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SUMMARY OF THESIS 

Cardiovascular disease is the most common cause of death in patients with chronic 

kidney disease. Structural and functional vascular abnormalities and arterial 

calcification begins early in the course of renal decline and can be found even in 

children, contributing to their high mortality risk. Through clinical and laboratory 

studies, this thesis sought to investigate the causes of uraemic vascular damage and 

calcification in children with chronic kidney disease and on dialysis.  

 

Dysregulated mineral metabolism, manifested by hyperparathyroidism and high 

phosphate, in association with low vitamin D levels, is key to the pathophysiology of 

ectopic vascular and soft tissue calcification.  In addition, a number of treatment-

related factors can potentially lead to a high calcium load, contributing to an increased 

risk of calcification. Importantly, these are modifiable risk factors and have been 

associated with an increased mortality risk in adult dialysis patients.  

 

Using established surrogate measures of vascular damage, carotid artery intima media 

thickness, pulse wave velocity  and multi-slice CT scan, I have studied a cohort of 

children on chronic dialysis, and shown that those with mean parathyroid hormone 

levels above twice the upper limit of normal had increased vascular thickness, stiffer 

vessels and a higher prevalence of coronary artery calcification, whereas those with 

lower levels had vascular measures that were similar to age-matched controls. Also, a 

higher vitamin D dosage was associated with thicker vessels and coronary 

calcification. To explore this association, in a further study I have measured the levels 

of 25-hydroxy and 1,25-dihydroxy vitamin D and shown that both low and high levels 

of 1,25-dihydroxy vitamin D are associated with thicker vessels and calcification. 
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Also, 1,25-dihydroxy vitamin D showed a strong inverse association with high 

sensitivity CRP, and we speculate that vitamin D’s influence on calcium-phosphate 

homeostasis and inflammation may be lead to this bimodal effect. Levels of the 

circulating calcification inhibitors, fetuin-A, osteoprotegerin and Matrix Gla-protein, 

may influence an individual patients’ susceptibility to calcify, and but have not been 

described in children. I found that these levels influenced vascular stiffness and 

calcification, and that there may be a protective upregulation of fetuin-A in the early 

stages of exposure to a pro-calcific and pro-inflammatory uraemic environment.  

 

In a subsequent translational study I have sought to find direct evidence of vascular 

damage and calcification in the vessels. Using intact human arteries removed at the 

time of routine surgery, I have shown that calcium accumulation begins pre-dialysis, 

but dialysis induced vascular smooth muscle cell apoptosis coupled with 

osteo/chondrocytic transformation and a loss of the normal calcification inhibitors 

leads to overt calcification. Our currently available clinical measures are not sensitive 

enough to detect the earliest stages of calcification. On in vitro culture in calcifying 

media, dialysis but not control vessels showed accelerated time-dependent 

calcification, suggesting that these vessels had lost their smooth muscle cell defence 

mechanisms and were primed to undergo rapid calcification. Apoptotic cell death was 

a key event that triggerred calcification, and this was a vesicle mediated process, 

possibly involving oxidative DNA damage. 

 

This thesis investigates the role of modifiable risk factors in uraemic vascular damage 

and calcification in children with CKD and explores the earliest changes in the 

pathophysiology of uraemic medial calcification in intact human vessels. 
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Introduction 

Since the inception of paediatric dialysis programmes approximately 40 years ago, 

there have been vast improvements in both technology and expertise in the care of 

these patients. Nevertheless, children on dialysis continue to have an unacceptably 

high mortality, and cardiovascular disease is the most common cause of death in this 

population. Calcification of blood vessels is a significant contributor to the 

cardiovascular risk: it begins early in the course of renal decline and is present even in 

children and young adults. Epidemiological data and observational studies have 

consistently shown that dysregulated mineral metabolism is central to the ectopic 

calcification process, and most importantly, is a modifiable risk factor. Furthermore, 

we now know that vascular calcification is not mearly a passive process in dead or 

dying cells, but a highly regulated cell-mediated process that involves a complex 

interplay between promoters and inhibitors of calcification. Identifying potentially 

modifiable damage-inducing agents in the uraemic milieu and understanding their role 

in the pathophysiology of vascular calcification may allow us to inhibit progression or 

even induce regression of existing vascular injury.  

 

In this chapter I have discussed the epidemiology, risk factors, clinical studies and in 

vitro and animal studies investigating the pathophysiology of ectopic vascular 

calcification that have contributed to our current knowledge and generated the 

research questions addressed in this thesis.  
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Section I – Definitions and risk factors for vascular calcification in 

chronic kidney disease 

 

 

1.1 Definitions: Chronic kidney disease – mineral and bone disorder (CKD-

MBD) 

 

With the growing awareness that mineral dysregulation in CKD is closely linked to 

abnormal bone pathology, and that these in turn lead to extra-skeletal calcification, the 

KDIGO (Kidney Disease Improving Global Outcomes) have proposed a broad and 

encompassing term chronic kidney disease - mineral and bone disorder (CKD-MBD) 

to describe this clinical entity (Moe at al, 2006).   

 

CKD-MBD is defined as a systemic disorder of mineral and bone metabolism that is 

manifested by either one or a combination of the following: 

-  Abnormalities of calcium, phosphorus, PTH, or vitamin D metabolism 

-  Abnormalities in bone turnover, mineralization, linear growth, or strength 

-  Vascular or other soft tissue calcification 

A proposed framework for classifying CKD-MBD divides patients into four types 

based on the presence or absence of abnormalities in the three primary components 

used in the definition of the disorder: laboratory abnormalities, bone disease, and 

calcification of extraskeletal tissue (Figure 1.1). 
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Also, KDIGO have recommended that the term renal osteodystrophy, that has been 

used traditionally to describe the abnormalities in bone morphology in renal disease, 

should be used exclusively to define the bone pathology associated with CKD. Thus, 

they have defined renal osteodystrophy as an alteration of bone morphology in 

patients with CKD. It is quantifiable by histomorphometry of bone biopsy, and it is 

suggested that the results should be reported based on a classification system that 

includes parameters of turnover, mineralization, and volume (Moe et al, 2006). 

 
 

 

1.2    Epidemiology of cardiovascular disease in CKD patients 

 

A seminal paper by Foley et al drew the attention of the medical community to the 

very high rate of cardiovascular deaths in patients on dialysis (Foley et al, 1998). This 

epidemiological study compared the mortality of maintenance dialysis patients with 

that of age, gender and race matched healthy controls. The standardized mortality rate 

was described in deciles for age, and the authors showed that the mortality of young 

adults (25 – 34 years old) on dialysis was approximately 700-fold higher than age 

Figure 1.1 – The spectrum of 
abnormalities described in the KDIGO 
definition of CKD-MBD. 
 
Adapted from the KDIGO website  
http://www.kdigo.org/clinical-practice-
guidelines. 
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related mortality and equivalent to that of an 80 year old (Figure 1.2). Other reports 

have confirmed these findings: the mortality from cardiovascular disease is 1,000 

times more common in children with CKD stage V than in the general paediatric 

population, in which accidents are responsible for most deaths (Parekh et al, 2002). 

Comparable figures for adults show a considerably higher mortality: 54% of adult 

dialysis patients die within 5 years of starting dialysis (USRDS 2002), and adult 

patients are more likely to die of a cardiovascular event before there is even a need for 

renal replacement therapy (Sarnak et al, 2003). 

  

 

 

Figure 1.2 – Cardiovascular mortality in patients on dialysis is significantly 
higher than in the age, gender and race matched general population. 
GP – general population 
 
Adapted from Foley RN et al, Am J Kidney Dis, 1998. 
 
 

Subsequently, several large national registries have published similar findings for 

paediatric dialysis recipients. The United States Renal Data Systems (USRDS) 

analyzed 1380 deaths over a 5 year period from 1990 – 1996 among patients who had 

started renal replacement therapy (RRT) as children and died before 30 years of age 
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(Parekh at al, 2002). 23% of all deaths were from cardiovascular causes, and deaths 

on haemodialysis (HD) were approximately twice as common as on peritoneal 

dialysis (PD) [49% vs 22% respectively]. The percentage of cardiac deaths varied by 

age: the 0 – 4 years, 5 to 9 years, 10 – 14 years, 15 – 19 years and 20 – 30 years age 

groups at the time of death accounted for 10.2%, 6.2%, 8.8%, 21% and 54% 

respectively. Also, this study showed that the mortality in dialysis patients was 

approximately 78% higher than that in transplant recipients. 

 

The Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry has 

reported on mortality rates and causes of death in all children who received dialysis 

between 1963 and 2002, with a median follow-up of 9.7 years (McDonald et al, 

2004). Children on dialysis had a 4-fold higher mortality than renal transplant 

recipients. 45% of all deaths were due to cardiovascular disease, with 57% of deaths 

on HD and 43% on PD from cardiovascular causes. 25% were attributed to cardiac 

arrest (uncertain etiology), 16% to cerebrovascular accident, 14% to myocardial 

ischaemia, 12% to pulmonary oedema, 11% to hyperkalaemia and 22% to other 

cardiac causes.  

 

The Dutch cohort study reported very similar findings: amongst children who 

received RRT between the ages of 0 to 14 years, after a median follow up of 8 years 

the standardized mortality rate was 31.0, and cardiovascular or cerebrovasular causes 

accounted for 24% of all deaths (Groothoff et al, 2002). Interestingly, this study has 

also looked at the mortality rate of long-standing hypertension in children, and shown 

that children on long-term dialysis have almost double the mortality rate of this group, 

suggesting that factors other than hypertension and the ensuing left ventricular 
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hypertrophy contribute to a high cardiovascular mortality in dialysis patients.  In a 

subsequent review, this group have suggested that left ventricular hypertrophy, aortic 

valve calcification and increased arterial stiffness, but not increased arterial intima 

media thickness are the most frequently observed alterations in young adult survivors 

of childhood onset CKD (Groothoff et al, 2005). Importantly, this group did not 

include adolescents, the age-group with the highest proportion of cardiovascular 

deaths as reported by both the USRDS and ANZDATA, and may thus have lower 

reported mortality rates than other paediatric studies. 

 

A large single-centre long term follow-up study from the Heidelberg group have 

shown that of the 283 children who received end-stage renal failure treatment between 

0 – 14 years of age, there were 42 deaths, and approximately half of these were from a 

cardiovascular or cerebrovascular cause (Oh et al, 2002, Figure 1.3). Unfortunately, a 

large number of patients in this study were lost to follow-up, and the causes of death 

were not further evaluated. 

 

 

 

 

Figure 1.3 – The cardiovascular 
mortality in young adults who 
received end-stage renal disease 
treatment in childhood.  
50% of deaths were from 
cardiovascular or cerebrovascular 
causes. 
 
Broken line - survival rate 
considering all causes of death 
Solid line, survival rate considering 
cardiovascular / cerebrovascular 
causes of death only. 
Adapted from Oh et al, Circulation, 
2002.
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Cardiovascular morbidity in paediatric dialysis recipients 

Chavers et al have used the large USRDS database to examine the incidence and 

extent of cardiovascular disease in incident paediatric (0 – 19 years) dialysis patients 

from 1991 to 1996 (Chavers et al, 2002). 31% of the 1454 children developed a 

cardiac-related event. Arrhythmia was the most common (20%), followed by valvular 

heart disease (12%), cardiomyopathy (9%) and cardiac arrest (3%). 38% of the deaths 

during the study period were cardiac deaths. The incidence of valvular heart disease 

and arrhythmias was highest in the teenagers.    

 

Mortality risk of peritoneal vs hemodialysis 

The dialysis modality (peritoneal vs hemodialysis) has been shown to influence 

mortality. Foley et al compared the outcomes of 433 incident dialysis patients using 

intention to treat analysis, and found that there was no difference in the adjusted 

mortality rates for the first 2 years, but mortality amongst PD patients was 

significantly higher thereafter (PD/HD adjusted hazards ratio = 1.57 (95%CI 0.97 to 

2.53). Interestingly, clinically symptomatic or echocardiographically proven cardiac 

disease was not responsible for this late mortality, but hypoalbuminaemia in PD 

patients accounted for a large proportion of the increase in mortality (Foley et al, 

1998). 

 

1.3 Cardiovascular disease begins early in the course of CKD  

While it was previously believed that cardiovascular disease occurs only in the late 

stages of CKD and on dialysis, recent studies have shown disturbing evidence of its 

development even in very early CKD. In 1998 the National Kidney Foundation 

convened a task force on cardiovascular disease in CKD. It concluded that in terms of 
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risk stratification, individuals with CKD per se should be considered to be at very 

high risk from cardiovascular disease (Levey et al, 1998). Go et al followed up over 

one million adults in a large community-based study for up to 4 years and showed that 

both the risk of death and the risk of cardiovascular events increased as the estimated 

GFR dropped below 60ml/min/1.73m2 (Go et al, 2004; Figure 1.4).  For eGFR levels 

of 45 – 60, the adjusted hazards ratio for death was 1.2, and increased to 1.8, 3.2 and 

5.9 for eGFR levels of 30 – 45, 15 – 30 and < 15 ml/min/1.73m2 respectively. 

Similarly, the adjusted hazards ratio for cardiovascular events also increased inversely 

with the eGFR: 1.4, 2.0, 2.8 and 3.4 for the above eGFR categories respectively. This 

independent and graded association between renal function and cardiovascular disease 

and death highlights the importance of recognising and controlling modifiable risk 

factors from the earliest stages of CKD. 

 

 

 

Figure 1.4 Age standardized rates of death (left) and cardiovascular disease 
(right) according to estimated GFR in a large population-based longitudinal 
study. 
Adapted from Go et al, New England Journal of Medicine, 2004. 
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Other groups have shown similar associations between declining renal function and 

cardiovascular events in the original Framingham Heart Study cohort (Culleton et al, 

1999). Similarly, Levin et al have shown that hyperparathyroidism and vitamin D 

deficiency begin early in the course of CKD (Levin et al, KI, 2006) and our group has 

shown that endothelial dysfunction, a surrogate marker of early cardiovascular 

disease, is present as early as the first decade of life in children with pre-dialysis CKD 

(Kari et al, 1997). These studies have been discussed at length in later sections.  

 

 

 

1.4 Risk factors for the development of cardiovascular disease  

 

CKD patients have a higher prevalence of both the ‘traditional’ Framingham risk 

factors as well as non-traditional risk factors that increase their cardiovascular risk 

(Table 1.1). ‘Traditional’ risk factors have been defined and validated in the general 

population through prospective cohort studies, notably the Framingham cohort.  
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TABLE 1.1   Cardiovascular risk factors in chronic kidney disease 

 

Traditional risk factors CKD-specific risk factors 
Old age Abnormal Ca and PO4 levels 

Male gender Abnormal PTH levels 

Hypertension Vitamin D deficiency 

Diabetes Anaemia 

Higher total cholesterol Extracellular fluid overload 

Higher LDL cholesterol Inflammation 

Lower HDL cholesterol Oxidative stress 

Family history of cardiovascular 
disease 

Perturbation in the circulating calcification 
inhibitors 

Lipoprotein (a) Albuminuria 

Smoking Hyperhomocysteinemia 

Physical inactivity Abnormal Fibroblast Growth Factor 23 (FGF-
23) 

 Malnutrition and hypoalbuminemia 

 Altered nitric oxide / endothelin balance 

 

 

‘Traditional’ risk factors 

Not only are the ‘taditional’ cardiac risk factors, such as older age, dyslipidemia, 

hypertension, diabetes, and physical inactivity more prevalent in adults with CKD, but 

they are more likely to be clustered in these subjects. The Framingham coronary risk 

score has consistently underestimated the risk of cardiovascular events risk in both 

pre-dialysis (Parfey et al, 1996; Sarnak et al, 2002) and dialysis patients 

(Longenecker et al, 2002), and it has been suggested that the ‘traditional’ risk factors 

may have a qualitatively and quantitatively different risk relationship with 

cardiovascular disease in CKD compared to the general population. Also, a 
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phenomenon of reverse epidemiology or risk factor reversal has been reported 

between body mass index (Kalantar-Zadeh et al, 2003; Kopple et al, 1999), systolic 

and diastolic blood pressure (Salem et al, 1999), serum total and LDL cholesterol 

levels (Kalantar-Zadeh et al, 2004) and the hazard ratio for morbidity or mortality in 

CKD patients. The relationship between these factors and the hazard ratio for 

mortality and morbidity vary from a change in the normal incremental linear 

relationship (e.g. blood pressure and mortality) to a ‘J’ shaped relationship, wherein 

low levels are also a mortality risk, to a complete mirror image reversal (e.g. that for 

body mass index and mortality risk). One of the major causes for this risk factor 

reversal may be the confounding effects of protein energy malnutrition and 

inflammatory disorders that are prevalent in maintenance dialysis patients (Kalantar-

Zadeh et al, 2003). 

 

Unlike this plethora of risk factors in adults, children have considerably fewer 

cardiovascular risk factors. However, hypertension remains the single most prevalent 

and significant ‘traditional’ risk factor for left ventricular hypertrophy (Mitsnefes et 

al, 2003; Mitsnefes et al, 2005) as well as for vascular damage and re-modelling as 

measured by carotid artery ultrasound imaging (Litwin et al, 2008).  The UK Renal 

Registry report a high prevalence of hypertension and anaemia (~25% and 33% in 

prevalent dialysis patients respectively), but a very low prevalence of obesity, 

diabetes, and smoking in the UK paediatric dialysis population (UK Renal Registry 

Report, 2006). 
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Uraemia-related risk factors 

The non-traditional risk factors can be further divided into two groups: those that are 

recognized as cardiovascular risk factors in the general population but have a higher 

prevalence in CKD (e.g. hypertension) and those factors that are primarily present in 

CKD patients, such as anemia or elevated Ca x PO4 product. Furthermore, there are a 

number of potential iatrogenic or treatment-related risk factors such as exposure to a 

high Ca load from dialysate, calcium-based phosphate binders and vitamin D therapy, 

advanced glycation end-products, metabolic acidosis and warfarin therapy that can all 

contribute to the pro-calcific uraemic milieu. Dysregulations in the Ca - PO4 - PTH 

axis are central to the vascular damage and calcification in CKD patients. 

 

1.5    Mineral dysregulation and the Ca - PO4 - PTH axis in CKD  

 

Normal regulation of the Ca - PO4 - PTH axis 

Serum free (ionized) Ca is required for many vital processes, such as myocardial and 

smooth muscle cell contractility and enzymatic reactions, and is tightly regulated by 

the calciotropic hormones PTH and vitamin D. Parathyroid hormone is synthesized in 

the parathyroid cells and stored in secretory granules, providing a reservoir of 

hormone that is available for immediate release into the blood. A decrease in the 

availability of either 1,25(OH)2D or Ca promotes pre-pro-PTH gene transcription, 

whereas PTH synthesis decreases when 1,25(OH)2D and /or Ca are abundant 

(Rostrand et al, 1999). PTH release itself is regulated through a negative feedback 

mechanism via the Ca sensing receptor (CaSR) that is abundantly present on the 
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parathyroid gland and can detect even minute changes in the free serum Ca level 

(Brown et al, 1991). The CsSR is a 1078-amino acid protein composed of seven 

membrane spanning segments and a long extracellular domain that contains clusters 

of amino acids that serve as binding sites for Ca. The receptor is coupled to G-

proteins and is abundantly expressed in the plasma membrane of parathyroid cells. 

Increases in blood ionized Ca concentrations activate the CaSR, triggering a rise in 

cytosolic Ca concentrations through the release of Ca from the endoplasmic 

reticulum. This rapid rise in intracellular Ca transiently diminishes PTH release. 

Similarly, a fall in the plasma free Ca inactivates the CaSR and enhances PTH release 

(Brown et al, 1995). 

 

There is an inverse sigmoidal relationship between blood ionized Ca concentrations 

and the serum PTH level in subjects with normal renal and parathyroid gland function 

(Ramirez et al, 1993; Figure 1.5). Although minute to minute variations in PTH 

secretion are regulated by the CaSR, a component of PTH release by the parathyroid 

glands cannot be regulated by the CaSR, and as shown in Figure 1.5, basal amounts of 

PTH are released into the circulation even in the presence of high Ca levels.   
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Figure 1.5   The relationship between 
blood ionized Ca levels and PTH in 
healthy subjects (blue line) and 
uraemic patients (red line).  
 
In uraemia there is a shift to the right so 
that higher Ca levels are required to 
suppress PTH release. 
 
Adapted from Lewin et al, KI,1997  
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The PTH receptors are present in the bone, gastrointestinal tract, kidneys and 

vasculature amongst other organ systems, and regulate the absorption of Ca from the 

gut, its reabsorption from the renal tubules and its mobilization from bone (Figure 

1.6). Thus, the main stimulus for PTH release is low ionized Ca levels, and PTH 

release attempts to correct this by increasing the serum Ca. The half-life of circulating 

PTH is only approximately 10 minutes, as it is rapidly degraded by the liver and its 

target organs. 

 

 

Figure 1.6   The effects of PTH on Ca homeostasis 

 

 

Abnormal Ca - PO4 – PTH regulation in uraemia 

Several factors contribute to the secondary hyperparathyroidism of CKD, and the 

earliest amongst these are PO4 retention and and reduced production of 1,25(OH)2D 

by the failing kidneys. In a recent population-based study Levin et al showed that 

hyperparathyroidism and 25(OH)D and 1,25(OH)2D deficiency begins at eGFR levels 

of approximately 40 – 50 ml/min/1.73m2 (Levin et al, 2006). In addition, with 
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advancing renal failure, both the number and the function of the CaSR are perturbed. 

Immunohistochemistry of hyperparathyroid tissue from CKD patients has shown that 

expression of the CaSR is reduced by 30 – 70% (Kifor et al, 1996). In vivo studies of 

parathyroid function in patients with CKD stage V have shown that Ca regulated PTH 

release is altered, with higher Ca levels required to suppress PTH release (Lewin et al, 

1997; Figure 1.5).  

 

Skeletal resistance to the calcaemic actions of PTH further compromise the ability to 

maintain normal serum Ca levels in renal disease; higher serum PTH levels are 

required to elicit equivalent biological responses in patients with advanced CKD 

(Massry et al, 1973). Abnormalities in vitamin D metabolism may account for some 

of these changes, but alterations in the vitamin D receptor expression may also 

contribute (Cohen-Solal et al, 1991). Reductions in vitamin D receptor expression are 

well documented in secondary hyperparathyroidism (Korkor et al, 1987), and this 

disrupts the normal feedback inhibition of pre-pro-PTH gene transcription by 

1,25(OH)2D. Finally, expression of the PTH/PTH-related protein receptor is 

downregulated in renal failure, and this may contribute to the tissue resistance of 

PTH. 

 

Long-standing secondary hyperparathyroidism leads to parathyroid hyperplasia. 

1,25(OH)2D is a potent inhibitor of cell proliferation, and reduced 1,25(OH)2D 

production by the failing kidney as well as downregulation of vitamin D receptor 

expression within the parathyroid tissue may be an important determinant of the 

degree of parathyroid hyperplasia (Szabo et al, 1989). Once established, parathyroid 
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enlargement is difficult to reverse because the rate of apoptosis in parathyroid glands 

is very low; the half – life of a parathyroid cell is estimated to be 30 years (Parfitt et 

al, 1997). In addition to its effects on Ca and PO4 homeostasis, PTH has a direct 

action on the vascular smooth muscle cells and the cardiac fibroblast, causing 

arteriolar thickening and myocardial fibrosis respectively (Rostrand et al, 1999).  

 

Although a number of studies have shown the deleterious effects of high PO4 levels, 

few have discussed the associations of PTH and mortality or surrogate cardiovascular 

end-points. Patients with higher PTH levels are also likely to have more advanced 

renal failure, have higher serum PO4 levels and need larger doses of PO4 binders, 

making it impossible to discern the true effect of any single parameter. While 

previous studies using time-dependent models only showed an association between 

low PTH levels and mortality (Block et al, 2004; Avram et al, 2001; Panuccio et al, 

2002), using time-dependent Cox-models with repeated measures, Kalantar-Zadeh et 

al have shown that there was a strong association between incrementally higher PTH 

levels and an increased risk of death, that was masked almost entirely by the case-mix 

characteristics of the population (Kalantar-Zadeh et al, 2006). If this association is 

causal, it may explain why vitamin D analogues that lower PTH are associated with 

better survival outcomes (Teng et al, 2003, Tentori et al, 2005). Also, it must be kept 

in mind that a proportion of the ‘low PTH’ values recorded in all of these studies are 

in patients who have undergone parathyroidectomies for tertiary hyperparathyroidism, 

and in whom cardiovascular damage from exposure to a prolonged period of high 

PTH and the ensuing mineral ion dysregulation has already occurred. The concept of 

‘optimal’ PTH levels and the controversies surrounding this are discussed in section 

1.8 in this chapter. 
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1.6    Phosphate is a uraemic toxin 

 

Phosphorous retention and hyperphosphataemia have been recognised for many years 

as important factors in the pathogenesis of secondary hyperparathyroidism and central 

to the pathophysiology of ectopic calcification.  

 

Phosphorus is an intracellular anion and its serum levels are a poor reflection of total 

body stores: approximately 85% of PO4 is present in bone, 14% intracellularly and 

1% extracellularly. The average diet contains 900 – 1400 mg/day of phosphorus, and 

the main route of excretion is via the kidneys. In the dialysis patient, PO4 balance 

depends on its intake (minus PO4 binding) and its removal by dialysis (although 

residual renal function may contribute). The fractional PO4 intestinal absorption is 

~65 – 80%, depending on serum PO4 and calcitriol levels. The K/DOQI guidelines 

recommend restricting dietary PO4 intake to 800 – 1000mg/day in CKD stage V 

(K/DOQI, Bone and Mineral metabolism guidelines, 2003), but limiting PO4 intake 

can also result in restricting protein intake. 

 

The major hormones regulating PO4 metabolism are PTH, vitamin D and FGF-23. As 

described above, PTH inhibits renal PO4 reabsorption in the renal tubules, but 

indirectly increases PO4 absorption by stimulating the synthesis of 1,25(OH)2D. In 

turn, PO4 retention and hyperphosphataemia promote PTH secretion through several 

mechanisms: 

- excess amounts of inorganic phosphorus form complexes with free Ca ions and 

thus lower the blood ionized Ca levels 
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- Large amounts of transepithelial PO4 transport in the proximal tubule can impair 

renal 1-alphahydroxylase activity thus reducing active 1,25(OH)2D production 

(Parfitt et al, 1997) 

- PO4 can directly enhance PTH synthesis by the parathyroid cells through a post-

transcriptional mechanism (Denda et al, 1996) 

 

The regulation of PO4 homeostasis in the kidney occurs primarily in the proximal 

tubule, with approximately 85% of the filtered PO4 reabsorbed via the Na-P 

cotransporter IIa located in the proximal brush border membranes. Also, as renal 

failure progresses, levels of the phosphaturic hormone Fibroblast Growth Factor 23 

(FGF-23) increase in an attempt to increase PO4 excretion (Schiavi et al, 2004).  

 

Since the kidneys are the main route of PO4 excretion, hyperphosphataemia in the 

anuric dialysis patient is extremely common and difficult to manage. PO4 removal 

during dialysis is limited largely to the intracellular location of most inorganic 

phosphorus, and depends on PO4 transfer from different body compartments, 

particularly bone (~350mg/day). The amounts removed by conventional thrice-weekly 

HD, ~800mg/treatment or 2400mg/week, or by daily PD, 300 – 400 mg/treatment or 

2100 – 2800mg/week, are far less than ingested by most patients, 800 – 1200mg/day 

or 5600 – 9600mg/week. PO4 removal during dialysis is time-dependent and only 

long daily or nocturnal HD can achieve normal PO4 levels. Thus, limiting dietary PO4 

intake and use of PO4 binders are the first steps in a PO4 control strategy.  

 

Block et al first reported that elevated PO4 levels are an independent risk factor for 

increased mortality in adult dialysis patients (Figure 1.7; Block et al, 1998): in a 



   

 35

cohort of >6400 prevalent HD patients, as serum PO4 levels increased above 

5.6mg/dL (= 1.8 mmol/L) the hazards ratio for mortality increased by 6% for every 

1mg/dL increase in serum PO4. Two studies have shown that PO4 is an independent 

risk factor for death in the pre-dialysis population, and stressed the importance of 

maintaining normal levels even in pre-dialysis patients. Kestenbaum et al have 

measured serial serum creatinine levels in over 7000 adults and shown serum PO4 

levels >3.5 mg/dl [> 1.5mmol/L] were associated with an increased risk of death, with 

the mortality risk increasing linearly with each subsequent 0.5 mg/dl increase in PO4 

(Kestenbaum et al, 2005). In a smaller study of pre-dialysis CKD II – IV patients with 

a mean eGFR of 13 (± 5) ml/min/1.73m2 who were followed up for a minimum of 2 

years, for each 1mg/dl higher PO4 concentration, the decline in eGFR increased by 

0.154 ml/min/month, and the adjusted mortality rate was 1.62 fold higher (95% CI 

1.02 to 2.59) (Voormolen et al, 2007).   

 

Although no clinical trial has examined the impact of lowering serum PO4 on 

mortality, several large observational studies have shown that hyperphosphataemia 

and secondary hyperparthyroidism are associated with increased mortality (Block et 

al, 2004). While most previous studies have examined associations between baseline 

values and survival without accounting for variations in clinical and laboratory 

measures over time, Kalantar-Zadeh et al have examined associations between 

survival and quarterly lab values using both time-dependent and fixed-covariate Cox 

models (Kalantar-Zadeh et al, 2006) in over 58,000 maintenance HD patients. They 

have shown that higher serum Ca and PO4 were consistently associated with a higher 

mortality risk, however, the threshold Ca level that predicted mortality was higher, 

and some of the previous observations between low PO4 and mortality may in fact be 
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due to the confounding effect of the malnutrition-inflammation-atherosclerosis 

syndrome (Kalantar-Zadeh et al, 2006). A number of paediatric studies have also 

linked serum PO4 levels with adverse vascular changes and coronary calcification, 

and are discussed in section II in this chapter. 

 

 

Figure 1.7    Increased mortality risk with increasing phosphate levels 

 

 

 

Several in vitro studies using vascular smooth muscle cell explant cultures have 

shown the direct causal role of PO4 in inducing and promoting vascular calcification 

(Giachelli et al; Reynolds et al, 2004), and are discussed in section V. 

 

 

 

Unadjusted, case mix–adjusted, and 
multivariable-adjusted relative risks 
(RR) of death and 95% CI for eight 
categories of serum PO4. 
 
Referent range, 4.0 to 5.0 mg/dl; to 
convert to mmol/l multiply by 0.32.  
 
Case mix adjustment refers to 
adjustment for age, gender, race or 
ethnicity, diabetes, and vintage. 
Multivariable adjustment refers to case 
mix plus body weight, URR*, serum 
albumin, creatinine, predialysis 
BUN*, bicarbonate*, cholesterol, 
hemoglobin, ferritin*, and aluminum.  
 
Adapted from Block et al, J Am Soc 
Nephrol, 2004. 
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1.7    Calcium homeostasis in CKD 

 

Disorders in Ca homeostasis are common in CKD patients, and closely linked with 

PO4 and PTH dysregulation and ectopic calcification as described above.  

 

A healthy adult has ~25,000mmol (~1 kg) of Ca, of which >99% is in the bone, and 

<1% (~ 20mmol) is in the extracellular fluid. Approximately 50% of the circulating 

Ca is bound to albumin, a further 10% to other anions and ~40% is free or ionized Ca 

that is available for enzymatic reactions (Houillier et al, 2006). The Ca homeostatic 

system aims at regulating the extracellular fluid Ca levels and maintaining this within 

a very tight range, never deviating >2% from its set-point in healthy individuals 

(Nordin et al, 1976).  Thus, it is important to remember that serum Ca levels are a 

poor, and sometimes misleading, marker of total body Ca. 

 

The intestine, bone and kidneys are involved in maintaining Ca homeostasis, under 

the regulation of the calciotropic hormones, PTH and vitamin D. Ca balance studies 

have shown that the minimal dietary Ca requirement is ~600mg (15 mmols) per day, 

and large obligatory losses in faeces (~300 mg) and urine (~100mg) occur (Kurokawa  

et al, 1994). In the presence of calcitriol, intestinal Ca absorption increases from 

approximately 40% to 80%, through the synthesis of calbindin proteins in the 

duodenum and jejunum (Walters et al, 1989). Ca absorption essentially replenishes 

the bone Ca mass and plays only a very small role in regulating serum Ca levels 

(Nordin et al, 1976). A defect in intestinal Ca absorption, particularly if sustained, 
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will result in a reduction in bone mineral content, without any change in the serum Ca 

levels (Nordin et al, 1997).  

 

The negative feedback control of serum Ca levels by PTH provides an efficient means 

of maintaining serum Ca levels within a narrow range (Parfitt et al, 1976). The Ca 

equilibrium level is maintained by an inflow of Ca from the bone pool into the 

extracellular compartment and a net outflow from the extracellular compartment into 

the urine. Bone Ca release, orchestrated by PTH, is rapid and of marked amplitude, 

but of limited capacity, as only the superficial layers of bone are involved. In healthy 

individuals who have completed their growth, the urinary Ca excretion is equal to the 

net amount absorbed by the intestine.  

 

CKD patients are thought to be in a net positive Ca balance as a result of iatrogenic 

Ca loading from Ca-based phosphate binders, vitamin D therapy and dialysate Ca, and 

reduced or absent Ca removal via the kidneys. Current K/DOQI guidelines 

recommend an absolute maximum elemental calcium load of 2,000 mg/d, including 

calcium-containing medication (maximum 1500 mg/d) and a maximum dialysate 

calcium concentration of 1.25 mmol/L (to avoid intradialytic Ca loading) (K/DOQI 

Bone and mineral metabolism guidelines 2003). Sigrist et al have performed careful 

Ca balance studies during hemodialysis and shown that the majority of HD patients 

are continually experiencing Ca overload. Also, the amount of Ca removed during 

dialysis was independent of exogenous Ca load from diet or binders (Sigrist et al, 

2006).  
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Studies in maintenance HD patients by Block and Kalantar-Zadeh (Block et al, 2006; 

Kalantar-Zadeh et al, 2006) have both shown that higher serum Ca levels are 

associated with an increased mortality risk, although the threshold serum Ca 

associated with mortality was higher (10.5 vs 8.5 mg/dl) in the non-time dependent 

models used by Block et al. The associations between low serum Ca and mortality 

that were shown in previous studies were likely due to the confounding effects of 

malnutrition (Kalantar-Zadeh et al, 2006). 

 

Concerns with Ca loading has led to the development of new non-calcium based PO4 

binders like sevelamer and lanthanum carbonate. Studies have shown that sevelamer 

has an equivalent PO4 binding capacity to calcium acetate, but is associated with less 

ectopic calcification (Chertow et al, KI 2002; Block et al, 2005; Block et al, 2007; 

Spiegel et al, 2007; Raggi et al, 2005). Nevertheless, despite the reduction in vascular 

calcification and also the lipid-loweing benefits of sevelamer, it does not have a 

survival advantage when compared to conventional therapy (Suki et al, 2007).  

 

Importantly, the serum Ca level does not reflect the total body Ca load. In the ‘Treat-

to-Goal’ study the Ca treated group had virtually identical serum Ca levels compared 

to the sevelamer treated group despite ingesting ~500 grams more elemental Ca 

during the year, and with intestinal absorption being facilitated by concomitant 

vitamin D therapy (Chertow et al, 2002). Also, the growing skeleton of children 

‘mops up’ a large amount of Ca, and most adult studies are performed in older, often 

post-menopausal, patients in whom the skeleton is no longer able to cope with large 

Ca loads. Finally, in the presence of high serum PO4 levels, transient increases in 
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serum Ca, such as seen during dialysis therapy and after ingestion of vitamin D 

analogues or Ca containing PO4 binders, may influence ectopic calcification. 

Reynolds et al have shown that Ca and PO4 act synergistically to increase 

calcification: when vascular smooth muscle cells are incubated in high PO4 media, 

even a small increase in the Ca concentration will significantly increase calcification 

(Giachelli et al, 2004). These transient increases that inevitably occur in clinical 

practise may go unrecorded, but can impact on ectopic calcification, particularly in 

the setting of high PO4 conditions. London et al have reported that the extent of 

arterial calcification was directly related to the number of episodes of hypercalcaemia 

during the preceeding 6 months (London et al, 2003), and in the ‘Treat-to-Goal’ study 

the Ca treated group had significantly more hypercalcaemic episodes than the 

sevelamer group (Chertow et al, 2002).  

 

The Ca x PO4 product 

Although the Ca x PO4 product is frequently quoted as an outcome parameter in many 

clinical studies and the K/DOQI have produced an evidence based guideline on its 

regulation, it is simply an ‘artificial’ number that does not reflect the chemical 

properties of the two minerals. The precipitation of Ca and PO4 from physiologic 

saline solutions is a second order reaction consistent with the formation of CaHPO4 

and chemical analyses of hydroxyapatite crystals [(CaMg)10(PO4CO3)6(OH)2] from 

ectopic calcification has shown that it is not simply a precipitation of Ca and PO4, but 

a complex reaction that depends on the solubility product of Ca2+ and HPO4
2- (Shear 

et al, 1928). Precipitation of CaHPO4 does not occur in plasma until the Ca x PO4 is at 

least three times the K/DOQI threshold of 55 mg2/dl2 (O’Neill et al, 2007). Thus, the 
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Ca x PO4 product, although convenient, is an oversimplified and incorrect approach to 

describing the complex interplay between these minerals. 

 
 
 

1.8    Recommended Ca – PO4 – PTH levels in CKD  

 

While most physicians now accept that high PO4 levels have deleterious 

cardiovascular effects, there is much controversy over what ‘optimal’ PTH levels 

should be. ‘Optimal’ PTH levels may be defined as levels that maintain normal bone 

turnover without increasing the risk of ectopic calcification. As bone biopsies are 

infrequently performed in clinical practise, circulating PTH levels have been used as a 

surrogate marker of bone turnover, however, the specificity of PTH as an indicator of 

bone turnover has been questioned (Rees L, 2008).  

 

A correlation of bone histomorphometry with circulating PTH levels has shown that 

high PTH levels are associated with high bone turnover, although the range of PTH 

values was very wide, from just above the upper limit of normal to 16-fold normal 

(Rees L, 2008; Mathias et al, 1993; Salusky et al, 1994; Goodman et al, 1994; 

Ziolkowska et al, 2000; Yalcinkaya et al, 2000, Waller et al, 2008). However, the 

ability of PTH levels to differentiate between normal and low bone turnover is less 

clear (Mathias et al, 1993; Salusky et al, 1994; Ziolkowska et al, 2000): small patient 

numbers, a diverse patient population with very few young children with active 

skeletal growth, prior use of aluminium, parathyroidectomies, and a wide scatter of 

results makes it very difficult to interpret these results. Moreover, the role of PTH as a 
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marker of bone turnover is questioned: its short half-life means that fluctuations are 

very likely, and the presence of PTH fragments in advanced CKD and 

hyperparathyroidism may give spurious results (Waller et al, 2006). Also, given that 

long-standing secondary hyperparathyroidism leads to a skeletal resistance to the 

calcaemic actions of PTH, such that increasingly higher PTH levels are necessary to 

maintain normal bone turnover, the ‘optimal’ PTH level may differ between patients. 

Most importantly, there are only a few small observational studies that have examined 

the role of PTH on the cardiovascular system and these report deleterious effects of 

high PTH (Oh et al, 2002; Linhartova et al, 2008) but there is conflicting data on its 

association with cardiovascular mortality (Kalantar-Zadeh et al, 2006; Block et al, 

2005; Avram et al, 2001; Panuccio et al, 2002).   

 

Guidelines on the optimal levels of Ca, PO4 and PTH levels and all aspects of their 

control have been proposed by the K/DOQI and the European Paediatric Dialysis 

Working Group (K/DOQI, Bone and Mineral Metabolism guidelines, 2003; Klaus et 

al, 2006). The European recommendations are more conservative and advice keeping 

PTH levels in the normal range until CKD stage V, when 2 – 3 times the upper limit 

of normal is recommended. The K/DOQI have set higher levels of up to twice the 

upper limit of normal in CKD stage IV and 3 – 5 times the upper limit of normal on 

dialysis. It must be remembered that in the absence of randomised controlled studies 

many of these guidelines are based on expert opinion. 
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Section II – Clinical studies 

1.9   Surrogate measures of cardiovascular risk in CKD patients  

Unlike studies in adult CKD patients where ‘hard’ end-points like death or 

cardiovascular events are used, paediatric studies have to rely on surrogate measures 

of vascular damage. These include vascular measures of structure and function and 

biomarkers from blood and urine. 

 

Measures of vascular damage include the carotid artery intima media thickness 

(cIMT) and direct evidence of coronary artery calcification (CAC) on CT scan. 

Functional changes in the vasculature can be determined by the pulse wave velocity 

(PWV), aortic augmentation index (AIx) and carotid distensibility. The IMT, PWV 

and CAC have been extensively used in many studies of vascular outcome and in the 

work in this thesis. I have described each method and relevant clinical studies in depth 

under the ‘General Methods’ in Chapter 2. 

 

Numerous biomarkers of vascular damage and future cardiovascular events have been 

described and some validated against ‘hard end-points’. In our current state of 

knowledge, these can best serve as corroborative evidence of vascular injury or 

predictors of future cardiovascular events, but cannot replace the better established 

vascular measures. In the work in this thesis, I have used vitamin D levels (25-

hydroxyvitamin D and 1,25-dihydroxyvitamin D) and levels of the circulating 

calcification inhibitors (fetuin-A, Matrix Gla-protein and osteoprotegerin) as 
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biomarkers, and described their associations with vascular damage and calcification. 

These are described in detail in sections III and IV in this chapter.   

 

 

1.10   Studies in paediatric dialysis patients 

 

A number of cross-sectional observational studies in paediatric dialysis patients or 

young adult survivors of paediatric dialysis programmes have described surrogate 

measures of cardiovascular damage and sought to find associations with these.  

Children provide an ideal opportunity to study uraemic influences on the vasculature 

as they seldom have confounding pro-atherosclerotic risk factors such as diabetes and 

dyslipidaemia that are major confounders in similar adult studies.  

 

A summary of these studies, the vascular measures described and the key findings are 

presented in Table 1.2, and their salient findings discussed below. 
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Table 1.2   Vascular measures and their correlations in paediatric and young adult dialysis patients (in chronological order of 

publication date) 

No. Author, 
Journal, 

Year 

No. of 
patients 

Mean age 
(yrs) 

Duration of 
dialysis (yrs) 

Vascular 
measures 

Clinical and biochemical 
correlations 

Key message 

1. Goodman et 
al, NEJM, 
2000 

39 19 ± 7 

(range 7–30) 

7 ± 6 

(range 0.3–21) 

CAC  Presence of CAC correlated with  
- Age 
- dialysis duration 
- mean serum PO4 and Ca x PO4  
- Ca intake from binders 

No CAC in any patients <20 yrs age, but 
14/16 patients >20 yrs had CAC. 

CAC doubled on follow-up scan at 20 months. 

2.  Eifinger et 
al, NDT, 
2000 

16 26.5 

(range 14 –
39) 

RRT for 2.5 to 
21 years. 

 

CAC None found. CAC in 6/16 (37%) patients. 

All children asymptomatic despite high CAC 
burden.  

3.  Oh et al, 
Circulation, 
2002 

39 27.3 

(range 19 –
39) 

(Young 
adults with 
childhood 
onset 
ESRD) 

5.0 

(range 0 – 22) 

CAC  +  
cIMT 

CAC and cIMT correlated with  
- ESRD duration 
- dialysis duration 
- mean serum Ca x PO4  

CAC correlated with  
- PTH levels 
- hs-CRP 
- homocysteine levels 

50% of deaths are due to cardiovascular or 
cerebrovascular causes. 

High prevalence of arteriopathy in young 
adult survivors of CKD. 

Vascular damage correlates with Ca – PO4 
load, hyperparathyroidism and 
microinflammation, but not ‘traditional’ risk 
factors. 

4.  Groothoff et 
al, JASN, 
2002 

130 

29 dialysis 

29  

(range 20.7 
to 40.6) 

RRT – 18 yrs 

Dialysis – 4.5 
yrs 

cIMT, stiffness 
measures 

Hypertension main determinant of 
abnormal arterial wall properties. 

No biochemical data available. 

No increase in cIMT compared with controls, 
but reduced distensibility and increased 
vascular stiffness parameter in all CKD 
groups. 
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(Young 
adults with 
childhood 
onset 
ESRD) 

Tx (n = 101) – 
13.5 yrs 

No difference in cIMT or arterial wall 
stiffness between dialysis and transplant 
groups. 

5.  Litwin et al, 
JASN, 2005 

55–  
CKD 2-4 

37–
dialysis 

34–  
Transplant 

 

range 10 – 
20 yrs 

Pre-dialysis 
CKD –  
7.1 ± 5.1 yrs 

Dialysis –  
2.2 ± 2.9 yrs 

Transplant- 
2.8 ± 3.2 yrs  

Carotid & 
femoral IMT, 

Wall & lumen 
cross-sectional 
areas 

cIMT correlated with  
- dialysis duration 
- mean serum Ca x PO4 
- Ca intake from binders 
- Mean calcitriol dose 

Increased cIMT in all CKD groups - 
significantly greater in dialysis compared with 
transplant patients. Suggest partial 
reversibility post-Tx. 

Carotid lumen increased post-Tx – possibly as 
a result of higher BP post-Tx. 

6.  Mitsnefes et 
al, JASN, 
2005 

44–  
CKD 2-4 

16–
dialysis 

 
Pre-dialysis 
CKD –  ? 
 
Dialysis –  
1.2 ± 1.3 yrs 
(range 0.3 – 
3.7 yrs) 

 

IMT, 
distensibility 
and stiffness of 
carotid artery 
and ECHO 

cIMT correlated with  
- dialysis duration 
- mean serum Ca x PO4 
- Ca intake from binders 
- Mean calcitriol dose 

Stiffness correlated with  
- mean serum Ca x PO4 
- mean PTH levels 
 

Increased cIMT in dialysis compared with 
pre-dialysis patients. 

No change in vessel stiffness pre-dialysis, but 
increased carotid artery stiffness noted in the 
dialysis group, suggesting that structural 
changes preceed functional abnormalities. 

7.  Covic et al, 
NDT, 2006 

14 14.1 ± 2.6 
yrs 

1 month to 6 
yrs (all HD) 

cIMT, PWV 
and aortic 
augmentation 
index 

PWV correlated with  
- mean PO4 levels 
- mean serum Ca x PO4 

 

Age was the only significant 
predictor of aortic augmentation 
index. 

PWV and aortic augmentation index 
significantly higher in patients than controls, 
and comparable with adult values. 

No reversibility after a dialysis session, 
suggesting that structural changes underly the 
loss of function. 
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8.  Briese et al, 
NDT, 2006 

40 

 

23.6 yrs 

(Young 
adults who 
developed  
ESRD at 
~11yrs age) 

 

9-dialysis – 
2.9 ± 3.5 yrs 

 

31 – transplant 
9.2 ± 4.3 yrs 

cIMT, ECHO  
and CAC 

Patients with calcification were  
- older 
- longer dialysis duration 
- increased cIMT 
- higher mean serum Ca x PO4 
- increased Ca intake from 

binders 
- increased mean calcitriol dose 

No difference in cIMT between dialysis 
patients, transplant recipients and controls.  

10% had moderate to severe CAC, and 9% 
had mild CAC. 

cIMT was higher in patints with calcification 

9. Civilibal et 
al, Ped 
Nephrol, 
2006 

53 15.7 yrs 

(range 6.9 – 
22.7 yrs) 

39-dialysis – 
4.9 ± 2.7 yrs 

 

14 – transplant 
3.4 ± 2.7 yrs 

CAC Presence of CAC correlated with  
- longer dialysis duration 
- higher mean serum PO4 and Ca 

x PO4 
- higher mean PTH levels 
- higher Ca intake from binders 
- higher mean calcitriol dose 

CAC was present in 8 of 53 (15%) – 6 
currently on dialysis and 2 transplanted.   

10. Civilibal et 
al, Ped 
Nephrol, 
2007 

39 14.8 ± 3.8 
yrs 

4.8 ± 2.6 yrs cIMT, 
endothelium 
dependent 
dilatation and 
ECHO 

cIMT correlated with  
- diastolic BP 
- higher mean serum Ca x PO4 
- higher total & LDL cholesterol 
- higher homocysteine levels 
- higher mean calcitriol dose 

 

Increased cIMT, hs-CRP and homocysteine 
levels in patients compared with controls, but 
no difference in endothelium dependent 
dilatation between the groups. 

Endothelium dependent dilatation correlated 
with cIMT. 

11. Poyrazoglu 
et al, Ped 
Nephrol, 
2007. 

34 18.0 ± 4.3 
yrs 

4.6 ± 2.9 yrs cIMT and 
ECHO 

cIMT correlated with  
- mean BP 
- left ventricular mass index 
- inversely with PTH (negative 

correlation) 
(No data available for phosphate 
binder or calcitriol dosage) 

 

Increased cIMT, left ventricular hypertrophy 
and higher left ventricular mass index in the 
dialysis as compared to control groups. 

Significant negative correlation between cIMT 
and PTH. 
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Key findings from the paediatric studies 

A. Carotid intima media thickness  

Most studies have shown a significant increase in cIMT signifying structural changes 

in the vessel wall. These changes have been shown to begin even at a young age and 

have been reported in adolescents on dialysis (Litwin et al, 2005; Mitsnefes et al, 

2005; Civilibal et al, 2006). Also, an increase in cIMT above control levels has been 

shown in pre-dialysis CKD stages II – IV patients as well, suggesting that vascular 

damage begins very early in the course of GFR decline (Litwin et al, 2005; Mitsnefes 

et al, 2005). Importantly, Mitsnefes et al have shown that although structural vascular 

change in the form of an increased cIMT is found in pre-dialysis patients, the vessel 

retains its normal compliance and distensibility properties as compared to controls 

(Mitsnefes et al, 2005). However, with progressive duration and severity of uraemic 

damage as found in dialysis patients, a further deterioration in cIMT coupled with 

increased vascular stiffness occurs. Interestingly, an increase in the vessel wall 

thickness or cIMT is coupled with a re-modelling of the vessel so that an increase in 

the carotid artery lumen occurs, possibly to counter the stiffness or loss of compliance 

of the vessel (Litwin et al, 2005). It may be this compensatory re-modelling in the 

early stages of CKD and the more plastic vessels of children that protect them against 

the deleterious consequences of vascular damage. 

 

None of the studies in children and young adults have reported the presence of intimal 

plaques, and although ultrasound is not an accurate means of assessing intimal vs 

medial changes in the vessel wall, it appears that uraemic vasculopathy, at least in 

young adults, is a predominantly medial process. Also, although hypertension is a 
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significant determinant of carotid artery properties, especially the diameter of the 

vessel (Litwin et al, 2005), associations with other ‘traditional’ risk factors for 

cardiovascular disease were seldom found.  

 

Although described in a cross-sectional design, it appears that removal, or at least a 

reduction, of uraemic ‘toxins’ after transplantation, can lead to lower cIMTs in the 

transplanted population as compared to dialysis patients (Litwin et al, 2005), but 

results are conflicting (Briese et al, 2006). In a longitudinal study of pre-dialysis, 

dialysis and transplanted children, Litwin et al have described an improvement in 

cIMT after transplantation (Litwin et al, 2008); this study is described in detail in the 

next section. 

 

Three studies have reported on cIMT levels in young adult survivors of paediatric 

dialysis or end stage renal disease programmes, and interestingly shown some 

conflicting results. While Oh et al found that cIMT was significantly increased as 

compared to controls (Oh et al, 2002), similar studies by Groothoff and Briese have 

not shown any increase in cIMT above control levels (Groothoff et al, 2002; Briese et 

al, 2006). Furthermore, Groothoff et al have shown that despite a normal cIMT, 

patients had increased vascular stiffness. The patients in the two studies were similar 

in age at study and the total duration of ESRD, but the patients in Oh’s study had 

spent nearly twice as long on dialysis. They speculate that functional abnormalities 

preceed structural damage to the vessel, and a longer dialysis vintage resulted in more 

severe damage and an increase in cIMT in Oh’s study (Groothoff et al, 2002). Briese 

et al, who also report normal cIMTs in their patients, had a shorter duration of pre-
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dialysis CKD and dialysis vintage in their patients, as well as a markedly lower 

dosage of calcium containing PO4 binders and calcitriol (8-fold and 30-fold lower) as 

compared to the study by Oh et al, that may have accounted for a normal cIMT as 

well as a significantly lower CAC score in their patients (Briese et al, 2006). 

        

A number of associations with cIMT have been shown, but most studies consistently 

report worsening cIMT with older age, longer dialysis vintage, and higher mean 

serum PO4 and Ca x PO4 levels as well as higher doses of Ca intake from PO4 binders 

and calcitriol (Table 1.3). It must be remembered that cIMT is an age-dependent 

measure and increases by ~ 0.01 to 0.02 mm/year (Johnson et al, 2007), hence must 

be compared with an age-matched population or described as standard deviation 

scores for age (Jourdan et al, 2005). In all studies cIMT has consistently and 

significantly correlated with Ca, PO4 and PTH levels, as well as medication dosages 

of Ca based PO4 binders and vitamin D compounds, suggesting that dysregulated 

mineral metabolism is central to the vasculopathy of CKD, and that these modifiable 

risk factors require careful monitoring and strict control from the earliest stages of 

CKD. 

 

Finally, all of these studies are cross-sectional observational studies in small and 

diverse CKD populations, and the associations drawn must be interpreted with 

caution. These studies can best serve as hypothesis – generating studies, and 

prospective longitudinal follow-up data in a large cohort of CKD patients is required 

before any definitive recommendations on management decisions can be made. 
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B. Pulse wave velocity (PWV) 

Only one paediatric study has described PWV and augmentation index (AIx) in 

children on dialysis and shown that both were consistently higher in their 

haemodialysis cohort as compared to controls (Covic et al, 2006). Importantly, there 

was no real improvement in PWV or the AIx after a dialysis session, suggesting that 

structural and not simply functional alterations determine the increased arterial 

stiffness. In adult dialysis patients, aortic PWV and AIx have been shown to be the 

strongest predictors of cardiovascular mortality: for each 1 m/sec increase in PWV the 

all-cause mortality adjusted odds ratio was 1.39 (95%CI 1.19 to 1.62), and similarly 

for each 10% increase in AIx the risk ratio was 1.51 (95%CI 1.23 to 1.86) (Blacher et 

al, 1999; London et al, 2001). Although paediatric studies have no data to support the 

poor prognostic effects of increased vascular stiffness, an association with increased 

cIMT and greater left ventricular mass index were shown (Covic et al, 2006). 

 

Functional changes in the large arteries can also be studied by measuring the carotid 

artery distensibility, stiffness and elastic modulus (Groothoff et al, 2002; Mitsnefes et 

al, 2005) as well as re-modelling of the vessel (Litwin et al, 2005; Mitsnefes et al, 

2005). These studies have shown increased vascular stiffness as well as increased 

diameter of the carotid artery in dialysis patients, and importantly, these changes show 

a greater correlation with the systolic and diastolic blood pressure than with 

biochemical measures (Litwin et al, 2005; Mitsnefes et al, 2005). 
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C. Coronary artery calcification score (CAC) on CT scan 

Direct evidence of Ca deposition in the coronary arteries of young adults was first 

described by Goodman et al (Goodman et al, 2000). They showed that there was no 

evidence of calcification on CT scan in the coronary vessels in any of the 25 patients 

younger than 20 years of age, but 14 of 16 patients above 20 years had CAC. A 

careful analysis of their data reveals that not only were the patients with CAC older, 

but that they also had a significantly longer median dialysis vintage (13 vs 2 years), 

higher mean serum Ca x PO4 levels (5.2 vs 4.5 mMol2/L2) and almost double the 

intake of Ca from binders (6456 vs 3325 mg/day) as compared to the group without 

calcification. Interestingly, both groups had very high PTH levels (36.1 and 44.5 

pmol/L), although there was no statistically significant difference between them, and 

in fact 9 patients had undergone parathyroidectomy. The serum PO4, Ca x PO4 and 

PTH levels are very high in both groups and the Ca intake from PO4 binders 

significantly above the K/DOQI recommended limit of 1500mg/day, suggesting that 

these patients were at a substantial risk of ectopic calcification. Traditional risk factors 

such as diabetes, hypertension, inflammation and male sex were not associated with 

calcification. Despite these risk factors and the presence of CAC, none of the patients 

had overt cardiovascular disease, although 5 had ischaemic changes on ECG, and one 

had a first degree heart block. What is perhaps the most crucial finding in this study is 

that the arteriopathy in dialysis patients is rapidly progressive: when a repeat CT scan 

was performed after a mean interval of 20 months, the calcification score almost 

doubled in the 10 patients who had evidence of initial calcification.   
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Evidence of CAC in children was first shown by Eifinger et al. In their small and 

uncontrolled study of 16 children and young adults on RRT (CKD, dialysis and post-

transplant), they showed that 37% had calcification, and this was present even in 

teenagers. Unfortunately, their small and very diverse cohort and the lack of any 

correlations with clinical or biochemical data does not allow us to draw further 

conclusions from their work (Eifinger et al, 2000). In a subsequent study, Civilibal et 

al have described CAC in a larger cohort of paediatric chronic dialysis patients, and 

found that 15% of their patients had CAC (Civilibal et al, 2006). Interestingly the 

presence of CAC correlated with all of the parameters originally described by 

Goodman et al in their cohort of older dialysis patients: dialysis vintage, dysregulated 

mineral metabolism and higher Ca intake from binders as well as with the dose of 

activated vitamin D compounds.  

 

In the study by Oh et al, CAC was present in 92% (Oh et al, 2002) while Briese et al 

have reported a considerably lower prevalence of 19% in a similar cohort young adult 

survivors of paediatric dialysis programmes (Briese et al, 2006): the 30-fold higher 

dosage of vitamin D in Oh’s study may account for the greatly increased CAC. In the 

study by Oh et al the presence of CAC correlated more closely with the PTH levels 

than with the serum PO4 or the Ca x PO4 product. They postulate that PTH has a 

direct effect on vascular smooth muscle cells, not only increasing Ca entry into these 

cells, but also inducing arteriolar thickening and fibrosis (Rostrand et al, 1999), and 

this may explain the preferential medial calcification in uraemia.  The very high 

prevalence of CAC in this study supports the finding by Goodman et al that in the 

pro-calcific and pro-inflammatory uraemic milieu ‘calcium begets calcium’.  



   

 54

1.11   Progression of vascular calcification through different stages of CKD 

Some cross-sectional studies have compared groups of pre-dialysis CKD stages IV 

and V patients with dialysis and transplant cohorts and shown that the carotid IMT 

and coronary calcification scores are higher in dialysis patients compared to pre-

dialysis CKD or transplant patients. Despite a plethora of observational cross-

sectional studies, there are very few longitudinal studies that have followed patients 

through pre-dialysis – dialysis - transplantation phases and described changes in 

surrogate markers at different stages of uraemia. 

 

Russo et al have shown that coronary artery calcification is present in 40% of adult 

patients in CKD stages II – IV and that the calcification scores doubled in 8 of 10 

patients when followed-up after a mean of 8 months while still in pre-dialysis CKD 

(Russo et al, 2004). The annualized progression rate of coronary artery calcification, 

after adjusting for all confounders, was 28%. Calcification in pre-dialysis patients has 

been reported in 27 to 64% of patients in other studies (Kramer et al, 2005; 

Tomiyama et al, 2006); it is influenced by age, diabetes and triglyceride levels. 

 

Calcification progresses rapidly in patients on dialysis as first shown by Goodman et 

al (Goodman et al, 2000).  In a subsequent study on stable peritoneal dialysis patients, 

the coronary calcification scores quadrupled in one year and were influenced by Ca – 

PO4 abnormalities (Stompor et al, 2004). Importantly, approximately one third of the 

patients did not have any baseline calcification, and at one-year follow-up remained 

free of calcification.  Three studies in haemodialysis patients, all comparing the 

effects of sevelamer with calcium-based phosphate binders, have shown that coronary 



   

 55

artery calcification progresses in patients on calcium based phosphate binder 

treatment but can be arrested with sevelamer (Chertow et al, 2002; Block et al, 2005; 

Spiegel et al, 2007).  Fascinatingly, in all these studies patients who did not have 

baseline calcification continued to remain free of calcification despite exposure to 

similar uraemic conditions.  

 

By ameliorating the uraemic milieu, renal transplantation could intuitively be thought 

to reverse some of the cardiovascular damage from dialysis. In a small observational 

study of 22 renal transplant recipients, de Lima et al showed that although left 

ventricular wall morphology showed significant improvement within 12 months of 

successful transplantation, carotid IMT normalized only after 40 months but carotid 

distensibility and ventricular wall thickness and dysfunction continued to remain 

abnormal (de Lima et al, 2002). An extended period on dialysis and high blood 

pressure adversely affected the rate of post-transplantation improvement. 

 

In the only paediatric study offering long-term follow-up, Litwin et al have shown 

that carotid IMT thickening and remodelling of the vessel wall begin early in CKD 

and progress rapidly on dialysis, correlating with the blood pressure and mean serum 

phosphate levels. Successful transplantation can improve the cIMT towards pre-

dialysis values, but cannot normalise it (Litwin et al, 2008). Changes in cIMT were 

observed within 1 year post-transplantation in this study, whereas in the above 

mentioned study by de Lima et al, significant regression of the cIMT was not noted 

until the third year post-transplantation, suggesting that a shorter exposure to uraemia, 

and possibly better repair mechanisms in children, favour rapid improvement. 
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Section III – The role of vitamin D in cardiovascular health 

 

Vitamin D deficiency is common in the general population as well as in CKD patients 

(Holick M, 2007; Levin et al, 2007). The discovery that most tissues and cells in the 

body have a vitamin D receptor and also have the enzymatic machinery to convert the 

primary circulating form of vitamin D, 25-hydroxyvitamin D [25(OH)D], to the active 

form, 1,25-dihydroxyvitamin D [1,25(OH)2D], has renewed interest in the functions 

of this vitamin, particularly its role in inflammatory and immune-mediated disorders 

and cardiovascular health (Holick M, 2007; Zittermann A et al, 2008). 

 

In this section I will discuss the sources, metabolism and pluripotent actions of 

vitamin D, with particular reference to its actions on the cardiovascular system and 

the relevant literature in CKD patients. 

 

 

1.12    Sources of vitamin D 

Approximately 80 – 90% of an individual’s vitamin D requirement is obtained 

through sunlight. Solar ultraviolet B (UV-B) radiation (wavelength 290 to 315 nm) 

converts 7-dehydrocholesterol in the epidermis to pre-vitamin D3, which is 

immediately converted to vitamin D3 in a heat-dependent process (Holick et al, 2006). 

Skin pigment, sunscreen use, clothing, time of day, season, latitude and altitude 

dramatically affect pre-vitamin D3 synthesis. In the United Kingdom (latitude 51.5 – 

54° North), the UV-B radiation in sunlight is minimal from October to April, resulting 

in a well documented seasonal variation in the circulating levels of 25(OH)D.  
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Few foods naturally contain or are fortified with vitamin D. Vitamin D2 is 

manufactured through the ultraviolet irradiation of ergosterol from yeast, and vitamin 

D3 through the ultraviolet irradiation of 7-dehydrocholesterol from lanolin. Oily fish 

are the richest natural source of vitamin D, but unless consumed regularly, will not 

provide adequate vitamin D levels.  

 

1.13   Vitamin D metabolism  

25 hydroxyvitamin D (hereafter ‘D’ represents D2 or D3) made in the skin or ingested 

in the diet can be stored in fat cells, and as required, incorporated into chylomicrons 

and transported by the lymphatic system into the venous circulation. Vitamin D 

requires two successive hydroxylations, first in the liver (CYP27A1 and CYP2R1) on 

carbon 25 to form 25(OH)D, and then in the kidney, by the enzyme 25-

hydroxyvitamin D-1 -hydroxylase [CYP27B1], for a hydroxylation on carbon 1 to 

form the biologically active form 1,25(OH)2D. Importantly, in renal patients the 1 -

hydroxylase enzyme is substrate dependent. 

 

Unlike 25-hydroxylation in the liver that is an unregulated step (no negative 

feedback), the renal production of 1,25-dihydroxyvitamin D is tightly regulated by 

PTH, Ca and PO4
 levels (Bouillon et al, 2001; DeLuca et al, 2004). 1,25(OH)2D 

decreases its own synthesis through negative feedback: it can increase the expression 

of 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) to catabolize 1,25(OH)2D to the 

water-soluble, biologically inactive calcitroic acid, which is excreted in the bile. Also, 

1,25(OH)2D decreases the secretion of PTH via the vitamin D receptor on the 

parathyroid gland. Fibroblast growth factor 23 (FGF-23), secreted by osteoblasts, 
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causes the sodium–phosphate cotransporter to be internalized by the cells of the 

kidney and small intestine and also suppresses 1,25-dihydroxyvitamin D synthesis 

(Hruska K, 2006). Figure 1.8 shows the metabolic pathway for vitamin D synthesis 

and its regulation. 

 

Figure 1.8    Vitamin D synthesis and its role in Ca homeostasis 

   
 

1.14    Role of vitamin D in Ca – PO4 – PTH regulation 
 
Vitamin D analogues regulate PTH secretion via both the vitamin D receptor and also 

the calcium sensing receptor on the parathyroid glands. Low 1,25(OH)2D levels 

would be expected therefore to result in low plasma Ca and hyperparathyroidism, 

whereas high 1,25(OH)2D levels cause hypercalcaemia, hyperphosphataemia and over 
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suppression of PTH (Rostrand et al, 1999; Dusso et al, 2005; Feldman et al, 2005). In 

turn, high bone turnover (due to hyperparathyroidism) results in an efflux of Ca and 

PO4 from the bones into the soft-tissues, whereas low bone turnover (due to over-

suppression of PTH) results in an inability of the bone to buffer fluxes in serum Ca 

and PO4.  

 

1,25(OH)2D enhances intestinal Ca absorption in the small intestine by interacting 

with the vitamin D receptor–retinoic acid x-receptor complex (VDR-RXR) to enhance 

the expression of the epithelial Ca channel (transient receptor potential cation channel, 

subfamily V, member 6 [TRPV6]) and calbindin 9K, a calcium-binding protein. 

Without vitamin D, only 10 to 15% of dietary Ca and about 60% of PO4 is absorbed. 

The interaction of 1,25-dihydroxyvitamin D with the vitamin D receptor increases the 

efficiency of intestinal Ca absorption to 30 to 40% and PO4 absorption to 

approximately 80% (Hruska K, 2006; Holick M, 2007).   

 

In bones, 1,25(OH)2D is recognized by its receptor in osteoblasts, causing an increase 

in the expression of the receptor activator of nuclear factor- B ligand (RANKL) 

(Holick M, 2007; Dusso et al, 2005). RANK, the receptor for RANKL on 

preosteoclasts, binds RANKL, which induces pre-osteoclasts to become mature 

osteoclasts. Mature osteoclasts remove Ca and PO4 from the bone so as to maintain 

their respective levels in the blood. 

 

1.15   Autocrine / paracrine effects of vitamin D 

The vitamin D receptor as well as the 1-hydroxylase enzyme system is ubiquitous and 

highly conserved through the species (Haussler et al, 1998).  Directly or indirectly, 
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1,25-dihydroxyvitamin D controls more than 200 genes, including genes responsible 

for the regulation of cellular proliferation, differentiation, apoptosis, and angiogenesis 

(Holick M, 2007). Both 25(OH)D and 1,25(OH)2D can act in an autocrine / paracrine 

manner on virtually all tissues (Holick M, 2007; Andress et al, 2006). However, some 

tissues such as macrophages and muscles (Birge et al, 1975) may be able to utilise 

only 25(OH)D (Andress et al, 2006), making it important to ensure adequate levels of 

both, especially in the CKD patient where activated vitamin D compounds are used. 

 

On a molar basis, 1,25(OH)2D is the most potent vitamin D metabolite. Dose-

response studies indicate a molar potency of 1,25(OH)2D relative to 25(OH)D ranging 

from 125:1 to 400:1 in increasing Ca absorption from the gut (Barger-Lux et al, 

1995). However, the serum levels of 25(OH)D are approximately 1:500 to 1:1000 fold 

higher than those of 1,25(OH)2D [nanomolar vs picomolar concentrations] 

(Zittermann et al, 2003). Thus, 25(OH)D also serves as a substrate for the 1-α 

hydroxylase of various tissues, and it has been suggested that tissues that are not 

responsible for regulating extracellular Ca levels probably utilize circulating 25(OH)D 

to synthesise their own calcitriol (Holick M, 2002). However, extrarenal 1-α 

hydroxylase activity is not sufficient to maintain adequate circulatory levels of 

1,25(OH)2D as seen in anephric individuals.  

 

1.16    Measurement of vitamin D levels and their significance 

Serum 25(OH)D is the barometer for vitamin D status – it has a plasma half-life of 12 

– 19 days (Zittermann et al, 2003), and reflects the person’s vitamin D status. As the 

metabolism of ergocalciferol and cholecalciferol by the liver is not regulated (no 
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negative feedback), serum 25(OH)D lvels are an accurate assessment of cutaneous 

synthesis and dietary intake. Serum 1,25(OH)2D has a very short half-life (~15 hours), 

hence it provides no information about vitamin D status and is often normal or even 

increased when secondary hyperparathyroidism associated with vitamin D deficiency.  

 

Although there is no consensus on optimal serum levels of 25(OH)D, vitamin D 

deficiency is defined by most experts as a 25(OH) D level of less than 20 ng /ml ( = 50 

nmol/L) (Holick et al, 2007; Thomas et al, 1998). In healthy subjects, 25(OH) D 

levels are inversely associated with PTH until the former reach 30 to 40 ng/ml, at 

which point PTH levels begin to level off at their nadir (Thomas et al, 1998; Holick et 

al, 2005).  Furthermore, intestinal calcium transport increases by 45 to 65% when 

25(OH)D levels are increased from ~ 20 to 32 ng/ml (Heaney et al, 2003), suggesting 

that 25(OH)D levels between 20 – 30 ng/ml can be considered to indicate a relative 

insufficiency of vitamin D. Vitamin D intoxication is observed when serum levels of 

25-hydroxyvitamin D are greater than 150 ng/ml (Holick et al, 2007). With the use of 

such definitions, it has been estimated that 1 billion people worldwide have vitamin D 

deficiency or insufficiency (Holick et al, 2007)!  Table 1.3 shows the currently used 

terminology to describe the vitamin D status of patients based on 25(OH)D levels.  

Table  1.3    Definitions of vitamin D status based on 25(OH)D levels 

Adapted from Zittermann et al, British Journal of Nutrition,  2003. 
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The vitamin D assays performed in the course of my study are discussed in chapter 2, 

section II. Radioimmunoassays measure total 25-hydroxyvitamin D, which includes 

levels of both 25(OH)D2 and 25(OH)D3. Some commercial laboratories measure 

25(OH)D2 and 25(OH)D3 with liquid chromatography and tandem mass spectroscopy 

and report the values separately. As long as the combined total is 30 ng per milliliter 

or more, the patient has sufficient vitamin D. The 1,25(OH)2D assay should normally 

not be used for detecting vitamin D deficiency, but if a patient is supplemented with 

activated vitamin D analogues, this level becomes relevant. 

 

1.17   Vitamin D deficiency in CKD patients 

Virtually all studies in dialysis patients have reported 25(OH)D and 1,25(OH)2D 

deficiency to the order of 50 - 90% (Goldsmith D, 1997; Address, D, 2005; Holick M, 

2007). In a recent population based study of >1800 adults, Levin et al showed that 

20% of subjects with eGFRs between 60–70ml/min/1.73m2 and 60% with eGFRs 

between 30–40ml/min/1.73m2 had raised PTH levels (Levin et al, 2007). 

Hyperparathyroidism was associated with low levels of 1,25(OH)2D, which was 

found to be extremely common even at higher GFRs than previously reported: thus 

13% of patients with eGFRs >80ml/min/1.73m2 had 1,25(OH)2D deficiency and 60% 

of patients with eGFRs <30ml/min/1.73m2 were 1,25(OH)2D deficient. Significant 

differences in PTH and 1,25(OH)2D levels were seen across the deciles of eGFRs, and 

importantly, these were not associated with any change in serum Ca, PO4 or 25(OH)D 

levels. Thus, this study highlights the role of vitamin D deficiency in the development 

of secondary hyperparathyroidism in CKD patients, and the importance of its early 

detection and supplementation.  
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Figure 1.9A   The prevalence 25(OH)D and 1,25(OH)2D deficiency and of 
secondary hyperparathyroidism by GFR intervals 
 

 

 
Figure 1.9B   Median values of 25(OH)D, 1,25(OH)2D and iPTH by GFR levels. 

 

 

Figure 1.9A and B are adapted from Levin et al, KI, 2007. 

 

CKD patients can have low 25(OH)D levels for many reasons (Andress D, 2008):-  

(i) they may be less active and have less sunlight exposure.  

(ii) the endogenous synthesis of vitamin D in the skin is reduced in CKD  

(iii) ingestion of foods that are natural sources of vitamin D may be diminished 
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(iv) proteinuria may be accompanied by high urinary losses of 25(OH)D, D-

binding protein, and megalin (Sato et al, 1982; Levin et al, 2007) 

(v) 25(OH)D and D-binding protein may be lost in peritoneal dialysis fluid. 

In addition, when the GFR falls to <50ml/min/1.73m2, the kidney cannot convert 

‘nutritional’ 25(OH)D to 1,25(OH)2D (Rostrand et al, 1999); 1,25(OH)2D deficiency 

is widely prevalent in CKD patients (Levin et al, 2007; London et al, 2007;  

Zittermann A, 2006). Importantly, in CKD patients, unlike healthy subjects, the 1-α 

hydroxylase enzyme is substrate dependent, so 25(OH)D levels are crucially 

important. 

 

In the absence of robust evidence, an opinion based guideline from the National 

Kidney Foundation’s Kidney Disease Outcome Quality Initiative (K/DOQI) 

recommends that if PTH levels are elevated and serum 25(OH)D levels low, 

ergocalciferol supplements should be prescribed (K/DOQI, Clinical Practise 

Guidelines, 2003). Randomised studies have shown that ergocalciferol provides 

adequate substrate for the synthesis of 25(OH)D and can reduce PTH levels without 

any risk of hypercalcaemia in CKD 2-3 (Al-Aly et al, 2007; Saab et al, 2007) but not 

in advanced CKD, by which point the 1-α hydroxylase activity of the kidney is 

incapable of sustaining 1,25(OH)2D production.  

 

1.18   Vitamin D supplementation and survival in dialysis patients 

The effects of vitamin D treatment on all-cause and cardiovascular mortality have 

been reported from several large epidemiological studies on HD patients. All the 

studies have consistently shown that HD patients receiving any activated vitamin D 
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treatment have a significant survival advantage to the order of 20 – 25% as compared 

to untreated patients (Teng et al, 2003; Teng et al, 2005; Tentori et al, 2006; Shoji et 

al, 2004; Wolf et al, 2007). Although there are conflicting reports on this, there is 

unlikely to be a significant difference in survival between different vitamin D 

analogues (doxercalciferol vs paricalcitriol) (Teng et al, 2005; Tentori et al, 2006). 

Most importantly, vitamin D treatment could mitigate the effects of high Ca, PO4 and 

PTH on cardiovascular mortality: the survival advantage of vitamin D was present 

across all quintiles of Ca, PO4 and PTH levels (Teng et al, 2005), suggesting that 

vitamin D has important effects beyond its role in mineral metabolism. In a 

prospective study on incident dialysis patients, severe 25(OH)D deficiency was 

associated with an increased all-cause, but not cardiovascular, mortality (Wolf et al, 

2007). Importantly, all of these studies are non-randomised, and physician bias may 

have confounded the results. 

 
Figure 1.10 a. Survival curves in dialysis patients treated with injectable vitamin 
D compared with untreated patients. Adapted from Teng et al, JASN, 2005. 
 
Figure 1.10 b, c and d   Mortality hazard ratios across all quintiles of phosphate 
(b), calcium (c) and PTH (d). The first quintile represents the lowest levels and the 
fifth the highest levels. Solid bars represent treated patients.  
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1.19 Effects of vitamin D on the cardiovascular system 

 

Vitamin D deficiency is associated with increased cardiovascular morbidity and 

mortality both in the general population (Zittermann et al, 2003; Zittermann et al, 

2006) and in CKD patients as discussed above (Teng et al, 2003; Teng et al, 2005; 

Tentori et al, 2006; Shoiji et al, 2004; Wolf et al, 2007).  The vitamin D receptor is 

present in the vascular smooth muscle cells (Carthy et al, 1989), cardiomyocytes 

(Zitterman A, 2006; Xiang et al, 2005) and cells of the monocyte/macrophage lineage 

(Mathieu et al, 2002), where it has important anti-inflammatory and 

immunomodulatory effects (Towler D, 2007; Tabata et al, 1988; Tokuda et al, 2000). 

Vitamin D is a negative endocrine regulator of the renin-angiotensin system (Li et al, 

2003), inhibits atrial natriuretic peptide (Bodyak et al, 2007), increases myocardial 

contractility (Zitterman A, 2003) and reduces cardiomyocyte hypertrophy (Li et al, 

2003). Also, a reno-protective effect of Vitamin D, exerted via the TGF-ß pathway, 

leads to reduced proteinuria and fibrosis (Mizobuchi et al, 2007). 

 

 

1.20    Effects of vitamin D on the vasculature 

Although several clinical studies have discussed the effects of vitamin D therapy on 

vascular measures (Milliner et al, 1990; Litwin et al, 2005; Shroff et al, 2007) and 

calcification, only one study has correlated these with vitamin D levels (London et al, 

2007). London et al showed that in a cohort of 52 prevalent HD patients who were 

naïve to vitamin D therapy, low 25(OH)D and 1,25(OH)2D levels were associated 

with increased arterial stiffness and endothelial dysfunction but not with vascular 

calcification as seen on plain x-rays (London et al, 2007). 
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The effects of vitamin D analogues on the vascular smooth muscle cells have been 

described in animal models. Calcitriol (1,α-25 dihydroxyvitamin D3) upregulates the 

VDR and increases cellular Ca uptake in a dose dependent manner (Wu-Wong et al, 

2006), decreases VSMC proliferation that is mediated through an increase in vascular 

endothelial growth factor expression (Cardus et al, 2006) and induces VSMC 

migration (Carthy et al, 1989). Also, calcitriol can upregulate the expression of 

osteochondrocytic genes, including core-binding factor 1 (cbfa-1) and osteopontin, 

that mediate osteoblastic conversion of VSMCs (Giachelli et al, 2004; Shalhoub et al, 

2006; Wu-Wong et al, 2006). However, some of these studies used pharmacological 

doses of calcitriol that are clearly toxic and result in severe hypercalcaemia and 

hyperphosphataemia.  

 

1.21     Newer vitamin D analogues 

Newer vitamin D analogues such as 19-nor-1α25(OH)2D2 (paricalcitol) and 1α-

hydroxyvitamin-D2 (doxercalciferol) effectively suppress PTH, but are reportedly less 

calcaemic than calcitriol, and are now commonly used in clinical practice. Their 

effects have been tested in animal models of smooth muscle cell explant cultures as 

well as intact vessels, but conflicting results are reported: in a model of human VSMC 

explant cultures calcitriol induced a significant increase in Ca uptake whereas 

paricalcitriol had no appreciable effect on calcification (Wu-Wong et al, 2006,) but in 

bovine artery smooth muscle cells calcitriol and paricalcitol had similar pro-calcific 

effects (Shalhoub et al, 2006). A study in uraemic rats has shown that doxercalciferol 

induces aortic calcification even at low doses that do not raise the Ca x P product, 

whereas high doses of paricalcitol did not cause calcification (Mizobuchi et al, 2007). 
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This suggests that vitamin D analogues mediate vascular calcification via different 

mechanisms, with possible species differences, and this needs further evaluation in 

humans.  

 

The distinct survival advantages of the vitamin D analogues and their multiple effects 

on the cardiovascular system need further investigations to determine their optimal 

therapeutic levels in dialysis patients and to study the mechanisms of their action on 

the VSMCs. 

 

1.22    Fibroblast Growth Factor 23 (FGF-23) 

FGF-23, the most potent amongst of the phosphatonins, plays a key role in the Ca-

PO4-PTH–vitamin D axis. Like PTH, it increases urinary PO4 excretion, and by 

suppressing renal 1-α hydroxylase activity it reduces 1,25(OH)2D production (Hsu C 

et al, 2008). FGF-23 levels are raised even in the early stages of CKD, and persists in 

dialysis patients, and has been linked with increased mortality (Gutierrez et al, 2008).  

Moreover, elevated FGF-23 levels are seen in non-CKD patients with high PO4 

levels. Given its phosphaturic effect and effect on down-regulating 1,25(OH)2D 

production, FGF-23 decreases bone mineralisation, but this is mainly due to 

hypophosphataemia and not a direct effect on bone (Urena-Torres et al, KI 2008). 

FGF-23 has not been studied in children with CKD to date. 
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Section IV – The role of calcification inhibitors in CKD 

 

1.22   The discovery of calcification inhibitors: animal knock-out models     

All extracellular fluid contains calcium and phosphate in concentrations exceeding 

their solubility product for spontaneous precipitation, suggesting that under normal 

conditions protein inhibitors of ectopic soft tissue calcification prevent the 

development or progression of vascular calcification (Ketteler et al, 2003; Moe et al, 

2003). There is a body of evidence showing that calcification is a highly regulated cell 

mediated process, involving a complex interplay of promoters and inhibitors of 

calcification. In vitro studies have shown that, whereas serum from normal subjects is 

a potent inhibitor of VSMC calcification, serum from CKD patients lacks this 

protective effect (Moe et al, 2005; Reynolds et al, 2005). Although this might be due 

to the presence of toxins in uremic serum, an alternate explanation may be that serum 

from dialysis patients lacks inhibitors.  

 

Animal knock-out models and human single gene defects have confirmed the role of a 

number of proteins in regulating vascular calcification. In addition, they have focused 

attention on proteins involved in the regulation of both vascular calcification and bone 

mineralization and suggested that these processes may in some way be 

mechanistically linked.  Table 1.4 summarises the principal calcification inhibitors, 

the outcome of gene disruption studies in mice, and single gene defects or genetic 

polymorphisms in humans. 
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Table 1.4   Calcification inhibitors - outcome of gene disruption studies  

 

Inhibitors Gene disruption studies in mice Human single gene studies and 
genetic polymorphisms 

Fetuin-A Ectopic calcification of small blood 
vessels, most organs (e.g., 
myocardium, lung, kidney, skin 

Polymorphisms may predispose 
patients to vascular calcification 

Matrix-Gla protein Medial calcification of arteries, 
aortic valves (not arterioles, 
capillaries, or veins), cartilaginous 
metaplasia within the vessel wall 

Keutel syndrome-extensive vascular 
calcification and abnormal 
calcification of cartilage. 
MGP gene polymorphisms may be 
prognostic for vascular calcification 

Osteoprotegerin Medial and subintimal calcification 
of the aorta and renal arteries, 
presence of multinuclear 
osteoclast-like cells within the 
vascular wall 

Juvenile Paget’s disease-an 
autosomal recessive osteopathy, but 
no clear association with vascular 
disease. 
Polymorphisms in the promoter 
region of OPG are associated with 
atherosclerosis. 

Klotho All calibers of arteries affected, 
intimal thickening of medium-sized 
arteries 

Polymorphism may be a genetic risk 
factor for coronary artery disease. 

Nucleotide 
pyrophosphatase / 
phosphodiesterase 1 

Aortic medial calcification, 
intraaortic cartilaginous 
differentiation of VSMC 

Infantile idiopathic arterial 
calcification — calcification of the 
internal elastic laminae of large 
vessels, often with death in the 
first year of life. 

 
 
 

In this section I have described the physiological calcification inhibitors, in particular 

Fetuin-A, Osteoprotegerin (OPG) and matrix γ-carboxyglutamic acid protein (MGP),  

focusing on their role in calcification inhibition, the association of their circulating 

levels with underlying disease processes, and their prognostic relevance, if any.  

 

 

1.23    Fetuin-A  

Fetuin-A (a2-Heremans-Schmid glycoprotein) is a 62kD protein that belongs to the 

cystatin superfamily of cysteine protease inhibitors. It is a circulating glycoprotein 

that is produced by the liver and contributes to almost 50% of the calcification 

inhibitory capacity of human plasma (Ketteler et al, 2006).  
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Animal Knock-out studies 

Fetuin-A-/- mice develop mild ectopic calcification, but when crossed onto a DBA/2 

calcification-susceptible mouse strain or when these mice are fed on a mineral- and 

vitamin D-rich diet or on high-fat diet, they develop widespread soft-tissue and intra-

arterial calcification, including calcification of parenchymal organs like the heart, 

lungs and kidneys (Schafer et al, 2003). Calcification was more likely to involve the 

smaller vessels whereas larger vessels such as the aorta were spared, possibly as a 

result of the protective effects of other calcification inhibitors like MGP. 

 
 
Mechanisms of action 

Fetuin-A acts systemically by binding excess mineral and inhibiting basic Ca-PO4 

precipitation in serum and extracellular fluids (Heiss et al, 2003). Price et al showed 

that a complex of fetuin (80%), MGP (2%) and Ca-PO4 (18%) efficiently prevented 

the growth, aggregation and precipitation of hydroxyapatite in etidronate treated rats 

(Price et al, 2003). This suggests that the calcification inhibitory properties of fetuin 

and MGP may be related to their ability to form stable complexes with nascent 

crystals. In addition, Reynolds et al have shown that fetuin-A is a multifunctional 

protein that can also modulate the calcification processes locally. At sites of vascular 

damage fetuin-A is taken up by VSMCs, incorporated into intracellular vesicles, and 

then released within matrix vesicles where it potently inhibits mineral nucleation 

(Reynolds et al, 2005). In addition, fetuin-A inhibits VSMC apoptosis and aids in 

phagocytosis of extracellular vesicles, thus further limiting mineralization (Reynolds 

et al, 2005). It is hypothesized that while fetuin-A blocks crystal growth during 

transcellular transport of Ca x PO4 rich vesicles, it will eventually be co-precipitated 
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with hydroxyapatite mineral outside the cell, where this material can be safely 

deposited without triggering apoptosis. This may explain how fetuin-A, one of the 

most potent calcification inhibitors in solution, regularly co-localises with 

pathologically calcified lesions, and indeed with all mineralized tissue including bone 

(Triffit et al, 1976; Schinke et al, 1996). 

 

 
In addition to these calcification inhibitory effects, fetuin-A ia a negative acute phase 

reactant; various interleukins, particularly interleukin-1 β, decrease its synthesis. Also, 

fetuin-A acts as a soluble TGF-β antagonist, as a result of structural similarities to 

TGF-β II receptor via a β-glycan like domain (Demetriou et al, 1996). This property 

allows for cytokine-dependent osteogenesis, but may potentially also antagonize other 

TGF-β effects such as fibrogenesis and inhibition of cell proliferation. Finally, fetuin-

A can impair insulin receptor tyrosine kinase signaling, thus reducing insulin 

sensitivity (Mathews et al, 2006).  

 
 
Influence on the vasculature 

Several small observational studies have examined the associations between the 

circulating fetuin-A level and vascular measures and shown that low circulating 

fetuin-A levels are associated with greater vascular stiffness and calcification 

(Heremans et al, 2006; Mori et al, 2007; Ix et al, 2007). However, cross-sectional 

studies are not able to determine a cause-effect relationship, and there are no 

longitudinal studies to date. Moreover, a single session of haemodialysis can 

significantly lower the fetuin-A level (Cozzolino et al, 2007; Ciaccio et al, 2008), and 

levels also need to be interpreted keeping in mind the inflammatory status of the 

patient (Stenvinkel et al, 2005). 
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Fetuin-A levels in CKD and associations with outcome 

Several cross-sectional observational studies have reported low fetuin-A levels in 

dialysis patients, possibly as a combined result of reduced fetuin-A production in the 

face of a pro-inflammatory uraemic milieu or increased fetuin consumption in a pro-

calcif environment. Fetuin-A levels are also particularly low in patients with calcific 

uraemic arteriolopathy (Schafer et al, 2003).  Fetuin-A levels are also low in renal 

transplant recipients as compared to age matched healthy controls, but did not 

correlate with any vascular measure (van Summeren et al, 2008). 

 

Circulating fetuin-A levels are significantly lower in dialysis patients than in healthy 

controls, and this has been linked with cardiovascular mortality, presumably as a 

result of accelerated vascular calcification (Ketteler et al, 2003; Stenvinkel et al, 

2005; Wang et al, 2005). In a cohort of ~1000 incident dialysis patients, Hermans et 

al showed that an increase in serum fetuin-A by 0.1g/L was associated with a 9% 

lower adjusted risk for death after a median follow-up of 2.8 years, and this effect was 

independent of serum CRP levels (Hermans et al, 2007).  Moreover, in this study 

Hermans also found an association of low fetuin-A levels with non-cardiovascular 

mortality. While there were too few patients in each subgroup to meaningfully dissect 

the association of low fetuin-A with non-cardiovascular causes of death, infectious 

causes constitute the most common cause of non-cardiovascular deaths, and fetuin-A 

levels are depressed in the presence of inflammation. In early CKD (stages 3 and 4), 

fetuin-A levels did not correlate with all cause or cardiovascular mortality (Ix et al, 

2007). 
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However, it may also be that patients with calcification have genetically lower levels 

or perturbations in the fetuin-A functional activity that predisposes them to calcify. 

Polymorphisms in the fetuin-A gene may determine the magnitude of decrease in 

fetuin-A production in the face of inflammation and an individual’s susceptibility to 

calcify. Fetuin-A levels correlate with PO4 levels even in the general population 

(Osawa et al, 2005), but the only two studies in this field have shown conflicting 

results (Cozzolino et al, 2007; Osawa et al, 2005) 

 
 

Importantly, all of the above studies are cross-sectional in nature, and measures at a 

single time-point cannot reflect the complex relationship between fetuin-A and 

vascular disease at different stages of CKD. In the Heart and Soul study, which 

included patients mostly with intact renal function, high fetuin-A levels were 

associated with hyperlipidaemia and features of the metabolic syndrome, but not with 

outcome parameters, and no correlation between fetuin-A and declining renal function 

could be detected (Ix et al, 2006). Fetuin-A levels are not low in early CKD, and 

normal fetuin-A levels have been reported in a cohort of well-controlled dialysis 

patients with low inflammatory activity and a low Ca x PO4 burden (Hermans et al, 

2005). Importantly, all of the above studies include a large proportion of diabetic 

patients, and fetuin-A levels are in fact higher in patients with diabetic nephropathy 

(Mehrotra et al, 2006). Thus, further longitudinal studies are needed to fully 

appreciate the complex interplay between fetuin-A and the calcification process at 

different stages of CKD.  

 

 

 



   

 75

1.24    Osteoprotegerin  

Osteoprotegerin (OPG) is a member of the tumour necrosis factor receptor 

superfamily and acts as a decoy receptor for receptor activator of nuclear factor-κB 

ligand (RANKL), which stimulates all aspects of osteoclast function, including 

differentiation, activation, fusion and survival, that together mediate bone resorption 

(Simonet et al, 1997; Lacey et al, 1998). By blocking RANKL, OPG inhibits 

osteoclastic bone resorption, but OPG is produced by a number of tissues, particularly 

in the media of arteries (Simonet et al, 1997).  

 

Animal Knock-out studies 

Targeted deletion of OPG in mice leads to early onset osteoporosis from unrestrained 

osteoclast function and also medial calcification of great arteries (Bucay et al, 1998). 

Calcification in these mice could be rescued by introduction of an opg transgene from 

mid-gestation but not by parenteral application of OPG after mineralized lesions were 

established. This is in contrast to osteoporosis, which could be efficiently treated by a 

parenteral OPG regimen (Collin-Osdoby et al, 2004). 

 

Mechanisms of action 

The precise role of OPG in the vascular wall and its possible interaction with VSMCs 

has yet to be determined. Evidence from animal models suggests that OPG may be 

protective against vascular calcification: OPG-deficient mice develop vascular 

calcification (Bucay et al, 1998) and OPG inhibits warfarin-induced vascular 

calcification in rats (Price et al, 2001). Interestingly, although OPG is deposited at 

sites of calcification and globally downregulated in the diseased vasculature, 

circulating OPG levels are increased in patients on hemodialysis, and have been 
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linked to the presence and extent of coronary artery disease (Collin-Osdoby et al, 

2004). Given that OPG is produced by a variety of cell types, the source of elevated 

OPG remains elusive and it is unclear whether increased systemic OPG levels reflect 

the cause or consequence of vascular calcification or are an epiphenomenon of 

processes harboured in calcifying tissue.  

 

Role in CKD and influence on the vasculature 

OPG levels have been associated with increased aortic stiffness as shown in 

haemodialysis patients (Othmane et al, 2007) and in non-CKD diabetics (Kim et al, 

2005). A number of studies have shown that OPG is elevated in vascular disease and 

that OPG seems to be a biomarker for increased vascular mortality and an increased 

risk for cardiovascular disease, especially in adult populations of renal failure patients 

(Browner et al, 2001; Kiechl et al, 2004; Hjelmesaeth et al, 2006). In the last study, 

serum OPG taken from renal transplant recipients shortly after transplant was a 

significant independent predictor of cardiovascular death in these adult patients 

(Hjelmesaeth et al, 2006). HD patients have higher OPG, and this may be raised as a 

compensatory response to PTH driven bone resorption (Albalate et al, 2006). 

 

Associations with cardiovascular outcome 

Studies in adults with normal renal function have shown that OPG is elevated in 

stable coronary artery disease (Schoppet et al, 2003), is associated with the 

progression of carotid atherosclerosis (Kiechl et al, 2004) and coronary calcification 

(Abedin et al, 2007) and increased cardiovascular mortality (Kiechl et al, 2004). Two 

prospective studies in the non-CKD population have shown that elevated OPG levels 

are independently associated with an increased risk of cardiovascular events (Ueland 
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et al, 2004; Kiechl et al, 2004). Finally, atherosclerosis risk factors have been 

associated with OPG independent of the measured atherosclerosis burden, suggesting 

a pathogenic rather than a compensatory role for OPG in the vasculature (Abedin et al, 

2007). It is interesting to speculate that circulating OPG may in itself be a damaging 

agent for VSMCs in a manner analogous to glucose in diabetes and PTH in CKD. As 

genetically engineered OPG is now being given to older patients with osteoporosis in 

pilot trials (Bekker et al, 2001), further studies to determine the effects of elevated 

OPG on the vasculature are urgently required. 

 

 

1.25 Matrix Gla-protein  

 

Matrix Gla [γ-carboxyglutamic acid] protein (MGP) is an extracellular matrix protein, 

that is synthesised by chondrocytes and vascular smooth muscle cells, that belongs to 

a family of proteins that contain γ-carboxyglutamate residues (Shanahan et al, 1998). 

These proteins require a vitamin K dependent γ-carboxylation to convert their inactive 

undercarboxylated form (uc-MGP or Glu-MGP) into the active γ-carboxylated form 

(Gla- MGP). γ-carboxyglutamic acid has unique metal binding properties, and confers 

these properties to the proteins into which it is incorporated (Burnier et al, 1981).  

 

Animal knock-out studies 

Homozygous mice deficient in MGP develop calcification and cartilaginous 

metaplasia of the aorta and its branches and typically develop aortic rupture as a direct 

consequence of vascular calcification (Luo et al, 1997). Mutations of MGP in humans 
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leading to absent or non-functional MGP manifests as Keutel syndrome (Munroe et 

al, 1999), which is characterized by abnormal calcification of cartilage in the ears, 

nose, larynx, trachea, and ribs. These patients on post-mortem show extensive medial 

vascular calcification at an early age. 

 

Mechanisms of action 

MGP is highly expressed in the tunica media of healthy arteries and MGP mRNA 

expression is upregulated in intimal and medial vessel calcification (Shanahan et al, 

1994; Shanahan et al, 1998), and also with VSMC mineralization in vitro (Proudfoot 

et al, 1998). MGP is found in matrix vesicles, wherein it acts like fetuin-A to limit 

mineral nucleation (Reynolds et al, 2004). Along with fetuin-A, it forms part of the 

‘fetuin-mineral complex’ (fetuin (80%), MGP (2%) and Ca-PO4 (18%)) that was 

shown to prevent the growth, aggregation and precipitation of hydroxyapatite in 

etidronate treated rats (Price et al, 2003). 

 

Importantly, MGP is also a regulatory protein for BMP-2 (Zebboudj et al, 2002): 

higher levels of MGP will inhibit BMP-2 activity. BMP-2 is a potent morphogen of 

the TGF-β superfamily that can induce ectopic bone and cartilage when implanted in 

soft tissues due to its capacity to regulate mesenchymal progenitor cell differentiation. 

It is possible that in MGP-deficient mice, the unopposed action of BMP-2 results in 

mesenchymal progenitor cells or local VSMC to develop instead into chondrocytes. 

Thus, MGP acts as a regulator of both calcification and cell differentiation in the 

vasculature.  
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Transgenic studies have suggested that impaired γ-carboxylation of MGP and not 

MGP levels per se are associated with vascular calcification. In rats, treatment with 

the vitamin K antagonist, warfarin, at doses that inhibit the vitamin K dependent γ-

carboxylation of MGP, there was a rapid calcification of elastic lamellae of the 

arterial media with increased MGP mRNA expression (Price et al, 1998). In humans, 

small observational studies have suggested that the use of oral anticoagulants is 

associated with increasing coronary artery and valvular calcification (Koos et al, 

2005; Schurgers et al, 2004). 

 

Influence on the vasculature 

As with OPG, the role of circulating MGP, if any, remains largely unknown and the 

influence of circulating MGP levels on vascular calcification is unclear. Increased 

serum levels of MGP without a concomitant increase in MGP expression in the 

arterial walls, does not inhibit the ectopic mineralization observed in mice lacking 

MGP; rescue of calcification only occured if MGP was expressed in VSMCs, not 

when it was present systemically (Murshed et al, 2004).  

 

There are conflicting reports on the associations between circulating MGP levels and 

atherosclerosis in humans, (Braam et al, 2000; Jono et al, 2004), with one study 

reporting an association between serum MGP levels and coronary risk factors even in 

patients with no pre-existing cardiovascular disease (O’Donnell et al, 2006). In 

patients with known coronary artery disease, MGP levels have shown an inverse 

correlation with the coronary artery calcification score on CT scan in one study (Jono 
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et al, 2004), but after adjustment for cardiovascular risk factors, no consistent 

association was found in a second study (O’Donnell et al, 2006). 

 

One reason for the conflicting results from the above studies may be that we are 

measuring the ‘wrong’ type of MGP in the circulation. Using many of the currently 

available assays, no distinction can be made between the carboxylated active (Gla-

MGP) and the undercarboxylated inactive (Glu-MGP) forms of MGP. Using 

immunohistochemistry, Schurgers et al found a strong association between vascular 

calcification and local deposition of Glu-MGP in arteries with Monckeberg’s 

sclerosis, whereas healthy uncalcified arteries had abundant amounts of Gla-MGP 

(Schurgers et al, 2005). In the only published study measuring serum uc-MGP levels, 

it was found that lower circulating levels of uc-MGP were inversely associated with 

phosphate levels and the aortic augmentation index but not the aortic pulse wave 

velocity (Hermans et al, 2007). 

 

Levels and outcome in CKD patients 

In the face of different measures of MGP and conflicting reports on associations of 

low serum levels with calcification, there is no outcome data available. Also, the 

cross-sectional nature of this study would make it difficult to draw any conclusions 

about a cause-effect relationship. However, MGP polymorphisms have been 

associated with increased mortality in dialysis patients (Brancaccio et al, 2005). As 

MGP levels can be potentially modulated with dietary supplementation of vitamin K 

(Schurgers et al, 2001), the role of circulating MGP, if any, needs to be further 

explored. 
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Section V -     The vascular biology of calcification 

 

Over a century ago Virchow described vascular calcification as an ossification, not a 

mere deposition of calcium: calcium deposits in both the tunica intima and tunica 

media of sclerotic arteries were accompanied by the presence of osteoblast-like cells, 

lamellar structures, and hematopoietic cells (Virchow, 1863). Since then, calcification 

has been described as a complication of many vascular diseases and clinical 

conditions, but is most spectacularly evident in uraemic patients, where a ‘perfect 

storm’ of mineral dysregulation, inflammatory insults and often co-existing 

atherosclerotic diseases are present.  

 

In this section I have described the in vitro and animal studies that have contributed to 

our current knowledge of the vascular biology of calcification, with particular 

relevance to uraemic vascular disease. 

 

 

1.26   The normal VSMC phenotype 

 

VSMCs within the normal tunica media are responsible for maintaining vascular tone 

and this depends on the interaction between actin and myosin myofibrils. 

Consequently, they express a number of unique contractile proteins, agonist receptors 

and signal transduction molecules (Chamley-Campbell et al, 1979).  α– SM actin is 

the first marker of differentiated VSMCs expressed during vasculogenesis, and is the 

most abundant actin isoform in mature VSMCs (de Groot et al, 1999).   
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On the other hand, intimal VSMCs resemble immature, dedifferentiated VSMCs and 

express low levels of VSMC contractile proteins, contain fewer myofilaments, and 

exhibit a gene expression profile that differs from that of medial VSMCs (Shanahan 

et al, 1993; Shanahan et al, 1998).  Also, the intimal and medial phenotypes of 

VSMCs are not confined to distinct areas of the vessel wall, but rather a mixture of 

phenotypes is seen in all areas of the vessel (de Groot et al, 1999).  

 

 

1.27     The phenotypic plasticity of VSMC 

 

Unlike other skeletal and cardiac muscle cells, VSMCs do not terminally differentiate. 

They have an extraordinary capacity to undergo phenotypic change during 

development, in vitro, and in response to injury (Shanahan et al, 1998; Iyemere et al, 

2006). Under normal conditions, blood vessels have low rates of cell proliferation and 

turnover. Hence, the phenotype of a medial VSMC is used as a reference point, and 

the relative levels of expression of contractile proteins (α-SM actin, smooth muscle 

myosin heavy chain, SM-22, calponin and caldesmon) are used as markers to describe 

the adult medial VSMC phenotype (Eddinger et al, 1991; Shanahan et al, 1993). 

More recently, studies on VSMC heterogeneity have given rise to the concept of a 

continuum or spectrum of VSMC phenotypes from development to maturity: early 

fibroblast-like proliferating cells to neonatal matrix-producing VSMCs to the mature 

contractile phenotype (Shanahan et al, 1999; Chamley-Campbell et al, 1981). Studies 

have shown that, at least in some vertebrates, VSMCs in different loci in the arterial 

tree may have different embryonic origins: VSMCs in the upper thoracic aorta are 

derived from a neuro-ectodermal source, those in the abdominal aorta from a 
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mesenchymal source and those in the coronary vessels from an intracardiac 

mesemchyme (Ross et al, 1999; Topouzis et al, 1996).   

 

Recent studies have shown that the phenotypic changes in VSMCs in vitro or in 

response to injury are associated with their ability to acquire the characteristics of a 

diverse range of mesenchymal lineages, such as osteoblastic, chondrocytic or 

adipocytic cell types, that all originate from the same mesenchymal cell lineages and 

precursors (Shanahan et al, 1999; Tyson et al, 2003; Davies et al, 2005). These de-

differentiated phenotypes may lead to calcification, altered matrix production and 

lipid accumulation, and importantly, the end-point for some of these processes is 

VSMC death or senescence (Shanahan et al, 1999).  

 

In response to injury, medial VSMCs can migrate into the intima, and in doing so lose 

their ‘contractile’ phenotype and dedifferentiate into a ‘synthetic’ phenotype that is 

essential for repair (Chamley-Campbell et al, 1981; Davies et al, 1990).  This de-

differentiation allows VSMCs to migrate, proliferate and produce an extracellular 

matrix. In atherosclerotic disease, this process of vascular repair leads to the 

formation of a VSMC-rich fibrous cap that acts as a barrier to shield the lipid-rich 

pro-thrombogenic core from blood flow (Weissberg et al, 1996). Factors that regulate 

VSMC phenotypic heterogeneity and initiate phenotypic change remain unanswered. 

 

In in vitro culture VSMCs demonstrate a similar process of de-differentiation as they 

do in response to injury (Bjorkerud et al, 1987). VSMCs in culture can rapidly de-

differentiate, losing their myofilaments, increasing their proportion of biosynthetic 

organelles and losing their ability to contract (Chamley-Campbell et al, 1979). In in 
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vitro culture human VSMCs spontaneously mineralise and co-express chondrocytic 

and bone markers alongside VSMC contractile proteins (Shanahan et al, 1999).  

 

 

1.28     Intimal vs medial calcification 

 

Calcification can occur at two sites in the vessel wall: the tunica intima and the tunica 

media (Shanahan et al, 1999). The anatomical site of calcification determines the 

nature and extent of its clinical manifestations (London et al, 2005). 

- Intimal calcification is seen with dyslipidemia, hypertension and smoking and 

takes the form of atherosclerotic vascular disease. It is a patchy and discontinuous 

process that involves macrophages and VSMCs in lipid-rich regions. 

Atherosclerotic plaques often contain apatite crystals, and may display a 

histological appearance similar to that of lamellar bone (Bostrom et al, 1995). 

- Medial calcification, also known as Monckeberg’s sclerosis, is focal in 

distribution, organized along the elastic lamellae and is almost exclusively 

associated with VSMCs (Proudfoot et al, 2001; London et al, 2005). It is seen 

with advancing age and in diabetes and uraemia.  

 

Although a combination of intimal and medial calcification has been observed in 

patients with CKD, either process may occur independently of the other and, at least 

in adolescents and young adults with CKD, the involvement is almost exclusively 

medial (London et al, 2005). The differences between intimal and medial 

calcification imply different etiologies, or at least different mechanisms of initiation 
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of VSMC damage, however, a common feature of both forms of calcification is the 

phenotypic modulation of VSMCs in response to injury (Shanahan et al, 1999).  

 
 
 
 
1.29    Vascular calcification is an active cell-mediated process 

 

Mineralisation of the extracellular matrix in skeletal and dental tissues is a cell-

mediated process that is required for the normal development of bones and teeth 

(Schinke et al, 1999). Yet, the precipitation of Ca and PO4 ions as hydroxyapatite 

mineral in bones or at ectopic sites is in disequilibrium with the ionic Ca and PO4 

concentrations in the surrounding environment (Ng et al, 1976). Thus a variety of 

factors are required to create a unique environment that allows mineral deposition 

both physiologically and pathologically. For many years ectopic vascular calification 

was thought to be a passive degenerative process in dead or dying cells, but 

converging evidence from numerous in vitro studies and animal knock-out models has 

shown that calcification is a highly regulated, cell-mediated process with similarities 

to bone mineralisation (Ikeda et al, 1993; Shanahan et al, 1994).  

 

I - Histopathology and gene expression in human calcified vascular lesions 

- X-ray crystallography and electron microprobe analysis have shown that the 

mineral deposited in the vessel wall is basic Ca - PO4 in apatitic form (Schmid et 

al, 1980; Reynolds et al, 2004), some of which is hydroxyapatite 

[Ca10(PO4)6(OH)2], the same crystal found in bone.   

- VSMCs in vivo have been observed to bud matrix vesicles from their plasma 

membrane (Proudfoot et al, 2000; Reynolds et al, 2004).  These are small 
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membrane bound particles, first described in chondrocytes and osteoblasts during 

developmental osteogenesis, that form a microenvironment capable of 

concentrating Ca and PO4, thus allowing crystal nucleation to occur.   

- In advanced atherosclerotic lesions, and more commonly in the peripheral arteries 

of diabetic patients, osteoid has been observed which mineralises to form mature 

bone tissue complete with vascular canals and marrow spaces within the vessel 

wall (Shanahan et al, 1999).  The cellular origin of this ossification, as opposed 

to calcification, is unknown.  It is possible that stem cells from the circulation that 

are trapped in the plaque, or present in the vessel wall, are exposed to signals 

within the calcified lesions that lead to the initiation of a developmental 

osteogenic differentiation program (Tintut et al, 2003).   

- Expression of osteogenic markers by VSMCs in association with dystrophic 

calcification provides further evidence of its active nature. Matrix γ-

carboxyglutamic acid protein [MGP] (Bostrom et al, 2001; Shanahan et al, 

1998), osteopontin [OPN] (O’Brien et al, 1994) and bone morphogenetic protein-

2 [BMP-2] (Zebboudj et al, 2002) were the first proteins shown to be associated 

with vascular calcification in vivo.  Studies using RT-PCR and 

immunohistochemical analysis of gene expression in normal and calcified 

arteries, including arteries from uraemic patients, have shown that VSMCs 

express Cbfa1/Runx2 and Sox 9 (Proudfoot et al, 2000; Moe et al, 2002), 

obligate transcription factors for osteoblastic and chondrocytic differentiation as 

well as their target genes, alkaline phosphatase, bone sialoprotein, osteocalcin and 

collagen II, at sites of calcification in vivo. Analysis of the temporal pattern of 

expression of these proteins in relation to the onset of calcification demonstrated 

that in the normal vessel wall VSMCs expressed constitutive inhibitors of 
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calcification such as MGP (Tyson et al, 2003), but these inhibitors were 

downregulated in calcified vessels and VSMCs upregulated expression of 

mineralization regulators normally expressed in bone (Shanahan et al, 1999).  

 

 II - Mouse gene knockouts models and human single gene defects 

Animal knockout models have confirmed the role of a number of proteins in 

regulating vascular calcification.  In addition, they have focussed attention on proteins 

involved in the regulation of both vascular calcification and bone mineralization and 

suggested that these processes may in some way be mechanistically linked. 

- The knockout mouse for MGP was the first amongst these models (Luo et al, 

1997), and has been discussed extensively in section 1.12 of chapter 1.  

Homozygous mice deficient in MGP develop calcification and cartilaginous 

metaplasia of the aorta and its branches and typically develop aortic rupture as a 

direct consequence of vascular calcification (Luo et al, 1997).  Importantly, MGP 

is also a regulatory protein for Bone Morphogenetic Protein – 2 [BMP-2] 

(O’Brien et al, 1994; Zebboudj et al, 2002): higher levels of MGP will inhibit 

BMP-2 activity.  BMP-2 is a potent morphogen of the TGFβ-superfamily that can 

induce ectopic bone and cartilage when implanted in soft tissues due to its 

capacity to regulate mesenchymal progenitor cell differentiation.  It is possible 

that in MGP deficient mice the unopposed action of BMP-2 results in 

mesenchymal progenitor cells, or local VSMC to develop instead into 

chondrocytes. Thus, MGP acts as a regulator of both calcification and cell 

differentiation in the vasculature.  Mutations of MGP in humans leading to absent 

or non-functional MGP manifests as Keutel syndrome (Munroe et al, 1999) 
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characterised by abnormal calcification of cartilage in the ears, nose, larynx, 

trachea and ribs.  These patients on post-mortem show extensive medial vascular 

calcification at an early age.   

- Fetuin-A (α-2-Heremens-Schmid glycoprotein) is an important circulating factor 

and has been described at length in section IV in this chapter.  It is a very potent 

inhibitor of apatite crystal formation (Price et al, 2003) and also regulates 

apoptosis, vesicle calcification and phagocytosis (Reynolds et al, 2005). The 

Fetuin-A knockout mouse develops extensive, fatal vascular and parenchymal 

calcification, predominantly of the kidneys, heart and lungs (Schafer et al, 2003). 

- Osteoprotegerin (OPG), a soluble TNFα  receptor mimic, can inhibit 

osteoclastogenesis and has paradoxical effects on bone mineralization and 

vascular calcification. OPG binds to and inhibits RANKL [receptor activator of 

nuclear factor kappa B (NFKB) ligand] (Collin-Osdoby et al, 2004), which is 

expressed on the surface of osteoblast-like cells. RANKL activation of its 

receptor RANK is essential for the maturation of osteoclast progenitors. Mice 

deficient in OPG develop calcification and osteoporosis as a result of unopposed 

stimulation of RANKL receptors leading to increased osteoclastic activity (Bucay 

et al, 1998). The role of OPG in calcification and clinical associations with its 

levels are described in section IV. 

- Mice defective in fibrillin, an important microfibril associated with elastin, 

develop medial aortic calcification (Ramirez et al, 1999).  Variations in the 

fibrillin-1 genotype in humans cause Marfan’s syndrome which is associated with 

increased aortic stiffness and an increased risk of cardiovascular disease (Fietta et 

al, 2002).  
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- The role of pH in promoting or inhibiting calcification is also important: crystal 

growth is favoured in an alkaline medium. The carbonic anhydrase isoenzyme II 

(CA II) knockout mouse develops an age-dependent medial calcification of small 

arteries in a number of organs, with the male genital tract developing the most 

extensive arterial calcinosis (Spicer et al, 1989). CA II deficiency in humans 

causes a rare autosomal recessive disorder characterised by osteopetrosis, renal 

tubular acidosis, and cerebral calcification (Cotter et al, 2005).  

- Perturbation of the pathway involved in the generation of pyrophosphate by 

inactivation of the enzyme ecto-nucleotide pyrophosphatase/ phosphodiesterase 1 

(ENPP1) leads to ossification of the aorta. The mouse knockout for ENPP1 

(Johnson et al, 2005) develops upregulated alkaline phosphatase, decreased 

expression of osteopontin, increased calcification of aortic smooth muscle cells 

and chondrogenesis in mesenchymal precursors. In humans mutations in ENPP1 

causes infantile idiopathic arterial calcification (Rutch et al, 2003), a condition in 

which the internal elastic lamina of muscular arteries calcifies resulting in death 

usually within the first year of life.  

- Klotho, a membrane protein which is thought to regulate human aging, plays a 

critical role in the regulation of Ca – PO4 homeostasis by negatively regulating 

active Vitamin D synthesis (Ikushima et al, 2006). Knockout mice for the Klotho 

gene (β-glucosidase) (Nabeshima et al, 2002) develop hyperphosphataemia, 

vascular calcification and impairment of both osteoblast and osteoclast 

differentiation leading to low-turnover osteopenia. 

Table 1.4 (page 71) describes the human single-gene defects in calcification 

inhibitors and their clinical phenotypes.  



   

 90

1.30    Initiation of vascular smooth muscle cell calcification – insights from in   

vitro studies 

Mechanistic insights into the process of vascular calcification have come from in vitro 

studies. When human VSMCs are cultured in vitro they spontaneously convert to an 

osteo/chondrocytic phenotype (Shanahan et al, 1999), mimicking the phenotypic 

changes observed in calcified arteries. They form multicellular nodules that 

spontaneously calcify and upregulate expression of markers of bone and cartilage 

differentiation including Cbfa1 and Sox9 (Tyson et al, 2003). Using these in vitro 

models it has been shown that apoptosis and vesicle release by phenotypically 

modified VSMCs produce the initial nidus for mineral nucleation (Proudfoot et al, 

2000) and that this calcification process can be actively inhibited by a variety of 

multi-functional regulatory proteins (Shanahan et al, 1999; Tyson et al, 2003).   

 

I - The formation of matrix vesicles  

One of the earliest events associated with calcification is VSMC death and 

apoptotic body release as well as matrix vesicle release from living cells (Proudfoot et 

al, 2000). Using human aortic VSMC explants, Proudfoot et al have demonstrate that 

apoptosis occurs before the onset of calcification in VSMC nodules, and this was 

confirmed by nuclear morphology, the TUNEL technique and external display of 

phosphatidyl serine. In these nodular VSMC cultures apoptosis was apparent by day 7 

and increased coincident with the onset of calcification (Proudfoot et al, 2000; 

Reynolds et al, 2004). Inhibition of apoptosis experimentally with the caspase 

inhibitor ZVAD.fmk reduced calcification in nodules by ~40%, and stimulation of 

apoptosis with anti-Fas IgM, caused a10-fold increase in calcification. Also, this study 
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showed that apoptotic bodies derived from VSMCs can act as nucleating structures 

for calcium crystal formation: when VSMC-derived apoptotic bodies were incubated 

with 45Ca, they were able to concentrate calcium (Proudfoot et al, 2000).  Reynolds et 

al have shown that the addition of increased levels of extracellular Ca and /or PO4 to 

cultures induces VSMC apoptosis and that the inhibition of apoptosis in this model 

ameliorates calcification (Reynolds et al, 2004). The apoptotic bodies accumulated 

calcium in a manner comparable to chondrocyte matrix vesicles, suggesting their 

ability to initiate calcification in a similar manner (Reynolds et al, 2004). In a 

subsequent study it was shown that Fetuin-A inhibited in vitro VSMC calcification in 

part through inhibition of apoptosis and associated caspase cleavage (Reynolds et al, 

2005).  

 

These in vitro studies have lead to the hypothesis that factors that cause VSMC death 

or damage are likely to induce or accelerate the calcification process.   In addition, 

factors that inhibit the normal phagocytosis of apoptotic bodies are also likely to 

increase the probability that these bodies will calcify within the vascular matrix 

(Massy et al, 2008).  Studies in vitro have shown that modified lipids are a key factor 

in inhibiting phagocytosis (Proudfoot et al, 2004) and lipids also contribute to 

osteogenic differentiation of VSMCs, explaining the presence of lipid and 

calcification in atherosclerotic plaques (Demer et al, 2002).  Finally, in a very recent 

publication using a mouse model of inducible VSMC-specific apoptosis, Clarke et al 

have shown that low-level VSMC apoptosis induced in apolipoprotein (Apo)E(-/-) 

mice fed a high fat diet induced the development of calcified plaques in younger 
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animals and promoted calcification within established plaques and also diffuse 

calcification of medial VSMCs (Clarke et al, 2008).  

 

II - Expression of osteo/chodrocytic markers by modified VSMCs 

The expression of bone-associated proteins is not confined to bone, and the discovery 

of skeletal matrix proteins in atherosclerotic arteries and calcified heart valves has led 

to a search for the mechanisms and cell types responsible for their ectopic expression. 

Macrophages were initially considered to be the source of bone associated proteins, 

but there is now substantial evidence to suggest that VSMCs themselves can 

synthesise these proteins in vivo (O’Brien et al, 1994; Shanahan et al, 1999), even in 

the course of medial calcification where there are no macrophages (Shanahan et al, 

1999). Some bone matrix proteins such as MGP and osteopontin are constitutively 

expressed by VSMCs in normal arteries and downregulated in calcified vessels 

(Tyson et al, 2003). In association with this, some bone matrix proteins that are not 

normally expressed in the vessel wall, such as alkaline phosphatise (ALK), bone 

sialoprotein (BSP) and bone Gla-protein (BGP) are induced (Tyson et al, 2003).  

 

In vitro studies have characterised the VSMC expression of bone matrix proteins and 

provided some support for osteoblast-like VSMCs in regulating vascular calcification. 

Evidence suggests that the osteo/chondrocytic conversion of VSMCs, characterized 

by the expression of Cbfa1/Runx2, may be a phenotypic change induced in response 

to injury.  Core binding factor α-1 (Cbfa-1, now known as Runx2), a transcription 

factor from the runt homology domain, is essential for osteoblast differentiation (Otto 
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et al, 1997), and regulates the expression of multiple genes expressed in osteoblasts 

such as BGP, BSP, OPN and collagen type II. Cbfa-1 / Runx2 is expressed at very 

low levels in normal vessels and significantly upregulated in calcified vessels (Steitz 

et al, 2001). Expression of this plethora of mineralization-regulating proteins by 

VSMCs may represent an attempt by the cells to further regulate the calcification 

process or a direct transdifferentiation of the cell in response to pathological stimuli. 

However, the exact role of these multi-functional proteins and their expression at 

different stages of uraemic vascular injury remains unknown.   

 

Although it is unclear exactly what regulates expression of Runx2 in VSMCs, it is 

upregulated in vitro by phosphate and lipids, i.e. damage inducing agents.  

Mineralisation of bovine VSMCs in vitro is shown to be encouraged by the addition 

of β–glycerophosphate, a PO4 donor in vitro. These mineralising cells express cbfa-1, 

providing evidence of their osteogenic phenotype (Steitz et al, 2001). Proudfoot et al 

have shown that human VSMCs in vitro spontaneously mineralise, and as they do so 

express bone associated proteins such as ALK, BSP, BGP, MGP and OPN, while 

simultaneously maintaining the expression of smooth muscle contractile markers 

(Proudfoot et al, 1998; Severson et al, 1995; Shanahan et al, 1999).  This model of 

VSMC calcification bears similarities to in vitro models of osteoblast differentiation, 

and the expression of cbfa-1 by human VSMCs suggests that the transcriptional 

pathways that regulate osteogenic differentiation may be present in human VSMCs 

(Giachelli et al, 2001; Jono et al, 2004). 

 

III - Mineral imbalance – the role of calcium and phosphate 
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More recently in vitro models have been developed to determine the factors specific 

to CKD that might induce VSMC calcification.  Exposure of VSMCs to media 

containing elevated levels of Ca and /or PO4 rapidly induced calcification with 

synergistic effects if both ions were elevated (Reynolds et al, 2004).  Apoptosis 

accounted for part of the accelerated calcification observed in this model.  However, 

in response to extracellular Ca viable VSMCs were induced to release vesicles in a 

manner analogous to growth plate chondrocytes and these vesicles contained 

preformed Ca – PO4 apatite accounting for their increased calcification capacity in 

vitro (Reynolds et al, 2004; Proudfoot et al, 2000).  

 

Giachelli et al have shown that in the presence of increased intracellular phosphate the 

sodium-dependent phosphate co-transporter, Pit-1, signals through Cbfa-1 to induce 

osteoblastic differentiation of vascular cells (Giachelli et al, 2001; Jono et al, 2000).  

Thus, PO4 can act as a signalling molecule and induce phenotypic changes in the 

VSMCs as well as directly contribute to the mineralisation process. Likewise, 

elevated Ca levels in the culture media enhance mineralisation and phenotypic 

transformation of VSMCs, also via the sodium-dependent phosphate co-transporter 

(Yang et al, 2004). Elevated Ca levels were not able to increase PO4 uptake acutely, 

but prolonged exposure of smooth muscle cell cultures to elevated Ca induced Pit-1 

mRNA levels, suggesting that elevated Ca regulates PO4 sensitivity of VSMCs 

(Giachelli et al, 2001). These findings were extended by Reynolds et al, who showed 

that elevated Ca stimulated apoptosis as well as the release of mineralisation 

competent matrix vesicles from human VSMCs, further suggesting that elevated Ca 

has pro-mineralising effects beyond simply raising the Ca x PO4 product, and 
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regulates multiple systems in smooth muscle cells that promote susceptibility to 

matrix mineralisation (Giachelli et al, 2001; Reynolds et al, 2004). The disturbances 

in mineral metabolism in CKD possibly have similar effects in vivo: the heightened 

state of supersaturation that exists in plasma favours the deposition of mineral in soft-

tissues by promoting vesicle release and VSMC osteogenic differentiation.  

  

IV - Inhibitors of calcification – the role of regulating proteins 

All extracellular fluids, even under normal circumstances, are saturated with respect 

to calcium and phosphate suggesting that potent inhibitors of vascular calcification are 

normally circulating to prevent ectopic soft tissue calcification (Ketteler et al, 2002; 

Schafer et al, 2003). The addition of normal human serum to VSMC in vitro in the 

presence of elevated calcium and phosphate significantly inhibits the time-course and 

extent of calcification when compared to VSMCs treated in the absence of serum 

(Reynolds et al, 2005). Serum acts by inhibiting apoptosis and by reducing the 

calcification potential of shed membrane vesicles, suggesting that under normal 

conditions vesicles may contain inhibitors of calcification derived from serum 

(Reynolds et al, 2005).  Subsequent analyses identified the serum protein fetuin-A as a 

key component of VSMC derived vesicles (Ketteler et al, 2003; Reynolds et al, 2005).  

This protein is taken up by VSMCs and stored in cytoplasmic vesicles before being 

incorporated into released extracellular vesicles.  Reynolds et al showed that Fetuin-A 

can inhibit apoptosis, enhance phagocytosis and its incorporation into vesicles 

completely abrogates their ability to calcify (Reynolds et al, 2005).  Potentially other 

as yet unidentified serum components may also act to inhibit soft tissue calcification. 
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Figure 1.11 is a schematic representation of the processes involved in vascular 

calcification in CKD.  

 

1.31     Currently available models to study VSMC calcification 

 

Although explants of VSMCs have been very useful in vitro models to study vascular 

damage and calcification, these cells lack the matrix and architecture of a normal 

vessel. The collagen matrix of the tunica media and the elastic lamina, the initial site 

of medial artery calcification in vivo, are lacking. To address this, Lomashvilli et al 

have developed an in vitro model of rat aortic rings (Lomashvilli et al, 2005). When 

the aortic rings were incubated in a medium with elevated PO4 no calcification 

occurred, but mechanical injury resulted in extensive medial calcification. 

Pyrophosphate was identified as a potent endogenous inhibitor of calcification on the 

basis that normal aortas produce inhibitory levels of pyrophosphate and the addition 

of pyrophosphate could inhibit calcification in injured aortas. Pyrophosphate was 

found to be inactivated by alkaline phosphatase, a protein expressed by 

osteo/chondrocytic VSMCs in vitro in response to injury and at sites of calcification 

in vivo further suggesting that the induction of an osteogenic programme of gene 

expression in VSMCs may be a response to injury and reducing vascular damage may 

be a key target for reducing calcification. 
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Figure 1.11   A schematic representation of vascular calcification in CKD 
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Section VI – Project design 

The work in this thesis broadly involves clinical studies to investigate the role of 

modifiable risk factors in cardiovascular disease in children on dialysis, translational 

research that directly correlates the ex vivo changes in the vessels with clinical 

parameters, and an in vitro study that uses a model of intact human arteries to 

determine the role of Ca and PO4 in vascular injury and calcification. 

 

The research questions examined in the course of this work are: 

1. What is the cardiovascular mortality of chronic dialysis patients in our centre? 

2. Can keeping the PTH levels at less than 2-fold the upper limit of normal 

throughout the course of CKD reduce the prevalence of vascular damage and 

calcification in children on dialysis? 

3. Are abnormal vitamin D levels associated with vascular damage and 

calcification in children on dialysis? 

4. Are the circulating calcification inhibitors, Fetuin-A, Osteoprotegerin and 

matrix Gla-protein, associated with vascular damage and calcification in 

children on dialysis? 

5. Is there direct evidence for calcification in the blood vessels of pre-dialysis 

and dialysis children? Does the calcium load in the blood vessels correlate 

with clinical and biochemical parameters and clinical measures of vascular 

damage? 

6.  Is there a difference in the calcification potentials of pre-dialysis and dialysis 

vessels in an in vitro model of intact human vessels? What is the role of Ca 

and PO4 in uraemic vascular injury and calcification? 
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As vascular calcification is increasingly recognized as an important risk factor for 

cardiovascular morbidity and mortality in CKD patients, it has led to an increased 

interest in vascular imaging methods to allow early detection, accurate risk 

stratification and monitoring of the disease process. Structural changes to the 

vasculature have been studied by plain radiography, CT scan and ultrasound, and have 

been correlated with functional changes in the vessels (Raggi et al, 2002; Blacher et 

al, 2001; Haydar et al, 2004), vessel anatomy on angiography (Haydar et al, 2004) 

and also cardiovascular morbidity and mortality (London et al, 2002; Goldsmith et al, 

1997). In parallel with improved imaging technology, a number of biomarkers of 

cardiovascular disease events and morbidity have been identified. These include 

vitamin D levels, the circulating calcification inhibitor proteins, fetuin-A, 

osteoprotegerin and matrix gla-protein, high sensitivity C reactive protein and other 

markers of inflammation, and cardiac troponin levels. 

 

In this chapter I have discussed vascular imaging techniques, assays that have been 

performed in the course of this thesis and the process of collecting, processing and 

performing the vessel studies, including in vitro studies, histology and 

immunohistochemistry. I have independently performed and analysed all of the 

imaging techniques and performed the vessel analysis myself, but received help from 

lab technicians in biochemical assays and preparation of slides for histology and 

immunohistochemistry, for which I am extremely grateful. All the work that is not 

independently performed by myself has been acknowledged in the appropriate 

sections.  
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Section I - Assessment of vascular structure, function and calcification 

 

2.1    Carotid Artery Intima Media Thickness (cIMT) 

Arterial vessel wall changes occur during a long subclinical lag phase and are 

characterized by gradual thickening of the intima-media and functional disturbances, 

possibly associated with remodelling of the vessel wall. Over the past decade the 

measurement of cIMT using high resolution B mode ultrasonography has emerged as 

one of the methods of choice for determining the anatomic extent of atherosclerotic 

and arteriosclerotic disease and its progression and for assessing cardiovascular risk. 

cIMT is now a well established measure of the presence and extent of coronary 

atherosclerosis (Aminbakhsh et al, 1999). cIMT has been used in several studies of 

adult and paediatric CKD patients, and is considered a well established surrogate 

marker of cardiovascular disease events. 

 

Measurement of cIMT is non invasive, free of ionizing radiation and well accepted by 

patients. Measurements can be performed serially and cIMT has the advantage of 

visualizing the full thickness of the arterial wall, in contrast with angiographic 

techniques which provide only an outline of the arterial lumen. Several observational 

studies have demonstrated that there is a relationship between ultrasonic and 

histological determination of cIMT although some studies suggest that ultrasound 

estimation gives a slighter higher IMT reading (Pignoli et al, 1986), possibly as a 

result of contraction during histological fixation or post-mortem shrinkage of the 

tissue.  
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Carotid IMT increases significantly with age and is greater in men compared with 

women. Rates of progression in control groups have ranged from 0.006mm/year in 

asymptomatic adults to 0.06mm/year in subjects with coronary artery disease 

(Salonen et al, 1991 and Crouse et al, 1994).  The association with cardiovascular 

risk factors is evident even at a young age, as demonstrated in the Bogalusa Heart 

Study (Johnson et al, 2007). Racial differences in the carotid wall thickness have been 

described: Afro-Caribbeans have significantly greater carotid IMT than Caucasian 

adults (Wagenknecht et al, 1998). Well established cardiovascular risk factors such as 

diabetes mellitus (Taniwaki et al, 1999), hypercholesterolaemia (Pauciullo et al, 

2004; Fisicaro et al, 1994) and hypertension (Bots et al, 1993 and Suurkula et al, 

1994) have also been associated with increased cIMT. Of all these ‘traditional’ risk 

factors, hypertension seems to have the greatest impact on cIMT, probably via medial 

hypertrophy (Suurkula et al, 1994).   

 

All of the above ‘traditional’ Framingham risk factors are present in the adult CKD 

population, but factors specific to the uraemic milieu also have a direct causal effect 

on vascular changes and increased cIMT. Studies in paediatric dialysis patients that 

have utilized cIMT are discussed at length in chapter 1 (Oh et al, 2002; Groothoff et 

al, 2002; Mitsnefes et al, 2005; Litwin et al, 2005, Briese et al, 2006). As children 

have few, if any, of the traditional risk factors, they provide an ideal opportunity to 

study the effects of uraemic changes per se on the vasculature.  

 

Importantly, cIMT has been shown to be responsive to interventions. Therapeutic 

interventions with blood pressure lowering agents, lipid lowering agents and 

multifactorial interventions in diabetics can slow the progression or even reduce 
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carotid IMT (de Groot et al, 1998 and Smilde et al, 2001). Apart from 

pharmacological interventions, lifestyle modifications such as weight loss and 

smoking cessation have been associated with 0.13mm/year reduction in progression 

of carotid IMT (Markus et al, 1997). Longitudinal studies in CKD patients have 

shown improvement, but without complete regression to normal, of the cIMT but not 

functional properties of the vessel (Litwin et al, 2008; de Lima et al, 2002) after renal 

transplantation.  

 

 

Image acquisition 

Different ultrasound techniques have been used to measure IMT in the carotid artery. 

Although most groups use the B-mode to calculate the average IMT of an arterial 

segment (Bots et al, 1997), some others used M-mode techniques to assess IMT at a 

discrete arterial position (Saba et al, 1999). More recently, echo-tracking devices have 

also been used that calculate IMT at a fixed time-point and also the average IMT 

during one cardiac cycle (van Bortel et al, 2005).  

 

Most studies have measured IMT in the carotid artery but the most appropriate site of 

carotid IMT measurement is still a matter of debate (Figure 2.1). The common carotid 

artery (CCA), 1-2 cm proximal to the carotid bulb, was examined in most studies 

whereas the internal carotid artery [ICA] and carotid bulb have been studied less 

often. The CCA is easier to image as it is relatively close and parallel to the skin 

surface. In contrast IMT measurements in the ICA can be quite challenging. Although 

atherosclerotic lesions appear later in the CCA compared to ICA or bifurcation 

(Solberg et al 1971), changes in all sites seem to be equally strongly associated with 
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risk of subsequent cardiovascular events (Solberg et al 1971). Other arterial sites such 

as the common femoral, brachial or radial arteries have also been proposed for IMT 

measurements. There is conflicting information in the literature as to whether IMT 

thickening in the muscular arteries has the same meaning as changes in the elastic 

common carotid artery (Kanters et al, 1997).  

 

Figure 2.1   Schematic representation of the CCA, the bifurcation, the ICA, and 

the external carotid artery  

      

 
 

Discrepancies exist also as to which arterial wall should be measured. Most studies 

have measured IMT on the far wall, while others averaged these measurements with 

those of near wall (Baldassarre et al, 1994). Reliable IMT measurements can be 

obtained from the far wall whereas near wall measurements are not equally reliable 

(Salonen et al, 1993). This is due to the different order in which the interfaces of the 

intima-lumen and media-adventitia are exposed to the incoming ultrasound beam, 

generating different B-mode images of the near and far wall. In general, a good image 

of the near wall depends on the gain settings, and is more difficult to standardize. 

Measurements from the far wall are more reproducible than those of the near wall.  



   

 105

 

 

Experimental protocol 

 
i. The study procedure was explained to the child, and demonstrated on a doll in 

younger children. 

 

ii. Children were scanned in the supine position in a temperature controlled room.   

 

iii. A 3-lead ECG was attached and continuously recorded.  

 

iv. Both the right and left carotid arteries were scanned using a 5-10 MHz linear 

array transducer (Vivid 7; GE Medical, Horton, Norway) in order to detect 

vessel wall changes and to measure common carotid IMT.  

 

v. The proximal part of the carotid bulb was identified, and a segment of the 

common carotid artery 1 cm proximal to the bulb was scanned (Figure 2.2). The 

transducer was manipulated such that the near wall of the carotid artery was 

parallel to the transducer footprint and the lumen maximised in the longitudinal 

plane. The image was focused on the posterior (far) wall and the resolution box 

function was used to magnify the arterial far wall.  

 

vi. Since it has been shown that IMT of the carotid artery changes during the 

cardiac cycle (decreases during systole due to the larger vessel diameter and 

increases during diastole), the optimal longitudinal image was acquired on the R 
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wave of the ECG and videotaped for 5 seconds to minimize variation, and also 

for the subsequent calculation of carotid distensibility. 

 

Figure 2.2   Image acquisition  and analysis of the IMT measurement 

 

 
 

A.  The length of the common carotid artery is scanned and the carotid bulb identified. 

B.  A segment of the common carotid artery 1 cm proximal to the bulb is scanned in the 

longitudinal plane and the posterior (far) wall of the artery focussed on.  

C.  IMT is measured between the first bright line and the leading edge of the second bright 

line (shown by the blue arrows) in the far wall of the common carotid artery. 

 
 
 
 
Analysis of IMT measurements 

IMT can be measured using electronic callipers or by an automated computerized 

edge tracking method (de Groot et al, 2004). Measurements can be performed on a 

video image or on a digitally frozen image. Off-line analysis has the advantage of 

separating data acquisition from data interpretation, making patient examination more 

efficient, and also allowing for the analysis to be performed in a blinded fashion. 

 
In studies described in this thesis measurements of the far wall of the common carotid 

artery were made from stored images using electronic calipers. IMT was calculated as 

the distance between the first bright line (lumen-intima interface) and the leading edge 

of the second bright line (media-adventitia interface) (Figure 2). Six measurements, 
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the three maximum measurements of the right common carotid artery in three 

different frames and the three maximum measurements of the left common carotid 

artery in three different frames, were averaged.  

 

Reproducibility 

Phantom studies have shown that distances similar to the intima-media thickness of 

the carotid arterial wall can be measured with B-mode ultrasound system with an axial 

resolution of 0.2 to 0.4mm at a precision of about 0.03 to 0.05mm (Salonen et al, 

1993). In general reproducibility of IMT measurement was better in studies limited to 

the common carotid artery far wall than in studies including multiple measurements at 

different carotid sites (Salonen et al, 1993). Intraobserver and interobserver 

reproducibility of measurements for the studies in this thesis were determined by 

measurement of cIMT twice, 2 weeks apart in 10 randomly selected children, and 

were was 1.9 and 2.2 micrometres (= 1.8 and 2.1%) respectively.  
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2.2    Pulse Wave Velocity (PWV) and Pulse wave analysis (PWA) 

 

Physiology of the pulse pressure and pulse wave velocity 

 
With each heart-beat a pressure waveform is generated which travels forward in the 

arterial tree. The ventricular ejection (force / time) and cushioning effects of the aorta 

determine the waveform characteristics. The aorta functions not simply as a conduit 

vessel, but also as a capacitance device for translating the ‘on-off’ blood flow 

characteristics generated by the left ventricle into a smooth non-pulsatile blood flow 

pattern at the capillary level: in a healthy young person, approximately 40% of a 

stroke volume is forwarded and the remainder stored in the elastic aorta, to be 

released during diastole so as to ensure continuous flow. Tempering the rise in aortic 

systolic blood pressure, and maintaining aortic diastolic blood pressure not only 

protects the distal circulation against barotrauma, but also allows for adequate 

coronary perfusion. This capacitance function of the aorta depends on its 

distensibility, and this principally determines the degree of energy absorbed from the 

forward travelling pulse waveform in systole, and the elastic recoil of the aorta in 

diastole (Goldsmith et al, 2002).  

 

‘Arterial stiffness’ is a measure of the relationship between pressure response and 

change in volume. The stiffer the artery the greater is the difference between systolic 

and diastolic blood pressure, as there is a higher pressure wave generated into the stiff 

vessel during systole and decreased elastic recoil during diastole, resulting in a lower 

diastolic blood pressure. The resultant high systolic and low diastolic blood pressures 

give rise to a wide pulse pressure (O’Rourke et al, 1980). The pulse pressure is a 
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stronger predictor of future cardiovascular mortality than either systolic or diastolic 

blood pressures (Benetos et al, 1997; Franklin et al, 1999).   

 

The pulse waveform characteristics are also determined by ‘backward’ travelling 

waves that are reflected at various points in the arterial tree, and that collide with the 

direct forward travelling wave. The pressure pulse at any point of the arterial tree is 

hence the summation of the direct wave and reflected waves from the periphery 

(McVeigh et al, 2002). Reflected waves have their origin at points where the flow and 

pressure waves are not perfectly matched. Common reflection sites are branch points, 

constrictions or areas of turbulence (Izzo et al, 2004). At some point along the aorta 

the incident and reflected wave forms summate. When (in relation to the cardiac 

cycle) and at what point along the aorta this happens depends on the speed of energy 

transfer along the aorta (or the pulse wave velocity [PWV]), the degree of arterial 

luminal diameter mismatch (branch points and areas of stenoses) and the aortic length. 

In young healthy subjects the pulse waveform summation takes place low in the 

abdominal aorta in early diastole, allowing for adequate coronary perfusion. A stiffer 

aorta will allow for a more rapid PWV, and when this is coupled with constricted 

aortic branches and a short subject height, wave summation occurs at a more proximal 

point in the aorta, closer to the aortic valve and coronary sinus, and also occurs earlier 

in the cardiac cycle, thereby compromising coronary perfusion (London et al, 1996).    

 

Although pulse pressure is simple to measure, it is influenced by both the cardiac 

function and also by the aortic wall properties, and a more accurate assessment of the 

vessel properties can be determined from pressure wave contour analysis. The PWV is 

a real-time measure of the time taken for aortic mural energy waves (from cardiac 
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contraction, aortic dilatation then recoil) to propagate down the aorta. Increased PWV 

is thus mechanistically linked with systolic hypertension, an increase in systolic and a 

decrease in diastolic blood pressures and left ventricular hypertrophy. A higher 

demand for coronary blood flow as a result of left ventricular hypertrophy coupled 

with a decrease in diastolic BP leads to an increased susceptibility to myocardial 

ischaemia (Wilkinson et al, 2000).  

 

An assessment of vessel compliance can also be obtained from an ultrasound image 

by measuring the distensibility of the vessel is measure in a specific area of artery, 

essentially by determining the difference between its systolic and diastolic diameters. 

The Moens - Koertweg equation, PWV = 1 /  √ Distensibility, gives the relationship 

between the two. 

 

 

Augmentation index (AIx) 

 

Indices to characterise the pressure pulse can be derived from the contour of the pulse 

waveform. The feature of the pulse contour, which has received the most interest, is 

the peak (or shoulder) that occurs in systole due to reflected wave. AIx is a measure of 

the increase in BP caused by the return of the reflected wave during systole. AIx will 

depend on the characteristics of the reflected wave such as its timing (large artery 

stiffness), amplitude (related to peripheral vascular tone) and the reflectance point.  
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Figure 2.3    Schematic representation of an aortic waveform in a young 
(compliant) and old (stiff) vessel 
 

 

Associations with increased PWV 

A key outcome study by Blacher et al showed that aortic PWV and AIx were 

independent predictors of morbidity and mortality in patients on haemodialysis. For 

each 10% increase in AIx the risk ratio for all cause mortality was 1.51 and for 

cardiovascular mortality 1.48, and for each 1 m/s increase in PWV the all cause 

mortality-adjusted odds ration was 1.39 (Blacher et al, 1999). In a recent study Taal et 

al have shown that increased arterial stiffness is in itself a risk factor for progression 

to end stage renal disease in pre-dialysis patients, presumably through impairing renal 

perfusion (Taal et al, 2007). PWV is strongly correlated to the degree of EBCT-

derived coronary artery calcium score (Haydar et al, 2004; Raggi et al, 2007; Sigrist 

et al, 2007) as well as to the number of arterial sites with calcification as determined 

by plain x-ray (Guerin et al, 2000). Tillin et al have recently shown that the site of 

PWV measurement influences results: the carotid – femoral PWV is a better indicator 

of atherosclerosis and correlates closely with the coronary artery calcium load than 

the carotid – radial or femoral – posterior tibial PWV (Tillin et al, 2007). Finally, 

reflecting the associations between calcification and vessel stiffening as well as those 

 
Augmentation = ΔP 
 
Augmentation Index = 
(Δ P / PP)  
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between the bone - vascular axis in CKD, a low spinal bone mineral density has been 

associated with an increased PWV in CKD stage V patients (Raggi et al, 2007).  

 

 

Carotid and radial pulse pressure waveform  

The contour of the pulse pressure waveform in different arteries differs considerably: 

the propagation, timing and reflection of pressure waves cause the peripheral pressure 

pulse to differ from the central pressure pulse (Latham et al, 1985 and O’Rourke et al, 

1980). There is however little difference between the carotid pulse and the aortic 

pulse because the distance between the two arteries is relatively small. The carotid  

pulse has a short sharp incisura denoting aortic valve closure and the end of 

ventricular systole as does the ascending aortic pulse (Figure 2.4).   

 

 

    Carotid pulse   Sharp incisura 

 

Figure 2.4   Carotid pulse pressure waveform 
 

Pressure 
tonometer 
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Although the carotid pulse is easily accessible, it can be a challenge to obtain accurate 

recordings. The carotid artery is sited deeply in the neck and is poorly supported 

laterally. Application of the probe to the carotid artery can lead to cardiac slowing due 

to baroreceptor stimulation or to gagging and coughing due to pressure on the neck 

near the throat, and can be quite unpleasant, especially for children. Thus it is difficult 

to obtain consistent records from the carotid artery. 

 
By contrast, the radial and femoral pulse is easily accessible and the arteries can be 

applanated against the radial bone or the inguinal ligament respectively without 

difficulty or discomfort to the subject. The shape of the radial pulse is very different 

from the aortic pulse. The propagation, timing and reflection of pressure waves in the 

vasculature cause the peripheral pressure pulse to differ from the central pressure 

pulse (O’Rourke et al, 1980). Mechanical and elastic properties of the arterial tree 

distort the direct and reflected waves during their propagation and, especially in 

young subjects, the peripheral pulse pressure is increased compared to central pulse 

pressure (Mahmud et al, 2003 and Cockroft et al, 2003). In the radial waveform, the 

reflected wave usually causes a shoulder on the down-slope of the systolic part of the 

radial pressure pulse (Figure 2.5).  

        Radial pressure waveform 

 

Figure 2.5   The radial pulse pressure waveform 
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Applanation tonometry and the SphygmoCor apparatus 

 
Applanation tonometry is a non-invasive technique for measuring arterial pressure. A 

piezo-resistive transducer is applied over an artery. When the piezoelectric crystal is 

deformed by arterial pressure transmitted through the overlying superficial tissue and 

skin, its resistance changes. This change in resistance is directly related to the pressure 

applied on the crystal. There are different ways of accommodating the piezoelectric 

transducer: it can be mounted on the tip of pen-type probe (Millar micromanometer, 

Texas US) or an array of transducers can be strapped around the wrist (Colin wrist 

probe, Japan). Applanation tonometry requires the artery to be flattened against a hard 

surface such as the head of the radial bone (radial artery), the inguinal ligament 

(femoral artery) or the vertebral column and ligaments in the neck (carotid artery). 

Applanation tonometry has been validated and the radial artery pressure waveform 

obtained is very close to that obtained using invasive intraarterial measurements of the 

radial artery pressure waveform. 

 

For the work in this thesis, I have recorded the radial, femoral and carotid artery 

pressure waveforms and amplitude non-invasively using the Millar probe. 

Applanation tonometry by this technique has been validated in children and the radial 

artery pressure waveform obtained is very close to that obtained using invasive intra-

arterial measurements of the radial artery pressure waveform.  

 

Experimental technique 

Pulse wave velocity measurements were performed between the carotid and femoral 

artery sites to measure the aortic stiffness and between the carotid and radial artery 

sites to measure the brachio-radial pulse wave velocity.  
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• All subjects were studied after 10 minutes of resting in the supine position.  

• The blood pressure was measured non-invasively using Omron automated 

sphygmomanometer recordings on the left arm (or non-fistula arm as 

appropriate).  

• Three ECG leads were attached and the heart beat continuously recorded.  

• The radial artery pulse was palpated and the probe positioned directly above 

the point where the strongest pulse was felt.  

• Care was taken to ensure that the operator was comfortably positioned so that 

their elbow or the wrist was resting against a solid surface to minimise 

movements.  

• Radial measures: The tonometer was placed on the wrist directly above the 

right radial artery (or the left radial artery if there was an arterio-venous fistula 

on the right arm), and the waveform recorded directly onto a laptop computer 

running proprietary waveform analysis software (SphygmoCor Px Version 

6.0, ATCOR, Sydney Australia). The data collection screen allows the 

operator to see the peripheral signal and display of the last 10 seconds of data, 

and recordings are taken when a reproducible signal with high amplitude 

excursion is obtained.  

• Carotid artery measure: The subjects were asked to extend their neck so that 

the carotid artery was flattened against the muscles of the neck. To improve 

the recording, subjects were asked to hold their breath in expiration, if 

possible, to minimise the often marked respiratory variation seen in young 

subjects.  

• Femoral artery measures: With minimal exposure in the right groin area, the 

femoral artery was palpated against the inguinal ligament, the tonometer 
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placed directly perpendicular to the point of maximal pulsation, and recordings 

obtained as described above. 

• Pulse wave analysis: The radial arterial pressure waveform was recorded 

directly onto the SphygmoCor laptop. Once a satisfactory signal was been 

obtained (pressure waves consistent from beat to beat, amplitude optimised 

and the pulse waveform of the same character as one would expect in the 

artery) from at least ten consecutive pulses, a recording was taken to determine 

AIx. The carotid artery AIx was recorded in a similar fashion. 

 

 
Analysis of PWV measurement 

 
The SphygmoCor device uses successive measurements of pressure waveforms and a 

simultaneous ECG. For each measurement site, the delay from the R-wave of the 

ECG to the foot of the pressure pulse is determined. Subtraction of the R-wave to 

pulse foot time at the proximal and distal sites provides the transit time (Figure 2.6). 

PWV is then calculated from the arterial length and transit time using the intersecting 

tangent algorithm (Millasseau et al, 2003). This algorithm uses the point formed by 

the intersection of a line tangent to the initial systolic upstroke of the pressure 

waveform and a horizontal line through the minimum point. The distance travelled by 

the pulse wave was measured over the body surface with a tape measure. PWV was 

calculated as the distance: transit time ratio and is expressed as meters per second.  
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                                                                                        ECG trace        

 

           Figure 2.6    PWV acquisition page 

 
 
 

Analysis of PWA measurements 

 
The SphygmoCor analysis software automatically averages approximately 10 

waveforms and calculates AIx on the averaged waveform. From the measurements in 

the radial and carotid arteries both the aortic AIx and the peripheral AIx are 

automatically calculated; Figure 2.7 (Millasseau et al, 2003). Reasonable confidence 

is gained about the quality of the measurement if the pressure waves are highly 

consistent beat to beat, if amplitude is the greatest that can be achieved and if the 

pulse wave measured has the same character as one would expect in the artery i.e. 

sharp upstroke, straight rise to the first systolic peak, a definite sharp incisura, and 

near-exponential pressure decay in late diastole. The software has an inbuilt control 

system to ensure optimal quality in the waveform as defined by the manufacturer, ie 

mean pulse height >100mV, pulse height variability and variability of diastolic points 

as a percentage of the pulse height <5%.  
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Figure 2.7   PWA analysis report 
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2.3    Radiographic assessment of vascular calcification 

 

Plain x-ray 

Plain radiology of pelvis, thigh and hands has been utilized in a number of studies of 

vascular calcification. Progressive calcification has been reported using this approach, 

and associated with cardiovascular mortality (London et al, 2003). The pattern of 

calcification on plain radiographs (linear vs irregular calcification) may yield some 

information concerning the balance between medial and intimal vascular calcification 

(Goldsmith et al, 1997); the presence of predominantly linear calcification, implying 

medial calcification, has been associated with a significant increase in cardiovascular 

risk. The low sensitivity of plain radiography in the detection of early calcification 

makes this method unsuitable for use in children or to accurately track changes in 

calcification status. 

 

Electron beam CT 

Electron Beam Computerised Tomography (EBCT) was introduced in the early 

1980s, as a method of improving the temporal resolution of CT scanners (due to the 

rapid motion of the heart and relatively long acquisition times, conventional CT 

scanners cannot be used to visualise the coronary vessels). Instead of rotating a 

conventional X-ray tube around the patient, the EBCT machine houses a large 

vacuum tube in which an electron beam is electro-magnetically steered around 

circularly arranged tungsten X-ray anodes. The lack of moving parts allows very 

quick scanning, making the technique ideal for capturing images of the heart (Bellasi 

et al, 2006).  
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The very high cost of EBCT equipment, and its poor flexibility (EBCT scanners are 

essentially single-purpose cardiac scanners), has led to poor uptake with less than 150 

of these scanners worldwide. EBCT's role in cardiac imaging has been rapidly 

replaced by high-speed multi-detector CTs. 

 

Multislice CT scans 

To minimize motion artifacts in cardiac images, an increased speed of volume 

coverage is essential. Modern multislice CT scanners, with 16, 32 and now 64 

detector rings, allow for increasing rotation speeds and spatial resolution. A 16-slice 

CT scanner - acquires 16 slices per rotation of the gantry around the patient, with each 

gantry rotation taking <500 milliseconds (Figure 2.8) - was used for the studies in this 

thesis.  The technique has been used to generate coronary artery calcification (CAC) 

scores analogous to those from EBCT (Raggi et al, 2003; Becker et al 2001; McIntyre 

C, 2006). 

 

 

Figure 2.8   A 16- slice CT scanner      

(Somatom Sensation 16, Siemens) 
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Technical approaches to cardiac CT scanning 

There are two different technical approaches for cardiac CT acquisition: 

•  Prospective ECG triggered sequential scanning 

•  Retrospective ECG gated spiral scanning 

In both cases, an ECG is recorded and used to either initiate prospective image 

acquisition (ECG triggering), or to perform retrospective image reconstruction (ECG 

gating). In both cases, only diastolic images (taken at ~ 60 - 70% of the RR interval) 

are selected for image reconstructions, as these images have the least amount of 

motion.  However, with retrospective ECG gating each portion of the heart is imaged 

more than once while an ECG trace is recorded. The ECG is then used to correlate the 

CT data with their corresponding phases of cardiac contraction. Once this correlation 

is complete, only the images acquired in diastole (while the heart was at rest) are used, 

while most of the images recorded in systole are discarded. Thus, although 

retrospective ECG gating gives an even higher temporal resolution, this comes at the 

cost of a very high radiation dose of 10-15mSv. Prospective ECG gating reduces the 

radiation exposure to <1.2mSv, and this was used for all of the scanning performed in 

our studies. 

 
 
Imaging protocol 

i. The child, along with a parent, is taken to the CT scan room and the procedure, 

including breath-holding, explained.  

ii. The child is positioned on the CT table and correct placement within the gantry 

confirmed. 
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iii. A 3-lead ECG is obtained and continuously recorded so as to assess the child’s 

cardiac rhythm and heart rate and decide the optimal time for prospective ECG 

triggering (usually 60% of the RR interval).  

iv. The chest is imaged from the level of the carina to the bottom of the heart. A 

sequence of images through the diastolic phase of the cardiac cycle is acquired 

using subsecond CT scanning. The protocol we have used for calcium scoring 

with prospective ECG-triggered cardiac imaging is as follows: 

- 12 slice acquisition 
- 120 kV 
- 30 mAs 
- nominal slice width 3.0 mm 
- slice collimation 1.5 mm 
- gantry rotation time 0.42 sec  
- table feed 5.6 mm/rotation 

 
 
 

Radiation exposure  

Using the CT EXPO dose estimation software, the calculated effective radiation dose 

depending on the child's weight was as follows: 

• 22kg − 0.68mSv 
• 30kg − 0.61mSv 
• 40kg − 0.52mSv 
• 50kg − 0.43mSv 
• 60kg − 0.34mSv 
• 70kg − 0.25mSv 

 
 
For purposes of comparison, the background radiation in the UK is 2.2mSv per year 

(range for regional averages is 1.5 − 7.5mSv), a chest x-ray delivers a radiation dose 

of 0.1mSv and a standard CT chest or abdomen 8 – 10mSv. For this reason, CT scans 

were not performed in any of the healthy controls in my studies. 
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Normal cardiac anatomy 
 
 
The interpretation of cardiac CT scans requires a thorough knowledge of normal 

coronary artery anatomy. The non-opacified coronary arteries can be readily identified 

on CT because the lower CT density of periarterial fat produces marked contrast to 

blood in the coronary vessels, whereas the mural calcium is evident because of its 

high CT density relative to blood. Figure 2.9 shows the origin and course of the main 

coronary arteries in relation to important landmarks on a CT scan. 

 

Figure 2.9    Multi-slice CT scan images showing normal cardiac anatomy 

 

A. Origin of the left main coronary artery (LMCA) from the coronary sinus. 
B. Bifurcation of the LMCA into the left anterior descending (LAD) artery (top arrow) and the 

circumflex artery (bottom arrow). 
C. Origin of the right coronary artery (arrow on right). The circumflex artery (left arrow) is also 

seen in the same plane. 

 

A. B

C. D
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D. The LAD is seen passing between the pulmonary trunk and left atrial appendage. The 
proximal LAD, which travels horizontally, is seen in longitudinal section and the diagonal 
branch (DB) comes into view at this level. This branch traverses anterolateral aspect of left 
ventricle. Main pulmonary vessels are also seen. 

 
LMCA - left main coronary artery 
AAo - ascending aorta 
PT - pulmonary trunk 
LAA - left atrial appendage 
RSPV- right superior pulmonary vein 
LSPV - left superior pulmonary vein 
RPA - right pulmonary artery 
LPA - left pulmonary artery 
RAA - right atrial appendage 
 

 

 

 

Calcium scoring protocol 
 

Calcium scoring is based on the Agatston scoring algorithm (Agatston et al, 1990), 

which was originally developed for EBCT scoring. A CT threshold score of 130 

Hounsfield units (HU) is selected and a coronary score for each of four main 

epicardial coronary arteries (left main coronary artery, left anterior descending artery, 

circumflex artery and right coronary artery) is obtained. The score is generated by 

measuring the volume of coronary calcification (mm3) and multiplying it by a factor 

(between 1 and 4) based on the HU peak attenuation value of the lesion. The scores 

are stratified to a scale with 4 categories as defined by Rumberger et al (Rumberger et 

al, 1999) and shown in Table 2.1 below. A lack of calcification correlates with a lack 

of coronary artery disease (with a 95% negative predictive value), while a higher 

score can give a prognosis concerning risk from a myocardial event.  
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Table 2.1   Agatston scoring of Coronary Artery Calcification and its clinical 
significance 

Calcium Score Evaluation Clinical Significance 
no calcification Normal No risk of CHD 
1-10  minimal calcification stenosis unlikely  
11-100  moderate calcification  CHD possible 
101-400 intermediate calcification CHD with stenosis  
> 400  extensive calcification  high probability of significant stenosis 
 
 

I received training from Professor Mike Rubens, Department of Medical Imaging, 

Royal Brompton & Harefield Hospital NHS Trust, in interpreting cardiac CT scans. 

All CT images were stored on videotape and analysed in a blinded fashion by myself. 

Intraobserver and interobserver reproducibility of measurements were determined on 

10 randomly selected scans that were re-analysed in a blinded fashion by myself and 

Dr Melanie Hiorns, Radiology Consultant at Great Ormond Street Hospital. 

Intraobserver and interobserver variability was 2.8 and 4.9% respectively. 

 

Some images of coronary artery calcification that I found in the course of my studies 

are shown in Figure 2.10. 

 

Figure 2.10  Coronary and valvular calcification on 16-slice CT scans from 
children in my studies   
 

 

C.  B. A.

A. Calcification at the origin of the left main coronary artery (arrow). 
B. Calcification of the aortic valve. 
C. An incidental finding of sclerosing peritonitis. 
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Limitations of cardiac CT scans in evaluating coronary artery calcification 

Some limitations on the significance and reliability of calcium scoring by multi-slice 

CT include:  

• motion artefacts due to breathing – breath holding was tried in all patients but 

was not possible in the very young or in those with learning difficulties  

• cardiac motion related artefacts – current recommendations suggest that multi-

slice CT scans should not be performed if the heart rate is >90/min, but this is 

not possible with paediatric patients. This was overcome by using a shorter 

fraction of the R-R interval for image acquisition.  

• poor ECG gating – ECG gating is not possible in patients with arrhythmias. 

This was not an issue with any patients in this study. 

• poor visibility of coronary arteries – children, particularly if malnourished, 

have less epicardial fat, and so the vessels are less distinctly visible than in 

adults. 

• correlation with disease outcome - The role of coronary calcium scoring in 

children has not been studied against disease outcome nor correlated with 

findings on coronary angiography.  

• distinction between intimal and medial calcification is not possible. 

 

Coronary calcium scoring in CKD and dialysis patients 

While some earlier studies in dialysis patients hav developed a composite ‘calcium 

score’ from plain x-rays of multiple arteries (Blacher et al, 2001; London et al, 2003), 

subsequent studies have used EBCT to study prevalent and progressive vascular 

calcification (Raggi et al, 2007), as well as the impact of therapy, sevelamer vs 
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calcium-based phosphate binder medication, (Chertow et al, 2002; Block et al, 2004; 

Spiegel et al, 2007). Calcification scores have been correlated with mortality (Raggi et 

al, 2008; Blacher et al, 2001; London et al, 2003), with arterial compliance as 

measured by aortic PWV (Haydar et al, 2004; Raggi et al, 2007), and with bone 

mineral density (Raggi et al, 2007). However, controversy exists concerning the 

correlation of coronary artery calcification scores and the angiographic appearances of 

the vessels (Haydar et al, 2004; Sharples et al, 2004; Haberl et al, 2001).  The 

functional cardiovascular consequences of coronary artery calcification, including 

impaired microcirculatory function in chronic haemodialysis patients, have been 

described by McIntyre et al (McIntyre et al, 2007; Sigrist et al, 2008). Studies in 

children (Goodman et al, 2000; Eiffinger et al, 2000; Civilibal et al, 2006) and young 

adults (Goodman et al, 2000; Oh et al 2002; Briese et al 2006) have utilized EBCT 

and multislice CT scans to describe the prevalence and associations of coronary artey 

calcification with clinical and biochemical markers, and these have been described at 

length in chapter 1. 

 

 

 

 

 

 

 

 



   

 128

Section II – Biochemical assays 

Serum samples were collected from all patients and controls immediately prior to 

performing the vascular scans. In all patients blood samples were taken before a mid-

week session of haemodialysis or at a routine clinic visit for those on peritoneal 

dialysis. All serum samples were separated immediately upon collection and frozen at 

-80°C until used. 

 

I have received help from Mrs Vanita Shah, Senior Technician at the Institute of Child 

Health with the fetuin-A and hs-CRP assays. Both the vitamin D assays were 

performed in the Chemical Pathology Department at Epsom General Hospital by Mrs 

Michala Bridal, Technician. We have collaborated with Dr Gerd Hawa, Biomedica, 

Vienna, Austria and Dr Leon Schurgers, CARIM and VitaK, University of Maastricht, 

Maastricht, The Netherlands who have kindly performed the Osteoprotegerin and 

Matrix-Gla protein assays respectively using novel in-house antibodies. I am very 

grateful for all the help that I have received with these. 

 

2.1   Vitamin D assays 

25-hydroxyvitamin D assay 

25(OH)D levels were measured by enzymeimmunoassay (EIA) using the 

Immunodiagnostics Systems commercially available kit. 

The IDS 25-Hydroxy Vitamin D EIA kit allows for the quantitation of 25-OH D 

and other hydroxylated metabolites in serum or plasma. Calibrators, controls and 

samples are diluted with biotin labelled 25OHD. The diluted samples are incubated in 
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microtitre wells which are coated with a highly specific sheep 25OHD antibody for 2 

hours at room temperature before aspiration and washing. Enzyme (horseradish 

peroxidase) labelled avidin, is added and binds selectively to complexed biotin and, 

following a further wash step, colour is developed using a chromogenic substrate. The 

absorbance of the stopped reaction mixtures are read in a microtitre plate reader, 

colour intensity developed being inversely proportional to the concentration of 

25OHD. 

 

1,25-dihydroxyvitamin D [1,25(OH)2D] assay 

1,25(OH)2D levels were measured by radioimmunoassay (RIA) using the Diasorin 

commercially available kit. The assay involves a two-step procedure: a preliminary 

extraction followed by a subsequent purification of vitamin D metabolites from serum 

or EDTA plasma using C18OH cartridges. Following extraction, the treated sample is 

then assayed using a competitive RIA procedure. The RIA method is based on a 

polyclonal antibody that is specific for both 1,25(OH)2D2 and 1,25(OH)2D3.  

 

The sample, antibody and tracer are incubated for 2 hours at 20-25°C. Phase 

separation is accomplished after 20-minute incubation at 20-25°C with a second 

antibody precipitating complex. After centrifugation and decantation, the bound 

fraction remaining in the pellet is counted in a gamma counter. Values are calculated 

directly from a calibrator curve of known concentrations. The final concentration of 

the 1,25-(OH)2D is expressed as pg/ml. 
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2.2   High Sensitivity C-Reactive Protein (hs-CRP) 

Hs-CRP levels were measured by Enzyme Linked ImmunoSorbent Assay (ELISA) 

using a commercially available kit from Biomerica, Inc. CA, USA. The kit was used 

according to the protocol provided by the manufacturer. In brief, microtitre wells 

coated with mouse monoclonal anti-CRP antibody incubated with serum samples 

from each of the study groups diluted 1:100 and CRP standards supplied with the kit 

followed by CRP enzyme conjugated antibody.  After incubation for 45 minutes at 

room temperature, the wells were washed and substrate was added. A standard curve 

was generated by plotting logarithmic absorbance versus logarithmic human CRP 

concentration and the best fit line was determined by regression analysis.   

 

2.3   Fetuin-A assay 

Serum fetuin-A was measured by enzyme linked immunosorbent assay (ELISA) using 

a commercially available kit from Epitope Diagnostics, Inc. San Diego CA, as per the 

manufacturer’s instructions. Microtitre wells coated with a high affinity polyclonal 

goat anti-human fetuin-A antibody were incubated with serum samples from each of 

the study groups diluted 1:10 000; and commercial fetuin-A standards supplied with 

the kit. After incubation for 2 hours at room temperature, wells were washed and 

followed by peroxidase conjugated polyclonal anti-human fetuin-A antibody and 

substrate was added. A standard curve was generated by plotting logarithmic 

absorbance versus logarithmic human fetuin-A concentration and the best fit line was 

determined by regression analysis.  

The intra-assay and inter-assay coefficient of variation were < 5.5% and < 6.8% 

respectively. The reference range for healthy adults quoted by the manufacturer was 

0.5 – 1.0 g/l g, and the minimum sensitivity of the assay was 5.0 ng/ml.  
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2.4   Osteoprotegerin (OPG) assay 

OPG serum concentrations were analysed using an ELISA system from Biomedica 

(Vienna, Austria). In brief, a monoclonal IgG antibody was used as capture antibody 

and a biotin-labeled polyclonal antihuman OPG antibody as detection antibody. The 

immunoassay detects both free and complexed OPG, with an intra-assay and inter-

assay variability of 9% and 10%, respectively. 

 

2.5   Receptor Activator of Nuclear Factor κß Ligand (RANKL) 

RANKL levels were determined by ELISA (Biomedica) based on microtiter plates 

coated with OPG. Soluble RANKL (sRANKL) from the sample binds to the coated 

OPG and is detected by a biotin-labeled polyclonal anti-human sRANKL antibody. 

Intra-assay and inter-assay variations ranged from 3-5% and 6-9 % respectively. 

 

2.6   Undercarboxylated matrix γcarboxyglutamic acid protein (uc-MGP) 

Uc-MGP was measured according to the home-made ELISA developed at the vitamin 

K-research institute (VitaK BV, Maastricht, The Netherlands). In brief, the moAb uc-

MGP was coupled to the microtiter plate via R-M IgG (Dako, Heeverlee, Belgium) 

and the remaining sites blocked with 2% BSA in hepes buffer. After stringent 

washing, samples and standard were diluted in 2% HNBSA and supplemented with 

tracer (biotinylated 35-54 uc-MGP).One hundred µL of this solution were transferred 

to the microtiter plate and incubated overnight at 4°C. The plate was incubated with 

100 μL Streptavidine-peroxidase (Zymed, Breda, The Netherlands), and after washing 

stained with 100 μL TMB (KPL, Gennep, The Netherlands). The process was stopped 
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by adding 50 μL of 1.0 mol/L H2SO4, and the plate was read at 450 nm. The uc-MGP 

concentration was calculated with the aid of a calibration curve of synthetic full-

length uc-MGP. 
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Section III – Laboratory techniques  

 

2.1    Collection of human vessels  

Medium sized muscular arteries routinely removed and discarded in the course of 

planned intra-abdominal surgery were collected.  

 

Intact human arteries were obtained from the following 3 groups of patients: 

1. children in CKD stages IV and V just prior to initiating dialysis or at the time of 

performing a pre-emptive renal transplant (pre-dialysis group) 

2.  children receiving dialysis 

3. age-matched healthy controls without underlying inflammatory disease who were 

undergoing routine intra-abdominal surgery 

 

In order to keep the patient and control groups free of confounding pro-atherosclerotic 

risk factors, children with underlying inflammatory disorders, vasculitis, diabetes, 

dyslipidaemia or smokers were excluded. Informed written consent was obtained from 

all parents or caregivers and children, where appropriate. The study was approved by 

the local research ethics committee.  

 

The types of vessels used and the surgical procedures performed to obtain them are as 

follows: 

1.  Omental arteries  

At the time of insertion of a peritoneal dialysis catheter, omentectomy is routinely 

performed in children. The omentum is a highly vascular structure, and has numerous 

medium-sized muscular arteries. Also, a small piece of omentum was removed from 

disease-free controls at planned intra-abdominal surgery. 
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2.  Inferior epigastric artery 

 The inferior epigastric artery runs in the subcutaneous fat in the right iliac fossa just 

beneath and perpendicular to the surgical incision for a renal transplant. This vessel 

has to be dissected out and discarded so that the surgeon can reach deeper planes in 

the abdomen. 

 

3.  Mesenteric arteries 

A small (2-3cm) piece of mesenteric vessel was removed at planned intra-abdominal 

surgery (e.g. colostomy closure) in disease-free age-matched controls.  

Figure 2.11 A and B shows a sample of inferior epigastric artery and omentum 

obtained for this work. 

 

For the ex vivo and in vitro studies in chapters 7 and 8 in this thesis, I have obtained: 

- 24 inferior epigastric arteries (18 from dialysis patients and 6 from CKD Stage V 

pre-dialysis patients [GFR <15 ml/min/1.73m2]) 

- 14 omental arteries (6 dialysis, 4 pre-dialysis and 4 normal controls)  

- 2 mesenteric arteries (normal controls) were studied.  

 

The vessels were collected and transported in tissue culture medium (M199) that was 

stored at 4°C. Samples were dissected under sterile conditions in a tissue culture hood 

with laminar flow as follows: 

- surrounding fat and fibrous tissue were removed 

- the adventitia was gently stripped off 

- the vessel was cut into 1-2 mm rings so as to allow perfusion of the vessel in vitro  

Figure 2.11 C and D shows the dissection and incubation of vessels in vitro media. 
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Figure 2.11   Sample types, processing and in vitro culture conditions 
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A.  

B.  

C.  

D.  

A.    An inferior epigastric artery 
obtained at the time of renal 
transplantation. 
 
 
 
 
 
 
 
B.   Omentum obtained at the 
time of insertion of a peritoneal 
dialysis catheter. 
 
 
 
 
 
 
 
C.    The vessel is gently stripped 
of adventitia and cut into 1-2 mm 
rings. Typically 12 – 20 rings 
were obtained from each vessel. 
 
 
 
 
 
 
 
D.    Culture in in vitro calcifying 
media with graded concentrations 
of Ca and P. Vessel rings were 
typically cultured for 14 days and 
then harvested for measurement 
of Ca load in the vessel wall, 
ALK activity and  histology and 
immunohistochemistry. 
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Clinical and biochemical data  
 
The patients’ age, time in CKD stages IV and V and modality of dialysis were 

recorded. Cumulative biochemical parameters (serum Ca, P and intact parathyroid 

hormone [iPTH] levels) and the dosage of elemental calcium intake from phosphate 

binders and alphacalcidol (1-α hydroxycholecalciferol) therapy were recorded at 

monthly intervals over a 3-year period and expressed as mean time-averaged levels. 

For controls, results of a single blood test at the time of the study were used.  

 

 

2.2 In vitro culture of vessels  

 

Under sterile conditions, vessels were gently stripped of excess adventitia and cut into 

1mm rings. Approximately 12 – 20 rings were typically obtained from a single vessel. 

The vessel rings were placed in serum-free tissue culture medium with graded 

concentrations of Ca and P and incubated at 37°C in a 5% CO2 atmosphere. Serum 

was not added to the medium because it causes proliferation of smooth muscle cells. 

Using CaCl2 and NaH2PO4, graded concentrations of ionic Ca and P were added to the 

standard culture medium M199 to give 4 in vitro conditions: control medium (1mM P 

+ 1.8mM Ca), high P medium (2mM P + 1.8mM Ca) and a high Ca + P medium 

(2mM P + 2.7mM Ca). Vessel rings were incubated for 14 days in the above culture 

media for all experiments except the time-course studies that were performed at 7, 14 

and 21 days. 
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2.3 Measurement of calcium load in the vessel wall  

 

Vessel rings were washed in HBSS and decalcified in 0.1M HCl for 2 hours, with 

homogenisation of the tissue using a homogenizer. The Ca content of the supernatant 

was determined colorimetrically by the cresolphthalein method that was adapted from 

the method by Gitelman (1967). Briefly, a calcium chloride standard curve was 

diluted in 0.1M HCl. Water (30μL), ammonia buffer (200μL), and cresolphthalein 

solution (10μL) were added to the standard and samples (50μL) and the absorbance 

read immediately at 562nM. The linear line generated from the standard curve was 

used to calculate an equation in order to obtain an accurate value for the calcium load 

in each vessel ring. The final Ca load in the vessel ring was standardized for the 

protein content in that ring. 

 

 

2.4 Measurement of alkaline phosphatase activity in the vessel wall  

 

Vessel rings were washed in HBSS and lysed in 10% SDS for 1 hour with 

homogenisation of the tissue using a homogenizer. The entire experiment was carried 

out on ice, as ALK is a heat labile enzyme. Dilutions of p-nitrophenol for the 

calibration curve were prepared using 0.02M NaOH. The stock substrate was prepared 

with a 100mg capsule diluted in 25ml H20. 50μL of supernatant of the 10%SDS was 

mixed with 50μL of Alkaline buffer solution (Sigma) and 50μL of the prepared stock 

substrate solution and incubated at 37˚C for exactly 15 mins. The reaction was 

stopped by neutralising with 0.5ml 0.5M NaOH.  100μL of each reaction and the 

standard curve was aliquoted onto a 96 well plate and absorbance read at 420nM. The 

linear line generated from the standard curve was used to calculate an equation in 
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order to obtain an accurate value for the ALK activity in each vessel ring. The final 

ALK activity in the vessel ring was standardized for the protein content in that ring. 

 

 

Measurement of the protein content in the vessel wall  

 

Using the vessel rings after lysis with HCl or NaOH in the Ca and ALK experiments 

described above, were washed and then homogenised with 100μL of 0.1M NaOH in 

1% SDS for 1 hour. Using commercially available standard solution (BioRad) a 

standard curve was prepared. The supernatant from each reaction was plated onto a 

96-well plate and the absorbance read at 710nM.  

The final Ca load and ALK activity in the vessel ring was standardized for the protein 

content in that ring. 

 

 

2.5    Histology and Immunohistochemistry  

 

A vessel ring from each patient was snap frozen at baseline and after incubation in the 

various tissue culture media for varying lengths of time as described above. Detailed 

procedures for each histology and immunohistochemical preperation are described below. 

Slides were viewed on an Olympus BX51 light microscope and images were captured 

digitally using an Olympus TV1-X digital camera and analySIS software (Soft Imaging 

System GmBH).  

A.   Harris’ Haematoxylin. Sigma HHS-32 
1. De-wax sections and rehydrate through graded alcohols to Milli-Q. 
2. Place slides in haematoxylin solution for 5 minutes. 
3. Briefly dip slides 10 times in destain solution. 
4. Place slides in Scott’s solution to “blue” for 5 minutes. 
5. Place slides in Eosin solution for 6 minutes. 
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6. Quickly rinse in Elix-10. 
7. Rapidly dehydrate through graded alcohols to two changes of xylene. 
8. Coverslip and mount with DEPX. 
 
B.  Von Kossa Stain for Calcium Salts 
1.  Place sections in water. 
2.  Incubate sections in 2% Silver Nitrate Aqueous Solution for 1 hour under a bright   

light. 
3.   Wash in three changes of distilled water. 
4.   Incubate sections in 3% aqueous Sodium thiosulphate solution for 3 mins. 
5.   Wash in two changes of tap water for 5 mins each. 
6.   Counterstain with 1% Neutral Red Aqueous solution for 3 – 4 mins. 
7.   Quickly dehydrate through graded alcohols and clear in two changes of xylene. 
8.   Mount in DEPX. 
 
C.  Ki-67 
1.   Bring sections to water. 
2.   Place slides in 0.5% H2O2/methanol for 10 minutes. 
3.   Wash in running tap water for 10 minutes. 
4.   Pre-boil 1mM EDTA, pH8 in the microwave. 
5.   Place slides in heated EDTA and maintain sub-boil for 10 minutes. 
6.   Carefully remove slides and plunge into tap water. 
7.   Wash in PBS 2 x 5 minutes. 
8.   Block sections with 5% Goat/PBS for 10 minutes. 
9.   Tip off excess serum. 
10.   Incubate sections with 1° @ 1:100 @ 25°C for 1 hour. 
11.   Repeat step 7. 
12.   Incubate slides with Dako 2° Goat anti mouse biotin @ 1:400/PBS for 30 mins. 
13.   Repeat step 7. 
14.   Incubate slides with RTU ABC Reagent for 30 minutes. 
15.   Repeat step 7. 
16.   Visualize with DAB Solution, monitor closely with a microscope. 
17.   Wash well in water. 
18.   Counter stain and mount as required. 
 
D.  TUNEL (TdT-mediated dUTP-biotin nick end labelling) 
1.  Tissue samples are fixed in 4% buffered formaldehyde pH 7.5. 
2.  Specimens are embedded in paraffin wax. 
3.  4 – 6 micrometre paraffin sections are adhered to subbed slides. 
4.  Samples are deparaffinised in xylene. 
5.  Rehydrate in descending series of xylene solutions (100%, 70%). 
6.  Rinse in tap water, then in DDW. 
7.  Incubate with 50μg/ml Proteinase-K (PK), 3-5min/RT, pH 7.5 
8.  Wash in DDW for 2 minutes x 4 times. 
9.  Immerse in TdT buffer (potassium cacodylate, 200mmol/l, Tris-HCl 25mmol/l, 
bovin serum albumin 0.25mg/ml, pH 6.6 at 25˚C, cobalt chloride 5mmol/l for 5 mins. 
10.  Tip off excess TdT buffer. 
11.  Incubate with TdT enzyme (0.05 – 0.2U/μl) + Digoxigenin-dUTP in TdT buffer 
in humid atmosphere at 37˚C for 30 mins. 
12.  Terminate the reaction by transferring the slides to TB buffer. Rinse in DDW. 
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13.  Place slides in 0.1M Tris buffer, pH = 7.6 for 5 mins. 
14.  Cover sections with 10% FCS or BSA in TBS (blocking buffer) for 10 mins. 
15.  Incubate with anti-digoxigenin-alkaline phosphatise (anti-sheep F’ab fragments) 
in blocking buffer, 1:100 for 1 hour. 
16.  Rinse with TBS for 5 mins. 
17.  Incubate with chromogenic substrate solutions for alkaline phosphatise either 
BCIP/NBT (bluish purple) or Fast Red. 
18.  Rinse in DDW. 
19.  Counterstain if necessary. 
20. Mount sections using aqueous mounting medium. 
 
E.     CD68 
1. Sections to water. 
2. Microwave in pre-boiled citrate buffer pH6, 2 x 10 minutes on med/high. 
3. Cool to room temperature. 
4. Wash in two changes of PBS for 5 minutes each. 
5. Block with 1% hydrogen peroxide in methanol for 30 minutes. 
6. Wash in running tap water for 5 minutes. 
7. Repeat step 4. 
8. Incubate sections with Proteinase K solution for 10 minutes at room temp. 
9. Repeat step 4. 
10. Incubate sections with 5% horse serum for 30 minutes. 
11. Tip off excess and blot carefully around the sections. 
12. Incubate sections with the primary antibody @ 1:50 in 5% horse serum for 2 

hours at room temperature. 
13. Repeat step 4. 
14. Incubate sections with the secondary antibody, Vector horse anti mouse, @ 

1:400 in PBS for 30 minutes. 
15. Repeat step 4. 
16. Incubate sections with ABComplex for 30 minutes. 
17. Repeat step 4. 
18. Incubate sections with DAB solution (Vector Kit SK-4100). Monitor reaction 

closely using the microscope. 
19. Wash in two changes of Milli-Q for 5 minutes each. 
20. Counterstain as required. 
21. Dehydrate, clear in two changes of xylene. 
22. Coverslip and mount with DEPX.   
 
F.  Alpha Smooth Muscle Actin 
1. Sections to water. 
2. Microwave in preheated citrate buffer pH6 for 2 x 10 minutes on med/high. 
3. Place in running tap water for 10 minutes. 
4. Wash twice for 5 minutes each in PBS. 
5. Block with 1 % hydrogen peroxide in methanol for 15 minutes. 
6. Wash in running tap water for 5 minutes. 
7. Repeat step 4. 
8. Incubate sections with 5% horse serum in PBS for 30 minutes. 
9. Tip off excess serum and carefully blot around the sections. 
10. Incubate sections with primary antibody @ 1:500 in 5% horse serum for 1 hour. 
11. Repeat step 4. 
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12. Incubate sections with secondary antibody, Vector biotinylated horse anti mouse 
@ 1:400 in PBS for 30 minutes. 

13. Repeat step 4. 
14. Incubate with ABComplex for 30 minutes. 
15. Repeat step 4. 
16. Incubate sections with DAB solution, Vector Kit SK-4100. Monitor reaction 

closely using the microscope. 
17. Wash in two changes of Milli-Q for 5 minutes each. 
18. Counterstain as required, dehydrate and clear in two changes of xylene. 
19. Coverslip and mount with DEPX. 
 
G.  Cbfa 1 / runx2 
1.     Sections to water. 
2.     Microwave in citrate buffer pH6 until boiling, then for 10 minutes on med/high. 
3.     Cool to room temp. 
4.     Wash in PBS buffer 2 x 5mins. 
5.     Block with .3% hydrogen peroxide in H2O2 for 15mins. 
6.     Wash in PBS buffer 2 x 5mins. 
7.     Block with 10% Goat serum/PBS for 30 mins. 
8.     Incubate with 1º @ 1:100 in 10% Goat serum/PBS overnight @ 4°C 
9.     Wash in PBS 2 x 5mins. 
10.   Incubate with 2º biotinylated Goat anti Rabbit (Dako) @ 1: 200 
11.   Wash in PBS 2 x 5mins. 
12.   Incubate with  ABC as for 30 mins 
13.   Wash in PBS  2 x 5mins. 
14.   Incubate with DAB solution and monitor reaction under the microscope. 
15.   Wash in distilled water. 
16.   Counterstain and mount as required.  
 
H.   Osterix 
1.     Sections to water. 
2.     Microwave in citrate buffer pH6 until boiling, then for 10 minutes on med/high. 
3.     Cool to room temp. 
4.     Wash in PBS buffer 2 x 5mins. 
5.     Block with .3% hydrogen peroxide in H2O2 for 15mins. 
6.     Wash in PBS buffer 2 x 5mins. 
7.     Block with 3% BSA for 30 mins. 
8.     Incubate with 1º @ 1:100 in 3% BSA/PBS overnight @ 4°C 
9.     Wash in PBS 2 x 5mins. 
10.   Incubate with 2º biotinylated Goat anti Rabbit (Dako) @ 1: 400 
11.   Wash in PBS 2 x 5mins. 
12.   Incubate with ABC as for 30 mins 
13.   Wash in PBS 2 x 5mins. 
14.   Incubate with DAB solution and monitor reaction under the microscope. 
15.   Wash in distilled water. 
16.   Counterstain and mount as required.  
 
I.     Fetuin 
1.    Take sections to water. 
2.    Place slides in Citrate buffer pH6 and microwave on high for 12 minutes 
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3.    Remove from the microwave and leave to cool for 20 minutes. 
4.    Wash in dH2O for 5 minutes. 
5.    Wash in two changes of PBS for 5 minutes each. 
6.    Place slides in 3% Hydrogen peroxide/dH2O for 10 minutes. 
7.    Repeat steps 4 and 5. 
8.    Incubate slides with 5% Goat serum in PBS for 1 hour at room temperature. 
9.    Tip off excess serum and incubate with 1° @ 1:200/5% serum @ 4°C overnight. 
10.   Repeat step 5. 
11.   Incubate sections with Dako 2° Goat anti Rabbit @ 1:400 for 30 minutes. 
12.   Repeat step 5. 
13.   Incubate sections with ABC reagent for 30 minutes. 
14.   Repeat step 5. 
15.   Visualize with DAB solution, monitor reaction with a microscope. 
16.  Wash well in water. 
17.  Counter stain and mount as required.  
 
J.   Annexin 6 
1.   Sections to water 
2.   Microwave in citrate buffer pH6 until boiling, then for 10 minutes on med/high. 
3.   Cool to room temp. 
4.   Wash in PBS buffer 2 x 5mins. 
5.   Block with .3% hydrogen peroxide in H2O2 for 15mins. 
6.   Wash in PBS buffer 2 x 5mins. 
7.   Block with 5% Goat serum/PBS for 30 mins. 
8.   Incubate with 1º @ 1:500 in 5% Goat serum/PBS overnight @ 4°C 
9.   Wash in PBS 2 x 5mins. 
10.  Incubate with 2º biotinylated Goat anti Mouse (Dako) @ 1: 400 
11.  Wash in PBS 2 x 5mins. 
12.  Incubate with  ABC as for 30 mins 
13.  Wash in PBS  2 x 5mins. 
14.  Incubate with DAB solution and monitor reaction under the microscope. 
15.  Wash in distilled water. 
16.  Counterstain and mount as required.  
 

2.6    Transmission Electron microscopy (TEM) 

TEM was performed to examine cell morphology, localization of calcification, vesicle 

release and mineral deposition. Blood vessels were fixed by immersion in 4% 

glutaraldehyde containing 2mmol/l CaCl2 in 0.1M PIPES buffer at pH 7.4. 100μl 33% 

H2O2 was added to each 10 ml aliquot immediately before use. They were fixed for 4 

hours at 4°C, washed twice in buffer (0.1M PIPES) and stored at 4°C. After buffer 

washes they were post-fixed in 1% osmium ferricyanide for 1 hour, rinsed 3 time in 

water and bulk stained in 2% uranyl acetate for 1 hour. They were rinsed in water and 
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dehydrated in an ascending series of ethanol solutions to 100% ethanol, rinsed twice 

in acetonitrile and embedded in Quetol epoxy resin. 9.0g Quetol 651, 11.6g 

nonenylsuccinic anhydride (NSA), 5.0g methylnadic anhydride (MNA) and 0.5g 

benzyl dimethylamine (BDMA). Fifty nanometre sections were cut on a Leica 

Ultracut UCT, stained with saturated uranyl acetate in 50% ethanol and lead citrate 

and viewed in a FEI Philips CM100 operated at 80kv.  

 

2.7    RNA extraction and PCR for cDNA 

To study the relative amounts of osteogenic transcription factor cbfa-1 / runx2 

expression in pre-dialysis and dialysis vessels and to correlate it with the veseel Ca 

load, total RNA was extracted from all the vessels harvested. The vessel rings of 1-

2mm thickness were frozen at -80˚C until used. The median weight of the vessel was 

5.4mg (range 1.6 to 31mg).  

 

Techniques for RNA extraction 

RNA extraction was initially attempted using the RNeasy fibrous tissue kit from 

Qiagen, that utilizes a proteinase K digest to remove protein and is recommended for 

fibrous tissue such as aorta, heart and skeletal muscle. A very low yield of RNA was 

obtained and I then tried the TRIZOL method from Invitrogen.  Both of these 

methods recommend using 10 – 50 mg of tissue for the RNA extraction, and the very 

small sample size made the techniques extremely difficult. 

 

TRIZOL (Invitrogen) technique for RNA extraction 

TRIZOL is a monophasic solution of phenol and guanidine isothyocyanate. During 

the homogenization and lysis phases, TRIZOL maintains the integrity of the RNA, 
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while at the same time disrupting cells and dissolving cell components. Briefly, the 

vessel ring was homogenized in 1ml of TRIZOL reagent using repeated cycles with a 

power homogenizer until the tissue was well homogenized. The sample was left on 

ice for 40 mins, and then the supernatant carefully transferred to a separate container 

and incubated at 15 - 30˚C for 5 mins to complete dissociation of nucleoprotein 

complexes.  Chloroform (0.2ml) was then added and the samples centrifuged to 

separate the solution into an aqueous phase that contains RNA and an organic phase. 

RNA was recovered from the aqueous phase by precipitation with 1ml of isopropyl 

alcohol. The RNA pellet was washed with 75% ethanol and then resuspended in 10μl 

of RNase free water.  

 

Sample purity and DNA extraction 

Purity of the RNA extracted was checked on a ‘nanodrop’, and this showed 

significant contamination with genomic DNA and protein (A260/A280 ratio <2). 

Hence DNase treatment (Promega) of the RNA was performed prior to performing 

RT-PCR. Briefly, DNA was digested with 5U DNase, 20U RNase inhibitor, 50mM 

Tris-HCl, 1mM MgCl2 at 37˚C for 1 hour to remove any contaminating genomic 

DNA.  

 

RNA yield and attempts at optimization 

The RNA yield after DNAse treatment was very low, and every attmpt was made to 

optimise this by: 

- Using fresh tissue (within 2 hrs of harvesting the sample) 

- Taking every care to prevent RNase contamination 



   

 145

- Homogenisation and lysis of the rings using more cycles of high-speed 

centrifugation with magnetic beads, so as to increase extraction of RNA 

- Dissolving the final RNA pellet in a minimal amount of RNase free water  

Despite all of these measures, the RNA yield was only a median of 1.2 (0.02 to 2.1) 

μgm. RNase samples were stored at -80˚C until further use. 

 

Pooling of RNA samples before cDNA synthesis 

Given the very low yield of RNA, we decided to pool samples from normal controls, 

pre-dialysis patients, dialysis patients with von kossa positivity and dialysis patients 

without von kossa positivity. After pooling, the total amounts of RNA in each of the 4 

groups was 10.7, 81.7, 17.9 and 65.5 μgm respectively. However, despite the DNase 

treatment, the samples were of very low purity (A260 / A280 ratios on nanodrop = 1.2 

to 1.6) indicating that contamination with proteins was still present.  

 

Synthesis of cDNA 

The SuperScript III First-Strand Synthesis System (Invitrogen) was used for reverse 

transcription to yield cDNA. The total RNA from the pooled samples above was 

reverse transcribed in a reaction mixture containing 100ng oligo dT primer, 10U 

RNase inhibitor, 0.1mM each of dNTPs (ATP, CTP, GTP and TTP) and 400U reverse 

transcriptase (Promega) in a 1x commercial enzyme reaction buffer at 42˚C for 1 

hour. Sample cDNAs within an experiment were standardized using non-saturated 

amplification of a control house-keeping gene β-microglobulin that remains the same 

between samples.  

 

Amplification of cDNA – the polymerase chain reaction 
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PCR amplification was used to investigate the relative expression of mRNA 

transcripts for the osteochondrocytic transcription factor cbfa-1 / runx2 using the 

Platinum Taq DNA Polymerase High Fidelity kit from Promega.  

Each PCR reaction mix contained 2μl of 10x PCR buffer, 1μl of 50mM MgCl2, 2.5μl 

of 1.25mM solutions of dATP, dCTP, dGTP and dTTP, 2.5μl each of 10 μM solutions 

of forward and reverse primers, 0.5μl og Taq polymerase, DNA template and milliQ 

water to a final volume of 20 μl. The reactions were set up under PCR conditions and 

the final component added was Taq polymerase, which was added on ice. The PCR 

reaction was run in a PCR block (Biometra). For the cbfa-1 gene amplification the 

PCR cycling conditions used were 60˚C annealing temperature and 35 cycles.  The 

PCR readouts showed that there was a high contamination with genomic DNA, and to 

try and improve the yield, cDNA was amplified to 50 cycles as well. Given 

difficulties with a very low yield, PCR or 18S were also run on the pooled samples. 

 

PCR products were electrophoresed on a 1.5% agarose gel containing ethedium 

bromide and visualised using a UV transilluminator.  

 

 

Section IV - Statistical analysis  

Detailed statistical analysis performed in each study in this thesis is described in the 

relevant chapters. 

 

 

Section V - Ethical approval  

All studies presented in this thesis were approved by the Institute of Child Health and 

Great Ormond Street Hospital research ethics committee (documents attached in 

Appendix C).  
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3.1    Abstract 

In this chapter I have described the outcome data since 1984 of children receiving 

chronic dialysis at Great Ormond Street Hospital for ≥ 3 months with a minimum 

follow-up of 5 (median 7.2) years. 

 

There were 98 children (61 male), with a median age at start of dialysis of 4.2 (range 

birth to 16.2) years. Twenty-one children started dialysis when ≤1 year age while 54 

were ≤5 years age at start of renal replacement therapy. The median time on dialysis 

was 1.4 (0.3 – 14.4) years. In 80 children the initial mode of dialysis was PD. 53 

children received a renal transplant, but 21 (39%) returned to dialysis. An 

improvement in PTH control was seen with 80% of patients having PTH levels within 

twice the upper limit of normal range at follow-up as compared to 15% at start of 

dialysis. There was a trend towards improvement in weight and height standard 

deviation scores on dialysis. 

 

There were 17 deaths over the 20-year study period; of these 10 died on dialysis. The 

overall patient survival was 83 %. Amongst the survivors, 84% have a functioning 

graft while 14% remain on dialysis. The mortality rate was 2.7 times greater in 

children who required renal replacement therapy under the age of 1 year. Only one 

death was from cardiovascular causes (congestive cardiac failure).  

 

In conclusion, the very low incidence of cardiovascular mortality in our population 

highlights the importance of maintaining a tight control on PTH levels throughout the 

course of CKD and on dialysis. 
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3.2   Introduction 

Paediatric patients have been taken onto dialysis treatment for the last 30 years and 

comprise approximately 2% of any national dialysis programme (USRDS, 2003). 

Despite this, long-term outcome data for this group are scarce, reflecting the relatively 

small numbers involved and the difficulties in tracking these patients beyond 

adolescence. There is an increasing awareness that cardiovascular disease begins early 

in the course of CKD (Kari et al, 2004, Groothoff et al 2005) and is present even in 

children on dialysis (Shroff et al, 2007, Litwin et al, 2005, Goodman et al, 2000). 

Moreover, CKD patients now seldom die of uraemic complications, but far more 

commonly from cardiovascular disease (Foley et al, 1998), and this is true of 

paediatric dialysis patients as well  (Parekh et al, 2002; Chavers et al, 2002; Oh et al, 

2000). 

In this chapter I have reviewed our experience of 20 years of paediatric dialysis and 

described the long-term outcome, with particular emphasis on survival and causes of 

death in this group. Also, PTH control and growth, a possible surrogate marker of 

adynamic bone disease, has been evaluated. 

 

3.3   Methods 

A dialysis programme for children under 5 years of age was started at Great Ormond 

Street Hospital in 1984, with the first patients starting peritoneal dialysis (PD) and 

haemodialysis (HD) in 1984 and 1985 respectively. In this chapter I have described 

the outcome of all children under 18 years of age with CKD who have received 

chronic dialysis (defined for the purpose of this study as dialysis for a continuous 

period of ≥ 3 months), with a minimum follow-up of 5 years. 
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Patients 

Between January 1984 and December 1998, 98 children (61 boys) received chronic 

peritoneal or haemodialysis at Great Ormond Street Hospital for Children. The 

primary diagnoses were as follows: renal dysplasia (32), posterior urethral valves 

(17), congenital nephrotic syndrome (12), focal segmental glomerulonephritis (9), 

bilateral Wilm’s tumour (4), cystinosis (4), cortical necrosis (3), Alport’s syndrome 

(3), nephronophthisis (3), autosomal recessive polycystic kidney disease, post-

streptococcal acute glomerulonephritis, atypical haemolytic uraemic syndrome and 

glomerulosclerosis in 2 cases each, nephrocalcinosis of unknown etiology in one case 

and metabolic disorders with end-stage renal involvement (Methylmalonicacidaemia 

and Lesch-Nyhan syndrome) in one case each. 

 

Data collection  

Through a retrospective review of case-notes I collected the following information:  

1) Demographic data: diagnosis, associated comorbid factors and age at the start of 

renal replacement therapy (RRT). 

2) Details of the dialysis regimen used:  the index course of dialysis, switches 

between dialysis modalities, duration of dialysis therapy before transplantation 

and return to dialysis after a failed transplant. 

3) Outcome measures on dialysis: anthropometric data, PTH levels, and 

developmental outcome were reviewed in all children. Changes in standard 

deviation scores (SDS) for weight and height were calculated. As part of a larger 

study, the developmental progress of all the children was determined during the 

pre-transplant work-up, but will not be discussed further in this chapter. 
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4) Follow-up: All children were followed-up for a minimum period of 5 years from 

initiation of dialysis with final follow-up up to 31st December 2003. Details 

regarding current dialysis modality or transplantation after transfer to adult units 

were obtained through telephonic queries. Mortality data, including the cause of 

death and any association with comorbidity was reviewed through death 

certificates wherever available. 

 

Statistical analyses 

Statistical analysis for growth variables (expressed as mean and standard deviations) 

was performed in all children, comparing values at the start of dialysis treatment with 

final levels (measured at the time of renal transplantation or last follow-up) using the 

paired t test. Kaplan-Meyer survival analysis was performed for the entire cohort as 

well as for those starting dialysis under the age of five years. 

 

3.4 Results 

 

Incidence 

Ninety-eight children (61 males) have received chronic peritoneal or haemodialysis at 

Great Ormond Street Hospital between January 1984 to December 1998. Thus, on 

average 5.7 new patients required RRT each year. With the merging of children’s 

renal services in 1996 there has been a considerable expansion in our dialysis 

programme with 45 new cases requiring dialysis between January 1996 to December 

1998: 11.2 new cases per year.   
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Co-morbidity 

Significant co-morbidity was present in 30 children. Five infants were born 

prematurely at ≤ 32 weeks gestation. None of the premature babies had pulmonary 

hypoplasia. An antenatal diagnosis of obstructive uropathy was made in 28 fetuses; an 

intra-uterine vesicostomy was attempted twice in one fetus. Details of the co-morbid 

conditions and their impact on patient outcome are not directly relevant to this thesis 

and have not been discussed further, but have been presented in the publication 

‘Long-term outcome of chronic dialysis in children’ attached in Appendix A. 

 

Details of RRT  

The median age at the start of dialysis was 4.2 (range birth to 16.2) years, with the 

youngest patients starting PD and HD from day 1 and day 16 of life respectively. 

Twenty-one children were under 1 year, and 33 were between 1-5 years age. Of the 98 

patient cohort, 80 received PD as the index course of dialysis – only 3 of 21 children 

(14.3%) under 1 year of age were started on HD, and 9 of 54 under 5s (16.6%) started 

HD as the index course of dialysis. There were a total of 54 switches between dialysis 

modalities with a maximum of 5 switches in one patient. HD was principally used as a 

backup for PD in most cases, with HD used only transiently in the majority. The 

median duration on PD before peritoneal membrane failure was 3.9 (1.9 – 7.3) years. 

The median time on dialysis was 1.4 (0.3 – 14.4) years, giving the centre a total 

dialysis experience of 296 patient-years. Figure 3.1 shows the incident RRT modality, 

switches between RRT and the outcome at final follow-up. 
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Of the 98 children, 88 (90%) received a renal transplant; 29 (33%) live related. 

Twenty-one of the 68 transplanted patients (31%) returned to dialysis. The median 

transplant survival was 10.1 (0.1 – 18+) years:  14.8 (0.1 – 18+) years for a live-

related transplant and 7.2 (0.1 – 18+) years with a cadaveric transplant. In total there 

were 115 transplants in 88 patients, with 19 patients having received their second 

grafts, and 4 their third grafts before transfer to an adult unit.  

 

 

Figure 3.1     

D ialysis 98

(80 PD  : 18 H D )

C hange in dialysis 
m odality   38  
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1

D eath
6

Transplant
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D ialysis
11

A t final follow -up

Functioning graft -24
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Long-term outcome of chronic dialysis in children 

 

Outcome Measures on Dialysis 

Growth 

Transplant 
       68 
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lost to f/u  2
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  17
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The changes in median weight and height SDS (SDS at the start of dialysis treatment - 

final SDS [measured at the time of renal transplantation or final follow-up]) are 

shown in Figure 3.1. The median weight SDS was –2.8 (1.0 to – 4.2) at the start of 

dialysis and –1.7 (3.6 to – 4.0) pre-transplant or at final follow-up. The median height 

SDS (analysed only for children who received dialysis for ≥6 months, n = 78) 

improved from – 2.8 (1.9 to – 5.0) at the start of dialysis to –1.9 (range 0.8 to – 4.8).  

Predictably the height deficit was most severe in the youngest patients - the baseline 

height SDS was –3.6 (1.1 to –5.0), but linear growth was maintained with final height 

SDS of – 2.6 (0.2 to –4.2). The change from baseline in height deficit (ΔZ-score) was 

0.5 (0.9 to –1.1) for the overall population. For patients with the most severe height 

deficit at the onset of dialysis (SDS ≥-2), greater catch-up growth was seen (median 

ΔZ-score = 0.8, 1.1 to –1.4). None of the patients received growth hormone. 

Figure 3.2   Change in height (A) and weight (B) standard deviation scores  
 ΔSDS = SDS at the start of dialysis treatment - final SDS (measured at the time of renal 
transplantation or final follow-up). Values on dialysis are shown by solid lines and those post-
transplant by dotted lines. ΔSDS for height has been calculated for those on dialysis for a minimum 
period of 6 months, n = 78. 

 

 

 

 

 

 

 

 

 

-6

-4

-2

0

2

4

6

0 5 10 15 20

g

6
5
4
3
2
1
0
1
2

0 5 10 15 20

A.  

B.  

 

1 
 
 
 

-1 
 

-2 
 

-3 
 

-4 
 

-5 
 

3 

2 

 
1 

 
 

-1 

-2 

-3



   

 155

PTH 

 Intact PTH assay was performed serially in 91 patients (available from April 1989).  

As the PTH assay has changed during the study period, the levels have been 

expressed as within twice the upper limit of the normal range (ULN). The measured 

intact PTH was less than twice the ULN in 15 children when dialysis was started and 

in 80 children at final follow-up or pre-transplantation. PTH levels were better 

controlled in the children who predominantly received PD than in the group who were 

on haemodialysis for the majority of their renal replacement therapy: 58 of the 69 

(84%) of the PD population had a PTH level within twice ULN at final follow-up or 

pre-transplantation while 15 of the 22 (70%) on haemodialysis achieved PTH levels 

within twice ULN. 

 

Mortality 

There were 17 deaths over the study period. The overall patient survival was 92% at 1 

year, 88% at 5 years and 84% at 10 years from the index case of dialysis. Ten deaths 

(59%) occurred on dialysis (7 on PD) and 7 following transplant.  Six (35%) had 

never been transplanted.  

The median age at death was 5.9 (0.8 – 18.6) years. Six (35%) of these children had 

started dialysis before their first birthday, and 13 of the 17 (76%) started dialysis 

before the age of 5 years (Figure 3.3). In those patients starting dialysis ≤1 year of 

age, the 5-year survival was 72%; a 2.7 times higher relative risk of death than in the 

overall population.  

Table 3.1 describes the causes of death and associations with comorbidity, age at start 

of dialysis and age at transplant.  
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Figure 3.3   

 

Long-term survival of children based on age at start of RRT 

 

 

Follow-up 

The median follow-up time was 7.2 (5 – 18.6) years from initiation of dialysis. One 

patient returned to his native country following transplantation and has been lost to 

follow-up. During this study period 27 patients were transferred to adult units. 

Following transfer 10 received a renal transplant. One patient died soon after transfer.  

At final follow-up the overall survival was 83%. Of the survivors, 68 (84%) have a 

functioning graft, 11 (14%) remain on dialysis, 1 patient is conservatively managed 

and 1 has been lost to follow-up. 
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Table 3.1   Causes of death (in ascending age order of starting dialysis) 

Patie
nt no. 

Diagnosis Comorbidity Age at 
start of 
dialysi

s 

(yrs) 

Age at 
previous 
transplan

t (yrs) 

Age 
at 

death 

(yrs) 

Cause of death Duration of 
dialysis 

(yrs) 

Deaths on dialysis 

1 Dysplasia Severe developmental 
delay, blindness, 
hypothyroidism  

0.0 - 1.1 Mesenteric 
infarction with 
bowel necrosis 

1.1 

2 Congenital 
Nephrotic Synd 

Developmental delay 0.1 - 1.8 Encephalopathy 
with ischaemic 
infarction 

1.7 

3 Posterior urethral 
valves 

- 0.3 1.7 4.5 Peritonitis 0.6 

4 Dysplasia Alagille’s syndrome 
with portal 
hypertension 

0.4 - 1.5 Sepsis/pneumonia 1.3 

5 Glomerular 
sclerosis 

Developmental delay 1.1 - 1.7 Pulmonary oedema 0.6 

6 Posterior urethral 
valves 

- 1.2 1.8 and 4 8.3 Cardiac failure 1.3 

7 Dysplasia - 3.2 11.9 18.6 Intracranial bleed 13.2 

8 Focal segmental 
glomeruloscleros
is 

Spondyloepiphyseal 
dysplasia 

3.7 - 6.6 Ischaemic 
encephalopathy 

2.8 

9 Glomerular 
sclerosis 

Hepatosplenomegaly 
? storage disorder 

4.1 - 7.2 Sepsis 3.1 

10 Autosomal 
recessive 
polycystic 
kidney disease 

Hepatic fibrosis with 
oesophageal varices 

9.7 10 15.2 Hepatic 
encephalopathy and 
sepsis 

5.5 

Deaths post renal transplant  

11 Posterior urethral 
valves 

Immunodeficiency 0.2 1.5 3.6 Epstein Barr 
viraemia 

 

12 Congenital 
Nephrotic Synd 

Developmental delay 2.0 3.0 3.1 Gastric haemorrhage  

13 Wilms Chemotherapy 2.0 5.1 5.2 Sepsis  

14 Congenital 
Nephrotic Synd 

Microcephaly, 
cerebral palsy 

2.3 3.9 12.7 Aspiration 
pneumonia 

 

15 Focal segmental 
glomeruloscleros
is 

- 13.6 14.7 15 Recurrent FSGS, 
varicella 
encephalopathy, 
cerebral h’hage 

 

16 Wilms Chemotherapy 14.1 14.7 14.9 Metastatic Wilms   

17 Methylmalonic 
acidemia 

Multisystem disorder 15.4 17.1 (liver 
+ kidney) 

17.5 Hepatic failure  
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3.5     Discussion 

In this single-centre 20-year longitudinal outcome study I have shown three important 

points: a younger age at the start of renal replacement therapy is related to poor 

outcome, that there is a trend towards improved height and weight SDS on dialysis 

and most importantly, that maintaining a tight control on PTH levels throughout the 

course of CKD and on dialysis may be associated with the low cardiovascular 

mortality seen in our population. 

 

Despite the improved survival of children and adolescents with end-stage renal 

disease, there are few long-term outcome data available. Longitudinal outcome 

studies on large numbers of patients are required to allow informed decision making 

by clinicians and the involved families. The UK Renal Registry (6th annual report, 

2003) (UK Renal Registry, 2003) has 6 years of continuous data collection from the 

13 paediatric renal units in the UK and gives detailed information on patient 

demographics, causes of ESRD, growth and mortality data. The Australia and New 

Zealand Dialysis and Transplant (ANZDATA) Registry has recently published its 20-

year data (McDonald et al, 2004) discussing long-term survival data and 

demonstrating the improvement in survival over 4 decades of RRT. The largest 

available database comes from the North American Pediatric Renal Transplant Co-

operative Study (NAPRTCS) involving 134 centres from North America. Its recent 

2003 annual report (NAPRTCS 2003) offers extensive demographic, anthropometric 

and mortality data. I have compared our results with these three registry reports. Our 

study offers a longer period of follow-up and growth data and associations with 

comorbidity that are not discussed in any of the above registries.  
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As demonstrated in several registry reports, a younger age at the start of RRT is a 

strong predictor of mortality (USRDS annual report, 2003; UK Renal Registry 2003; 

McDonald et al, 2004). Despite the overall younger age of our study group, the 

mortality was 2.7 times greater in children who started RRT ≤ 1 year of age than in 

the overall population; the five-year survival was 72% in this group. This compares 

favourably with the UK Renal Registry report wherein the 5-year survival rate for 

children starting RRT at ≤ 1 year of age was 66% (UK Renal Registry 2003). 

NAPRTCS report a 66% 3-year survival (USRDS annual report, 2003) and 

ANZDATA a 73% 5-year survival in the ≤ 1s (McDonald et al, 2004), (the overall 

population survival rates were 89% at 3 years and 86% at 5 years in the two series 

respectively). Also, ANZDATA have shown a 4 fold higher mortality in the ≤ 1s as 

compared to patients between 15-19 years of age at initiation of dialysis (McDonald et 

al, 2004).  A selection bias reflecting the ethical views of the referral centres or the 

nephrologists (Geary et al, 1998) may well have resulted in the apparent difference in 

outcome of the ≤ 1s starting RRT. Unfortunately there was limited statistical power in 

this study to enable determination of the relative risk of death between the two 

modalities of dialysis or any association between the duration of dialysis pre-

transplantation and overall survival. 

 

Although statistical significance was not reached, there was a trend towards 

improvement in weight and height SDS while on dialysis. Also, children with 

comorbidity have been included in the analysis, keeping in mind that they will 

negatively influence the statistics. As shown in other registry reports (UK Renal 

Registry, 2003 and NAPRTCS 2003), most of the children with poor linear growth 

presented in the 1st year of life. This study spans 20-years of data and includes 
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patients starting dialysis in the mid-1980s when most series showed deterioration in 

height SDS on dialysis and when aggressive nutritional management was not pursued. 

However, as shown in more recent reports (Groothoff et al, 2002 and Rees L, 2002) 

and in infant dialysis series from our hospital (Shroff et al, 2003; Coulthard et al, 

2002; Kari et al, 2000) increase in height on both PD and HD can take place on 

dialysis. Although impressive growth rates with the use of growth hormone in infants 

have been reported in many studies, in this institution we have shown that the change 

 in height SDS is matched by a rigorous feeding programme in children under 2.5 

years age (Ledermann et al, 2000 and Ledermann et al, 2002). While an improvement 

in height SDS intuitively suggests that adynamic bone disease could not be present, 

there are no studies examining bone histology and height velocity to support or refute 

this possibility. However, studies from my colleagues at Great Ormond Street 

Hospital have shown that pre-dialysis patients in CKD stages 2 - 4 show catch-up 

growth when medical therapy is aimed at normalizing PTH levels (Waller et al, 2003) 

and that keeping PTH within the normal range prevents further loss of  height SDS in 

short children on dialysis (Cansick et al, 2007).  

 

While no single most common cause of death could be identified in our study, 

NAPRTCS, ANZDATA and the Dutch cohort studies (Groothoff et al, 2005) report 

‘cardiac/cardiopulmonary’ as the most common cause of death. NAPRTCS reports 

that 21.8% of all deaths were from cardiopulmonary causes, both for the overall 

population and for each age group (NAPRTCS 2003), ANZDATA reports that 43% of 

deaths in the PD group and 57% in the HD group were from cardiac causes 

(McDonald et al, 2004), and the Dutch cohort (Groothoff et al, 2002) reports cardiac 

deaths in 33% of the children who received RRT for >10 years. In our study there was 
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only one death from a cardiac cause (congestive cardiac failure): this child had 

received dialysis for 1.3 years and had two failed grafts. The follow-up period and 

completeness of long-term data available in this study is comparable to that of the 

large registry reports, but this is the only study that has examined PTH levels over a 

long period of time in dialysis patients. The PTH control, with 80% of children on 

dialysis achieveing the target range of PTH levels at < 2-fold ULN suggests that this, 

along with the ensuing control in mineral metabolism, may have contributed to the 

favourable cardiovascular outcome in our patients. 

 

 

3.6     Conclusions 

In conclusion, I have shown in this chapter that maintaining a tight control on PTH 

levels throughout the course of CKD and on dialysis may be associated with lower 

cardiovascular mortality in children on dialysis. Also, keeping PTH levels at < 2-fold 

ULN allows for a trend towards improvement height SDS on dialysis. The effects of 

PTH levels on the vasculature will be explored in subsequent chapters. 
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4.1     Abstract 

Cardiovascular disease is increasingly recognised as a life-limiting problem in young 

patients with chronic kidney disease (CKD), but there are few studies in children that 

describe its determinants. In this chapter I have described the impact of intact 

parathyroid hormone (iPTH) levels on vascular structure and function in children on 

dialysis.  

Children aged 5–18 years who had received dialysis for ≥6 months and had an 

eGFR<30ml/min/1.73m2 for ≥3 years were recruited from 4 paediatric Nephrology 

centre in the UK. Mean time-averaged levels of calcium, phosphate (PO4) and iPTH 

levels, and doses of phosphate-binders and Vitamin D were recorded from the start of 

CKD stage IV, giving us at least 3½ years of cumulative data on all patients. Patients 

were divided into two well-matched groups based on mean time-integrated iPTH 

levels: Group I– iPTH levels <2 upper limit of normal (ULN) [n = 41] and Group II– 

iPTH >2 ULN [n = 44], and compared to age-matched controls [n = 40]. Carotid 

intima-media thickness (cIMT), aortic and brachio-radial pulse-wave velocity (PWV) 

and coronary and valvular calcification on CT scan were measured.  

Dialysis patients had increased cIMT and PWV as compared to controls. All vascular 

measures positively correlated with PO4 levels, and the cIMT and calcification also 

correlated with iPTH levels. All vascular measures in Group I were comparable to 

controls, but group II had thicker cIMT (p < 0.0001, RR 3.7), stiffer vessels (p = 0.03) 

and increased calcification (p = 0.004, RR 2.3). Patients with increased cIMT had 

stiffer vessels and a greater prevalence of cardiac calcification. The dose of Vitamin D 

strongly influenced all vascular measures while cIMT showed a weak correlation with 

calcium intake from PO4-binders. 
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In conclusion, I have shown that children on dialysis with iPTH levels > 2ULN were 

more likely to have vascular damage and calcification as compared to those with 

iPTH levels <2ULN. Also, increased cIMT and calcification were associated with a 

higher activated vitamin D dosage. 

 

 

4.2     Introduction 

Ca, PO4, and PTH are important and potentially modifiable risk factors in the 

development and progression of vascular disease (Block et al, 1998, Goldsmith et al 

2004). The K/DOQI, Clinical Practice Guidelines recommend maintaining intact PTH 

levels (iPTH) at 3-5 times the ULN in patients on dialysis (K/DOQI, clinical practice 

guidelines, 2003), while the European best practise guidelines suggest a more 

conservative levels of 2-3 times ULN (Klaus et al, 2006). Both sets of guidelines are 

based on bone histomorphometry studies in children and adults (Mathias et al, 1993; 

Salusky et al, 1994; Goodman et al, 1994) but as evidence based studies are scarce, 

most of these recommendations are based on expert opinion. Higher than normal PTH 

levels are recommended because, as CKD progresses, continued stimulation of the 

parathyroid glands by high plasma PO4 and low Ca levels leads to parathyroid gland 

hypertrophy and re-setting of the calcium sensing receptor (Lewin et al, 1997) so that 

higher than normal levels of ionised Ca are required to alter PTH secretion (Rostand 

et al, 2003). This ‘skeletal resistance’ to PTH thought to result in low turnover 

(adynamic) bone disease, and an inability of bone to buffer fluxes in serum Ca 

resulting in ectopic soft tissue calcification.  However, it has to be remembered that 

high iPTH levels are per se a risk factor for vascular disease and soft tissue 

calcification (Rees L, 2008; Rostand et al, 2003). 
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At Great Ormond Street Hospital we aim to prevent the escape of the parathyroid 

glands from normal control mechanisms by early dietary and therapeutic intervention. 

We have shown that keeping iPTH levels in the normal range in CKD stages I - IV, 

and <2 ULN in children on dialysis maintains normal growth velocity (Waller et al, 

2003; Cansick et al, 2007) and bone mineral density (Waller et al, 2007), but the 

presence of renal osteodystrophy was ubiquitous in children with CKD irrespective of 

iPTH levels (Waller et al, 2008). However, some other centres in the UK continue to 

follow the K/DOQI guidelines and aim for PTH levels at 3 - 5 times the ULN. These 

long-standing differences in management of secondary hyperparathyroidism amongst 

paediatric renal units in the UK have given me the opportunity to study the impact of 

a wide range of iPTH levels and their management on vascular structure and function.  

 

In this chapter I have examined the hypothesis that maintaining iPTH levels at <2 

ULN throughout the course of CKD will prevent vascular damage and calcification in 

children on dialysis. 

 

 

4.3 Methods 

 

Patients and controls 

In this multicentre study we recruited children from 4 paediatric renal units in the UK 

(Great Ormond Street Hospital n = 56, Birmingham Children’s Hospital n = 12, St 

James’s University Hospital, Leeds n = 12 and Nottinhgam City Hospital n = 5). 

These 4 hospitals provide approximately 60% of paediatric dialysis services in the 
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UK. Of 103 eligible patients 97 agreed to participate. Seven were excluded because of 

criteria identified at the first visit or unwillingness to undergo scans.  Informed written 

consent was obtained from all parents or caregivers and children, where appropriate. 

The study was approved by a multi-centre research ethics committee.  

 

Inclusion and exclusion criteria 

All children aged 5 to 18 years who had received dialysis for at least the preceding 6 

months, and had been in CKD Stage IV (GFR≤30 ml/min/1.73m2) for ≥3 years were 

included.  The age criteria (>5 years) was selected on the basis that vascular measures 

are very difficult to perform in younger children, and that very young children may 

not stay still during a CT scan; the use of any form of sedation or anaesthesia for a 

research study would not have been ethical. More importantly, the seminal paper by 

Goodman et al (Goodman et al, 2000), the only available study in children at the time, 

has described calcification only in those with a dialysis vintage of >4 years.  

 

In order to keep the study groups free of confounding pro-atherosclerotic risk factors, 

we excluded patients with underlying vasculitis, diabetes, uncontrolled 

hyperlipidemia (defined for the purpose of this study as a serum cholesterol 

≥5mMol/L despite statin therapy), uncontrolled hypertension (defined for the purpose 

of this study as systolic BP ≥ 95thcentile for age despite anti-hypertensive therapy), 

and smokers.  

 

In all centres calcium-based phosphate binders were used for management of 

hyperphosphataemia, with sevelamer introduced only in those with hypercalcaemia 

and persistently high iPTH levels. Alphacalcidol (1-α hydroxy-Vitamin D3) was used 
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in all patients, titrating the dose against iPTH levels, with temporary discontinuation if 

hypercalcaemia resulted. All children received regular dietary advice. 

 

As vascular measures are age-dependent, and normative data is available only for 

children above 10 years of age, we compared our patient group with 40 age- and 

gender-matched healthy controls. 

 

Data collection 

CKD-specific cardiovascular risk factors were measured from the start of CKD Stage 

IV, giving a minimum of 3½ years cumulative data in all children. Serum Ca, PO4 and 

iPTH levels and the doses of elemental calcium intake from phosphate binders and 

Vitamin D were recorded at monthly intervals. As the iPTH assay varied between 

different centres, iPTH was expressed as multiples of the upper limit of normal 

(ULN). In control subjects, biochemical values from a single blood test at the time of 

the scans were used.  

 

Study design    

Patients were divided into 2 groups based on mean time-integrated serum iPTH 

levels: Group I with serum iPTH <2 ULN and Group II with iPTH >2 ULN. Patients 

in Group II included those in whom the unit policy was to aim for iPTH levels >2 

ULN and also those with non-compliance to treatment despite an intention to keep 

iPTH levels <2 ULN.  

 

 

 



   

 168

Vascular measures 

Vascular measures were performed on 90 dialysis patients and 40 controls (5 patient’s 

scans were of poor quality and excluded from analysis). All patients underwent a 

carotid artery ultrasound scan to measure intima-media thickness (cIMT), applanation 

tonometry for aortic and brachio-radial pulse wave velocity (PWV), and a multi-slice 

CT scan to look for coronary artery and valvular calcification as described in detail in 

Chapter 2, section 2.1. In the control group, aortic PWV was not measured as 

permission was not granted for femoral artery measures and CT was not undertaken 

because of radiation concerns.  

 

All vascular scans were performed at Great Ormond Street Hospital after a mid-week 

session of haemodialysis or overnight cycling peritoneal dialysis. Scans were 

performed simultaneously by myself and a second blinded operator and analysis was 

performed by myself after blinding to all patient details. 

 

Statistical analyses 

Results are presented as mean ± SD. All data was analysed in a linear fashion and 

then between the 2 groups of dialysis patients. The student t-test, Mann-Whitney U 

test or Fisher exact t-test were used as appropriate. From univariate analysis variables 

associated with vascular measures with p < 0.15 were entered into a stepwise multiple 

regression analysis. P ≤ 0.05 was considered statistically significant. Statistical 

analyses were performed using SPSS, version 12.0.1 (SPSS Inc, Chicago, IL, USA). 
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4.4 Results 

 

Dialysis and control groups 

Diagnoses of the 85 study children (45 boys) were dysplasia (n = 50), inherited 

nephropathies (n = 13), cystic kidney disease (n = 6), primary tubular disorders (n = 

6), renovascular disorders (n = 4), malignancies (n = 3) and metabolic disorders (n = 

3). Comparisons between controls and Groups I and II are shown in Table 4.1.  

       

Carotid IMT and brachio-radial PWV were significantly greater in the dialysis 

population than the control group (Table 4.2). The duration of dialysis was associated 

with an increasing cIMT (r = 0.31, p = 0.04), but not with PWV or the presence of 

cardiac calcification. The time spent in CKD Stage IV, age at initiation of dialysis, 

dialysis modality and preservation of residual renal function did not correlate with any 

vascular measures. 
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Table 4.1   Demographic, clinical, anthropometric and biochemical characteristic of 
patients and controls 

 Controls
(n=40) 

Group I      
(n=41) 

Group II 
(n=44) 

p 
(Group I vs II)

Age (yr) 13.2 ± 
4.8 

12.6 ± 3.9 13.5 ± 3.2 0.30 

Gender (males / females) 21/19 24/17 21/23 0.89 
Estimated GFR (ml/min/1.73m2) 111 ± 

8.8 
9.1 ± 8.0 7.6 ± 3.7 0.25 

Time in CKD Stage IV (yr) - 5.8 ± 3.5 5.0 ± 4.3 0.26 
% with residual renal function - 39 42 0.82 
Age at start of dialysis (yr) - 9.8 ± 5.1 8.8 ± 3.9 0.34 
Time on dialysis (yr) - 2.2 ± 1.7 2. 4 ± 1.9 0.09 
Dialysis modality at point of study 
(PD / HD) 

- 32/9 32/12 0.09 

% CKD time spent on dialysis - 39.4 ± 31.2 44.2 ± 36.3 0.08 
Height SDS 0.5 ± 2.6 -1.4 ± 1.7 -1.6 ± 2.1 0.75 

Body Mass Index SDS 0. 9 ± 
0.9 

-0.5 ± 1.4 -0. 4 ± 1.9 0.06 

Systolic BP Index* 0.9 ± 0.1 1.2 ± 0.4 1.2 ± 1.2 0.09 

Number of anti-hypertensive  
medications 

0 1 
(0 – 2) 

1 
(0 – 3) 

0.07 

Haemoglobin (gm/dl) 13.3 ± 
1.1 

11.7 ± 1.5 10.9 ± 2.4 0.61 

Albumin (g/L) 41 ± 0.6 39 ± 3.8 37 ± 3.7 0.92 

Total  Cholesterol (mMol/L) 3.3 ± 1.3 4.4 ± 0.8 3.9 ± 1.3 0.75 

Triglycerides (mMol/L) 
 

0.9 ± 2.2 1.3 ± 1.3 1.6 ± 1.0 0.67 

Serum PO4 level (mMol/L) 0.9± 0.3 1.4 ± 0.3 2.1 ± 0.8 <0.0001 

Serum Ca (albumin adjusted) 
(mMol/L)  

2.2± 0.2 2.4 ± 0.1 2.4 ± 0.3 0.15 
 

% of episodes with Ca ≥2.5mMol/L
per patient  

0 5 
 

11 
 

0.08 

Ca-PO4 product (mMol2/L2) 
 

3.3± 0.3 3.5 ± 0.6 4.9 ± 0.9 <0.0001 

Serum iPTH (fold ULN) n/d 0.7 ± 0.6 6.0 ± 5.2 <0.00001 
Parathyroidectomy 0 0 1 (partial) - 
PO4 binders 
Number on Ca-based PO4 binders 
Sevelamer +/- Ca-based PO4 binder

 
- 
- 

 
36 (88%) 
5 (12%) 

 
26 (59%) 
18 (41%) 

 
0.08 

 
Cumulative intake of elemental Ca 
from PO4 binders                   gm/kg

 
         - 

 
119 ± 71 

 
131 ± 112 

 
0.07 

Calcitriol (Vitamin D3)       µgm/kg - 49.6 ± 14.6 85.7 ± 29.9 <0.0001 
Group I  - mean time-integrated serum iPTH ≤ twice ULN (upper limit of normal) 
Group II - mean time-integrated serum iPTH> twice ULN  
All values expressed as mean ± SD.  *BP Index = measured BP/95th centile BP for age, gender and height. 
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Table 4.2  Comparison of carotid artery structure, vascular stiffness and 
calcification scores between the study groups 

 

Dialysis Patients 
  Controls 

 
n = 40 

Dialysis 
 

n = 85 

p  

Group I 
n = 41 

Group II 
n = 44 

p 

        
Carotid IMT [mm] 
 

0.38 ±0.01 0.46 ±0.12 0.002  0.39 ± 0.01 0.58 ± 0.02 <0.0001 

Aortic PWV [m/sec] 
 

n/d 7.14 ± 1.2 -  5.81 ± 1.2  8.63 ± 2.3 0.03 

Brachio-radial PWV 
[m/sec] 
 

5.1 ± 1.0 8.89 ± 1.9 0.03  9.06 ± 2.1 8.57 ± 1.8 0.82 

Number with Cardiac 
calcification  
 

n/d 17 (20%) -  5 (12%) 12 (27%) 0.004 

            Agatston score 
 

- 21.3 ± 
30.1 

-  11.9 ± 10.3 65.6 ± 278 
Median 85.3 
 (0 – 2039)  

 

0.01 

      Coronary arteries 
 

- 13 -  3 (7%) 10 (22%) 0.02 

                         Valves 
 

- 5 -  2 3 - 

                          Aorta 
 

- 7 -  1 6 - 

 
cIMT – carotid artery intima-media thickness, PWV – pulse wave velocity, n/d – not done. 
All values expressed as mean ± sd unless otherwise stated.  

 

 

Vascular measures and calcification score in Groups I and II  

 

Carotid Intima-media thickness 

cIMT showed a strong linear correlation with iPTH (r = 0.71, p = 0.0001), PO4 (r = 

0.51, p  < 0.0001; Figure 4.1) and Ca x PO4 product (r = 0.65, p <0.0001). The cIMT 

in Group I was comparable to the control group (0.39 ± 0.01 vs 0.38 ± 0.01 mm, p = 

0.44), and significantly lower than in Group II (0.58 ± 0.02, p < 0.0001); relative risk 

= 3.7 (Figure 4.2). 
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Figure 4.1      

 
 
 
Correlation of carotid artery intima-media thickness (cIMT) with mean time-
integrated serum PO4 level. 
 
 
 
Figure 4.2     

 
Comparison of carotid IMT levels between controls, Group I and Group II 
 
Group I   - mean time-integrated serum iPTH ≤ twice ULN  
Group II - mean time-integrated serum iPTH > twice ULN  
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Pulse wave velocity 
Aortic PWV also showed a positive correlation with PO4 levels (r = 0.39, p = 0.03) 

and Ca x PO4 product (r = 0.37, p = 0.018).  Aortic PWV was greater in Group II than 

in Group I (8.63 ± 2.3 vs 5.81 ± 1.2 m/sec, p = 0.03, Figure 4.3), Table 4.2. However, 

the brachio-radial PWV did not correlate with any demographic or biochemical 

parameters. 

 

Figure 4.3     
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Comparison of aortic PWV levels between Group I and Group II 

 

 

Cardiac calcification scores 
The calcification score was associated with iPTH levels (r = 0.39, p = 0.03, Figure 

4.4) and serum PO4 (r = 0.34, p = 0.03), but did not correlate with age, duration of 

CKD or time on dialysis. Five (12%) patients in Group I and 12 (27%) in Group II (p 

= 0.004) had calcification (Table 4.2); relative risk = 2.3.  Calcification was graded as 

minimal (Agatston score <10) in 4, mild (score 11 – 100) in 6, moderate (score 101 – 
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400) in 5 and severe (score > 400) in 2. Moderate and severe grades of calcification 

were only seen in Group II. There was no definite anatomical pattern of calcium 

deposition in the vessels or valves. Three of 17 (17%) patients under 10 years had 

calcification as compared to 14/68 (20%) above the age of 10. 

 

Figure 4.4    

 

Correlation of Agatston score for cardiac calcification with mean time-integrated 
intact PTH levels 
 
 
 
 

Effect of PO4 binders and Vitamin D therapy on vascular measures  

Eighteen (41%) patients in Group II received sevelamer ± calcium-based PO4 binders 

compared to only 5 (12%) in Group I (Table 4.1). The group of patients on sevelamer 

were older (15 ± 4.1 years), had a longer dialysis vintage (3.0 ± 1.9 years) and were 

predominantly on haemodialysis (73%) as compared to the overall cohort. The mean 

elemental Ca intake from the prescribed dose of PO4 binders was marginally greater in 

Group II than Group I (Table 4.1). Although the elemental Ca intake from PO4 

binders did not correlate with any of the vascular measures in the overall cohort, after 
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excluding patients who received sevelamer, the IMT did show a weak correlation with 

calcium containing PO4 binder dose (p = 0.054, r = 0.19).  

 

The Vitamin D (alphacalcidol) dose showed a strong dose-dependent correlation with 

cIMT (r = 0.65, p < 0.001), aortic PWV (r = 0.17, p = 0.03) and calcification score (r 

= 0.28, p = 0.02); Table 4.3, Figure 4.5. Patients with calcification (n = 17) received a 

2.8 fold higher Vitamin D dose than those without calcification (21.9 ± 8.9 vs 53.7 ± 

13.4 µgm/kg, p = 0.0001).  

 

 
Figure 4.5    
 

 

Correlation of carotid artery intima-media thickness (cIMT) with the mean 
alphacalcidol dosage 
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Correlations between vascular measures 

 cIMT was associated with aortic PWV (r = 0.41, p <0.0001) and the calcification 

score (r = 0.32, p = 0.002): patients with calcification (n = 17) had higher cIMT than 

those without calcification (0.55 ± 0.11 vs 0.45 ± 0.12mm, p = 0.004), Figure 4.6.  

 
 
 
 
Figure 4.6      

 

Correlation of Agatston score for cardiac calcification with cIMT 
 

 

Predictors of cIMT, aortic PWV and calcification score  

On multiple regression analysis, the Vitamin D dose was the strongest predictor of 

cIMT, aortic PWV and calcification, whereas iPTH levels were an independent 

predictor of cIMT and calcification (Table 4.3).  
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Table 4. 3   Multiple regression analysis for independent predictors of cIMT,  

        aortic PWV and calcification score 
Variable Standardized 

coefficient  (ß) 
P  Model R2 

    
cIMT 
   -  Vitamin D dose 
   -  iPTH level 
   -  PO4 level 
 

 
0.65 
0.72 
0.51 

 
<0.001 

<0.0001 
0.001 

0.74 

Aortic PWV 
  - Vitamin D dose 
 
 

 
0.17 

 
0.03 

0.23 

Cardiac Calcification  
(Agatston) score 
  -  Vitamin D dose 
  -   iPTH level 

 
 

0.28 
0.53 

 
 

0.02 
<0.001 

0.54 

 

 

 

 

4.5     Discussion 

This is the largest paediatric study in the youngest cohort of CKD patients on dialysis 

that describes vascular changes and the impact of iPTH control and Vitamin D 

treatment on these. I have shown that both hyperparathyroidism and its management 

with Vitamin D impact on structural and functional vascular changes that begin as 

early as the first decade of life in children on dialysis.   

 

Uraemia is a vasculopathic process. Children provide an ideal opportunity to study 

uraemic influences on the arterial wall as they rarely have risk factors such as 

diabetes, dyslipidaemia and hypertension that are prevalent in adults (Goldsmith et al, 

2004; London et al 2005). The patients in our study were carefully selected so that 

they were free of such confounders, and capitalizing on detailed serial biochemistry 

over ≥3½ years, we were able to demonstrate the impact of iPTH and its management 
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on the vascular phenotype. While PO4 has been shown to be an independent risk 

factor for cardiovascular disease (Block et al, 1998), including increased IMT (Litwin 

et al, 2005; Mitsnefes et al 2005; Oh et al, 2002) vessel stiffness (Blacher et al; 2003; 

Covic et al, 2006) and left ventricular hypertrophy (Mitsnefes et al, 2005), PTH per se 

may contribute to vascular injury via mechanisms other than its effect on Ca – PO4 

homeostasis. It would be impossible to extricate the individual effects of PO4, PTH 

and the medications used in their regulation. PTH may mediate vascular damage by 

playing a permissive role in arteriolar wall thickening and myocardial interstitial 

fibrosis (Rostrand et al, 1999), increasing triglycerides and LDL cholesterol and 

contributing to chronic hypertension (Massry et al, 1997); progression of these 

vascular changes is reduced after parathyroidectomy (Massry et al, 1970). Thus, while 

it is now widely accepted practise to aim for PO4 levels within the normal range, the 

optimal level for iPTH is as yet unclear. Results of this hypothesis-generating study 

will allow for a prospective randomised trial to evaluate the cardiovascular benefits of 

maintaining iPTH levels < 2ULN using the lowest possible dose of Vitamin D. 

 

The long-term consequences of vascular damage are particularly important in 

children, who have a life-time of renal replacement therapy ahead of them. Studies in 

adults with CKD have shown that ~65% have coronary calcification at the start of 

dialysis (Block et al, 2005), suggesting that prevention of secondary 

hyperparathyroidism is in fact key to the prevention of vascular damage and 

calcification. We and others have shown that endothelial dysfunction (Kari et al, 

1997) and vascular damage (Saygili et al, 2002; Litwin et al, 2005; Covic et al, 2006; 

Mitsnefes et al, 2005) begins early in the course of CKD. The vascular damage is only 

partially reversible following transplantation (de Lima et al, 2002, Litwin et al, 2008) 
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and use of lipid-lowering agents (Wanner et al, 2004), folate (Bennett-Richards et al, 

2002) or arginine (Bennett-Richards et al, 2002) supplementation have little effect. 

Goodman and others have shown that once a nidus of calcification forms in the soft 

tissues, “calcium begets calcium” (Goodman et al, 2000) so that patients with pre-

existing calcification are at greatest risk of accelerated calcification. Thus, the 

prevention of secondary hyperparathyroidism from the earliest stages of CKD is key 

to preventing the development and progression of vascular calcification.  

 

In young adults with childhood onset CKD, Groothoff et al have reported a significant 

increase in arterial stiffness but normal IMT (Groothoff et al, 2002), whereas a similar 

study by Oh et al has shown increased IMT and calcification in 92% of his cohort (Oh 

et al, 2002). However, these studies in young adults can only support speculations of 

the potential changes in children on dialysis since it is possible that uraemia multiplies 

the natural age-related vascular damage. Evidence of vascular changes in children on 

dialysis has come from observational studies that have shown increased IMT damage 

(Saygili et al, 2002; Litwin et al, 2005; Mitsnefes et al, 2005), stiffer vessels (Covic et 

al, 2006) and calcification (Goodman et al, 2000; Civilibal et al, 2006; Eifinger et al, 

2000), and linked these with PO4 levels and Ca-PO4 product. However, patients in 

these studies were older than in our cohort, often had comorbidity, and the small 

patient numbers and widely variable duration of CKD and time on dialysis may have 

resulted in confounders in their analyses.  

 

The management of secondary hyperphosphataemia with use of calcium based PO4 

binders has been under considerable debate with concerns that the Ca intake from PO4 

binders results in calcium overload and ectopic soft tissue calcification (Goodman et 
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al, 2000; Litwin et al, 2005; Klaus et al, 2006; K/DOQI clinical practise guidelines, 

2003; Goldsmith et al, 2004) . This study was not designed to determine the vascular 

effects of different PO4 binders as sevelamer was used only as a second line agent in 

our patients with persistently high iPTH levels and hypercalcaemia. Goodman, Litwin 

and Briese (Goodman et al, 2000; Litwin et al, 2005; Briese et al, 2006) have shown a 

positive correlation between the cumulative PO4 binder dose and coronary 

calcification or cIMT, and in our study IMT showed a weak correlation with PO4 

binder dose approaching statistical significance. However, adolescents and young 

adults are notoriously non-compliant with PO4 binder medication, making it difficult 

to assume that the prescribed dose of PO4 binder is indeed what the patient 

consistently receives.  

 

In our study, the Vitamin D dose was the most important predictor of increased 

arterial thickness, stiffness and calcification. Although the prescribed dose of Vitamin 

D is also a surrogate marker of the severity of hyperparathyroidism, the Vitamin D 

dose predicted vascular damage independent of iPTH levels. The role of Vitamin D in 

the pathogenesis of vascular calcification has been shown in other observational 

studies (Litwin et al, 2005; Mitsnefes et al, 2005), as well as in ex vivo (Milliner et al, 

1990) and in vitro models (Jono et al, 1998). While the primary role of Vitamin D is 

to increase the gastrointestinal absorption of calcium, it also significantly increases 

phosphate absorption. Moreover, Vitamin D acts on the vascular smooth muscle cells 

via the Vitamin D receptor and can induce proliferation and osteoblastic 

differentiation of these cells (Jono et al, 1998).  

 

We found a significant positive correlation between carotid IMT, aortic stiffness and 

presence of cardiac calcification, suggesting that the vascular damage is widespread, 
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involving both large muscular arteries like the carotids and elastic vessels like the 

aorta. Unlike aortic PWV, the brachio-radial PWV although increased, did not 

correlate with any demographic or biochemical parameter or with other vascular 

measures. It is known that vascular damage in the aorta begins earlier than in the 

brachio-radial vasculature (Blacher et al, 2003), suggesting that the lack of 

correlations with brachio-radial changes may in fact be the result of dissociation in 

time rather than a difference in underlying pathology as discussed in one other study 

(Tillin et al, 2007). A positive correlation between cIMT and calcification may imply 

that deposition of Ca- PO4 crystals in the arterial media may be at least partly 

responsible for the increased cIMT.  Carotid artery ultrasound, a cheap, easily 

available, highly reproducible and non-invasive test to measure cIMT may reliably 

substitute other methods for detection, monitoring and prognostication of vascular 

damage in dialysis patients.  

 

On multiple regression analysis, the age at study or time spent in CKD or on dialysis 

did not show any significant correlation with the vascular measures. While increased 

vascular damage with age and dialysis vintage that has been reported (Goodman et al, 

2000; Litwin et al, 2005; Oh et al, 2002), this may in fact be the result of prolonged 

hyperparathyroidism and its consequences on the vasculature. Goodman et al showed 

calcification only in patients above 20 years age (Goodman et al, 2000), but the group 

with calcification had significantly higher PO4 and Ca x PO4 products than those 

without calcification. Subsequent studies by Eifinger (Eifinger et al, 2000) and 

Civilibal (Civilibal et al, 2006) have documented coronary calcification in paediatric 

dialysis patients. In our cohort, age did not correlate with any vascular measure: the 

youngest patient with calcification was 5.8 years old.  
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Although we were unable to perform a randomised study, the groups were well 

matched for cardiovascular risk factors. The iPTH assay varied between different 

participating centres, and the inter-assay variability of different PTH assays must be 

recognised (Souberbielle et al, 2006). Due to small patient numbers our study lacked 

the power to show any potential differences in vascular measures based on dialysis 

modality. Paediatric dialysis populations are currently limited due to a high 

transplantation rate; in the largest comparable study there were only 37 children on 

dialysis (Litwin et al, 2005).  

 

 

4.6     Conclusions 

In conclusion, in this chapter I have shown that both the iPTH level and the Vitamin 

D dose are significant and independent predictors of vascular damage and 

calcification in children on dialysis. Maintaining the iPTH level at <2 ULN is 

associated with the lowest risk of structural and functional arterial wall damage and 

calcification. Future prospectively longitudinal studies, to simultaneously evaluate 

both the vascular benefits as well as the effect on bone histology, of keeping PTH 

levels at <2 ULN in a large cohort of children on dialysis are required in order to 

make evidence based recommendations for changes to the existing guidelines. 
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Chapter 5 

The Effects of Vitamin D  

on the Vasculature 
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5.1     Abstract 

In addition to its classical role in calcium-phosphate homeostasis, vitamin D has anti-

inflammatory effects that may influence vascular disease. I have studied the impact of 

vitamin D levels on the vascular phenotype in children on dialysis.  

 

I studied 61 children (5-18 years) on dialysis for ≥3months and 40 age-matched 

controls. All patients received daily oral 1-α hydroxyvitaminD3. The relation between 

25-hydroxyvitaminD [25(OH)D], 1,25-dihydroxyvitaminD [1,25(OH)2D], and high-

sensitivity CRP [hs-CRP] levels and carotid intima-media thickness, pulse-wave 

velocity and coronary calcification on CT scan were examined.  

 

92% of patients had 25(OH)D deficiency. 1,25(OH)2D levels were low in 36% and 

high in 11%, and showed a weak dose – level concordance. Both cIMT and 

calcification scores showed a ‘U-shaped’ distribution for 1,25(OH)2D: patients with 

both low and high 1,25(OH)2D had greater cIMT (p < 0.0001) and calcification (p = 

0.0002) than those with normal levels. Low 1,25(OH)2D levels were associated with 

higher hs-CRP (p < 0.0001). Calcification was most frequently seen in patients with 

the lowest 1,25(OH)2D and the highest hs-CRP. No correlation was seen between 

25(OH)D levels and any vascular measure. 

 

In conclusion, I have shown that both low and high 1,25(OH)2D levels are associated 

with adverse morphological changes in large arteries, and that this may be mediated 

through the effects of 1,25(OH)2D on Ca-PO4 homeostasis and inflammation. Optimal 

vascular protective strategies in dialysis patients may therefore require careful 

monitoring of not only the vitamin D dose, but also 1,25(OH)2D levels. 
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5.2     Introduction 

Disorders in mineral metabolism associated with secondary hyperparathyroidism and 

vitamin D deficiency are the most important causes of vascular damage and 

calcification in CKD patients, and are also associated with abnormal bone turnover 

states: this is called Chronic Kidney Disease – Mineral and Bone Disorder (CKD-

MBD) (Moe et al, 2006).  Vitamin D deficiency is widely prevalent in CKD patients 

(Levin et al, 2007), and thus, vitamin D analogues are routinely used, but both vitamin 

D deficiency and supplementation with vitamin D analogues have been implicated as 

potential risk factors in the development and progression of vascular disease (Chertow 

et al, 2004; Goldsmith et al, 2004; Teng et al, 2003; Tentori et al, 2006).  In the 

previous chapter, I have shown that higher doses of activated vitamin D compounds 

are associated with greater structural damage and calcification in children on dialysis 

(Shroff et al, 2007). 

 

In addition to its endocrine effects in regulating the Ca – PO4 - PTH axis and bone 

turnover, vitamin D also has important autocrine / paracrine actions, especially on the 

cardiovascular system (Zitterman A, 2006; Carthy et al, 1989; Xiang et al, 2005) and 

also has anti-inflammatory and immunomodulatory effects (Towler D, 2007; Tabata 

et al, 1988; Tokuda et al, 2000) as discussed in chapter 2. Thus, although Vitamin D 

exerts potentially deleterious pro-calcific effects on the vasculature, its anti-

inflammatory properties may confer a significant cardioprotective benefit. The effects 

of vitamin D on left ventricular function are well described (Zitterman A, 2006), but 

there is little data on its role in the vasculature.  
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In this chapter, I have examined the hypothesise that 1,25(OH)2D levels in the normal 

range are associated with less vascular damage and calcification in children on 

dialysis. 

 

 

5.3     Methods 

    

Patients and controls 

From January 2005 to December 2006, I recruited 61 consecutive children (aged 5 – 

18 years) who had been on dialysis for ≥ 3 months from the Great Ormond Street 

Hospital Renal Unit. Fourteen patients in this study also participated in the study 

described in chapter 4. All patients were prescribed daily oral 1-α 

hydroxycholecalciferol (alphacalcidol), titrating the dose so as to keep the iPTH level 

<2 upper limit of normal (ULN) as per our unit policy. Hyperphosphataemia was 

managed by dietary PO4 restriction and calcium-based PO4 binders. Sevelamer was 

only used in patients with hypercalcaemia and persistently high iPTH levels.  

 

Patients were compared with healthy age- and gender-matched school children (Table 

5.1) who underwent vascular scans in our department as part of a parallel study 

investigating normal levels of cIMT and PWV in healthy children. From this cohort, 

we included 40 consecutive children aged 5 to 18 years with no known medical 

illnesses or family history of heart disease or diabetes to serve as controls in our 

study, in a 1.5:1 patient:control ratio. Surprisingly, the majority of children in the 

control group were overweight, although no intentional selection bias was involved.  
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Informed written consent was obtained from all parents or caregivers, and children 

where appropriate. The study was approved by the Great Ormond Street Hospital 

research ethics committee.   

 

 

Table 5.1. Demographic, clinical, anthropometric and biochemical 
characteristics of patients and controls 
 
 Patients 

n = 61 
Controls 

n = 40 
p 
 

Age (yr) 13.4 ± 4.1 14.4 ± 3.8 0.29 

Gender (males / females) 37/24 22/18 0.19 

Race (Caucasian/Asian/Black/Others) 37 / 12 / 9 / 3 27 / 11 / 2 / 0 - 

Estimated GFR (ml/min/1.73m2) 8.9 ± 8.0 121 ± 5.8 < 0.0001 

Time in CKD Stage IV (yr) median 4.9 
(range 0.2 – 6.8) 

- - 

Time on dialysis (yr) median 1.1 
(range 0.25 – 8.7) 

- - 

Dialysis modality (PD / HD) 
 

43 / 18 - - 

Body Mass Index SDS 
 

-0.5 ± 1.6 0. 9 ± 0.9 < 0.0001 

Systolic BP Index* 1.3 ± 0.3 0.9 ± 0.1 0.02 

Number on anti-hypertensive medications 11 0 - 

Number on ACEi or AIIRB 2 0 - 

Haemoglobin (gm/dl) 11.7 ± 1.5 13.3 ± 1.1 0.07 

Albumin (g/L) 38 ± 3.0 41 ± 0.6 0.22 

Total  Cholesterol (mMol/L) 4.0 ± 1.1 3.3 ± 1.3 0.10 

Triglycerides (mMol/L) 
 

1.2 ± 1.2 0.9 ± 2.2 0.67 

Number on statins 2 0 - 

Diabetes mellitus 0 0 - 

Smokers 0 1 - 

 
All values expressed as mean ± SD unless indicated 
SDS – Standard Deviation Score 
*BP Index = measured BP/95th centile BP for age, gender and height 
ACEi – Angiotensin Converting Enzyme inhibitor, AIIRB – Angiotensin II Receptor Blocker, n/d – not 
done 
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Data collection 

Serum Ca, PO4 and iPTH levels and the doses of elemental calcium intake from 

phosphate binders and alphacalcidol were recorded at monthly intervals from the start 

of CKD Stage IV, and mean time-averaged values calculated: (the sum total of the 

monthly values for each variable was divided by the number of months of exposure to 

provide a mean time-averaged value). Given the variable amounts of time spent in 

CKD IV, the above biochemical values and medication dosages at the time of the 

study have been expressed separately in Table 5.2. The number of hypercalcaemic 

episodes (defined as albumin-adjusted serum Ca levels >2.5mMol/L, and expressed as 

a percentage of the total number of measurements in each patient) was calculated. In 

controls a single blood test at the time of the scans was performed.  
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Table 5.2    Serum Ca, PO4, and PTH levels and doses of PO4-binders and 
alphacalcidol in patients and controls 
 
 Patients 

n = 61 
Controls 

n = 40 
p# 

 Exposure from 
the onset of 

CKD Stage IV

Values at the  
time of study  

  

Serum PO4 level                        (mMol/L) 1.5 ± 0.7* 1.4 ± 0.5 0.9 ± 0.3 0.007 

Serum Ca (albumin adjusted)    (mMol/L) 2.4 ± 0.1* 2.4 ± 0.0 2.3 ± 0.2 0.19 

Serum Ca-PO4 product            (mMol2/L2) 
 

4.2 ± 0.9* 4.3 ± 0.4 3.3 ± 0.3 0.002 

Serum iPTH (fold ULN)  
 

1.8 ± 1.3* 1.6 ± 0.9 n/d - 

PO4 binders 
Number on Ca-based PO4 binders 
Sevelamer +/- Ca-based PO4 binders  
 

 
n/a 

 
52 (88%) 
9 (12%) 

 
- 
- 

 
- 

Intake of elemental Ca from PO4 binders    
(gm/kg/year)

Mean daily dosage (mg/day)

 
31.9 ± 11.8** 

n/a 

 
n/a 

1828 ± 52 
 

 
0 
0 

 
- 
- 

Alphacalcidol                            (µ/kg/year)
Mean daily dosage (µgm/day)

19.2 ± 7.3** 
n/a 

n/a 
0.89 ± 0.3 

0 
0 

- 
- 
 

Parathyroidectomy 0 0 0   - 

 
All values are expressed as mean ± standard deviation 
* All biochemical values in this column are expressed as mean time-averaged values from the onset of 
CKD Stage IV. 
** The dosage of elemental calcium intake from PO4 binders and the alphacalcidol dosage are 
expressed as the cumulative intake from CKD IV, and standardized per year of exposure to account for 
the varied duration since onset of CKD IV.                                                                                               
p# - Compares values at the time of the study between patients and controls 
n/d – not done 
n/a – not applicable 
 

 

Vitamin D levels and hs-CRP 

All biochemical data was determined on blood samples taken prior to the vascular 

scans and before a mid-week session of haemodialysis, but at varying times 

throughout the year. There was an interval of 10 – 12 hours between alphacalcidol 

intake and blood sampling. Serum 25(OH)D and 1,25(OH)2D levels were measured by 

Mrs Michala Bridel, Senior Pathology Technician at the West Park Hospital, Epsom. 
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The enzyme immunoassay (IDS-OCTEIA 25-HydroxyvitaminD EIA kit, 

Immunodiagnostics Systems Ltd) and radioimmunoassay (1,25 dihydroxyvitaminD 

125I RIA kit, DiaSorin) were used for 25(OH)D and 1,25(OH)2D respectively as per 

the methods described in Chapter 2, section 2.2. 1,25(OH)2D levels in 120 healthy 

normal children have been measured and validated in our lab (unpublished data), and 

given cost constraints, we measured 25(OH)D levels only in the 40 controls.  

 

hs-CRP levels were measured by Mrs Vanita Shah, Senior Technician in all patients 

and controls using the ELISA (EIA test kit, MP Biomedicals) as described in Chapter 

2, section 2.2. 

 

Vascular measures 

The carotid intima media thickness, aortic and brachioradial pulse wave velocity, 

carotid augmentation index and coronary calcification on CT scan were measured as 

described in Chapter 2, section 2.1.  For ethical reasons, CT scans were not performed 

in the controls. 

 

Statistics 

Results are presented as mean ± SD or median and range depending upon the 

distribution. Comparisons between groups were made using Student’s t test or the 

Mann-Whitney U test as appropriate, and correlations tested using Pearson’s or 

Spearman correlation tests for parametric and nonparametric data respectively.  

 

The two main outcome variables were cIMT and calcification score (transformed to 

log10(CS + 1) to adjust for skewness). Factors affecting the two outcome variables 



   

 191

were explored using multiple regression analysis. From univariate analyses variables 

with p < 0.15 were entered into the stepwise multiple regression analyses. The non-

linear effect of vitamin D levels was fitted by including a quadratic term: the outcome 

variables were regressed on 1,25(OH)2D and the square of 1,25(OH)2D, and the 

significance of the squared (quadratic) term noted. A third outcome measure, hs-CRP, 

was analysed after log transformation to account for skewness, and its correlation with 

1,25(OH)2D was strengthened when that too was log-transformed.  The interaction 

between 1,25(OH)2D and hs-CRP was tested by two way analysis of variance 

(ANOVA).  

 

 

5.4    Results 

Of the 61 patients (37 boys), 39 had renal dysplasia, 9 inherited nephropathies, 5 

cystic kidney disease, 4 primary renal tubular disorders, 3 renovascular disorders and 

one Wilm’s tumour. The clinical and biochemical characteristics of the patient and 

control groups are described in Tables 5.1 and 5.2. 

 

Vitamin D levels in patients and controls  

Levels of 25(OH)D were low in the majority of patients as well as controls. Despite 

all the patients being prescribed daily oral alphacalcidol, 1,25(OH)2D levels were low 

(<40 pmol/L) in 22 (36%) and high (>150 pmol/L) in 11 (18%) patients. These are 

described in Table 5.3 below. 
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Table 5.3    Vitamin D levels in dialysis and control groups 

 Dialysis 
N = 61 

Controls 
n = 40 

p 

25(OH)D   (ngm/ml) 
 

<10 
10 – 30 

>30 
 

13.3 ± 10.9 
 

30 (50%) 
26 (42%) 

5 (8%) 
 

28.2 ± 9.9 
 

0 
29 (72%) 
11 (27%) 

<0.0001 

1,25(OH)2D  (pmol/L) 

 

 
<40 

40 – 150 
>150 

Median 10 
(range 10 – 216) 

 
22 (36%) 
28 (46%) 
11 (18%) 

 

n/d 
 

 

25(OH)D  - 25-hydroxy Vitamin D; 1,25(OH)2D - 1,25-dihydroxy Vitamin D;  n/d – not done. 
To convert 25(OH)D levels to nmol/L multiply by 2.5. 
All values expressed as mean ± sd.  
 

 

1,25(OH)2D levels showed a weak correlation with the alphacalcidol dose at the time 

of the study (p = 0.06, r = 0.25). No correlation was found between 25(OH)D and 

1,25(OH)2D levels (p = 0.4, r = 0.11). 

 

Vitamin D levels and their clinical and biochemical correlations  

Patients on peritoneal dialysis [PD] (n = 43, 70%) had significantly lower 1,25(OH)2D 

levels than those on haemodialysis (HD) (46.7 ± 18.8 vs 68.2 ± 35.7 pmol/L, p = 0.02, 

r = 0.31); 53% of PD and 24% of HD patients had low 1,25(OH)2D levels. 

Comparisons between clinical and biochemical measures between the dialysis patients 

and the control group is shown in Tables 5.1 and 5.2 above. 

 

There was no correlation with serum albumin levels in the overall cohort, but PD 

patients with low 1,25(OH)2D had lower serum albumin at the time of the study (35.2 

± 8.0 vs 41.1 ± 3.1, p = 0.04) than those with 1,25(OH)2D in the normal or high range. 
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Unfortunately, we did not measure the urinary or peritoneal losses of vitamin D and D 

binding protein in this study, but these may have resulted in lower 1,25(OH)2D levels 

in PD patients and also contributed to the poor concordance between alphacalcidol 

dosage and 1,25(OH)2D levels.  

 

1,25(OH)2D showed a linear correlation with both the Ca x PO4 product at the time of 

the study (p = 0.02, r = 0.28) as well as the mean time-averaged Ca x PO4 product (p 

= 0.03, r = 0.22). Patients with high 1,25(OH)2D had more hypercalcaemic episodes 

(15% vs 6%, p = 0.02). As classically observed, the mean time-averaged iPTH level 

inversely correlated with 1,25(OH)2D (p = 0.02, r = 0.36 for mean time-averaged 

iPTH vs 1,25(OH)2D levels and p = 0.003, r = 0.41 for iPTH levels at the point of 

study vs 1,25(OH)2D levels). No correlation was found between 25(OH)D or 

1,25(OH)2D levels and the serum Ca, PO4 or alkaline phosphatase measured at any 

time point. Neither 25(OH)D nor 1,25(OH)2D showed any correlation with the 

patients’ age, gender, race, dialysis vintage, blood pressure or body mass index. There 

was no seasonal variation in the levels. 

 

Vascular measures in dialysis and control groups 

A comparison between vascular measures in the dialysis and control groups is shown 

in Table 5.4. 
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Table 5.4   Comparison of vascular measures between dialysis and control  
groups 

 Dialysis 
n = 61 

Controls 
n = 40 

p 

Carotid IMT [mm] 
 

0.48 ± 0.17 0.38 ± 0.01 0.001 

Aortic PWV [m/sec] 
 

7.7 ± 1.0 n/d - 

Number with cardiac calcification  
  

Agatston score 
  

Coronary arteries 
                         Valves 
                          Aorta 

13 (21%) 
 

median 141.2 
(range 0 – 2039) 

12 
3 
2 

n/d 
 
- 
 
- 
- 
- 

 
 
- 

cIMT – carotid artery intima-media thickness; PWV – pulse wave velocity; n/d – not done. 
All values expressed as mean ± sd unless indicated otherwise.  
 

 

Vitamin D levels and correlations with vascular measures  

Both low and high levels of 1,25(OH)2D were associated with abnormal vascular 

measures: patients with 1,25(OH)2D in the normal range had cIMT levels comparable 

to those in the controls, but those with 1,25(OH)2D <40 or >150 pmol/L had 

significantly higher cIMT (p < 0.0001 for quadratic term, Figure 5.1). The cardiac 

calcification score showed a similar relationship to 1,25(OH)2D: calcification was 

seen in 8 of 22 (36%) patients with 1,25(OH)2D levels <40 pmol/L, 5 of 11 (45%) 

patients with levels >150 pmol/L, and only 1 of 28 (3.6%) patient with levels in the 

normal range (p = 0.0002 for quadratic term, Figure 5.2).  

 

No association was found between 1,25(OH)2D and PWV or between 25(OH)D and 

any of the vascular measures.  
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Figure 5.1   

 

The bimodal relationship between cIMT and 1,25(OH)2D levels (p < 0.0001). These non-linear effect 
of vitamin D levels was fitted by including a quadratic term: the outcome variable (cIMT) were 
regressed on 1,25(OH)2D and the square of 1,25(OH)2D, and the significance of the squared (quadratic) 
term noted. 
 
Figure 5.2   

 

The cardiac calcification score showed a similar significant quadratic (bimodal) relationship (p = 
0.0002).  The calcification score was transformed to log10(CS + 1) to adjust for skewness and the 
quadratic association calculated as described for cIMT above. 
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Vitamin D levels and correlations with inflammation 

The hs-CRP was higher in patients than controls (median 9.3 (range 1.2 – 53) vs 0.43 

(0.1 – 5.02) mg/L, p<0.00001, r = 0.73), and higher in HD than PD patients (17.9 (1.7 

– 54.4) vs 3.2 (0.3 – 23) mg/L, p = 0.01, r = 0.52). None of the patients had active 

infections at the time of the study. The hs-CRP was significantly higher in patients 

with calcification (15.3 (0.5 – 54.4) vs 1.35 (0.3 – 32) mg/L, p < 0.0001, r = 0.25, 

Figure 5.3) and was independent of age, dialysis vintage, BP, body mass index, lipid 

profile, cIMT or PWV. An inverse correlation was seen between 1,25(OH)2D and hs-

CRP (p<0.0001, r = -0.29, Figure 5.4). Both the prevalence of calcification as well as 

the highest calcification scores were found in patients with a combination of low 

1,25(OH)2D levels and high hs-CRP, whereas patients with 1,25(OH)2D levels in the 

normal range had the lowest incidence of calcification (Figure 5.5). There was no 

interaction between 1,25(OH)2D and hs-CRP (p = 0.11). There was no association 

between 25(OH)D and hs-CRP. 

 
 
Figure 5.3    

 
The hs-CRP was higher in patients than controls (p<0.00001), and significantly higher in patients with 
calcification compared to patients without calcification on CT scan (p<0.0001). 
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Figure 5.4    

 

There was an inverse correlation between 1,25(OH)2D and hs-CRP levels (p<0.0001, r = -0.29). The 
regression line was fitted on the log-log scale and is shown back-transformed. 
 
 
 
Figure 5.5    

 

When patients were divided into groups based on both their 1,25(OH)2D levels and hs-CRP, the 
prevalence of calcification as well as the highest calcification scores were found in patients with a low 
1,25(OH)2D levels and high hs-CRP, whereas patients with 1,25(OH)2D levels in the normal range had 
the lowest incidence of calcification. 
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Predictors of cIMT and calcification 

In addition to the strong quadratic relationship between cIMT and 1,25(OH)2D and 

between the calcification score and 1,25(OH)2D, we found univariate associations 

between cIMT and the mean time-averaged Ca x PO4 product (r = 0.38, p < 0.001), 

calcification score and the mean time-averaged Ca x PO4 product (r = 0.27, p = 0.02) 

and calcification score and intact PTH levels (r = 0.18, p = 0.04). Significant 

predictors of the outcome variables, cIMT and calcification score, from univariate 

analyses were entered into stepwise multiple linear regression analyses (Table 5.5). 

1,25(OH)2D was an independent predictor of cIMT whereas both 1,25(OH)2D and hs-

CRP were significant predictors of the calcification score.  

 

Table 5.5   Multivariate analysis for predictors of cIMT and calcification score 

 

Variables ß   SE p Model R2 
cIMT 
 
       1,25(OH)2D level 
        Square of 1,25(OH)2D level (quadratic 
co-efficient) 
        Mean time-integrated CaxPO4  

 
 

-2.49 
 
 

0.32 

 
 

0.001 
<0.001 

 
0.09 

 
 

<0.0001 
<0.0001 

 
0.073 

 
57% 

Calcification score * 
 
        1,25(OH)2D level 
        Square of 1,25(OH)2D level (quadratic 
co-efficient) 
        hs-CRP 
        Mean time-integrated CaxPO4  
        Intact PTH levels 

 
 

-9.1 
0.04 

 
11.6 
10.2 
5.2 

 
 

4.2 
0.02 

 
4.7 
1.7 
2.6 

 
 

0.04 
0.04 

 
0.02 
0.16 
0.48 

 
16% 

 

ß – (unstandardized) regression coefficient (indicates the difference in the outcome variable [cIMT or 
calcification score] per unit change in the independent variables. 

SE – standard error 
Model R2 – indicates the amount of variance in the dependent variable that can be explained by the 

model. 
* Analysed as log10(Calcification score + 1) 
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5.5      Discussion 

In this study I have shown, for the first time, that both low and high levels of 

1,25(OH)2D are associated with abnormal vascular structure and calcification, 

possibly through a dual effect on Ca-PO4 homeostasis and inflammation. A significant 

number of children on dialysis have low levels of 1,25(OH)2D despite daily 

alphacalcidol supplements, and given the narrow therapeutic window for vitamin D 

analogues on vascular health, careful monitoring of 1,25(OH)2D levels is 

recommended in the dialysis population. 

 

92% of our patients had 25(OH)D deficiency, and studies have shown that the 

majority of CKD patients have low 25(OH)D levels (Zittermann A, 2006; Teng et al, 

2005). However, unlike other studies where the patients were naïve to vitamin D 

sterols, all of our patients were prescribed daily alphacalcidol. The ‘nutritional’ form, 

25(OH)D, is unaffected by alphacalcidol treatment, and so we also measured 

1,25(OH)2D, the ‘hormonal’ or ‘active’ form of Vitamin D produced by 25-

hydroxylation of alphacalcidol  in the liver (Dusso et al, 2005; Feldman et al, 2005), 

and found that 36% of the children had low 1,25(OH)2D. Reduced levels of 

1,25(OH)2D despite treatment may be due to a loss of albumin-bound Vitamin D in 

the peritoneum as suspected in our patients, or non-concordance with treatment. None 

of our patients had malabsorption syndromes or liver disorders to suggest poor 

absorption or reduced enzymatic conversion of alphacalcidol. Despite the strong 

inverse correlation between inflammation and vitamin D, and the higher inflammatory 

status of HD patients, interestingly we found lower vitamin D levels in the PD cohort, 

suggesting that a loss of albumin-bound vitamin D did indeed play a major role. In the 

previous chapter I showed that in children on dialysis the dose of alphacalcidol 
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influences cIMT and calcification (Shroff et al, 2007), but the lack of a consistent 

dose-response relationship as shown in this study, suggests that adjustments in the 

alphacalcidol dose alone may not be sufficient for optimal management. 

 

The effects of high vitamin D doses on vascular calcification are well recognised in 

clinical studies (Shroff et al, 2007; Civilibal et al, 2006; Litwin et al, 2005) and in 

vitro work (Carthy et al, 1989; Inoue et al, 1988; Jono et al, 1998) and this study 

confirms an increased cIMT and calcification in patients with high 1,25(OH)2D levels. 

Vitamin D analogues may induce calcification by a number of mechanisms that 

include enhancing the gastrointestinal absorption of Ca and PO4, over-suppression of 

PTH leading to adynamic bone disease (Brown et al, 2002; Dusso et al 2005) and a 

direct effect on VSMCs (Carthy et al, 1989; Jono et al, 1998). An early study by 

Milliner showed that, at autopsy, 60% of children with CKD had soft-tissue 

calcification and 36% had systemic calcinosis, and use of any vitamin D analogue 

showed the strongest independent association with calcinosis (Milliner et al, 1990). In 

addition, both 25(OH)D and 1,25(OH)2D can have a direct effect on the VSMC: 

1,25(OH)2D upregulates the vitamin D receptor and induces cellular calcium uptake 

(Inoue et al, 1988), decreases VSMC proliferation (Carthy et al, 1989), induces 

VSMC migration and osteoblastic conversion of the VSMCs (Jono et al, 1997; Jono 

et al, 1998). Recent observational studies by Litwin (Litwin et al, 2005), Civilibal 

(Civilibal et al, 2007), Mitsnefes (Mitsnefes et al, 2005) and my previous work (Shroff 

et al, 2007) have shown that a high vitamin D dose adversely affects cIMT and 

calcification. Newer vitamin D analogues, such as paricalcitriol and doxercalciferol, 

are shown to be less calcaemic (Brown et al, 2003; Sprague et al, 2003) but have only 
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a marginal survival advantage over calcitriol (Teng et al, 2003; Tentori et al, 2006), 

and their effects on the vasculature have not as yet been studied.  

 

Despite the clearly deleterious calciotropic effects of vitamin D, in this study, low 

levels of 1,25(OH)2D were also associated with increased cIMT and calcification. 

Low 1,25(OH)2D results in an increase in PTH levels that can promote soft-tissue 

calcification through its effect on calcium absorption and an efflux of Ca and PO4 

from a high turn-over bone state (Brown et al, 2003; Dusso et al, 2005). Our findings 

are supported by 2 recent studies in adult HD patients that have demonstrated a ~20% 

survival advantage of any vitamin D formulation over no vitamin D treatment (Teng 

et al, 2003; Tentori et al, 2006). In a small cohort of Japanese HD patients, Shoji et al 

showed that the use of 1-α hydroxyvitamin D3 was associated with a 28% lower risk 

of death from cardiovascular disease as compared to a group not on any vitamin D 

supplements (Shoji et al, 2004). London recently showed that in a cohort of adult 

dialysis patients who were all naïve to Vitamin D analogues, low 25(OH)D and 

1,25(OH)2D were associated with greater vessel stiffness and reduced brachial artery 

distensibility (London et al, 2007). In my earlier study (chapter 4) I have shown that 

children on dialysis who have PTH levels >2-fold ULN have higher cIMT, PWV and 

calcification than those with PTH levels <2-fold ULN (Shroff et al, 2007). However, 

as seen in this study, 1,25(OH)2D levels are associated with cIMT and calcification 

independent of PTH, suggesting that the biological consequences of 1,25(OH)2D 

extend beyond the regulation of Ca-PO4 homeostasis alone.  

 

Recently described anti-inflammatory actions of vitamin D (Mathieu et al, 2002) may 

also contribute to its effects on the vasculature but have not been explored in clinical 
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studies. Interestingly, we found a strong inverse correlation between hs-CRP and 

1,25(OH)2D levels that was associated with vascular calcification, but no association 

between 25(OH)D and hs-CRP. 1-alpha hydroxylase is expressed on many cell types 

such as macrophages, endothelial cells and dendritic cells where it acts in an autocine 

/ paracrine manner independently of the PTH-bone axis and is unaffected by renal 

failure, but may be regulated by immune stimuli. In vitro studies as well as studies in 

other inflammatory disease states such as rheumatoid arthritis (Patel et al, 2007) have 

shown that vitamin D can influence various aspects of inflammation (Levin et al, 

2005) including inhibition of antigen-presenting cell maturation, downregulation of 

nuclear factor-κß, and modulation of cytokine production to create an anti-

inflammatory environment (increased IL-10 and decreased IL-6, IL-12 and TNF-α) 

(Mathieu et al, 2002; Schleithoff et al, 2006), but this is the first clinical study that has 

found an association between 1,25(OH)2D levels and inflammation. However, it is 

also possible that inflammation leads to low vitamin D levels. In a cross-sectional 

study it would be impossible to discern a cause – effect relationship between 

inflammation-malnutrition and vitamin D levels, but given the results of in vitro 

studies that have shown a causal effect of vitamin D on inflammation, it is likely that 

low vitamin D levels contribute to the pro-inflammatory milieu in the dialysis 

patients. Studies in non-renal failure patients have shown that vitamin D 

supplementation can suppress serum TNF-α and increase IL-10 levels (Muller et al, 

1992): TNF-α promotes atherosclerosis and IL-10 has anti-atherogenic properties. 

Vitamin D also has direct cardioprotective effects such as an anti-proliferative effect 

on cardiomyocytes (Xiang et al, 2005) and negative endocrine regulation of the renin-

angiotensin system (Li et al, 2002). 
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In this cross-sectional study an association between vitamin D levels and vascular 

phenotype does not necessarily indicate a cause – effect relationship. However, this 

study serves as a starting point to stimulate cell-biology work and generate hypotheses 

for randomised controlled studies of the effects of vitamin D analogues on 

cardiovascular health. We were unable to find a correlation between hs-CRP levels 

and cIMT, suggesting that either the study population is too small to demonstrate an 

effect, or that inflammation has a greater influence on calcification than on the 

mechanisms involved in vessel thickening. Unlike the study by London et al, we did 

not find a correlation between vitamin D levels and vessel stiffness (London et al, 

2007). The greater plasticity of children’s vessels and their shorter dialysis vintage 

may allow for compensatory mechanisms that can maintain normal vessel function in 

the face of early structural damage to the vessel. Vessels from children provide an 

ideal model to study uraemic influences on the arterial wall, as they do not have the 

confounding pro-atherosclerotic risk factors that are prevalent in the adult CKD 

population.  

 

5.5     Conclusions 

In conclusion, I have shown, for the first time, that both low and high levels of 

1,25(OH)2D are associated with adverse morphological changes in the large arteries, 

and that the vascular damage may be determined by the effects of Vitamin D on Ca-

PO4 homeostasis and inflammation. Given the narrow therapeutic window for vitamin 

D analogues on vascular health, optimal vascular protective strategies in dialysis 

patients may require careful monitoring of not only the vitamin D dose, but also 

1,25(OH)2D levels. 
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6.1     Abstract 

Vascular calcification occurs in the majority of patients with chronic kidney disease, 

but a subset of patients do not develop calcification despite exposure to a similar 

uraemic environment. Physiological inhibitors of calcification, fetuin-A, 

osteoprotegerin (OPG), and undercarboxylated-matrix Gla protein (uc-MGP) may 

play a role in preventing the development and progression of ectopic calcification, but 

there are scarce and conflicting data from clinical studies. In this chapter, I measured 

fetuin-A, OPG, and uc-MGP in 61 children on dialysis, and studied their relationships 

with clinical, biochemical and vascular measures. 

 

Fetuin-A and OPG were higher and uc-MGP lower in dialysis patients than controls. 

In controls, fetuin-A and OPG increased with age. Fetuin-A showed an inverse 

correlation with dialysis vintage (p = 0.0013), time-averaged serum phosphate (p = 

0.03), and hs-CRP (p = 0.001). Aortic pulse wave velocity and augmentation index 

showed a negative correlation with fetuin-A, while a positive correlation was seen 

with pulse wave velocity and OPG. Patients with calcification had lower fetuin-A and 

higher OPG than those without calcification. On multiple linear regression analysis 

Fetuin-A independently predicted aortic PWV (p = 0.004, ß = -0.45, model R2 = 48%) 

and fetuin-A and OPG predicted cardiac calcification (p = 0.02, ß = -0.29 and p = 

0.014, ß = 0.33 respectively, model R2 = 32%). 

 

In this study, I have defined normal levels of the calcification inhibitors in healthy 

children, and shown, for the first time, that fetuin-A and OPG are associated with 

increased vascular stiffness and calcification in children on dialysis. Higher levels of 
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fetuin-A in children suggests a possible protective upregulation of in the early stages 

of exposure to the pro-calcific and pro-inflammatory uraemic environment.  

 

 

6.2     Introduction 

In CKD pro-calcific stimuli such as increased Ca, PO4 and iPTH levels (Goodman et 

al, 2000; Litwin et al, 2005; Shroff et al, 2007), and, potentially, treatment with Ca-

based PO4 binders and vitamin D can promote vascular and soft-tissue calcification 

(Goodman et al, 2000; Block et al, 2005; Shroff et al, 2007; Shroff et al, 2008). Yet, 

some patients with CKD do not develop calcification despite exposure to the same 

uraemic milieu (Block et al, 2005). In vitro studies and animal experiments have 

shown that ectopic calcification is a highly regulated, cell-mediated process that 

involves a balance between inducers and inhibitors of calcification (Shanahan C, 

2007; Moe et al, 2005).  

 

Circulating fetuin-A, OPG and MGP levels have been linked with cardiovascular 

mortality in adults with CKD (Ketteler et al, 2003; Kiechl et al, 2004; O’Donnell et 

al, 2006), but there is a complex and poorly understood relationship between these 

physiological calcification inhibitors at different stages of CKD and conflicting data 

on their impact on vascular measures. Moreover, circulating inhibitors of calcification 

have not been studied in children with CKD, nor have their normal levels been 

defined in the healthy childhood population.  

 

In this chapter I have describe serum fetuin-A, OPG and uc-MGP levels in a cohort of 

healthy children and dialysis patients, and examined the hypothesis that normal levels 
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of the circulating calcification inhibitors will protect against vessel stiffness and 

calcification in children on dialysis. 

 

 

6.3     Methods 

 

Patients and controls 

From January 2005 to December 2006, 61 consecutive children (5 – 18 years) who 

had been on dialysis for ≥ 3 months were recruited. This is the same cohort of patients 

who participated in the vitamin D study described in Chapter 5. 

As the levels of calcification inhibitors have not been described in the healthy 

childhood population, levels of fetuin-A, OPG and uc-MGP were first defined in an 

age- and gendre-matched control group before comparisons with the dialysis cohort 

could be made. 75 healthy children participated in the study: 55 children formed part 

of a larger study investigating nutritional parameters in healthy children and 20 

underwent routine corrective surgery for external auricular malformations or squints 

at Great Ormond Street Hospital. Controls were confirmed to have no known medical 

illnesses, family history of heart disease, or active infections at the time of the study.  

Informed written consent was obtained from all parents or caregivers, and children 

where appropriate. The study was approved by the Great Ormond Street Hospital 

research ethics committee.  

 

Biochemical measures 

Blood samples were taken before a mid-week session of haemodialysis or 

immediately after a peritoneal dialysis session. Serum Ca, PO4 and iPTH levels and 
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the dosage of elemental calcium intake from phosphate binders and vitamin D therapy 

were recorded at monthly intervals from the start of CKD stage IV and expressed as 

mean time-integrated values. In controls, a single blood test at the time of the scans 

was performed. 

Fetuin-A, OPG and uc-MGP levels were measured as described in detail in Chapter 2, 

section 2.2. High sensitivity CRP levels that were measured as part of the vitamin D 

study described in Chapter 5 were also used for this study.  

 

Vascular measures 

The carotid intima media thickness, aortic and brachioradial pulse wave velocity, 

carotid augmentation index and coronary calcification on CT scan were measured as 

described in Chapter 2, section 2.1.  

As vascular scans could only be obtained in 18 of the healthy children, the vascular 

measures in our dialysis cohort were compared with 40 age-matched controls who 

participated in the PTH and vascular outcome study described in Chapter 4. For 

ethical reasons, CT scans were not performed in the controls. 

 

Statistical analyses 

Results are presented as mean ± SD unless otherwise indicated. Spearman’s (non-

parametric) correlations were used to test for associations between the calcification 

inhibitor levels and selected clinical, anthropometric, biochemical and vascular 

measures. Comparisons between patient and control groups were made using one-way 

analysis of variance (ANOVA).  

Two separate stepwise multiple linear regression analyses were performed to test the 

associations between the calcification inhibitors against the outcome variables PWV 
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and calcification score. Variables with p < 0.1 on univariate analyses (age, time in 

CKD stage IV, dialysis vintage, mean time-integrated Ca x PO4 product PTH and 

serum albumin and dosage of alphacalcidol) were entered into the multiple regression 

models. Given the interaction between serum PO4 and Ca x PO4 (p = 0.02), I have 

excluded serum PO4 from the regression models, despite its significant association 

with fetuin-A levels on univariate analysis so as to avoid collinearity. All the 3 

calcification inhibitors under study (fetuin-A, OPG and uc-MGP) were entered into 

both the regression models, even though uc-MGP did not show any significant 

associations with vascular measures on univariate analyses. Also, given the known 

fluctuations in biochemical measures and calcification inhibitor levels following a 

single haemodialysis session, and to address the issue of pooling all dialysis (HD and 

PD) patients for analyses, the dialysis modality was entered into both regression 

models despite non-significance on univariate analyses.  

 

 

 

6.4      Results 

 

The clinical and biochemical characteristics of the patient and control groups are 

shown in Table 6.1. Of the 61 patients (37 boys), 39 had renal dysplasia, 9 inherited 

nephropathies, 5 cystic kidney disease, 4 primary renal tubular disorders, 3 

renovascular disorders and one Wilm’s tumour. None of the patients had diabetes, 

dyslipidaemias, or active infections at the time of the study, and none were on 

warfarin therapy.  
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Levels of Fetuin-A, OPG and uc-MGP in healthy children 

The mean fetuin-A levels in the healthy controls were 0.41 ± 0.13 g/L, and lower than 

that reported in adults (0.5 – 1.0 g/L). Fetuin-A showed a linear increase with age (p < 

0.0001, r2 = 0.55, Figure 6.1A), but was independent of gender. In children aged 12 to 

18 years, fetuin-A levels were lower in those ≥ 50th percentile for age-appropriate 

height as compared to children below this percentile (0.45 ± 0.1 vs 0.6 ± 0.2 g/L, p = 

0.03). In this cohort with a normal biochemical profile and no evidence of 

inflammation, fetuin-A did not show any associations with serum Ca, PO4 or PTH 

levels, fasting glucose, triglyceride or hs-CRP.  

 

The mean OPG levels in healthy children were 5.2 ± 1.2 pmol/L. OPG levels also 

showed a linear increase with age (p = 0.004, r2 = 0.34, Figure 6.1B), but no 

correlation was found between OPG and any anthropometric, biochemical or vascular 

measure.  

 

The mean uc-MGP levels in the healthy controls were 527 ± 185µM, and were 

independent of age and unrelated to any other measured parameters. 

 

In the 18 controls who underwent vascular scans, no associations were seen with 

calcification inhibitor levels.    
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Table 6.1     Demographic, clinical, anthropometric and biochemical 
characteristics of patients and controls 

 Patients 
n = 61 

Controls 
n = 75 

p 
 

Age (yr) 13.4 ± 4.1 12.4 ± 4.1 0.33 

Gender (males / females) 37/24 42/33 0.19 

Race (Caucasian/Asian/Black/Others) 37 / 12 / 9 / 3 39 / 19 / 12 / 5 - 

Estimated GFR (ml/min/1.73m2) 8.9 ± 8.0 118 ± 3.4 < 0.0001 

Time in CKD Stage IV (yr) 4.0 ± 2.2 - - 

Time on dialysis (yr) 0.9 ± 1.9 
(median 1.1 [0.25 – 8.7)

- - 

Dialysis modality (PD / HD) 43 / 18 - - 

Body mass index SDS -0.5 ± 1.6 0. 9 ± 0.6 < 0.0001 

Systolic BP index* 1.3 ± 0.3 0.9 ± 0.3 0.03 

Patients on anti-hypertensive medications 11 0 - 

Patients on ACEi or AIIRB 2 0 - 

Haemoglobin (g/dl) 11.7 ± 1.5 13.7 ± 2.1 0.08 

Albumin (g/L) 38 ± 3.0 41 ± 0.6 0.22 

Total  cholesterol (mmol/L) 4.0 ± 1.1 3.4 ± 1.0 0.16 

Triglycerides (mmol/L) 1.2 ± 1.2 0.8 ± 1.7 0.74 

Patients on statins 2 0 - 

Diabetes mellitus 0 0 - 

Smokers 0 0 - 

Serum PO4 level (mmol/L) # 1.5 ± 0.7 0.9 ± 0.4 0.005 

Serum Ca (albumin adjusted) (mmol/L) #  2.4 ± 0.1 2.4 ± 0.4 0.22 

Ca-PO4 product (mmol2/L2) # 4.2 ± 0.9 3.7 ± 0.2 0.001 

Serum iPTH#      - pmol/L## 
                           - fold ULN 

10.8 ± 2.9 
1.8 ± 1.3 

n/d 
n/d 

- 
- 

Parathyroidectomy 0 0 - 

PO4 binders 
Number on Ca-based PO4 binders 
Sevelamer +/- Ca-based PO4 binders  

 
52 (88%) 
9 (12%) 

 
- 
- 

 
- 

Cumulative intake of elemental Ca from 
PO4 binders gm/kg# 

 
124 ± 81 

 
- 

 
- 

Alphacalcidol (1-α hydroxy Vit D3) µ/kg    33.1 ± 20.3 - - 

All values expressed as mean ± SD. *BP index = measured BP/95th centile BP for age, sex, and height 
## For PTH values in pg/mL multiply by 10.5 #Expressed as mean time-integrated values from the onset 
of CKD stage IV 
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Figure 6.1A       

 

Circulating serum fetuin-A levels vs age in healthy controls 

 

 

Figure 6.1B     

 

Circulating osteoprotegerin (OPG) levels vs age in healthy controls 

 



   

 213

Fetuin-A levels in dialysis patients  

Unlike the levels seen in adult CKD patients, fetuin-A levels in children on dialysis 

were significantly higher as compared to controls (0.84 ± 0.3 vs 0.41 ± 0.13 g/L, p < 

0.0001, Table 6.2 and Figure 6.2A). The correlation between age and fetuin-A in 

healthy controls was not seen in the dialysis population (p = 0.33). Fetuin-A showed 

an inverse correlation with time on dialysis (p = 0.0013, r2 = 0.14, Figure 6.2B). 

Fetuin-A was lower in haemodialysis [HD] (n = 18) as compared with peritoneal 

dialysis [PD] patients (0.69 ± 0.4 vs 1.11 ± 0.2 g/L, p = 0.03), but this significance 

was lost after correction for the time on dialysis.  

 
Figure 6.2A    

 
Serum fetuin-A levels in children on dialysis and healthy controls 

 
 

Figure 6.2 B    

 
Serum fetuin-A levels vs time on dialysis 



   

 214

 
Table 6.2    Associations between the calcification inhibitors and clinical, 
anthropometric, biochemical and vascular measures* 
 

Variables Circulation calcification inhibitor levels 
 Fetuin-A Osteoprotegerin Undercarboxylated 

Matrix Gla-protein 
 
Clinical measures 
 
Age p = 0.33 p = 0.07 p = 0.22 
Gender p = 0.64 p = 0.88 p = 0.66 
Time in CKD stage IV p = 0.09 p = 0.14 p = 0.37 
Time on dialysis p = 0.0013, 

r2 = 0.14 
p = 0.19 p = 0.36 

 
Anthropometric measures 
 
Height p = 0.28 p = 0.08 p = 0.78 
Body mass index p = 0.16 p = 0.15 p = 0.56 
 
Biochemical levels and dosage of medications# 

 
Serum Ca  p = 0.16 p = 0.12 p = 0.15 
Serum PO4  p = 0.03, 

r2 = 0.19 
p = 0.07 p = 0.11 

Serum Ca x PO4  p < 0.0001,  
r2 = 0.24 

p = 0.09 p = 0.18 

Serum PTH p = 0.08 p = 0.01 
r2 = 0.35 

p = 0.34 

High sensitivity CRP p = 0.001, 
r2 = 0.42 

p = 0.24 p = 0.56 

Serum albumin p = 0.07 p = 0.52 p = 0.47 
Dosage of elemental Ca 
intake from PO4 binders 

p = 0.11 p = 0.62 p = 0.51 
 

Dosage of alphacalcidol p = 0.07 p = 0.30 p = 0.39 

 
Vascular Measures 
 
Carotid Intima-media 
thickness 

p = 0.08 p = 0.14 p = 0.09 

Aortic pulse wave velocity p = 0.016, 
r2 = 0.19 

p = 0.03 
r2 = 0.18 

p = 0.22 

Aortic augmentation index p = 0.03, 
r2 = 0.11 

p = 0.09 p = 0.18 

Coronary calcification 
score on CT scan 

p = 0.007, 
r2 = 0.20 

p = 0.005 
r2 = 0.23 

p = 0.61 

 

*All associations have been tested by Spearmans non-parametric correlations. An r value has only been 
given for correlations with a p value <0.05.  

#Expressed as mean time-integrated values from the onset of CKD stage IV 
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Association of Fetuin-A levels and vascular measures  

 

Fetuin-A showed an inverse correlation with the mean time-integrated serum PO4 

levels (p = 0.03, r2 = 0.19) and Ca x PO4 product (p < 0.0001, r2 = 0.24). Fetuin-A 

levels showed a strong negative correlation with hs-CRP (p = 0.001, r2 = 0.42).  

Fetuin-A was associated with vessel stiffness: both the aortic PWV and the aortic 

augmentation index showed an inverse correlation with fetuin-A levels (p = 0.016, r2 

= 0.19 [Figure 6.3A] and p = 0.03, r2 = 0.11 respectively). Fetuin-A levels were 

significantly lower in children with coronary or valvular calcification (n = 14) on CT 

scan than in those without calcification (0.64 ± 0.2 vs 0.89 ± 0.4g/L, p = 0.007, Figure 

6.3B). For every 0.1 g/L increase in serum fetuin-A, there was a 5% decrease in risk 

of calcification (95% CI 0.84 to 0.91, p = 0.013).  

     

 

 



   

 216

Figure 6.3A   
 

 

The aortic pulse wave velocity correlate with serum fetuin-A levels 

 
 
 
 
 
Figure 6.3B    
 

 

Fetuin-A levels are lower in children with coronary or valvular calcification 
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OPG levels in dialysis patients  

 

OPG levels were significantly higher in dialysis patients as compared to healthy 

controls (6.7 ± 2.2 vs 5.2 ± 1.2 pmol/L, p < 0.0001, Figure 6.4). A linear relationship 

was seen between OPG and intact PTH levels (p = 0.01, r2 = 0.35). OPG levels were 

higher in HD compared to PD patients (8.9 ± 1.6 vs 6.0 ± 0.9 pmol/L, p = 0.02), but 

this reflected the higher PTH levels in the HD patients. There was no correlation 

between RANKL or OPG/RANKL and any clinical, biochemical or vascular measure. 

 

 

Figure 6.4    

 

Serum osteoprotegerin levels were higher in dialysis patients compared to age-
matched controls 
 

 

Association of OPG levels and vascular measures  

OPG levels were associated with vessel stiffness and calcification. The aortic PWV 

increased with increasing OPG levels (p = 0.03, r2 = 0.18, Figure 6.5A), and children 
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with calcification had significantly higher OPG levels than those without calcification 

(8.1 ± 1.6 vs 6.3 ± 2.2 pmol/L, p = 0.005, Figure 6.5B).  

 

 

Figure 6.5A    

 

The aortic pulse wave velocity correlated with serum osteoprotegerin levels  
 

 

 

Figure 6.5B    
 
 

 

Children with calcification had higher OPG levels than those without 
calcification 
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uc-MGP levels in dialysis patients 

uc-MGP levels in children on dialysis were significantly lower as compared to 

controls (232 ± 116 vs 527 ± 185 µM, p < 0.001, Figure 6.6), but no further 

associations with uc-MGP levels were found (Table 6.2).  

 

Figure 6.6     

 

Serum levels of undercarboxylated matrix–Gla protein were lower in children on 
dialysis compared to controls 
 

 

 

Correlations between the calcification inhibitors 

I was unable to find any correlations between serum levels of fetuin-A, OPG and uc-

MGP in the overall cohort, but in the patients with calcification, an association was 

seen between fetuin-A and OPG levels (p = 0.04, r = 0.09). There was no correlation 

with uc-MGP and fetuin-A or OPG. 
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Associations between the calcification inhibitor levels and determinants of vascular 
measures  
 
On stepwise multiple linear regression analyses fetuin-A levels independently 

predicted aortic PWV (p = 0.004, ß = - 0.45, model R2 = 48%) and fetuin-A and OPG 

predicted cardiac calcification (p = 0.02, ß = - 0.29 and p = 0.014, ß = 0.33, model R2 

= 32% respectively).  

 

 

6.5     Discussion 

This is the first study to describe circulating levels of the calcification inhibitors 

fetuin-A, OPG, and uc-MGP in a paediatric population and show that children on 

dialysis have a significant perturbation of these levels that is associated with increased 

vascular stiffness and calcification.   

 

In healthy children, both fetuin-A and OPG levels increased with age, presumably 

because both these proteins are expressed in bone and play a role in skeletal 

mineralization. Also, in healthy controls, fetuin-A levels were lower in taller children 

as compared to their age-related peers, suggesting that fetuin-A may be consumed in 

the course of active skeletal mineralization, as shown in an animal model. Fetuin-A is 

located in mineralising areas of normal human bone matrix (Schinke et al., 1996), 

suggesting an increased consumption of fetuin-A during periods of active skeletal 

growth. Fetuin-A deficient mice have impaired growth plate chondroyte maturation 

and retardation in the longitudinal growth of femurs (Szweras at al., 2002) along with 

extensive calcification of the heart, lungs, and kidneys on a mineral and vitamin D-

rich diet or on a calcification-prone genetic background on normal diet, and similar to 

OPG-/- mice, this calcification can be seen without apparent or only a moderate 
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increase in serum Ca x PO4 levels (Schafer et al, 2003; Bucay et al., 1998). We were 

unable to find a correlation between fetuin-A and features of bone turnover including 

height, alkaline phosphatase, or PTH levels in dialysis patients; however, as the PTH 

levels in our cohort were lower than that recommended by the K/DOQI guidelines 

(K/DOQI, clinical practise guidelines, 2003), a high-turnover bone state is unlikely.  

 

Although several studies have reported that adults on dialysis have significantly lower 

fetuin-A levels than controls (Ketteler et al, 2003; Wang et al, 2005; Cozzolino et al, 

2007; Coen et al, 2006; Moe et al, 2005; Stenvinkel et al, 2005), we found higher 

levels of fetuin-A in paediatric dialysis patients as compared to healthy age-matched 

controls. Only children with evidence of calcification on CT scan had reduced fetuin-

A, but even this group had higher levels than the controls. Nevertheless, with 

increasing dialysis vintage and hs-CRP, fetuin-A levels decreased. Our findings are 

supported by a reports showing that adults with early CKD do not have a reduction in 

fetuin-A (Ix et al, 2006) and that there is no change in fetuin-A levels in dialysis 

patients with low levels of inflammatory activity (Hermans et al, 2006). Fetuin-A is a 

negative acute phase reactant (Leberton et al, 1979), and in the pro-inflammatory 

dialysis milieu its production may be reduced. In addition, the pro-calcific uraemic 

milieu may consume circulating fetuin-A: in vitro studies have shown that fetuin-A 

contributes to almost 50% of the calcification inhibitory capacity of human plasma 

(Price et al, 2003), and by ‘shielding’ mechanisms prevents further crystal growth 

(Reynolds et al, 2005). Taken together, this suggests that a protective mechanism 

allows an upregulation of fetuin-A in the early stages of CKD and dialysis, and only 

severe or prolonged exposure to a pro-inflammatory and/or pro-calcific environment 
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eventually leads to low levels due to reduced production and/or increased 

consumption.  

 

However, it may also be that patients with calcification have genetically lower fetuin-

A levels that predispose them to calcification. Genetic polymorphism studies have 

given conflicting results (Cozzolino et al, 2007), but the association between reduced 

fetuin-A levels and cardiovascular (Herman et al, 2007; Ketteler et al, 2003; 

Stenvinkel et al, 2005; Wang et al, 2005) and even all-cause (Herman et al, 2007) 

mortality in 4 large studies suggest that fetuin-A is likely to have a causal effect on 

vascular calcification. Moreover, low circulating fetuin-A levels are associated with 

high serum PO4 levels even in the general population (Osawa et al, 2005) and have 

been associated with valvular calcification in patients with normal renal function (Ix 

et al, 2007). In our study, fetuin-A was a significant and independent predictor of 

vascular stiffness and calcification irrespective of dialysis vintage, Ca x PO4 levels, or 

hs-CRP, implying that genetic polymorphisms may indeed play a role in an individual 

patients’ susceptibility to calcify, possibly by modulating the magnitude of change in 

fetuin-A production in response to a pro-inflammatory or pro-calcific environment.  

 

We found an independent association between fetuin-A levels and aortic PWV and 

calcification, and there are few and conflicting reports in the literature on this. While a 

Japanese study has shown that fetuin-A levels predict carotid artery stiffness even in 

healthy subjects (Mori et al, 2007), Hermans et al could not find an independent 

association between PWV or augmentation index and fetuin-A in dialysis patients 

(Herman et al, 2006). The above dialysis cohort in fact had normal fetuin-A levels 

and a low level of inflammatory activity as compared to controls, and may not be a 
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representative population of dialysis patients. Animal studies have shown that fetuin-

A knock-out mice develop widespread soft-tissue and myocardial calcification 

whereas their large arteries are spared (Merx et al, 2005). In these animals the 

myocardial Ca content can increase upto 60-fold, initiating a profound pro-fibrotic 

response with the ‘myocardial stiffness’ leading to cardiac fibrosis, diastolic 

dysfunction, reduced cardiac output and an impaired tolerance to ischaemia (Merx et 

al, 2005). Indeed, fetuin-A levels are an independent predictor of death in non-renal 

failure patients following electrocardiogram changes of ST-elevation and acute 

myocardial infarction (Lim et al, 2007).  

 

So far, no studies have addressed OPG levels and its associations with vascular 

measures in children on dialysis. Several lines of evidence from mouse genetics 

suggest a vasculoprotective role for OPG: (I) Targeted deletion of the OPG gene leads 

to vascular calcification of the aorta and renal arteries (Bucay et al., 1998), (II) 

transgenic overexpression in OPG-/- mice leads to rescue of the phenotype of vascular 

calcification (Min et al., 2000), and (III) vascular calcification induced by warfarin or 

toxic doses of vitamin D is inhibited by simultanous application of OPG in a rat 

model (Price et al., 2001). Since OPG is a decoy receptor for RANKL, the principal 

regulator of osteoclast function, it is unclear if OPG inhibits vascular calcification by 

inhibiting mineral release from bone, by vascular wall dependent mechanisms, or by 

effects in the circulation.  

 

A number of studies have shown that OPG is elevated in vascular disease and that 

OPG seems to be a biomarker for increased vascular mortality and an increased risk 

for cardiovascular disease, especially in adult populations of renal failure patients 
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(Browner et al., 2001; Kiechl et al., 2004; Hjelmesaeth et al., 2006). Serum OPG was 

related to severity and progression of carotid atherosclerosis (Kiechl et al., 2004), 

associated with cIMT (Erdogan et al., 2004) and coronary artery calcification (Abedin 

et al., 2007). OPG may be either cause or consequence of vascular calcification, and 

high circulating OPG levels in patients with cardiovascular disease could also mean 

that raised OPG levels detrimentally affect vascular homeostasis. 

 

Although uc-MGP levels were significantly lower in dialysis patients than healthy 

controls, we were unable to find any correlations with uc-MGP and clinical or 

vascular measures. In vitro work has shown that vessels with intimal and/or medial 

calcification, uncarboxylated MGP (uc-MGP) is localized around areas of 

calcification, whereas in healthy arteries active or γ–carboxylated MGP is present, 

with no uc-MGP (Schurgers et al, 2005; Murshed et al, 2004). It is possible that uc-

MGP levels were so low that correlations with biochemical or vascular parameters is 

no longer possible. Also, we have not measured total MGP levels, and the low 

circulating uc-MGP may represent a lack of MGP production or reduced vitamin-K 

dependent γ–carboxylation of the uc-MGP to its active form. As MGP levels can 

potentially be modulated by dietary supplementation of vitamin K (Schurgers et al, 

2001), the role of circulating MGP, if any, needs to be further explored.  

 

There is clearly a complex relationship between the calcification inhibitory proteins 

and vascular measures in different clinical settings and even at the different stages of 

uraemic vasculopathy that are impossible to discern given the cross-sectional nature 

of this study and indeed all the other published work in this field. The results of the 
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present study warrant further investigations of circulating inhibitor levels as well as 

their genetic polymorphisms to elucidate the potential clinical utility of these 

biomarkers. As cardiovascular morbidity is known to begin in the early stages of 

CKD, future studies should assess serial measures of the circulating inhibitors from 

CKD stages II - III. 

 

 

6.6     Conclusions 

In conclusion, in this study I have defined the normal levels of the calcification 

inhibitors in the healthy childhood population and shown, for the first time, that 

fetuin-A and OPG impact on vascular stiffness and calcification in children on 

dialysis. Paediatric dialysis patients have an upregulation of fetuin-A, possibly as a 

protective response to the pro-calcific and pro-inflammatory uraemic environment. 

While further longitudinal studies in both adult and paediatric CKD patients are 

required to fully characterise these circulating biomarkers, they may prove to be a 

useful and convenient measure of an individual patients’ susceptibility to calcify. 
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Chapter 7 

 

Evidence of In Vivo Vascular Damage and 

Calcification:  

Clinical and Laboratory Correlations 
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7.1     Abstract 

Vascular calcification is associated with increased morbidity and mortality in stage 

5 chronic kidney disease, yet its early pathogenesis and initiating mechanisms in 

vivo remain poorly understood. To address this we quantified the calcium (Ca) load 

in arteries from children (10 pre-dialysis, 24 dialysis) and correlated it with 

clinical, biochemical and vascular measures.   Vessel Ca load was significantly 

elevated in both pre-dialysis and dialysis and correlated with the patients’ mean 

serum Ca x P product.  However, only dialysis patients showed increased carotid 

intima-media thickness and increased aortic stiffness and calcification on CT was 

present in only the 2 patients with the highest Ca loads.  Importantly, pre-dialysis 

vessels appeared histologically intact, whereas dialysis vessels exhibited evidence 

for extensive vascular smooth muscle cell (VSMC) loss due to apoptosis.  Dialysis 

vessels also showed increased alkaline phosphatase activity and Runx2 and osterix 

expression indicative of VSMC osteogenic transformation.  Deposition of the 

vesicle membrane marker, annexin VI and vesicle component mineralization 

inhibitors, fetuin-A and matrix Gla-protein increased in dialysis vessels and 

preceded von Kossa positive overt calcification. Electron microscopy showed 

hydroxyapatite nanocrystals within vesicles released from damaged/dead VSMCs, 

indicative of their role in initiating calcification. Taken together, this study shows 

that Ca accumulation begins pre-dialysis, but it is the induction of VSMC apoptosis 

in dialysis that is the key event in disabling VSMC defence mechanisms and 

leading to overt calcification, eventually with clinically detectable vascular 

damage.  Thus, the identification of factors that lead to VSMC death in dialysis 

will be of prime importance in preventing vascular calcification.  
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7.2     Introduction 

Evidence of vascular changes from imaging studies in adult and paediatric CKD 

patients have shown indirect evidence of vascular damage such as increased carotid 

IMT (Oh et al, 2002; Mitsnefes et al, 2006; Shroff et al, 2007) and arterial stiffness 

(London et al, 2002; Covic et al, 2006; Shroff et al, 2007) and direct evidence of 

arterial calcification on CT scans (Goodman et al, 2000; Shroff et al, 2007) and 

autopsy (Milliner et al, 1990). Also, two small studies have used arteries removed at 

the time of transplantation to describe the histological changes in the vessel wall (Moe 

et al, 2002; Nayir et al, 2001). However, studies in adults are complicated by the 

presence of multiple pro-atherosclerotic risk factors such as diabetes, dyslipidaemia, 

hypertension and often the presence of pre-existing vascular calcification, and few 

studies have been able to characterize the earliest events or the natural history of 

progression of uraemic calcification in vivo. 

 

In vitro studies using human vascular smooth muscle cells [VSMCs] have been 

instrumental in defining the cell biological mechanisms of vascular calcification and 

have demonstrated that it is a highly regulated process with many similarities to bone 

formation, and have been described in Chapter 1, section V. Briefly, when exposed to 

high Ca – PO4 media, VSMC undergoes apoptosis (Proudfoot et al, 2000) as well as 

cellular adaptation and vesicle release (Reynolds et al, 2004), with these small 

membrane-bound bodies forming a nidus for the deposition of basic Ca-PO4 in the 

form of hydroxyapatite (Reynolds et al, 2004). In the healthy vessel wall these 

vesicles are loaded with physiological inhibitors of calcification such as fetuin-A and 

MGP (Reynolds et al, 2005), but evidence suggests that these proteins may be 

deficient or non-functional in CKD patients. In addition, as part of the mineralization 
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process VSMCs lose their normal contractile phenotype and change to an 

osteo/chondrocytic phenotype (Shanahan et al, 1990; Tyson et al, 2003) that is 

characterized by the upregulation of bone-specific transcription factors and matrix 

proteins including Runx2/Cbfa1, osterix and alkaline phosphatase [Alk] (Shanahan et 

al, 1990; Tyson et al, 2003; Moe et al, 2002).  In the uraemic milieu, a reduction or 

perturbation in the physiological calcification inhibitors (Ketteler et al, 2003; 

Schurgers et al, 2007; Lou et al 1997), leads to an increased expression of osteogenic 

markers by VSMCs that further enhances the pro-calcific environment.  

 

However, the series of events that lead to the initiation and progression of vascular 

calcification in the context of an intact vessel wall are not known. To investigate these 

processes in vivo I have studied the natural history of vascular calcification in children 

with CKD and linked the findings from vessel histology to the patients’ clinical, 

biochemical and vascular measures. Children provide a good opportunity to study 

uraemic influences on the arterial wall as they have fewer pro-atherosclerotic risk 

factors that are major confounders in similar adult studies.  

 

 

7.3     Methods 

Subjects 

Medium sized muscular arteries routinely removed and discarded in the course of 

planned intra-abdominal surgery were used for this work. The detailed method of 

sample removal, collection and transportation are described in chapter 2, section III.  

 

24 inferior epigastric arteries (18 from dialysis patients and 6 from CKD Stage V pre-
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dialysis patients [GFR <15 ml/min/1.73m2]), 14 omental arteries (6 dialysis, 4 pre-

dialysis and 4 normal controls) and 2 mesenteric arteries (normal controls) were 

studied.  

 

The primary diagnoses in the 34 CKD patients (20 boys) were dysplasia (n = 18), 

inherited nephropathies (n = 6), cystic kidney disease (n = 3), primary tubular 

disorders (n = 3), malignancies (n = 3) and renovascular disorders (n = 1).  Patient 

details are described in Table 7.1 below. In order to keep the patient and control 

groups free of confounding pro-atherosclerotic risk factors, children with 

inflammatory disorders, vasculitis, diabetes, dyslipidaemia or smokers were excluded. 

Informed written consent was obtained from all parents or caregivers and children, 

where appropriate. The study was approved by the local research ethics committee. 

Table 7.1    Clinical and biochemical features of the patient and control groups 

 
 
Results are expressed as mean ± standard deviation.   
Systolic Blood Pressure Index = measured BP/95th centile BP for age, gender and height. 
* significant difference (p<0.05) between the dialysis and CKD groups. 
# - performed in 15 patients only. 

 Normal controls 
 

N = 6 

Pre-dialysis 
 

n = 10 

Dialysis  
 

n = 24 
 Age 12.3 ± 3.1 13.1 ± 2.6 13.0 ± 2.5 
Gender (% ♂) 66 56 68 
Body mass index SDS 0.5 ± 1.1 -0.2 ± 1.1 -0.3 ± 1.4 
Systolic Blood Pressure (mmHg) 100 ± 7.1 109 ± 14.0 111 ± 12.1 
Systolic Blood Pressure Index 0.9 ± 0.1 1.0  ± 0.6 1.1 ± 1.2 
Number of patients on anti-hypertensive 
medications (mean number of anti-
hypertensives per patient) 

0 (0) 2 (1) 3 (1) 

Dialysis modality (PD / HD) - - 17 / 7 
Serum Ca (mMol/L) 2.4 ± 0.3 2.4 ± 0.1 2.3 ± 0.2 
Serum PO4 (mMol/L) 1.1 ± 0.4 1.2 ± 0.2 1.6 ± 0.7 * 
Serum iPTH (pMol/L) Not done 7.3 ± 1.9 12.8 ± 7.5 * 
Fasting blood glucose ( mMol/L) Not done 4.3 ± 1.4 4.6 ± 0.5 
Serum cholesterol (mMol/L) 3.5 ± 0.3 3.4 ± 0.2 3.9 ± 0.2 
Serum triglycerides (mMol/L) 1.0 ± 0.3 1.3 ± 0.1 1.2 ± 0.4 
High-sensitivity CRP (mg/L)# Not done Not done 2.89 ± 1.3 
Ca intake from PO4 binders (g/day) - 1.4 ± 1.0 1.6 ± 1.3* 
Alphacalcidol dose (µgm/day) - 0.4 ± 0.02 0.5 ± 0.02 
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Clinical and biochemical data  

The patients’ age, time in CKD stages IV and V pre-dialysis, time on dialysis and dialysis 

modality were recorded. Biochemical parameters (serum Ca, P and intact parathyroid hormone 

[iPTH] levels) and the dosage of elemental calcium intake from phosphate binders and 

alphacalcidol (1-α hydroxycholecalciferol) therapy were recorded at monthly intervals over a 

3-year period and expressed as mean time-averaged levels. For controls, results of a single 

blood test at the time of the study were used. The characteristics of the vessel on histology 

and the quantification of the vessel Ca load were correlated with the patients' clinical and 

biochemical parameters and vascular scans as described in Chapter 2, section III. 

 

Vascular scans 

To characterise fully the clinical vascular phenotype, all patients and controls above 

the age of 5 years (n = 31) underwent a high-resolution ultrasound scan to measure 

the carotid IMT, applanation tonometry for PWV and multi-slice cardiac CT scan to 

identify coronary artery and valvular calcification. Methods for these have been 

described in detail in chapter 2, section I. Given the small number of healthy controls 

in this study, the cIMT and PWV were compared with 40 healthy age and gender-

matched children who participated in the study described in chapter 4.  

 

Calcification assay and Alkaline Phosphatase levels 

Vessels rings immediately after harvest were used to quantify the Ca load in the 

vessel wall and the Alkaline phosphatase (ALK) activity as described in Chapter 2, 

section III. Both the vessel Ca load and the ALK activity were standardized to the 

protein content in the vessel wall. 
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Histological analyses and Immunohistochemistry  

Detailed methods for histology and immunohistochemistry are descried in chapter 2, 

section III. Immunohistochemistry preperations and staining were all performed by 

Mrs Nichola Figg, Senior Technician, Department of Medicine, Addenbrooke's 

Hospital, Cambridge, and I am very grateful for her help with this work. 

 

Viability of VSMCs in the vessel rings was confirmed by trypan blue (0.5%) staining 

as standard. Hematoxylin/eosin (Sigma HHS-32 and E8017) staining was performed 

for vessel integrity and cell counting: the number of VSMC nuclei and the percentage 

of apoptotic cells were counted in a 0.25m2 area and expressed as cells per unit area. 

Each sample was analysed twice and the mean of the readings used. Vessel rings 

were stained with Von Kossa for calcification, Mason’s trichrome stain for collagen 

and Verhoeff van Geison (VVG) for integrity of the elastic laminae, and 

immunohistochemistry performed for α-smooth muscle cell actin (DAKO M0851, 

1:500 dilution) for smooth muscle cells, KI67 (Vector Biotechnology, VP-K452, 

1:100) for proliferation and CD68 (DAKO M0814, 1:100) for macrophage infiltration 

using 3% peroxidase in water to block endogenous peroxidase activity. Apoptosis 

was examined by immunohistochemistry using a cleaved caspase-3 antibody and 

transferase-mediated dUTP nick-end labelling (TUNEL) staining visualized by a 

rhodamine-labelled anti-digoxigenin antibody. Immunohistochemistry for known 

vesicle components and osteogenic factors was performed using annexin VI (BD 

Bioscience 610300, 1:500 dilution) and Fetuin-A (AS237 antibodies, 1:200 dilution). 

The carboxylated and undercarboxylated (Gla and Glu) forms of Matrix Gla Protein 

(MGP), Runx2 (Santa Cruz SC10758, 1:100 dilution) and osterix (Abcam 22552) 



   

 233

were examined.  Using ImageJ software on the Olympus BX51 microscope, a region 

of interest was marked around the von kossa positive areas, and this was expressed as 

a percentage of the total area of the tunica media of the vessel. The percentage of 

TUNEL, Runx2, fetuin-A and annexin VI positive areas were expressed in a similar 

manner, analysing each sample in duplicate. The relative area of Gla and Glu MGP 

positivity was described as a ratio in normal controls and dialysis vessels.  

 

Transmission Electron Microscopy (TEM) 

TEM was performed to examine cell morphology, localization of calcification, vesicle 

release and mineral deposition and is descried in chapter 2, section III. Electron 

microscopy was performed by Dr Jeremy Skepper at the Multi-Imaging Centre, 

Department of Anatomy, Cambridge, and I am very grateful for his help. 

 
 
 
RNA extraction and Reverse Transcription-Polymerase Chain Reaction 
 
A 1 – 2 mm sized ring from each vessel was frozen at harvest and used for mRNA 

isolation, cDNA production and real-time quantitative polymerase chain reaction 

(qRT-PCR) for the osteogenic marker cbfa-1. Deatiled methods are described in 

chapter 2, section III.   

 

Statistical analyses 

Data are presented as mean ± standard deviation or median and range. Correlations 

between groups were performed using the paired or unpaired t test as appropriate. 

One-way ANOVA (Kruskal-Wallis test) was used to compare non-parametric data 

between groups, and the Mann-Whitney U test (non-parametric) performed to 

compare values between two groups. Linear regression analyses were performed to 
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test the associations between vessel Ca load and the time in pre-dialysis CKD stages 

IV and V, time on dialysis, mean time-averaged serum Ca x P levels and the carotid 

artery intima-media thickness respectively. Raw data for the Ca load in the vessel and 

its correlation with clinical, biochemical and vascular measures is shown in Table 7.2. 

Significance was defined as p < 0.05.  Statistical analyses were performed using 

SPSS, version 14.0 (SPSS Inc, Chicago, IL, USA).   
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Table 7.2  Patient and vessel characteristics (arranged in asscending order of vessel Ca load) 
 

cIMT = carotid Intima Media Thickness. Normal cIMT in an age-matched population was 0.40mm. 
©  = coronary artery calcification on CT scan, Agatston scores 1221 and 631 in patients 35 and 39 
respectively 
nd - not done 
p = Increased Pulse Wave Velocity above control levels  ί = presence of neointima on histology 
Von kossa positivity graded semi-quantitatively as + (speckled calcification) to +++ (diffuse punctuate 
calcification) 
 

Pt Age 
 
 
 
 

yrs 

Status eGFR 
 
 
 

ml/min/ 
1.73m2 

Tim
e 

Pre-
D 
 

yrs 

Time 
on 

dialy
-sis 

 
yrs 

Mean 
Ca x P 

 
 

mMol2/L
2 

cIMT 
 
 
 
 

mm 

Vessel 
type 

Ca 
load 

in the 
vessel 
wall  
μg/μL 

Von 
Kossa 
posit-
ivity 

ALK 

1 13.5 Control 129 - - 3.8 0.34 mesenteric 6.1 - 7.9 
2 1.9 Control 122 - - 2.1 0.36 omental 8.3 - 4.6 
3 14.7 Control 134 - - 3.6 0.38 mesenteric 8.4 - 10.5 
4 8.3 Control 130 - - 2.7 0.30 omental 10.6 - 2.8 
5 16.0 Control 118 - - 2.4 0.34 omental 11.0 - 5.2 
6 12.0 Control 124 - - 3.0 0.36 omental 12.3 - 3.6 
7 16.6 Pre-d  15.9 0.4 - 4.8 0.38 omental 12.6 - 8.2 
8 14.0 Pre-d 12.7 3.7 - 4.1 0.28 Inf epi 13.8 - 12.0 
9 2.8 Pre-d 9.6 1.3 - 2.9 nd Inf epi 15.0 - 7.4 

10 14.4 Pre-d  8.2 3.2 - 3.8 0.38 Inf epi 15.9 - 3.7 
11 9.1 Pre-d 6.8 2.9 - 4.4 0.36 omental 16.1 - 5.3 
12 13.1 Pre-d 10.4 3.6 - 5.2 0.30 Inf epi 22.0 - 8.0 
13 10.0 Pre-d  8.2 2.3 - 3.9 0.38 Inf epi 24.7 - 4.1 
14 15.7 Pre-d 11.2 0.9 - 4.8 0.40 omental 25.6 - 7.2 
15 15.4 Pre-d 7.7 1.3 - 4.2 0.34 omental 25.9 - 7.0 
16 9.8 Dialysis D 3.1 0.6 4.8 0.38 Inf epi 29.3 - 13.7 
17 16.3 Dialysis D 1.2 0.7 5.1 0.42 Inf epi 29.6 - 16.2 
18 12.4 Dialysis D 0.7 2.1 4.5 0.42 Inf epi 29.7 - 10.4 
19 12.8 Dialysis D 2.9 1.0 4.2 0.46 Inf epi 31.9 - 12.9 
20 12.8 Pre-d  10.3 0.7 - 4.7 0.40 Inf epi 32.0 - 5.8 
21 3.3 Dialysis D 2.8 0.7 4.0 nd Inf epi 33.0 - 11.0 
22 11.7 Dialysis D 3.1 1.0 4.0 0.44 omental 35.3 - 16.2 
23 14.0 Dialysis D 1.7 2.3 4.1 0.56 omental 36.2 - 10.9 
34 13.8 Dialysis D 0.8 0.2 3.4 0.30 Inf epi 36.2 + 17 
25 7.2 Dialysis D 4.4 0.62 4.0 0.42 Inf epi 37.1 - 17.3 
26 10.7 Dialysis D 2.2 0.5 3.8 0.46 Inf epi 38.0 - 8.8 
27 14.1 Dialysis D 2.0 3.7 5.4 0.60 Inf epi 38.4 - 17.1 
28 14.9 Dialysis D 0.8 0.6 4.9 0.54 Inf epi 38.5 - 13.2 
29 4.7 Dialysis D 3.1 0.8 3.6 nd Inf epi 38.5 - 8.6 
30 16.6 Dialysis D 2.9 1.8 5.9 0.56 omental 39.1 - 17.9 
31 8.8 Dialysis D 5.3 2.2 3.5 0.34 omental 41.1 ++ 14.6 
32 15.3 Dialysis D 0.9 0.4 3.6 0.32 Inf epi 41.6 - 18.8 
33 11.0 Dialysis D 1.0 2.8 5.6 0.62 omental 42.0 - 12.3 
34 14.6 Dialysis D 1.2 4.2 5.4 0.50 Inf epi 43.0 - 13.7 
35 9.5 Dialysis D 1.6 5.5 5.2 0.54  

© p,ί 
Inf epi 43.0 +++ 16.9 

36 12.8 Dialysis D 4.3 3.8 6.1 0.56 Inf epi 45.9 - 16.2 
37 16.6 Dialysis D 0.6 3.0 5.0 0.46 omental 47.1 + 19.4 
38 14.0 Dialysis D 4.1 3.6 6.1 0.65 Inf epi 48.4 - 15.4 
39 16.3 Dialysis D 5.5 1.2 5.9 0.66 

© p,ί 
Inf epi 48.8 +++ 20.1 

40 14.9 Dialysis D 3.3 1.9 5.2 0.54 Inf epi 49.1 + 16.9 
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7.4     Results 

 

 
Pre-dialysis and dialysis vessels have an increased Ca load  

 
The vessel Ca load was significantly higher in pre-dialysis compared to control 

vessels (20.4 ± 6.5 vs 9.4 ± 2.3μg/μL), but was highest in dialysis vessels (39.2 ± 

6.0μg/μL) where levels were 2-fold greater than pre-dialysis and 3- to 4-fold greater 

than in normal vessels (p < 0.0001 [ANOVA]; Figure 7.1A, Table 7.2). The Ca load 

was significantly and consistently higher in dialysis vessels despite a similar age and 

level of renal deterioration in the pre-dialysis and dialysis patients, and was 

independent of preservation of residual renal function in dialysis patients. The Ca 

load was higher in the vessels of HD as compared to PD patients, but this significance 

was lost after correcting for time on dialysis. 

 

Calcification was not detectable by von kossa staining in control or pre-dialysis 

vessels.  In contrast, diffuse speckled calcification in the media and along the internal 

elastic lamina was present in 6 of 24 (25%) dialysis vessels (Figure 7.1B), suggesting 

that Ca accumulation/loading within the tunica media begins before overt 

calcification can be detected by von Kossa. There was no evidence of intimal 

calcification or a plaque in any of the vessels. 
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Figure 7.1 A   Quantifying the vessel Ca load in different vessel types 
 
The Ca load in vessel rings was quantified by the cresolphthalein complexone method after 
hydrolysing the Ca out of the vessel using HCl.  
Dialysis vessels had a significantly higher Ca load compared to pre-dialysis or normal vessels (p < 
0.0001, ANOVA).  
 
 
 
 
 

 
 
Figure 7.1 B    Histology for vessel calcification 
 
Von kossa staining to demonstrate calcification in dialysis but not pre-dialysis or control vessels. 
Diffuse speckled calcification (arrows) in the media and along the internal elastic lamina was seen in 
the dialysis vessel.    
M, media; Ad, adventitia.  
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Clinical and biochemical correlations with vessel Ca load  

To investigate the clinical and biochemical determinants of vessel Ca load I correlated 

data on demographic and biochemical parameters (Table 7.1) with the Ca load in the 

vessel wall. The Ca load did not increase with the time spent in CKD stages IV and V 

before dialysis was commenced (p = 0.29, r2 = 0.03; Figure 7.2A), but there was an 

increase in Ca load with increasing time on dialysis (p = 0.017, r2 = 0.22; Figure 7.2B) 

that was independent of age, gender and dialysis modality.  

 

 

 

 
 

 

 

 

 
Figure 7.2A   Vessel Ca load vs time in CKD stage IV-V pre-dialysis 
There was no correlation between Ca load and time spent in CKD stages IV-V before the initiation  
of dialysis (n = 34).  
 

 

 

 

 

 

 

 
 
Figure 7.2B   Vessel Ca load vs time on dialysis 
There was a strong linear correlation between the vessel Ca load and the time on dialysis (n= 24). 
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The mean time-averaged serum Ca x P product showed a strong linear relation with 

the vessel Ca load (p = 0.008, r2 = 0.20; Figure 7.2C).  However, no correlation was 

seen with mean time-averaged serum Ca, PO4, PTH, high-sensitivity CRP or albumin 

levels. Also, there was no association between the mean time-averaged doses, 

cumulative doses or doage at the time of study of alphacalcidol or phosphate binders 

and the vessel Ca load.   

 

 

 

 

 

 

 

 

 

Figure 7.2C   Vessel Ca load vs mean time-averaged Ca x PO4 product 

 

 
Vessel Ca load correlates with the carotid intima-media thickness 

The carotid IMT, showed a strong independent correlation with Ca load (p = 0.01, 

r2 = 0.28; Figure 7.3). Despite the increased Ca load in all pre-dialysis and dialysis 

patients, the IMT was increased in only 18 (75%) dialysis patients, and remained 

within age-related normal limits (= 0.40mm) in all the pre-dialysis patients. On 

cardiac CT scan, calcification was seen only in the 2 patients who had the highest 

Ca loads and macrocalcification visible by von Kossa (Agatston score 1221 and 

631; patients 35 and 39 in Table 7.1).  The PWV did not correlate with the Ca load 
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in the overall cohort (not shown), and was increased in only the 2 patients with 

coronary calcification on CT. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3   Correlation of vessel Ca load against carotid IMT 
n = 22 dialysis and 9 pre-dialysis patients (includes all children above 5 yrs age). 
The dotted line in the figure represents the normal value of cIMT (= 0.40mm) in a population of 
healthy age-matched controls. 
 

 

Dialysis vessels have fewer VSMCs per unit area  

To determine if the increased Ca load in the dialysis vessels was associated with 

any phenotypic changes to the VSMCs, I performed detailed histology on all the 

vessels as described in chapter 2.  

First I looked for any reduction in the number of VSMCs between the three vessel 

types by counting the number of VSMC nuclei per unit area of vessel on a 

hemotoxylin-eosin stained sample to determine the number of VSMCs in different 
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Figure 7.4A).  However, there was a significant reduction in VSMC numbers in 

dialysis vessels (80 [58 – 106] VSMCs / unit area; Fig 7.4A).  

 

It was not clear if the reduced cell numbers was a result of a significantly greater 

Ca load in the dialysis vessels or was induced by exposure to specific ‘damage-

inducing’ agents in the dialysis milieu. To try and elucidate this I compared pre-

dialysis and dialysis vessels with a similar Ca load of 25-35 μg/μL (patients 13 to 

22 in supplemental Table 7.2; n = 4 pre-dialysis and n = 6 dialysis vessels).  

Significantly fewer VSMCs were present in dialysis compared to pre-dialysis 

vessels (88 [67 – 110] vs 120 [114 – 126] cells /unit area; p = 0.004) (Figure 7.4B).   

 

The reduction in VSMC number was also demonstrated by alpha-smooth muscle 

cell actin staining (Figure 7.4C). In addition, cystic areas were observed in von 

Kossa positive regions suggesting that lost VSMCs were not replaced. Ki67 

staining showed that few cells were proliferating (< 0.5% positivity; results not 

shown), with no difference between control and dialysis vessels, implying that 

VSMC proliferation was not induced in response to cell loss.  
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Figure 7.4A   Vascular smooth muscle cell numbers in different vessel types 
VSMC numbers were significantly reduced in dialysis vessels. 
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Figure 7.4B   Vascular smooth muscle cell numbers  
The number of VSMCs was independent of the vessel Ca load.  
 

 

 
 
 

 

 

 

Figure 7.4C   Immunohistochemistry for alpha-smooth muscle cell actin 
Arrows indicate cystic areas of cell loss in dialysis vessels.  
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Apoptosis of VSMCs occurs in dialysis vessels 

 

To determine if apoptosis was contributing to VSMC loss, TUNEL staining was 

performed.  There were significantly more TUNEL positive cells in dialysis  as 

compared to pre-dialysis or normal vessels (0.4 ± 0.4%, 0.27 ± 05% and 3.16 ± 

1.0% in normal, pre-dialysis and dialysis vessels respectively, p = 0.008); Figures 

7.5 A and B. Vessels with fewer VSMCs had the greatest percentage of TUNEL 

positive areas.  Importantly, areas of apoptosis were seen in the same region of the 

vessel as von Kossa positive calcified areas in adjacent sections (Figure 7.5 C).  

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 7.5A   TUNEL staining for apoptosis 

The percentage of TUNEL positive cells in a unit area of vessel were counted in control, pre-dialysis 
and dialysis vessels. 
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                           Normal                                           Dialysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 B and C    TUNEL staining   
TUNEL staining was present in dialysis vessels but absent in controls (top panel).  
Von Kossa staining showed that areas of medial calcification in dialysis vessels localized to regions 
that were also TUNEL positive in adjacent sections (bottom panel).   
 

 

 

To further explore the nature of dialysis induced vascular damage, detailed histology 

was performed on all 3 vessel types. A neointima was seen only in the 2 most 

severely affected dialysis patients (Table 7.2) who also had evidence of abnormal 

vascular structure stiff vessels and coronary calcification. Calcification was 

exclusively medial on von Kossa staining.  There was no evidence of an inflammatory 

response or macrophage infiltration in any vessel, the internal and external elastic 

laminae were intact and there was no evidence for increased collagen deposition 

suggesting that the vascular changes in dialysis patients were not atherosclerotic. 
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VSMCs undergo osteogenic differentiation in dialysis vessels  

Osteoblastic conversion of VSMCs, measured by ALK activity, is an early event in 

vascular calcification.  Despite an increased Ca load there was no increase in ALK 

activity in pre-dialysis (6.4 [3.7 – 12.0]IU/μL) compared to control vessels (4.9 [2.8 – 

10.5] IU/μL), but dialysis vessels had ~2-fold higher ALK levels (15.0 [8.6 – 20.1] 

IU/μL; Figure 7.6A). Again, it was not clear if the greater Ca load in dialysis vessels 

or factors specific to dialysis per se were responsible for triggering an osteoblastic 

phenotypic change. There was no correlation between the Ca load and ALK in the 

overall cohort (p= 0.08), but dialysis vessels with comparable Ca loads to pre-dialysis 

vessels (= 25-35 μg/μL, patients 13 to 22 in Table 7.2; n = 4 pre-dialysis and n = 6 

dialysis vessels) had greater ALK levels (13.3 [10.4 – 16.2] IU/μL vs 6.4 [4.1 – 7.2] 

IU/μL, p = 0.009); Figure 7.6B. However, ALK levels did not increase with time on 

dialysis (p = 0.39). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 7.6A   Alkaline Phosphatase activity in the three vessel types 
Dialysis vessels showed significantly higher ALK levels than pre-dialysis or normal vessels. 
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Figures 7.6B   Alkaline Phosphatase activity in the three vessel types 
Dialysis vessels with comparable Ca loads to pre-dialysis vessels had higher ALK levels.  n = 4  
pre-dialysis vessels, n = 5 dialysis vessels 
 
 
 
 
 
Upregulation of osteogenic transcription factors in dialysis vessels 
 
 

In order to demonstrate that increased ALK levels were indeed the result of 

osteo/chondrocytic conversion of VSMCs, immunohistochemistry for the 

osteogenic transcription factors Runx2 and osterix was performed. All vessel types 

had some positivity for Runx2 and osterix, but the levels and distribution varied.  

Control and pre-dialysis vessels showed diffuse staining for Runx2 in a 

predominantly nuclear distribution (2% and 4.4% /unit area respectively) whereas 

dialysis vessels showed an upregulation of Runx2 staining (13.4%/unit area, p 

<0.0001), with a marked cytoplasmic distribution (Figures 7.7 A and B).  Staining 

for osterix showed a similar distribution (Figure 7.7 C).  

 

 



   

 247

 

 

 

 

 

 

Figure 7.7A   Immunohistochemistry for osteogenic markers 
There was significantly greater Runx2 positivity in dialysis vessels. 
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mRNA of osteogenic transcription factors 

Estimation of mRNA expression of cbfa-1 / runx2 was attempted, but as described in 

chapter 2, section III. The very low yield of RNA and its contamination with genomic 

DNA made qRT-PCR impossible as shown in Figure 7.8A. Figure 7.8B confirms this 

on an agarose gel.   
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Figure 7.7B & C   Immunohistochemistry for Runx2 and osterix 
Immunohistochemistry for Runx2 showed a predominantly cytoplasmic distribution pattern (enlarged   
in inset) in dialysis compared to pre-dialysis and normal vessels that had lower levels of Runx2 that 
was predominantly nuclear (enlarged in inset) – top panel. 
Osterix showed a similar pattern of distribution as Runx2 – bottom panel. 
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Figure 7.8A    qRT-PCR for Runx2.  
No amplification of DNA was seen until cycle 22 suggesting minimal if any pure RNA in the sample. 
The negative controls for each patient sample (patient 22-RT and patient 53-RT) show amplification at 
the same time as or even before the corresponding patient sample, confirming absence of RNA in the 
sample. An appropriate amplification with positive control and no response with the negative control 
(water) confirm that the technique was appropriate.  
 
 
 

 
 
Figure 7.8 B   Agarose gel for 18S DNA shows contamination with genomic DNA 
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Vessel calcification is associated with Fetuin-A deposition 

 
MGP and Fetuin-A are inhibitors of calcification released by VSMCs in vesicles and 

apoptotic bodies.  Fetuin-A positive staining was minimal (1.2%/unit area) in 

controls, but progressively increased in pre-dialysis (8.5%/unit area) and dialysis 

(16.2%/unit area) vessels. (Figures 7.9 A and B).  Also, there was increased fetuin-A 

staining in the von Kossa positive dialysis vessels (19.3 vs 8.2%/unit area, p = 0.04).  

 

 

 

 

 

 

 

 

 

 
 

Figure 7.9   Staining for Fetuin-A positivity 

A.  Fetuin-A positive staining was minimal in controls, but progressively increased in pre-dialysis and 
dialysis vessels. 
B.  Maximum fetuin-A positivity was present in dialysis vessels, especially those with significant 
calcification. 
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Vessel calcification is associated with ucMGP deposition 

Vessels from all groups were positive for both undercarboxylated and carboxylated 

MGP (Glu-MGP and Gla-MGP respectively), however the relative amounts varied.  

While normal vessels showed predominantly Gla-MGP (ratio Gla/Glu MGP = 1.5) 

and pre-dialysis vessels maintained a balance between the Gla- and Glu-MGP 

fractions (ratio Gla/Glu MGP=1.02), dialysis vessels had more Glu-MGP (ratio 

Gla/Glu MGP = 0.4, p = 0.02; Figures 7.10A, B). Glu-MGP staining was localized in 

the same region as von Kossa positive areas on adjacent sections (not shown). 

A.   

 
 
 
 
 
 
 
 
 
 
 
B.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10    Immunohistochemistry for Gla and Glu forms of MGP 
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Calcification in vivo is a vesicle-mediated process 

The presence of MGP and fetuin-A at sites of calcification is highly suggestive of a 

vesicle-mediated calcification process and this was confirmed by staining for 

annexin VI, a Ca binding protein concentrated in both chondrocyte and VSMC (our 

unpublished data) matrix vesicles.  Annexin VI staining was punctate and minimal 

in control and pre-dialysis vessels (1.7 ± 0.7% and 7.8 ± 4.6% per unit area 

respectively) and was clearly vesicular in nature (Figures 7.11 A and B). Dialysis 

vessels had greater Annexin VI positivity (43 ± 15.6 % per unit area; p = 0.009) 

with a diffuse punctate distribution consistent with vesicle induced 

microcalcifications. 

 
 
A.  
 
 
 
 
 
 
 
 
 
 
 
B. 

 
Figure 7.11   Annexin VI staining 
A.  Dialysis vessels had significantly more annexin-6 positive areas (42.9 ± 15.6%) compared to pre-
dialysis (7.8 ± 4.6%) or normal controls (1.7 ± 0.7%), p = 0.009.   
B.   Immunohistochemistry for annexin-6 was minimal in the normal and pre-dialysis vessels but 
widespread in the matrix and VSMCs in dialysis vessels.   

     Normal                          Pre-dialysis                      Dialysis 

M 

M 

Ad Ad 

M

Normal Pre-dialysis Dialysis
0

10

20

30

40

50

60

70

n = 4                n = 4                n = 6

42.9 ± 15.6

7.8 ± 4.6

1.7 ± 0.7

p = 0.009

%
 a

nn
ex

in
 p

os
itiv

e 
ce

lls
 /u

ni
t a

re
a

Ad 



   

 252

 
Electron Microscopy for vessel ultrastructure 
 
 
 
TEM ultrastructural analysis revealed that in the normal vessel wall, VSMCs were 

morphologically contractile, there was no evidence of extracellular vesicles and the 

nuclei showed normal appearance and distribution of heterochromatin (Figure 7.12 

A).  However VSMCs in dialysis vessels showed apoptosis and damage 

characterized by increased electron density of nuclear heterochromatin, cell 

shrinkage and/or vesicle release (Figure 7.12 C-b). This damage was evident in 

>60% of VSMCs in one patient with a Ca load of 33μg/μL (patient 21, 

supplemental Table 7.2) and no evidence of calcification on von Kossa, suggesting 

that it is an early event preceding overt calcification. Interestingly, VSMCs with 

heteropycnotic nuclei did not have all the hallmarks of typical apoptosis or necrosis 

nor did they exhibit characteristics of ‘synthetic’ VSMCs consistent with the 

absence of proliferation and suggesting that apoptosis of contractile VSMCs may 

have unique features.  In patients without overt calcification, extracellular vesicles 

did not contain any evidence of hydroxyapatite nanocrystals, but vessels with 

calcification had vesicles containing microcrystalline structures consistent with 

hydroxyapaptite. Vesicles deposited in the extracellular matrix were in the size 

range of 0.1-1.0μm consistent with their derivation from both apoptotic bodies and 

plasma membrane budding of matrix vesicles (Figure 7.12 C-E).   
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Figures 7.12   Vessel ultrastructure on electron microscopy 
 
 (a) A normal contractile VSMC showing a normal nucleus with heterochromatic areas localized 
predominantly around the nuclear envelope.  The euchromatin is interspersed with heterochromatin in 
the deeper regions of the nucleus.  Arrowheads indicate dense bodies indicative of a contractile cell.   
(b) Interspersed with normal VSMCs were contractile cells with evidence of damage showing 
heteropycnotic nuclei (large arrow), with highly increased electron density of heterochromatin and 
much less euchromatin.  Cytoplasmic vacuoles and matrix vesicles were deposited in the extracellular 
matrix adjacent to the plasma membrane.  Boxed area is enlarged to show vesicles.  
(c) Many cells had undergone cell death leaving cellular debris including vesicular debris (boxed area 
enlarged).   
(d) In some areas vesicles stained with high contrast indicating the presence of mineral (arrowed).   
(e) The origin of vesicles from budding of the plasma membrane is shown (arrowed).  Bar =1μm 
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7.5     Discussion 
 

In this study I have provided quantitative evidence that Ca accumulation in the vessel 

wall begins pre-dialysis, and that factors specific to the dialysis milieu trigger 

accelerated calcification. We hypothesise that Ca accumulation in the vessel begins in 

response to increased Ca and PO4, but protective mechanisms such as adequate 

mineralization inhibitor levels and extrusion of intracellular Ca via vesicle release, 

preserves normal VSMC function. In the dialysis milieu, damage-inducing agents that 

include continued exposure to high, and possibly worsening, Ca and PO4, lead to 

apoptosis.  This in turn increases local Ca levels and reduces local levels of VSMC-

derived mineralization inhibitors, that potentiates osteo/chondocytic differentiation of 

smooth muscle cells and the release of pro-calcific vesicles that form a nidus for 

calcification (Figure 7.13).   

Importantly, the clinical detection of VSMC damage and calcification was only 

possible in the most severely calcified patients. Calcification was inexorable and 

extremely rapid on dialysis, with a dialysis vintage of even 2 months sufficient to 

induce histologically overt calcification and VSMC damage, emphasising the need to 

avoid dialysis and perform pre-emptive renal transplantation wherever possible. The 

identification of factors specific to dialysis that trigger the accelerated wave of VSMC 

death will be key in minimizing the detrimental effects of arterial calcification in renal 

failure. 

 

The distribution and histological correlation with vessel Ca load 

Arterial damage and calcification in dialysis patients was widespread and involved 

multiple vascular beds including the carotid, coronary, omental and inferior 

epigastric vessels. Histology showed that calcification was entirely medial in 
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distribution and there was no evidence for inflammation, suggesting that 

calcification, at least in its early stages and in young CKD patients, is an 

arteriosclerotic rather than an atherosclerotic process. Interestingly, although an 

increased Ca load was present in all pre-dialysis and dialysis vessels, histological 

evidence for calcification by von kossa staining was only found in 6 of the 24 

dialysis vessels that had the highest Ca loads. This shows that histology is not a 

sensitive tool for detecting the early stages of calcification. Earlier studies that 

relied on histology may have underestimated the extent of calcification (Moe et al, 

2003; Saygili et al, 1997). However, it may be that as von kossa stains inorganic 

phosphorous, and as the earliest phases of mineralization are relatively poor in 

phosphorous, we may not have detected early calcification. Using alizarin red 

staining for calcium may have helped, but this does not give well defined pictures 

of calcified regions as does von kossa, and also it is unlikely to be a more sensitive 

method than direct quantification of the Ca load.  

 

 

The Ca load in CKD vessels is medial and correlates with dysregulated mineral 

metabolism 

Ca loading was evident in both pre-dialysis and dialysis, but evidence for vascular 

remodelling (ie. increased cIMT and neointima formation) was observed only in 

dialysis vessels with the highest Ca loads.  Potentially this implies that there may 

be a causal relationship between Ca loading and increased susceptibility to vessel 

wall damage and remodelling however, currently available clinical tools are not 

sensitive enough to detect what may be functionally significant vascular damage in 

CKD. 
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The Ca load showed a strong correlation with the patients’ serum Ca x P product in 

all CKD vessels.  Numerous adult studies have previously shown an association 

between the serum Ca x P product and an increased cIMT or vascular calcification 

in dialysis patients (Block et al, 1998; Goldsmith et al, 2004), but there are 

conflicting reports in pre-dialysis patients (Block et al, 2005; Toussaint et al, 

2007). However, these adult studies were complicated by pre-existing vascular 

disease as well as other risk factors for calcification, whereas, the children in our 

study were free of the major confounders for cardiovascular disease, diabetes, 

dyslipidaemia and uncontrolled hypertension. Also, unlike adult studies, the 

increased Ca load was independent of the patients’ age and related only to their 

time on dialysis.  There was no increase in Ca load with increasing time spent in 

CKD stages IV or V before initiating dialysis, but significantly greater calcification 

was seen with increasing time on dialysis and correlated with the induction of 

apoptosis.   

 

Dialysis patients had more severe dysregulation of mineral metabolism as 

compared to pre-dialysis patients. There was no significant difference in the mean 

serum Ca, PO4 or Ca x PO4 products between the PD and HD patients, but the 

vessel Ca load was significantly higher in HD than PD patients, suggesting that 

transient fluctuations in serum Ca, as often seen after HD (McIntyre et al, 2005), 

but are not reflected in serum Ca levels may contribute to calcification. In vitro 

work has shown that VSMC calcification increases markedly when in addition to 

phosphate, Ca is added to the culture medium as it triggers apoptosis and vesicle 

release (Reynolds et al, 2004), lending further support to this observation. Also, 
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serum Ca is a poor marker of total body Ca and may account for this discrepancy. 

When corrected for dialysis vintage, the vessel Ca load was not significantly 

different between PD and HD patients. Treatment regimens such as calcium-based 

phosphate binders (Goodman et al, 2000; Litwin et al, 2005) and vitamin D 

(Milliner et al, 1990; Shroff et al, 2008) have also been shown to increase 

hypercalcemic episodes and Ca load however, we did not find any association 

between these and the vessel Ca load in this study.  

 

Animal studies suggest roles for oxidative stress, inflammatory mediators (Soriano 

et al, 2007) and advanced glycation end-products (Shanahan et al, 2006) in 

promoting VSMC injury but these have yet to be explored in a human in vivo 

model.  However, although inflammation plays a key role in intimal calcification 

and in medial calcification in diabetic patients, (Ishimura et al, 2002; Byon et al, 

2008) its role in uraemic medial calcification, at least in our cohort of paediatric 

patients free of diabetes, appeared minimal given the lack of inflammatory cell 

infiltrate in the vessel wall and the absence of any correlation between calcium 

load and hs-CRP. Thus, other, factor(s) specific to the dialysis milieu that may be 

responsible for VSMC death remain to be identified. 

 

Dialysis induces VSMC apoptosis and osteo/chondrocytic differentiation 

Previous in vitro studies have shown that apoptosis precedes the development of 

VSMC calcification.  Apoptotic bodies form a nidus for the deposition of 

hydroxyapatite (Proudfoot et al, 2000; Reynolds et al, 2004) and apoptosis has been 

shown to increase the local concentrations of Ca to >30mM, with this elevation 

potentially inducing further VSMC death, vesicle release and calcification (Olszak et 
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al, 2000). A reduction in the number of VSMCs would also reduce local production of 

mineralization inhibitors such as MGP, resulting not only in accelerated calcification 

but enhanced osteo/chondrocytic differentiation (Reynolds et al, 2005; Proudfoot et 

al, 2000; Rogers et al, 2007). Further evidence for this comes from the incremental 

increases in the deposition of vesicle proteins annexin VI, MGP and fetuin-A through 

pre-dialysis to dialysis as well as the presence of vesicles and dying VSMCs within 

dialysis vessels that had not yet developed overt calcification as shown by EM. 

Studies have shown that VSMCs release Ca-loaded vesicles in response to Ca 

overload potentially to prevent apoptosis and that these vesicles are loaded with 

calcification inhibitors including fetuin-A and MGP that act to limit their calcification 

potential (Reynolds et al, 2005; Proudfoot et al, 2000).  However, with time in the 

dialysis milieu, vesicle release and VSMC damage increases, resulting in a reduced 

capacity of the VSMCs to handle Ca overload and to produce or incorporate 

inhibitors. The circulating protein fetuin-A is greatly reduced in dialysis (Ketteler et 

al, 2003) and is protective against VSMC apoptosis (Reynolds et al, 2005), while the 

form of MGP in the calcified dialysis vessels was the unmodified Glu form that has a 

much reduced capacity to inhibit calcification (Shanahan et al, 1998; Schurgers et al, 

2005; Schurgers et al, 2007) its lack of modification may be due to progressive 

VSMC loss or dysfunction resulting in reduced γ−carboxylase enzymatic activity in 

the cells.  However, although evidence supports a causal relationship between 

apoptosis and the calcification cascade, we cannot rule out the possibility that some 

VSMCs may have undergone hypertrophy and thus cell loss may be overestimated.  

Hypertrophy has been shown to occur as a response to injury and is associated with an 

irreversible modulation of VSMC phenotype which may also contribute to vessel 

remodelling in dialysis (Walsh K, 1999). Further studies to investigate this possibility 
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would be difficult, but include genomic DNA estimation, accurate measures of cell 

size and ploidy.  

 

Is osteoblastic conversion protective or detrimental? 

Dialysis vessels with the highest Ca loads also had the highest levels of ALK, 

suggesting that ALK levels were enhanced by dialysis-induced VSMC injury 

despite the reduction in VSMC number. The importance of vascular damage in 

inducing calcification has been suggested in a previous in vitro study where rat 

aortic rings were induced to calcify only if subjected to mechanical damage 

(Lomashvili et al, 2004), implying that in injured vessels an upregulation of ALK 

plays a key role in inducing calcification. ALK can promote calcification by 

hydrolysis of pyrophosphate (Lomashvili et al, 2004) and this may be an additional 

mechanism for accelerated calcification in dialysis. In humans elevated serum 

ALK levels have been associated with calcific uraemic arteriopathy (Rogers et al, 

2007) and a genetic deficiency in pyrophosphate levels causes infantile idiopathic 

arterial calcification (Rutch et al, 2003).    

 

We also found significantly greater Runx2 and osterix positivity in dialysis vessels 

implying in vivo osteoblastic conversion of VSMCs.  The expression of Runx2 and 

osterix in the control vessels was unexpected but may reflect a developmental 

pattern of expression for these proteins in the still immature vasculature of children 

(Minguell et al, 2005). The cytoplasmic distribution of Runx2 in dialysis vessels 

was also striking and may reflect VSMC damage (Liberman et al, 2008), or the 

expression of alternate isoforms of this protein in response to calcium/calcification 

and this observation requires further analysis (Harrington et al, 2002; Terry et al, 
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2004).  Expression of osteoblastic markers by VSMCs preceded calcification and it 

remains unclear whether the expression of osteo/chondrocytic proteins by VSMCs 

is an adaptive response aimed at regulating mineralization, or whether these 

changes, which interestingly in this study occurred in contractile VSMCs, act to 

enhance the mineralization process.  

 

 

7.6    Conclusions 

In conclusion, in this chapter I have shown direct evidence for the presence of 

vascular damage and calcification in vessels from pre-dialysis and dialysis patients.  

A summary figure to explain the proposed mechanisms leading to vascular damage 

and calcification at different stages of CKD is shown below (Figure 7.13).  

 

There are some important clinical implications of this study. 

1.  An increased Ca load was present from pre-dialysis stages, and correlated with 

the mean Ca x PO4 product, stringent measures to control the serum PO4 levels and 

also to limit the Ca load to patients from binders and dialysate should be practised.  

2.  As even a short dialysis vintage was associated with calcification and 

significant VSMC damage, this study further adds support for avoiding dialysis 

and performing pre-emptive renal transplantation wherever possible. 

3.  The currently available clinical measures of vascular damage and calcification 

(cIMT, PWV and CT scan) are not sensitive enough to detect the early stages of 

calcification, and a normal / negative test should be interpreted with caution. 
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The sequence of events that leads to VSMC injury, osteo/chondrocytic 

transformation and ALK upregulation, as well as the factors that initiate VSMC 

apoptosis will be crucial to our further understanding of the calcification process. 
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Figure 7.13    Mechanisms involved in VSMC calcification 
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Chapter 8 

 

An In Vitro Model of Intact Human Vessels 

to Study the Role of Mineral Ion Induced 

Vascular Calcification 
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8.1    Abstract 

The mechanisms of early vascular calcification in chronic kidney disease are 

poorly understood. Our previous study showed that vessels from dialysis patients 

have higher Ca loads, apoptotic cell death and osteochondrocytic differentiation of 

VSMCs compared with pre-dialysis or control vessels. I have developed the first in 

vitro model of intact human vessels and used this to explore the role of Ca and P in 

calcification. 

Vessels from healthy controls did not accumulate Ca even in highly calcifying 

media, whereas pre-dialysis and dialysis vessels showed an increased Ca load in 

high P and high Ca+P media. Calcification was approximately 10-fold greater in 

dialysis compared to pre-dialysis vessels in all in vitro conditions. In the presence 

of increased P, even a small increase in Ca significantly increased calcification (p = 

0.02). Dialysis vessels showed apoptotic cell death in the high Ca+P media, with 

loss of ~30% of VSMCs. The pan-caspase inhibitor ZVAD reduced apoptosis and 

inhibited calcification (p = 0.04). Both pre-dialysis and dialysis vessels had 

increased ALK activity associated with an upregulation of the bone transcription 

factor runx2. The ALK inhibitor levamisole reduced ALK production in the 

vessels, but was unable to reduce calcification. Electron microscopy revealed 

extensive mitochondrial calcification in normal vessels incubated in high Ca+P, 

whereas dialysis vessels showed extensive extracellular calcification associated 

with vesicle release and no intracellular calcification. 

In conclusion, I have shown that both factors specific to the vessel as well as 

exposure to high Ca-P levels are required to induce calcification in intact vessels. 

As a result of prolonged exposure to slowly increasing Ca levels in its extracellular 

milieu, dialysis vessels have potentially developed an adaptive response to extrude 
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Ca from the cell by a vesicle mediated process, whereas healthy vessels are 

overwhelmed by a sudden increase in Ca load and undergo mitochondrial 

calcification and necrotic cell death. 

 

 

8.2    Introduction 

In the previous chapter I have shown that vessels from dialysis patients have 

significantly greater calcification, and this may, at least in part, be triggered by 

VSMC apoptosis that is caused by damage inducing agents specific to the dialysis 

milieu. The Ca load in all the CKD vessels correlated with Ca x P product 

suggesting that one of the major causes of vascular calcification is dysregulated 

mineral metabolism. However, the significantly greater apoptosis and 

osteo/chondrocytic differentiation in dialysis compared to pre-dialysis vessels 

could not be explained by mineral dysregulation alone.  

 

Studies into the pathophysiology of medial calcification have been hampered by the 

lack of an appropriate in vitro model as cultures of VSMCs lack the matrix and 

architecture of a normal vessel. In intact vessels it is believed that medial calcification 

begins at the level of the elastic lamellae (Vyavahere et al, 1999), and circulating 

macrophages and endothelial-derived stem cells contribute to both the progression 

and repair of calcification (Shanahan et al, 2006; Shanahan et al, 2007). Moreover, 

VSMCs in culture undergo a rapid conversion to a proliferative and secretory 

phenotype, losing their smooth muscle specific properties, making this a poor model 

for studying the VSMC response to injury.  
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To address this, I have developed an in vitro model of intact human arteries from 

children, providing a novel and highly versatile tool to study medial calcification in 

CKD. I have used this model to test the susceptibility of vessels ex vivo from dialysis, 

pre-dialysis and control patients to graded concentrations of Ca and or P to further 

dissect the mechanisms of VSMC calcification in response to dysregulated mineral 

metabolism and dialysis.  

 

 

8.3    Methods 

 

Patients and sample collection 

Vessels removed at routine surgery that were used in chapter 7 have been used for the 

in vitro experiments. The methods of sample collection, transport and preparation are 

described in chapter 2, section III. 

 

Media and in vitro treatments 

Vessel rings were incubated in calcifying conditions with graded concentrations of 

Ca and P to mimic conditions seen in uraemic patients. This is described in detail 

in chapter 2, section III. 

 

Calcification and Alkaline Phosphatase assays 

Vessel rings at baseline and after incubation in control and test media were 

harvested on days 7, 14 and 21 to measure the calcium content and ALK levels as 

described in chapter 2, section II and in the previous chapter.  
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Role of apoptosis and ALK 

To determine the contribution of apoptosis to calcification, 100µM of ZVAD.fmk, an 

inhibitor of caspase cleavage, was added to vessel rings that were cultured in the 

above calcifying conditions, using more rings from the same vessel as internal 

controls.   Similarly, to study the potential role of alkaline phosphatase (ALK) in the 

osteogenic differentiation of VSMCs, 10µM levamisole, an inhibitor of ALK, was 

added to the vessel rings as above. 

 

Vessel histology and Electron Microscopy (EM) 

After incubation in in vitro conditions, histology for vessel integrity, cell number, 

calcification and apoptosis were performed using hematoxylin/eosin, von kossa 

and TUNEL stains respectively as described in chapter 2, section II and in the 

previous chapter. To examine the extent of osteogenic differentiation of VSMCs 

after exposure to in vitro calcifying conditions, immunohistochemistry was 

performed for Runx2.   

EM was performed to examine cell morphology, localization of calcification, 

vesicle release and mineral content as described in the previous chapter.   

      

 Statistical analyses 

Data are presented as mean ± standard deviation or median and range. The paired 

or unpaired t test was used as appropriate. ANOVA was used for multiple 

comparisons. Significance was defined as p < 0.05. Statistical analyses were 

performed using SPSS, version 12.0.1 (SPSS Inc, Chicago, IL, USA). 
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8.4     Results 

 

Dialysis vessels undergo time-dependent Ca accumulation in in vitro calcifying 

conditions  

 To study the responses of vessels from controls and pre-dialysis patients to 

calcification inducing conditions, vessel rings were exposed to high Ca and/or P for 

7, 14 and 21 days (Figures 8.1A and B).  Normal vessels did not increase their Ca 

load in any of the conditions tested (10.0 ± 2.4 vs 8.4 ± 3.6 vs 11.4 ± 1.6 μg/μL in 

high P media at 7, 14 and 21 days respectively, p = 0.40 and 11.2 ± 1.9 vs 12.9 ± 

3.5 vs 17.0 ± 6.0 μg/μL in high Ca + P media at 7, 14 and 21 days respectively, p = 

0.16).  Pre-dialysis vessels showed a small increase in Ca load only in high Ca + P 

media (43.2 ± 13.8 vs 115.1 ± 49.0 vs 170.8 ± 35.5 μg/μL at 7, 14 and 21 days 

respectively, p = 0.01), but not in high P media alone (20.2 ± 5.8 vs 30.1 ± 11.9 vs 

41.7 ± 7.2 μg/μL at 7, 14 and 21 days respectively, p = 0.07). In contrast, dialysis 

vessels showed progressively increasing Ca loads in all the in vitro conditions with 

the greatest response in the presence of high Ca and P.  Ca loading in the dialysis 

vessels was time-dependent, with maximal calcification at day 21 (176.3 ± 17.9 vs 

284.2 ± 23.7 vs 726.7 ± 103.9 μg/μL in high P media at 7, 14 and 21 days 

respectively, p = 0.07 and 325.7 ± 137 vs 1120 ± 306 vs 1857 ± 390 μg/μL in high 

Ca + P media at 7, 14 and 21 days respectively, p = 0.0007). At each time-point, 

the Ca load was significantly higher in dialysis > pre-dialysis > control vessels in 

comparable in vitro conditions. 
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The Ca load in the vessel rings was further analysed by von Kossa staining (Figure 

8.1C). Normal vessels did not show any calcification at baseline or in high P 

media, but after incubation for 14 days in Ca + P medium, 2 of 6 vessels (33%) 

developed a patchy rim of punctate calcification along the internal elastic lamina.   

Similarly, pre-dialysis vessels did not show any von kossa positivity at baseline or 

in the high P media, but 2 of the 10 (20%) vessels showed patchy von kossa 

positivity throughout the tunica media when exposed to high Ca and P. On the 

other hand, dialysis vessels developed histologically overt calcification after 

incubation in both the high P and Ca + P media, with the most pronounced effect in 

the Ca + P media: 4 of 24 (16%) vessels showed diffuse punctate calcification in 

the tunica media on exposure to high P medium and 8 of 24 (33%) vessels showed 

extensive von kossa positivity, often with large confluent areas of speckled 

calcification, in the high Ca + P media.   
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Figure 8.1    Time-dependent increase in vessel Ca load after exposure to 
calcifying media 
 
Figures A and B – Dialysis and pre-dialysis vessels show a time-dependent increase in Ca 
accumulation in in vitro calcifying media (2mM P + 1.8mM Ca in figure A and 2mM P + 2.7mM 
Ca in figure B), whereas no Ca accumulation occurs in the normal control vessels. C – Von kossa 
staining demonstrates a patchy rim of punctate calcification along the internal elastic lamina in 
normal vessels after exposure to high Ca + P media, whereas dialysis vessels have developed dense 
calcification throughout the tunica media.  
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Ca is a more potent inducer of calcification than P at equivalent Ca x P products  

 

The above studies are in agreement with our previous work showing greater 

VSMC calcification when VSMCs or vessel rings are exposed to high Ca and P 

media than in high Ca or high P media alone. To determine the potencies of Ca and 

P at inducing calcification, we compared media with equivalent Ca x P products 

(1.8mM Ca + 3mM P vs 2.7mM Ca + 2mM P; Ca x P = 5.4 mM2 in both media).  

Dialysis vessels showed approximately ~2-fold greater calcification in the Ca + P 

medium than in the high P medium alone (1120 ± 115 vs 553 ± 247 μg/μL, p = 

0.02; Figure 8.3). Similarly, vessels from healthy controls did not show any 

increase in Ca load even in the 3mM P or in the high Ca + P media (8.4 ± 3.6 vs 

12.9 ± 3.5 vs 11.8 ± 2.9 vs 12.8 ± 4.0 μg/μL, p = 0.3 in 1mM P + 1.8 mM Ca, 

2mM P + 1.8 mM Ca, 3mM P + 1.8 mM Ca and 2mM P + 2.7 mM Ca 

respectively). Pre-dialysis vessels showed a graded increase in calcification in 

higher P media, but the highest Ca load was found in P + Ca media (19.7 ± 1.1 vs 

30.1 ± 11.9 vs 47.9 ± 8.3 vs 115.1 ± 49.0 μg/μL, p = 0.03 in 1mM P + 1.8 mM Ca, 

2mM P + 1.8 mM Ca, 3mM P + 1.8 mM Ca and 2mM P + 2.7 mM Ca 

respectively). These findings confirm our previous data on VSMC cultures 

showing that in the presence of high P even a small increase in Ca will 

significantly increase calcification. 
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Figure 8.2    

 

 

 

 

 

 

 

 

 

 

 

 

The effects of Ca and P in inducing calcification  

 

 

Dialysis vessels are primed for rapid Ca accumulation  

 

Accelerated calcification was observed under all conditions for dialysis vessels ex 

vivo. However, dialysis vessels generally had higher baseline Ca loads than pre-

dialysis vessels, and this might have explained their increased propensity to calcify. 

To determine if the baseline Ca load influenced further in vitro Ca accumulation, 

the calcification responses of pre-dialysis and dialysis vessels with similar baseline 
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vessels; Table 7.2 from previous chapter). Dialysis vessels accumulated 

significantly more Ca than pre-dialysis vessels under identical in vitro conditions 

(27.0 ± 3.3, 48.7 ± 13.2 vs 96.8 ± 14.4 μg/μL at baseline and after 14 days of 

culture in high P and high Ca + P media respectively, p = 0.03 for pre-dialysis 

vessels and 31.5 ± 2.4, 278.2 ± 105.0 vs 1077.7 ± 657 μg/μL at baseline and after 

14 days of culture in high P and high Ca + P media respectively for dialysis 

vessels, p = 0.0008; Figure 8.3 A).   Thus, even with moderate Ca loads 

calcification was more prevalent in dialysis than pre-dialysis vessels, suggesting 

that dialysis vessels may have exhausted their protective mechanisms or undergone 

a phenotypic transformation that encourages rapid Ca accumulation.  

 

 

However, within the dialysis vessel group there were some vessels that calcified 

much more aggressively than others. Further analysis demonstrated that dialysis 

vessels with histologically overt calcification (von kossa positive, n = 6) at baseline 

had a greater increase in in vitro Ca accumulation (44.2 ± 5.1, 370.0 ± 55.1 and 

1254 ± 406.2 μg/μL at baseline, and after culture in high P and high Ca + P media 

respectively, p< 0.001) than dialysis vessels that did not show von kossa positivity 

(n = 18; (37.5 ± 5.4, 208 ± 78.6 and 476.3 ± 143.7 μg/μL at baseline, and after 14 

days of culture in high P and high Ca + P media respectively, p = 0.0005; Figure 

8.3 B).  This suggests that once a nidus for calcification is formed this can act to 

accelerate calcification further.  
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 Figure 8.3A   Dialysis vessels are primed to undergo rapid Ca accumulation. 

Figure 8.3B   Dialysis vessels with baseline von kossa positivity undergo rapid Ca 
accumulation as compared to dialysis vessels without baseline von kossa 
positivity. 
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Dialysis vessels showed significantly greater Ca accumulation than pre-dialysis vessels with 
comparable baseline Ca loads after culture in identical calcifying media. 
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Dialysis vessels undergo VSMC loss due to apoptotic cell death  

We have previously shown that dialysis vessels in vivo contain significantly fewer 

VSMCs than control or pre-dialysis vessels. In response to calcifying conditions 

there was no significant change in cell number in normal vessels (122 ± 3.9 vs 120 

± 5.8 vs 115 ± 4.7 cells per unit area, p = 0.09, in control, high P and Ca + P media 

respectively; Figure 8.4 A). In contrast, although both pre-dialysis and dialysis 

vessels could maintain their cell number on incubation in the control and high P 

media (118 ± 9.1 vs 118 ± 9.8 cells per unit area for pre-dialysis vessels and 85 ± 

17.9 vs 82 ± 14.6 cells per unit area for dialysis vessels respectively), they showed 

a reduction in VSMC number in the high Ca + P medium (108 ± 7.7 cells per unit 

area, p = 0.047 for pre-dialysis and 59 ± 10.7 cells per unit area, p = 0.03 for 

dialysis vessels), and this was most striking in the dialysis vessels. As compared to 

their in vivo cell number, dialysis vessels had a 30% decrease in VSMC number 

(80 ± 6.2 vs 59 ± 10.7 cells per unit area, p <0.001) in the high Ca + P medium. 

 

The above findings suggest that exposure to increased P alone does not induce cell 

loss, whereas the addition of increased Ca is a potent stimulus for VSMC loss. To 

determine whether the in vivo Ca load in the vessel or factors specific to the 

dialysis vessels contributed to a greater cell loss, we again compared pre-dialysis 

and dialysis vessels with similar in vivo Ca loads as described above. There was no 

change in cell number in the pre-dialysis vessels in any in vitro conditions (120.5 ± 

8.4 vs 114.3 ± 11.3 vs 107 ± 8.6 cells per unit area, p = 0.16, in control, high P and 

Ca + P media respectively; Figure 8.4 B), but dialysis vessels showed a significant 

reduction in cell number (87.8 ± 9.1 vs 76 ± 9.9 vs 54 ± 6.7 cells per unit area, p = 
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0.003), suggesting that factors specific to dialysis or the loss of defence 

mechanisms allow for rapid cell loss in dialysis vessels. 

 

 

 

 

 

 

 
 
Figure 8.4A   VSMC numbers after culture in in vitro calcifying media 
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Figure 8.4B   There was a significantly greater cell loss in dialysis as compared  

to pre-dialysis vessels with a similar Ca load when cultured in identical  

in vitro conditions. 
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The reduction in VSMC numbers was confirmed by α-smooth muscle cell actin 

staining in all the vessel types (Figure 8.5A, top panel), and TUNEL staining 

confirmed that apoptosis was contributing to this VSMC loss (Figure 8.5B, bottom 

panel). After incubation in high Ca + P media the percentage of TUNEL positive 

areas was significantly higher in dialysis (7.7 [0 – 37.9] %) as compared to pre-

dialysis (0.25 [0 – 1.2]%) or normal vessels (0.3 [0 – 1.0]%)).  

 

Also, while dialysis vessels showed TUNEL positivity in all in vitro conditions, 

pre-dialysis and normal vessels did not show any increase in the percentage of 

TUNEL positive areas after incubation in calcifying media. Moreover, TUNEL 

positive areas in dialysis vessels co-localised with von kossa positive areas in 

adjacent sections (Figure 8.5C).   
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Figure 8.5   Reduction in VSMC numbers is due to apoptosis. 

Alpha-smooth muscle cell actin staining shows fewer VSMCs in dialysis vessels (top panel), and 
this co-localises with areas of apoptosis on TUNEL staining (bottom panel). The number of 
apoptotic cells per unit area is quantified (figure C). 
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To experimentally confirm a role for apoptosis in increased calcification of dialysis 

vessels, these were cultured in the presence of the pan-caspase inhibitor 

ZVAD.fmk. Dialysis vessels cultured in high Ca + P media that had significant 

apoptosis were compared with vessel rings from the same patient cultured in high P 

media that did not show apoptosis. The addition of ZVAD reduced calcification 

(363.7 ± 28 vs 278 ± 34 μg/μL, p = 0.04); Figure 8.6) in Ca + P treated dialysis 

vessels that showed an increased rate of apoptosis but had no effect on calcification 

in vessels treated in high P media alone (279.2 ± 24.1 vs 265.3 ± 30.3 μg/μL, p = 

0.12), in keeping with the absence of apoptosis under these conditions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6   Calcification was reduced by inhibiting apoptosis with ZVAD. 
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Osteogenic conversion of VSMCs occurs in pre-dialysis and dialysis vessels  
 

Osteogenic conversion of VSMCs associated with ALK and Runx2 expression has 

been associated with increased calcification.  In addition, ALK has been shown to 

decrease pyrophosphate, a natural inhibitor of calcification in rat vessel ex vivo 

studies.  ALK activity in human vessels was higher at baseline in dialysis than pre-

dialysis or controls.  In in vitro conditions, normal vessels did not show any 

increase in ALK in the high P media compared to control medium (5.7 [2.3 – 7.5] 

vs 4.2 [3.2 – 4.8] IU/μL, p = 0.4; Figure 8.7A), but both pre-dialysis and dialysis 

vessels showed an ~2-3-fold increase in ALK in the high P medium (14.4 [4.2 – 

27.1] and 30.5 [16.0 – 42.1] IU/μL respectively) as compared to control medium 

(3.9 [2.4 – 15.1] and 15.0 [5.7 – 19.3] IU/μL, p = 0.03 and p = 0.001 for pre-

dialysis and dialysis vessels respectively). However, on incubation in high Ca + P 

medium, ALK was decreased to below baseline in all the vessel types:  2.1 [0.9 – 

3.1], 2.2 [1.0 – 2.9] and 5.7 [3.8 – 8.9] IU/μL in normal, pre-dialysis and dialysis 

vessels respectively. The reduction in ALK activity in P + Ca media was not 

attributable to VSMC loss, as it was observed in all vessel types. 

 

 

 

 

 

 

 

Figure 8.7A    Osteogenic conversion of VSMCs in calcifying media 
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To explore a possible link between ALK levels and calcification, vessel rings from 

dialysis patients were incubated in high P medium with the addition of levamisole, 

an inhibitor of ALK activity. The addition of levamisole caused an ~ 50% decrease 

in ALK levels (31.1 [16.3 – 42.3] vs 19.1 [6.2 – 22.3], p = 0.03). However, despite 

a reduction in ALK, the vessels incubated with levamisole showed a similar Ca 

load as those incubated without levamisole (387.2 ± 22 vs 356 ± 37 μg/μL, p = 

0.62, Figure 8.7B).  

 

 

 

 

 

 

 

 

 

Figure 8.7B Reduction in ALK levels with levamisole is not associated with a 
reduction in Ca accumulation 
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runx2 levels, we cultured vessel rings from dialysis patients in the different 

calcifying media for 14 days. Dialysis vessels cultured in the high Ca + P medium 

showed the greatest runx2 positivity (the percentage of runx2 positive areas 16.6 ± 

4.1, 24.9 ± 7.8 and 61.5 ± 10.9 in control, high P and high Ca + P media 

respectively, p = 0.002; Figure 8.7D and E). Of note, runx2 positivity was greater 

in the vessels in high Ca + P medium compared to high P medium alone, but ALK 

levels were significantly lower in the high Ca + P medium. 

 

 

 

 

Figure 8.7D and E    Immunohistochemistry for runx2 shows maximum 
positivity in dialysis vessels. 
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Calcification in intact vessels is a vesicle mediated process 

Our ex vivo data showed that calcification in the dialysis vessels was associated 

with increased annexin VI positivity, suggesting a vesicle-mediated calcification 

process. To determine if the increased in vitro calcification in dialysis vessels was 

associated with greater vesicle release, we performed immunohistochemistry for 

annexin VI in dialysis vessels cultured in calcifying media for 14 days. Annexin VI 

positivity was seen in all the in vitro conditions, predominantly distributed along 

the elastic lamellae, and was greatest in the high Ca + P medium (Figure 8.8). 

 

 

Figure 8.8    Annexin VI positivity in dialysis vessels. 
 

EM was used to investigate mechanisms of calcification at the cellular level.  

Remarkable differences in the localization and mechanisms of calcification were 

observed between normal and dialysis arteries (Figure 8.9). In control arteries 

cultured in P media there was very little evidence of calcification in terms of 

increased Ca load or von kossa positivity.  However, there was an increase in 

nuclear heterochromatin as well as evidence of cell death in a subset of nuclei and 

associated with membraneous debris.  Moreover, in Ca +P media calcification was 

seen within the mitochondria of VSMCs of control vessels.  In contrast, in dialysis 
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vessels treated with Ca + P media there was evidence of extensive extracellular 

calcification and vesicle release but no intracellular calcification.  The nuclei were 

generally normal in appearance as were the mitochondria.  Calcification was 

extensive in some areas and clearly associated with the extracellular release of 

membranous vesicles some of which had crystalline apatite present. 

 

 

Figure 8.9   Mitochondrial vs vesicular calcification in control and dialysis 
vessels 

Figure 8.9   A, B and C   Control vessel in high Ca + P medium showing dense heterochromatic nuclei 
not typical of apoptosis. Figure C shows mitochondrial calcification associated with necrosis   
D and E    Dialysis vessel in high Ca + P medium showing vesicular calcification with hydroxyapatite 
crystals in the extracellular matrix. 
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8.4     Discussion 

This is the first time that mechanisms involved in vascular calcification have been 

demonstrated in intact human vessels. This study shows that factors specific to the 

vessel as well as exposure to high Ca-P levels are required to induce calcification. 

Dialysis vessels undergo calcification through a vesicle mediated process by 

mechanisms involving apoptotic cell death and osteo/chondrocytic differentiation, and 

this may be an adaptive response of the VSMC to prolonged exposure to 

progressively increasing Ca levels. In contrast, vessels from healthy controls could 

not be induced to calcify even on prolonged incubation in highly calcifying media, but 

nevertheless showed extensive mitochondrial calcification on electron microscopy, 

suggesting that these vessels have not been able to undergo adaptive changes to a high 

Ca-P environment and have undergone a necrotic response in vitro. 

 

 

Previous in vitro studies have used VSMC cultures, and while these models of 

calcification have provided important mechanistic insights into the pathophysiology 

of calcification, they cannot explain the complex cellular interactions that take place 

in intact vessels. Vessels from children provide an ideal model to study uraemic 

influences on the arterial wall as they are not subjected to confounding pro-

atherosclerotic risk factors that are prevalent in adults with CKD. Moreover, vessels 

from adults are unlikely to lend themselves to in vitro studies as the perfusion and 

viability of the considerably larger adult vessel in culture medium may not be 

possible.  
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Pre-dialysis and dialysis vessels are ‘primed’ to calcify 

In this study vessels from healthy controls did not calcify even after long-term 

culture at supraphysiological levels of Ca + P, up to or exceeding levels seen in 

uraemic patients. This suggests that exposure to very high Ca + P alone is not 

sufficient to produce medial calcification.  Indeed, medial calcification is 

commonly seen in diabetes (Everhart et al, 1988) and aging, and in several genetic 

defects (Bucay et al, 1998; Luo et al, 1997; Rutch et al, 2003) in the presence of 

normal Ca and P levels. The only other study that has looked at intact vessels in 

vitro has shown similar findings: vessel rings from non-uraemic rats could only be 

induced to calcify by the addition of ALK to the culture medium (Lomashvili et al, 

2006), suggesting that the presence of physiological inhibitors of calcification 

prevent healthy vessels from calcifying. On the other hand, pre-dialysis and 

dialysis vessels calcified in the presence of increased P or increased Ca + P, 

suggesting that these vessels have reduced levels or perturbation of calcification 

inhibitors, or have undergone a phenotypic change that predisposes them to calcify. 

When dialysis and pre-dialysis vessels with a similar in vivo Ca load were 

compared, dialysis vessels had greater Ca accumulation under identical in vitro 

conditions, implying that factors other than mineral homeostasis were involved. In 

all in vitro conditions, dialysis vessels had an ~ 10-fold increased Ca load 

compared to pre-dialysis vessels under similar conditions, implying significantly 

greater VSMC damage or that factors specific to the dialysis milieu had ‘primed’ 

these vessels for further calcification. 
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Ca is a more potent stimulus to induce calcification than P 

 
In our previous in vitro studies using human VSMC explants we have shown that Ca 

and P have a synergistic effect on inducing calcification, such that in the presence of 

increased P, even a small increase in Ca could substantially increase calcification 

(Reynolds et al, 2004). This study provides direct evidence for the first time that when 

intact vessels are exposed to increased Ca, calcification is increased. For a fixed Ca x 

P product the increase in serum Ca was a more potent stimulus to induce calcification 

than an increase in serum P. This finding has also been confirmed in cultures of rat 

aortic vessels rings (Lomashvili et al, 2006). This finding has important clinical 

implications, as the changes in Ca levels in our study were within the range seen in 

haemodialysis patients. A study has shown that the transient increase in serum Ca 

levels after haemodialysis are correlated with the rate of progression of coronary 

calcification (Yamada et al, 2007). The cyclical changes in serum Ca levels (that do 

not occur with peritoneal dialysis) may play an important role in the frequent 

development of vascular calcification in haemodialysis patients.  

 

Elevated Ca and P in the culture medium have pro-mineralising effects that extend 

beyond simply raising the Ca x P product, and regulate signalling systems in VSMCs 

that promote a susceptibility to matrix mineralization (Jono et al, 2000; Giachelli et 

al, 2001; Giachelli et al, 2003). Extracellular P is taken up by the cell by the sodium-

dependent phosphate transporter (Pit-1), and increases intracellular P, that in turn 

upregulates bone-regulatory proteins Runx2 and osteocalcin, and downregulates 

smooth muscle lineage markers (Giachelli et al, 2001; Giachelli et al, 2003). 

Prolonged exposure of cultured VSMCs to elevated Ca induces Pit-1 mRNA levels, 

so that Ca levels can regulate the P sensitivity of VSMCs. Our own work has shown 
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that Ca stimulated the release of mineralization-competent vesicles from human 

VSMCs (Reynolds et al, 2004). Moreover, vesicles released in the presence of 

elevated Ca and P are more likely to be ‘mineralization competent’ and nucleate 

preformed crystalline apatite that can rapidly proliferate on a permissive vascular 

matrix (Reynolds et al, 2004). 

 

Extracellular Ca induces apoptosis that in turn accelerates calcification 

Our previous in vitro work has shown that apoptosis precedes calcification, and 

that apoptotic bodies are capable of initiating vascular calcification (Proudfoot et 

al, 2000). Furthermore, we have shown that intact vessels from dialysis patients 

have undergone VSMC loss as a result of apoptotic cell death in vivo, but the cause 

of this remained unclear. In this study we found that in vitro exposure to increased 

Ca and / or P alone was not sufficient to cause apoptosis, as normal vessels did not 

undergo any apoptotic cell death even in highly calcifying media, whereas dialysis 

vessels lost ~30% of the VSMCs from apoptosis in high Ca + P media. Apoptosis 

increases the local concentration of Ca to >30mM, and this potentially induces 

further VSMC death, vesicle release and calcification (Olszak et al, 2000) Also, it 

may be possible that after induction of calcification only healthy/resistant cells 

survive.  

 

To test if apoptosis was actually required for calcification to occur in intact vessels, 

we inhibited apoptosis with the pan-caspase inhibitor ZVAD. Ca quantitation and 

von Kossa staining both confirmed reduced calcification, and areas of calcification 

co-localised with areas of apoptosis. Caspase inhibition can also inhibit the release 

of apoptotic bodies from cells (Kim et al, 1995; Zhang et al, 1999) , and inefficient 
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phagocytosis of these in dialysis vessels may be another mechanism of 

calcification (Shanahan et al, 2006) . 

 

Upregulation of ALK occurs in high P media 

A study using intact rat aortic rings in culture has shown that medial calcification 

can be induced by causing acute mechanical injury to the vessel (Lomashvili et al, 

2004), and increased ALK production that inhibited pyrophosphate was shown to 

lead to calcification. Although CKD, and in particular dialysis, causes mechanical 

and chemical damage to the vessels, this is a slow, chronic process that is distinct 

from the acute mechanical injury caused to the vessels in the above studies, and 

animal experiments have shown that mechanical injury per se can induce 

calcification (Gadeau et al, 2001). 

 

Although ALK levels increase in uraemic and injured vessels, a definitive link 

between raised ALK levels and vascular calcification has not been made. In our 

previous work we have shown that vessels from pre-dialysis and dialysis patients, 

that were documented to have prolonged exposure to high Ca and / or P in vivo, 

had an upregulation of ALK, but this did not correlate with the Ca load in the 

vessel wall. Similarly, when vessels from uraemic rats are cultured in high Ca and / 

or P media, they have increased production of ALK (Lomashvili et al, 2004), but 

the correlation, if any, with calcification has not been explored. Tissue non-specific 

ALK is upregulated during phenotypic transdifferentiation of VSMCs into 

osteogenic cells induced by β-glycerophosphate, which in turn is linked with the 

downregulation of smooth muscle lineage markers (Steitz et al, 2001). In this study 

we found that vessels from healthy controls were unable to increase ALK 
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production even in highly calcifying media, whereas both pre-dialysis and dialysis 

vessels showed a significant increase in ALK, suggesting that these vessels have 

been ‘primed’ in vivo, possibly as a result of uraemic vascular damage. Also, it is 

known that P induces osteoblastic differentiation factors such as runx2 and 

osteocalcin (Giachelli et al, 2003; Moe et al, 2003) , and ALK has been found in 

calcified vessels of patients, colocalising with these transcription factors (Doherty 

et al, 2004) . However, after incubation in high Ca + P media wherein significant 

VSMC apoptosis was seen, ALK levels were significantly lower in all vessel types, 

but were nevertheless associated with markedly greater calcification. Finally, 

although levamisole was able to inhibit ALK, this did not translate to a reduction in 

calcification. 

 

Pyrophosphate is a circulating calcification inhibitor that binds to nascent 

hydroxyapatite crystals and prevents further incorporation of inorganic P into these 

(Addison et al, 2007) . ALK has dual functions, acting to catalyse the hydrolysis of 

phosphomonoesterases with the release of P as well as acting as pyrophosphatases 

to hydrolyse pyrophosphate (Schoppet et al, 2008). Pyrophosphate hydrolysis by 

ALK allows for regulated extracellular matrix mineralization as seen in bones 

(Addison et al, 2007; Moreno et al, 1987), and on prolonged exposure to high 

circulating Ca and P in uraemic patients, as osteo/chondrocytic differentiation of 

VSMCs occurs, they may adapt and produce increased ALK. In osteoblasts, 

hydrolysis of pyrophosphate by ALK produces additional inorganic P (Moss et al, 

1967) that is potentially available for hydroxyapatite mineral deposition. 

Pyrophosphate not only inhibits hydroxyapatite crystal growth (Moreno et al, 

1987) but also upregulates osteopontin production , and downregulates tissue non-
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specific ALK  (Addison et al, 2007)  to regulate mineralization. Similarly, in 

VSMCs ALK production may regulate the fine balance between pyrophosphate – 

inorganic P levels, but exposure to very high Ca or P or when there is insufficient 

time for the VSMCs to adapt to their milieu and upregulate ALK production, 

overwhelming calcification occurs that can potentially result in cell death. Thus, it 

is unclear if ALK production by the VSMC is an adaptive response, or whether it 

perpetuates a vicious cycle of pyrophosphate degradation and accelerated 

calcification. 

 

Different mechanisms of calcification in normal and dialysis vessels 

The different mechanism of calcification in dialysis and control vessels is an 

exciting new finding that needs further exploration. Mitochondrial calcification 

suggests that on acute exposure to high Ca and P levels, the cell is unable to 

‘contain’ these crystals within vesicles and extrude them from the cell, resulting in 

necrotic cell death. On the other hand, when the cell is exposed to increasing 

concentrations of Ca and / or P over a prolonged period, the cell has a chance to 

adapt to its changing milieu and can extrude the Ca/P crystals into the extracellular 

matrix in order to ensure its survival. Thus vesicle release by dialysis vessels may 

be an adaptive response of the dialysis vessels.  

 
 

8.5 Conclusions 

In conclusion, I have shown that both factors specific to the vessel as well as 

exposure to high Ca-P levels are required to induce calcification in intact vessels. 

As a result of prolonged exposure to slowly increasing Ca levels in its extracellular 

milieu, dialysis vessels have developed an adaptive response to extrude Ca from 



   

 292

the cell by a vesicle mediated process but they are also more susceptible to 

apoptosis, whereas healthy vessels are overwhelmed by a sudden increase in Ca 

load and eventually undergo mitochondrial calcification and necrotic cell death in 

vitro. 
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Chapter 9 

Conclusions and Future Directions 
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The translational research in this thesis has shown some important associations 

between modifiable risk factors and vascular damage and calcification that may 

translate to improved care of patients with CKD-MBD. My key findings are: 

 

1. Children on dialysis in whom the mean PTH levels are within twice the upper 

limit of the normal range have less vacular damage, more compliant vessels and 

less coronary calcification than those with PTH levels above twice the upper 

limit of normal. In fact, the group of children with PTH levels less than twice 

upper limit of normal have carotid IMT and aortic PWV that was comparable to 

an age-matched control group. Also, the significantly lower cardiovascular 

mortality amongst our patients as compared to the published data on paediatric 

dialysis populations may be attributable to a strict control of PTH levels from 

the earliest stages of CKD through to dialysis.  

 

2. Children on dialysis who have normal 1,25(OH)2D levels have less vascular 

damage and calcification than those with either low or high levels. Moreover, 

children with low 1,25(OH)2D levels had high levels of hs-CRP, suggesting that 

the beneficial effects of 1,25(OH)2D extends beyond its role in the hormonal 

regulation of Ca – PO4 – PTH and involves a significant anti-inflammatory 

effect. In this study, there was a poor correlation between 1,25(OH)2D levels 

and the dose of alphacalcidol, suggesting that optimal vascular protective 

strategies should include careful monitoring of the vitamin D levels. 

 

3. The physiological calcification inhibitors, in particular fetuin-A, showed a 

strong correlation with vascular stiffness and calcification, suggesting that it 
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may prove to be a useful indicator of an individual patient’s susceptibility to 

calcify.  Also, the observation that there may be a protective upregulation of 

fetuin-A in the earliest stages of exposure to a pro-calcific and pro-inflammatory 

uraemic milieu requires further exploration. Fetuin-A’s role in inhibiting 

apoptosis and inducing phagocytosis offers intriguing possibilities of its use as a 

future therapeutic agent. 

 

4. The correlation of vascular measures against vessel histology has provided some 

very exciting findings. This study has shown direct evidence of calcium 

accumulation even in pre-dialysis patients, with significantly greater calcium 

loads in dialysis vessels. Our currently available vascular measures, including 

multi-slice CT scan, are not sensitive enough to detect the earliest stages of 

calcification, possibly leading to a false reassurance in patients with negative 

scans. Most importantly, calcification was inexorable and extremely rapid on 

dialysis, with a dialysis vintage of even 2 months sufficient to induce 

histologically overt calcification and VSMC damage, emphasising the need to 

avoid dialysis and perform pre-emptive renal transplantation wherever possible.  

 

5. The vessel Ca load in all CKD (pre-dialysis and dialysis) vessels strongly 

correlated with the mean time-averaged Ca x PO4 product, suggesting that 

mineral dysregulation is central to ectopic vascular calcification.  Furthermore, 

in the in vitro studies I found that in the presence of increased PO4 even a small 

increase in Ca could significantly increase calcification. In the dialysis patient 

transient increases in serum Ca levels are frequently seen after haemodialysis or 



   

 296

with medications, and while these may escape detection on routine blood tests, 

they may contribute to an increased risk of calcification.  

 

6. Vessels from dialysis patients show vascular smooth muscle cell loss that is a 

result of apoptotic cell death. Apoptosis, along with osteogenic transformation 

of VSMCs and loss of the protective calcification inhibitors, may trigger 

accelerated calcification in these vessels. From my studies it appears that factors 

other than the Ca load in the vessel induce apoptosis. The identification of 

factors specific to dialysis that trigger the accelerated wave of VSMC death will 

be key in minimizing the detrimental effects of arterial calcification in renal 

failure. 

 

7. The role of alkaline phosphatase in vascular calcification requires further study. 

Although osteochondrocytic transformation of VSMCs is alleged to play a role 

in accelerating calcification, my studies have shown that it may in fact be 

protective. Osteochondrocytic transformation may allow for some form of 

regularized and controlled mineralisation that protects the cell from 

overwhelming calcification and cell death. Further mechanistic insights into this 

process are required.   

 

8. In the in vitro studies I have found a consistent and highly significant increase in 

calcification in the dialysis vessels that is time-dependent and is a graded 

response to the Ca and P in the culture media. I have shown that chronic 

exposure to high Ca and P leads to adaptive changes in CKD vessels that 

manifests as low-grade Ca accumulation, but dialysis overwhelms these 



   

 297

adaptive mechanisms, possibly through VSMC apoptosis and vesicle release, 

leading to accelerated calcification.  

 

The above associations between various potential risk factors and vascular damage are 

drawn from cross-sectional observational studies and cannot be taken to imply 

causality. The complex interplay of these factors at different stages of uraemia is 

poorly understood. Whether the various factors truly contribute to the calcification 

process, or are innocent bystanders that simply behave as markers of vascular damage 

also needs to be elucidated. Therefore, my studies can at best serve as hypothesis-

generating work that paves the way for a future prospective longitudinal study in a 

much larger cohort of paediatric CKD patients. 

 

 I have designed the following studies to continue my work in this field, and have 

already obtained funding and ethical approval for some. 

 

Clinical Studies 

1. Prospective long-term monitoring of cardiovascular disease risk factors and 

measurement of surrogate markers of vascular damage in children with CKD. 

Data on clinical and biochemical parameters, medication dosage and annual 

vascular scans will be performed starting from CKD stage III through dialysis 

to transplantation. Additional blood tests will include 25(OH)D and 

1,25(OH)2D levels, fetuin-A levels, hs-CRP, FGF-23 and genetic studies. We 

have obtained ethical approval to recall our original patient cohort for repeat 

vascular scans including the multi-slice CT scan. 
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2.  Given the multiple beneficial effects of vitamin D on cardiovascular health 

and the survival advantage from vitamin D therapy that has been 

demonstrated in numerous studies, I have focussed my attention on future 

prospective studies on the role of vitamin D in cardiovascular health. My 

study has demonstrated that there is a narrow therapeutic window for vitamin 

D analogues on vascular health, and we would like to extend this work further 

by prospectively monitoring vitamin D [25(OH)D and 1,25(OH)2D] levels in 

all CKD 5 and dialysis patients. Also, the role of PTH as a marker of bone 

health has been questioned. We propose that monitoring patients on their 

vitamin D levels rather than their PTH levels will correlate with a better 

cardiovascular outcome.  

 

In a cohort of chronic dialysis patients at Great Ormond Street Hospital we 

will measure regular vitamin D [25(OH)D and 1,25(OH)2D] levels and titrate 

the alphacalcidol dosage so as to keep 1,25(OH)2D levels in the normal range.  

We will perform 6-monthly cIMT and PWV measures and annual CT scans on 

these patients. An initial pilot study is required to assess the feasibility of this 

protocol in achieving adequate Ca, P and PTH control and also to assess the 

rate of progression of vascular abnormalities in children (from the study 

described in 1). We have obtained ethical approval and funding and will begin 

this work shortly. If feasible, this pilot study will lead on to a prospective 

randomized controlled study across several Paediatric Nephrology units in the 

UK. Titrating medications against the vitamin D level as opposed to the 

current regimen where PTH is the key target will lead to a paradigm shift in 

out management of mineral dysregulation in CKD. 
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3. I have shown that high PTH is associated with increased cIMT, stiffer vessels 

and a higher prevalence of calcification. Hyperparathyroidism begins early in 

CKD when the eGFR is 40 – 45 ml/min/1.73m2 (Levin et al, 2006) and is 

associated with low 25(OH)D and 1,25(OH)2D levels. If patients who are 

25(OH)D deficient were supplemented with vitamin D (ergocalciferol or 

cholecalciferol) early in the course of their CKD and before 

hyperparathyroidism becomes manifest, this may increase their time to 

development of secondary hyperparathyroidism, and protect them from the 

ensuing mineral dysregulation. We will set up a randomised double-blinded 

placebo controlled study to determine the effects of ergocalciferol in delaying 

the onset of secondary hyperparathyroidism in children in early CKD. We 

have ethical approval and funding to begin this study at Great Ormond Street, 

and are applying for funding in order to extend it to other Paediatric centres. 

 

 

Laboratory Studies 

The in vitro model of VSMC calcification is a novel and highly versatile tool, and is 

the best model to study accelerated calcification that is available to researchers. 

Neither VSMC explants nor animal studies can mimic the chronic changes in the 

vessel wall induced by the uraemic milieu and dialysis. This model will be an 

invaluable tool in further studies, and we have planned future experiments as detailed 

below.  
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1. Although vitamin D analogues are shown to increase Ca uptake into smooth 

muscle cells, they also have vasculoprotective properties by reducing smooth 

muscle cell proliferation and have anti-inflammatory and immunomodulatory 

properties. Also, the newer vitamin D analogues, paricalcitol and 

doxercalciferol, are thought to be less calcaemic than calcitriol. Studies have 

been performed on bovine and murine smooth muscle cell explants and given 

conflicting results.  

I have performed some preliminary studies using alphacalcidol and calcitriol 

in in vitro cultures of intact human arteries and have found that calcitriol 

causes significantly greater Ca uptake and also ALK upregulation than 

alphacalcidol under similar conditions. Furthermore, calcitriol but not 

alphacalcidol causes increased Ca uptake even in pre-dialysis vessels. Studies 

in this field are ongoing. 

 

2. The role of oxidative stress and inflammation in the calcification pathway 

have been discussed in many clinical studies. From some preliminary data I 

have found that dialysis vessels have significantly more oxidative DNA 

damage [8-oxo-7,8-dihydro-2’-deoxyguanosine positivity] as compared to 

healthy controls, and after exposure to calcifying media virtually all nuclei in 

dialysis vessels show evidence of DNA damage whereas VSMCs from normal 

vessels remained intact. I will extend this work to study other markers and 

mechanisms of oxidative damage, as it is clear that VSMC damage is central 

to the calcification process. 
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Through long-term prospective clinical and in vitro studies that explore the 

mechanisms of vascular damage, I will continue my work in the field of 

cardiovascular disease in chronic kidney disease with the ultimate aim of modifying 

the evolution of cardiovascular disease in chronic kidney disease. 
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