solving (4.2). PSM is pre-sample mean, and QD is quasi-differenced GMM.
The pre-sample mean of Pat uses the years 1965-71.. Instruments in column (4), QD(A), are
(1L,Yit 2, -y Yi1sTit 1, -, Ti1), in column (5), QD(B) they are (time dummies, Ay;; 1,Ax;)..
Sargan is the standard x? test for overidentifying restrictions

In this dynamic model with fixed effects we expect the levels estimates to be biased
upwards, and the within groups estimates to be downward biased, as was confirmed
by the results of the Monte Carlo simulations. Moving next to the results of the
estimator that utilise the available pre-sample information on patents, we find that
for the pre-sample mean estimator the estimated coefficients lie in-between the levels
and within estimates, with the coefficient on the lagged dependent variable equal to
0.84 and that on In R&D equal to 0.51. All these results, in terms of the direction of
the biases, are very similar to the Monte Carlo results with persistent z;; series, with
p = 0.9, as displayed in Table 4.3.

The results of the PSM estimator have a sensible economic interpretation. They
imply that the depreciation rate of patents is approximately 15% and indicate that
the short run elasticity of patents with respect to R&D is approximately (1 —v) 5 =
0.08, whereas the long run elasticity, ignoring feedback, is approximately 0.5. This

implies a much slower moving adjustment process than that implied by the results
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of a multiplicative distributed lag model that have previously been reported in the
literature.

The results of the quasi-differenced GMM estimator as displayed in column (5)A,
assuming that In R& D is predetermined, seem puzzling. The coefficient on the lagged
dependent variable is negative, whereas the coefficient on In R& D, although positive,
is not significantly different from zero. The suspicion that these results arise due to
a weak instruments problem as both the patents and the In R&D series are highly
persistent, is confirmed by the results in column (5)B, where the Ay, 1 and Ax;
themselves are used as the only instruments. The estimates of the coefficient on
lagged patents are almost identical, and the coefficient on In R& D is again very small,
although larger than in column (4). This is clearly an indication that the instruments
are (very) weakly correlated with the endogenous variables in the quasi-differenced

model.18

6. Summary and Conclusions

We have shown that for standard count panel data models with correlated fixed
effects and strictly exogenous regressors, the Poisson maximum likelihood estimator
for the slope parameters in a model with individual constants is consistent, the same as
the conditional maximum likelihood estimator, and equivalent to a within groups mean
scaling estimator. This estimator is inconsistent when regressors are predetermined

This paper has proposed a pre-sample mean estimator for count panel data mod-
els. This estimator extends the set of panel data estimators to cover the case where
there is additional historic information on the dependent variable. This is a common
occurrence in many data sets and is exemplified in the patent count and R&D data

for the US where recorded patent counts extend back over a long period before R&D

18 Although the Sargan test indicates that the model is misspecified, other model specifications,
for example including further lags of patents, or using different moment conditions that allow for
possible endogeneity of InR& D and/or measurement error in patents do not alter the results. For
subgroups of firms, the Sargan test does not reject instrument validity, whereas coefficient estimates
do not change.
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expenditure is available. The pre-sample estimator developed in the paper is shown
to be an attractive alternative to standard estimators when there are correlated in-
dividual effects and predetermined regressors. It is shown to be consistent for large
pre-sample size. In Monte-Carlo simulations it is shown to perform well in comparison
to a quasi-differenced GMM estimator especially when the underlying processes are
highly persistent.

The paper has developed the linear feedback framework for the case of dynamic
count data models. A commonly used dynamic specification for count data is the
multiplicative distributed lag model, where lags of the regressors enter the exponential
mean function. In contrast, for the linear feedback model, the lagged dependent count
variable enters the conditional mean specification linearly. The pre-sample estimator
is then extended to cover the linear feedback model. In a Monte Carlo study it is
also shown that, for reasonable pre-sample sizes, the estimator outperforms standard
estimators in terms of bias and root mean squared error.

The model and estimators have been applied to a well known data set of US
patents and R&D expenditure. The proposed pre-sample mean estimator performs
well in comparison to alternatives that use the quasi-differencing approach. This is
explained by an examination of the properties of the model and data in the light of the
results from the Monte-Carlo simulation. The estimates of the linear feedback model
estimated by the pre-sample mean estimator indicate that the adjustment process is

much slower moving than has previously been found.
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