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ABSTRACT. The impact of covariate measurement error on quantile regression
functions is investigated using a small variance approximation. The approximation
shows how the error contaminated and error free quantile regression functions are
related, a key factor being the distribution of the error free covariate. Exact calcula-
tions probe the accuracy of the approximation. The order of the approximation error
is unchanged if the error free covariate density is replaced by the error contaminated
density. It is then possible to use the approximation to investigate the sensitivity of
estimates to varying amounts of measurement error.
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1. INTRODUCTION

Quantile regression functions are of particular interest in problems where the dispersion or
the shape of conditional distributions are expected to vary with covariate values. Since the
seminal paper of Koenker and Bassett (1978), which introduced a method for estimation
of quantile regression functions, there has been substantial development of estimation
methods and algorithms, and gains in understanding of the properties of estimators. With
increasing interest in econometrics in variation in response across individuals, and with
the way in which the distribution of responses is affected by covariates, quantile regression
estimation procedures are finding increasing use in applied econometric work.

Recent applications of quantile regression methods are: in finance, Bassett and Chen
(2001), Chernozukov and Umantsev (2001), Taylor (2000); in analysis of the dynamics
and distribution of wages and earnings, Bushinsky (2001, 1998a, 1998b, 1995), Eide and
Showalter (1999), Fitzenberger, Hujer, McCurdy and Schnabel (2001), Reilly (1999); in
analysis of the effect of, and achievement in, schooling, e.g., Arias, Hallock and Sosa-
Escudero (2001), Hartog, Pereira and Vieira (2001), Levin (2001); in studies of nutrition,
e.g., Variyam, Blaylock and Smallwood (1999); in economic demography, Abravaya (2001);
in evaluation of treatment effects, Abadie, Angrist and Imbens (2001), Koenker and Bilias
(2001); and in industrial economics, Machado and Mata (2000), Nahm (2001).

The conditional T-quantile regression function (7-QRF) for a scalar random variable
Y given covariates X is defined implicitly by!

Py x(Qyx(T,2)|lz) =7

where
Fy|x(ylz) = P[Y <y|X = 1]

1To keep discussion simple we assume throughout that conditional distribution functions are proper
and strictly increasing in y.
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is the conditional distribution function. The continuum of 7-quantile regression functions,
7 € (0,1), captures all aspects of the dependence of conditional distribution of a response
Y on covariates, X, unlike conditional moment regression functions. An attractive feature
of QRF's is that they allow the nature of the dependence to be easily appreciated because
they are expressed in the same metric as the response?.

Despite the advances in QRF estimation and inference methods, and the many appli-
cations of quantile regression methods, some of the econometric issues given substantial
attention in the study of mean regressions have received scant attention in the context of
quantile regression estimation. One of these is covariate measurement error, a pervasive
feature of econometric data, and likely a feature of many of the applications listed above.

Covariate measurement error causes many and subtle changes to conditional distri-
butions, potentially attenuating mean regression functions, increasing dispersion, intro-
ducing heteroskedasticity in homoskedastic error free models and modifying the form of
heteroskedasticity when it is present in an error free model.

There seems to have been little attention paid to measurement error in the context of
quantile regression. Measurement error oriented texts such as Fuller (1987) and Carrol,
Ruppert and Stefanski (1995) have no discussion of quantile regression. In the quantile
regression literature Brown (1982) and He and Liang (2000) provide the few results avail-
able on estimation of parameters of QRFs when there is covariate measurement error.
Brown (1982), studying robust estimation in errors-in-variables models, proposes a mod-
ified LAD estimator which can be regarded as an estimator of the slope of the median
regression function with scalar error contaminated covariate, but rejects the estimator as
unsatisfactory. He and Liang (2000) propose a consistent estimator of the slope of linear
error free QRFs based on minimising the sum of the “check” functions

pr(r) =7 x (T = 1<)

applied to orthogonal residuals, r. They assume that the joint distribution of the response
error and the covariate measurement error is spherically symmetric and independent of
X.

This paper considers error free QRFs for a response Y, conditioned on X, and error
contaminated QRFs for Y, conditioned on Z = X + V where V is distributed inde-
pendently of X, and of Y given X. Data on Y and the error contaminated Z provide
information about the way in which the conditional quantiles of Y given Z vary with Z.
Nonparametric quantile regression methods (see e.g., Yu and Jones (1990), Magee, Bur-
bidge and Robb (1991), Nahm (2001)) can give detailed information about this variation.
But this bears only indirectly on the way in which quantiles of Y conditional on error free
X vary with X. In most applications this is what is of interest because economic theory
will be informative about relationships between error free variates, and policy interven-
tions, whose impact on the distribution of Y is of interest, will alter values of error free
covariates.

The first part of this paper aims at improving understanding of the relationship be-
tween error contaminated and error free QRFs. This can help in interpreting the results of
QRF estimation when measurement error is believed to be present. It can help explain dif-
ferences in estimated QRF's using data sets with different amounts of measurement error.
In cases where a functional form of error free QRF's is imposed upon error contaminated
data it illuminates the misspecification that is thereby committed.

In the second part of the paper we consider problems in which error free QRFs are
parametrically specified (e.g., as linear), and investigate the possibility of using infor-
mation on the relationship between error free and error contaminated QRFs to retrieve

2Bushinsky (1998a) provides a good introduction to quantile regression methods and their implemen-
tation.
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information about the values of parameters of error free QRFs. In some circumstances
this is not possible because the error free QRF cannot be identified from knowledge of the
form of error free QRF's because measurement error induces no change in that form. The
model in which Y, X and V are jointly normally distributed is a leading example. Here
measurement error changes the separation and slope of QRF's but they remain linear.

But in many other cases identification is possible, as pointed out in Riersgl (1950).
However such identification, flowing from functional form assumptions, is fragile. For that
reason the procedure we propose is presented mainly as a means of providing a form of
sensitivity analysis. It provides a partial answer to the following question.

Were the error free QRF to be of a hypothesised form and covariate mea-
surement error to be present, what are the likely values of the parameters of
the error free QRFs, and how does our view of this change as the amount of
measurement error allowed for increases?

An exact answer to this question requires a case by case analysis. The exact impact
of measurement error on mean regressions can be derived in explicit form only in a few
special cases®. Outside these cases, and in almost all interesting cases* for QRFs, the exact
impact of covariate measurement error can only be obtained by numerical calculation.
Such calculations do not give insight into the generic effects of covariate measurement
error and they do not provide a link between the effects of measurement error and easily
grasped features of the error free QRF and the distributions of covariates and measurement
error.

This paper provides a partial resolution of this problem by providing an approzima-
tion to an error contaminated QRF expressed in terms of functionals of the error free
QRF and the density of either the error free or the error contaminated covariates. The
approximation is developed using small parameter (variance) approximation methods and
extends the results of Chesher (1991) to QRF's.

Section 2 gives the approximation to error contaminated QRFs. Details of the deriva-
tion are given in an appendix. The insights into the generic effects of measurement error
on QRFs provided by the approximation are discussed in Section 3 where some leading
special cases are examined.

Section 4 reports an investigation into the accuracy of the approximation in a rich
class of models with a single error contaminated covariate. An error free covariate (X)
and independently distributed measurement error (V') are given exponential power distri-
butions®. The conditional distribution of the response given X (independent of V) is also
specified as a member of the exponential power family with location parameter depend-
ing upon X and with scale and shape parameters independent of X. We use numerical
methods to calculate the exact error free (conditional on X) and error contaminated (con-
ditional on Z = X + V') QRFs and we calculate the approximation developed in Section
2. We find that for quite large amounts of measurement error the approximations are
encouragingly accurate.

Sections 5 considers one possible use of the approximation. It investigates the use of
the approximate QRF to extract information about the error free QRF from error contam-
inated data. The results of Section 2 show that the approximate error contaminated QRF
is determined by the error free QRF and derivatives of it, whose form is known once the

3 A leading example is the model in which Y (with arbitrary distribution) has polynomial regression on
error free X and additive independent measurement error is normally distributed, see Chesher (1998a).

4The fully Gaussian model in which Y has linear regression on X and Y, X and V are jointly normally
distributed is the obvious exception.

5A random variable with an exponential power distribution has density function proportional to

2
exp(—Alw — pu|T+7). Normal (v = 0), Laplace (y = 1) and uniform (y = —1) distributions are lead-
ing special cases.
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error free QRF is specified, and by a functional of the density of the error contaminated
covariate. This density can be estimated using realisations of the error contaminated
covariate. Therefore, given a parametric form for the error free QRF, a parametric ap-
proximate error contaminated QRF can be specified and estimated. When identification
permits, estimates of parameters of the error free QRF can be retrieved.

The performance of this procedure is investigated in Monte Carlo experiments. In
practice, given the identification issues which arise here one would likely want to use this
procedure to perform a sensitivity analysis. Thus one can ask: given a specified form
for an error free QRF, how are my views about its parameters changed as I consider the
possibility of there being varying amounts of measurement error. Section 6 concludes.

2. THE APPROXIMATE EFFECT OF MEASUREMENT ERROR

2.1. Error free and error contaminated QRFs. Consider a scalar response Y,
continuously distributed given k element vector X, and let Fy|x (y|z) be the conditional
distribution function of Y given X = z, as follows.

Fyx(ylz) = P[Y < y|X = 2]

Let Z = X +V where V = WU, U and X are independently distributed and E[U] = 0,
Var|U] = I. The matrix ¥ is lower triangular and ¥¥’ = ¥ so that Var[V] = X.

The conditional 7-QRFs, Qx(7,x), in which conditioning is on error free X, and
Qz(7, z), in which conditioning is on error contaminated Z, are defined by the following
implicit equations.

Fyx(@Qx(T,z)|lz) = 7

Fy1z(Qz(7,2)|z) =
2.2. Approximate error contaminated QRFs. We seek an approximation to the
error contaminated 7-QRF, Qz(7, z). This is a functional of the conditional distribution

function of Y given X and the marginal distribution functions of U and X and depends
upon 7 and 3, a relationship we express as follows.

QZ(Ta') = f(FY|X7FXaFU;Tyz)
Note that the error free QRF is got by setting ¥ = 0.
Qx(7,") = F(Fy|x, Fx, Fy;7,0)

The approximation to the error contaminated QRF is given in equation (2) below, to
which those not interested in the method of derivation can proceed directly.

The approximation is obtained by considering a Taylor series type approximation to
Qz(7,") as followsS.

0
QZ(Tv ) = QX(T> > + g Oij aO._J_ QZ(T’ ')‘E:O + O(E>
irj *

6Here and later unless indicated Zl j indicates double summation over ¢ and j both from 1 to k. A

term described as o(X) has the property that

where w = trace(X).
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We use the following approximation (Chesher (1991)) to the conditional distribution
function Fy|z(y|z) in which conditioning is on error contaminated Z.

Frizls) = Frizyle) +o(%) | "
Frizols) = Frixl)+ oy 0 (Frx 2ok (2) + 55 (012))

Here superscripts ¢, j indicate differentiation with respect to the ith and jth conditioning
arguments, for example

32
y\X( ‘ ) 8xiaijY\X(y|$)

Tr=z

The function gx(-), which plays a key role in what follows, is the log probability density
function of X,
9x(2) = log fx (x)
with derivatives as follows.
i 9
gx(2) = %gx(x)

r=z
For the approximation to have an error of the stated order we require the absolute third
own and cross moments of U to be finite valued, the existence of bounded third own and
cross derivatives of Fy|x (y|z) with respect to x, and that X has a continuous distribution
with twice differentiable density function and support on $*. This approximation to the
distribution function does not require Y to be continuously distributed” given X.

For the moment let @z be shorthand for Qz(7,2). Since Fy|z(Qz|z) = 7 we have

Fy12(Qzlz) = 7+ o(2),
that is:

Fyx(Qzlz +Zoz] <Fy|x(QZ| )9k (2) + FQJX(QZV)) =7+0(X).

i,
Considering variation in @)z and ¥ and taking differentials gives

1

Fyx(Qz12)dQz + ) _do; (Féx(Qzlzm%;() 3Vx(Qzl2 )) O(%) =7 +0(%),

where the superscript “Y” denotes differentiation with respect to the response variable,
that is:

FY x(Qzlz) = %FY\X(?AZ) = fy1x(Qz|?)

y=Qz
which is the conditional density of Y at the 7-quantile under consideration. Setting > = 0,
yields the required derivatives,

0Qz

Baij

_ Fx(Q719)9k (2) + 555 (Q7]2)
=0 Fg\x(QZ| )

and we therefore have the following approximation.

(Qz12)gk (=) + 17 1 (Qzl2)
y|X(QZ| )

"In its application to QRFs we do assume a continuous distribution for Y with strictly increasing
dsitrbution function mainly in order to avoid indeterminacy in QRF's.

Q (T Z) QX T, Z ZU’LJ Y‘X

5,

+0o(X)
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The approximation is much more easily interpreted, and used, when expressed in terms
of the error free QRF and its derivatives

0

QTX(TVZ) = EQX(TVZ)
Qi(r2) = 5-Qx(r.a)

and so forth, as follows. Details of the derivation of this expression are given in Appendix
1.

Qlr2) = Qx(ra)+ S oy (Qx(ragk () + 3032

L. . J j i
T 2Q7(7,2) Z"ij (QX(Tv 2)Q% (7,2) + Q¥ (7, z)QX(T,z))
%37 (r 2) Z%QX 7,2)Q% (7, 2) + o) (2)

2.3. Discussion. Section 3 provides interpretation of the terms in this approximation
and considers some leading special cases. First it is worth noting that there are elements
of generality that may not be obvious at first sight.

Non-additive measurement error. The approximation has been developed for
the case of additive measurement error, but we have allowed the error free QRF to be
nonlinear, so some other interesting cases can be easily obtained by considering transfor-
mations of the covariates. For example® consider a scalar covariate X and let

Z=2""\X)+ V)

where A(+) is a strictly monotonic function. Additive and multiplicative measurement
error arise when A(-) is respectively the identity function and the logarithmic function.
The approximation (2) for additive measurement error applies when the error free QRF
is expressed as a function of A\(X). Then gx(-) must be regarded as the log density of
A(X). The result is easily “unbundled” to give an approximation in terms of an error
free QRF written as a function of X and the log density of X. Of course the resulting
approximation will involve the function A(-) and its derivatives®.

Error free covariates. We have proceeded as if all elements of X are error con-
taminated, but in many leading cases of interest we may expect measurement error to
be a serious issue for only one covariate. For example in considering household demand
we may be confident in the accuracy of measures of household composition but suspect
measurement error in household income. The approximation (2) is easily applied to such
cases by setting elements of 3 to zero. Note that in this case, with X and X¢ denoting
respectively error free and error contaminated covariates, the log density derivative g% (2)
that appears in (2) becomes the derivative of the log conditional density of X¢ given Xp
with respect to elements of X¢.

81 am grateful to Christian Schluter for suggesting this generalised additive formulation.

9This is essentially the approach taken in Chesher and Schluter (2001) and in Chesher, Dumangane
and Smith (2001) in studing the impact of measurement error on respectively inequality measures (e.g.,
the Gini coefficient) and duration analysis. In both cases multiplicative measurement error is the leading
case of interest.
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Temporal variation. The approximation has been developed for classical measure-
ment error but it can be applied (with care) to other problems. For example in demand
analysis we might regard recorded income as the sum of permanent and transitory in-
come and be interested in the dependence of demand on permanent income. Then, under
suitable assumptions, the approximation gives information about the relationship between
QRF's for permanent income and QRFs for income accruing over a short recording period.

Alternative forms of the approximation. The log density derivatives gg((z) that
appear in (2) can be replaced by derivatives of the log density of Z, g},(z), without
increasing the order of the approximation error. This is proved in Appendix 2. This
substitution has two benefits. First, in models with normal measurement error it can
result in increased accuracy'®. Second, unlike g% (z), g7 (2) can be estimated - using
realisations of error contaminated Z. With an estimate of gJZ(z) and knowledge of the
form of the error free QRF one then has information about all aspects of the dependence
on z of the (approximate) error contaminated QRF, a point that is crucial to our proposed
sensitivity analysis procedure.

3. INTERPRETATION AND SPECIAL CASES

To start, it is interesting to compare the quantile regression approximation (2) with the
approximate mean regression function given in Chesher (1991). For error free and er-
ror contaminated mean regression functions respectively Rx(x) = Ey|x[Y|X = z] and
Rz(z) = Ey|z[Y|Z = 2] this approximation is as follows.

Ro(e) = Rl + S os (R0 () + 3R ) +0() ®)

This has the same form as the first line of (2)!!.

The second and third lines in (2) capture (approximately) the variance and distribu-
tional shape distortions produced by measurement error. Most of the message contained
in these approximations can be uncovered by considering the case in which there is just
one covariate.

3.1. Attenuation and curve damping. Let superscript “z” denote differentiation
with respect to the single covariate and write the scalar measurement error variance as
o2. When there is one covariate (2) simplifies as follows.

2

Qz(r2) = Qx(r2)+0°Q%(7.2)g% (2) + T Q¥ (7.2)
_0_2 Q;{m(T? Z)ng(Tv Z)
Qx(r.2)

L QT (1, 2)QK (.2
2 Qx(r.2)?

The leading term is just the error free quantile function with argument z. The next
two terms completing the first line of (4) do not involve derivatives with respect to 7.
These are QRF analogues of the only O(X) terms in the mean regression approximation

(3).

10When error free mean regressions are linear a substitution of this sort renders the approximation
exact, Chesher (1998a).

11t also has the same form as (1) because the conditional distribution function Fy-| x (y|z) is a regression
function, namely for 1y <, given X.

+o0(0?) (4)
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Note that g% (z) is zero at every mode of the density of X. To the left (right) of
each mode g% (z) is positive (negative). Consider # and 7 where the error free QRF has
a positive derivative. There the effect of the term 02Q%(7,2)g%(2) is to raise the error
contaminated QRF relative to the error free QRF to the left of each mode of the density
of X and to lower it to the right of each mode. This tends to “flatten” the QRF and is an
expression of the attenuating effect of measurement error. There is the same attenuation
effect where the error free QRF has a negative derivative. The effect is clear to see when
the error free QRF is linear and is illustrated for mean regression in Chesher (1991).
Then Q% (7, 2) is constant and the term "TZQ}”{I(T, z) vanishes. When g¢% (z) is also linear
the approximate error contaminated QRF is then linear, but otherwise the term g% (z)
introduces nonlinearity. Of course g% (z) is linear only if X has a normal distribution.

The opposite effect occurs at each antimode of the density of X. Near antimodes the
error contaminated QRF is ampliated. The result is that when the distribution of X is
multimodal the error contaminated QRF tends to move sinuously relative to the error
free QRF.

The final term in the first line of (4) is present only when the error free QRF is
nonlinear. It is positive (negative) where that QRF is strictly concave (convex). The
effect of this term is to dampen the curvature of the error contaminated QRF relative to
the error free QRF.

The terms in the second and third lines of (4) are more complex and more easily
understood in special cases. We first consider them in problems in which error free QRF's
are parallel.

3.2. Parallel conditional quantiles. Consider parallel error free QRFs

Qx(r,z) = a(r) + b(x)

which arise when Y is a location shift of a random variable W, the latter distributed
independently of X, that is
Y =b(X)+W.

With Qw (7) = a(7) denoting the T-quantile of W,
Qx(7,2) = Qw(7) + b(2).

In this case Q% (7, z) = 0 which removes the term in the second line of (4).
In this case, applying (4), the error contaminated quantile is approximately

Qz(1,2) = a() + b(2) + 02" (2) g% (2) + U—Qb"’”’(z) + o dTOb(2)"

2 2 ar(r)? toleh) ()

where superscripts “z” and “7” denote differentiation with respect to x and 7 respectively.
The following points are of interest!2.

1. Even though the error free quantiles are parallel, the error contaminated quantiles
are not in general parallel, because in the final term of (5) there are functions of z
and T which interact.

2. However if the error free quantile functions are linear the final term in (5) is a
function of 7 alone and measurement error does not destroy the parallel quantile
property, though it may render quantile functions non-linear through the impact of
the term o2b%(2)g% (2) in (5).

12Where statements are made about some manifestation of measurement error being present or absent
it should be taken to mean to the order of approximation considered in this analysis.
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3. If b(z) does not depend upon z then measurement error has no impact - this is, of
course, an exact result!

4. Regarding a(7) as the quantile function of the random variable W, we have

T QEE 9, o
ar(r)? Qi (7)? = 8w1 g fw (w) O () g (Qw (7))

where (A1.3) and (A1.5) of Appendix 1 have been usedto obtain the final expression
and fy(w) is the density function of W.

(a) This term, and so the final term in (5), is zero at each mode (and antimode)
of the density of W.

(b) When the density of W is unimodal, this final term in (5) is negative for small
7 and positive for large 7, and captures the impact of measurement error in
increasing the dispersion of the conditional distribution of Y.

(c) This dispersion increasing effect is larger for values of z at which b”(z) is large in
magnitude and zero when b*(z) is zero. In the nonlinear quantile function case
the variations with z in the sensitivity of b(z) to z induce heteroskedasticity.

In summary, parallel nonlinear quantile regressions contaminated by measurement
error become non-parallel, the effect being greater at covariate values at which error free
QRFs are more nonlinear. The discussion of Section 2.3 implies that this effect will also
be present in linear error free QRF problems when measurement error is not additive.

Error contaminated QRFs tend to be more widely separated then error free QRFs.
This expansion effect is larger when the slope of the error free QRF is large in magnitude.
It is larger for 7-QRF's for which 7 corresponds to a quantile on an sharply increasing
or decreasing part of the conditional density, in many cases away from the mode of this
distribution but in the main body of the distribution.

Non-parallel conditional quantiles. With non-parallel quantiles there is het-
eroskedasticity and/or conditional shape variation in the error free model and these are
altered by the introduction of measurement error. This effect is captured in the term
in (4) involving Q%*(7,2) which is nonzero only at points where quantile functions are
non-parallel. Consider the simple case in which

Qx(7,2) = a(r)c(z) + b(x)

which arises when
Y =b(X) 4+ (X)W

and W is independent of X with 7-quantile Qw (7) = a(7). The error free T-quantile is
(c(z) > 0 is assumed)

Qx(1,z) = c(x)Qw(7) + b(x).

The relevant term in (4) is

¥ 2Qk(r2) _ (2)
Q5 (7.2) (2)

This term further modifies the 7-free part of the QRF adding the term ¢*(2)b%(z)/c(2)
and modifies the form of the covariate dependence of shape and dispersion.

(Qw ()" (2) +0%(2)) -
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4. ACCURACY OF THE APPROXIMATION

This section examines the accuracy of the approximation to error contaminated QRFs.
Most of the results are obtained using numerical methods to calculate the exact error
contaminated QRF.

First consider the fully Gaussian model in which the error contaminated QRF can be
obtained in closed form. Here we find that the approximation is in fact exact so far as
capturing the dependence of the QRF on covariates is concerned. Approximation error
causes the approximate QRFs to be more widely separated than the exact QRFs an effect
not exactly captured in the approximation.

4.1. Analytic results for the Gaussian model. Let Y given X =z and V = v be
N(2'B3,n?) with X and V jointly normally distributed as follows.

s L s )

Let @n(7) be the 7-quantile of a N(0,1) variate. Exact error free and contaminated
QRFs are

Qvix(r,z) = 2'B+nQn(T)
Qviz(1,2) = y (Sxx+9) 7 88+7 (1 Y (Sxx + %) z) B+ a(B,Sxx,S)Qn (1)
where

a(3,Sxx,3) = (n2 + 4 (2 — Y (Sxx +%)7 z:) ﬁ)m .

Using gjé (2) in (2), as suggested in Section 2.3 gives the following approximation to the
error contaminated QRF.

Qui2(r,2) = px (Sxx +3) 7' 88+ 2 (1= 3 (Sxx +2) 7 £) 8+ a(5,2)Qn(7)

a(6,5) =+ %ﬁ'm

The regression coefficients of the approximate QRF are the same as those of the
exact QRF. Approximation error arises only in the intercept, because of error in @ as an
approximation!® to a.

The approximate QRFs are more widely separated than the exact QRFs, that is

|Qv12(7,2) = h(2)] 2 |Qy|2(7, 2) — h(2)| where
h(z) = iy (Sxx +5) ' 26+ 2/ (I S (Exx + )7 z) 3.
To see this, write
Qyiz(r.2) —h(z)P = @®Qu(r)?
\QY\Z(T, z) — h(Z)|2 = GQQN(7)2,
suppressing parameter dependence of a and @ in the notation, then

a?—a® = 4—7172 (ga’m)2 +AS(Exx+2)7'88>0

which delivers the required result. The approximation error is small when 8’3 is close
to zero and large when 7 is small relative to 8'X3. It tends to be small when error free
covariates have a dispersed distribution.

13Note that a Taylor series expansion around 3 = 0 gives @(8, %) = a(8, Zxx, %) + o(X) showing the
the approximation is indeed correct apart from terms of order o(X).
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4.2. Numerical calculations for exponential power distributions. It is difficult
to find other cases in which exact error contaminated QRFs can be obtained in closed
form so the accuracy of the approximation is now examined using numerical methods.
Attention is confined to models with a single covariate.

Let Y be determined by a location shift model in which

Y = ﬂ() +/81X+0'WW (6)
Z = X+oU (7)

and W and U (both mean 0, variance 1), and X (mean 0, variance 3) are mutually inde-
pendently distributed with exponential power (EP) distributions'# with shape parameters
Yw, Yx and vy

A random variable S with mean p and variance A% and an exponential power distri-
bution with shape parameter v € (—1,1) has the following probability density function.

2
1+w>

The constants A and B are defined in Appendix 3. Setting v equal to 0 and 1 gives
respectively normal and Laplace distributions. As v — —1 the density approaches the
uniform density function on (1 — v/3\, it + v/3\).

Let Q- (7) denote the T-quantile!'® of a zero mean unit variance EP variate with shape
parameter . Then the error free QRF is

QY\X(Ta CU) =B+ 06, X + UWQWW (7') (8)

To obtain the exact error contaminated QRF the conditional distribution function of Y
given Z is calculated by numerical integration' and the value of the QRF at values of z
is obtained using a Newton type method!”.

Figures 1 - 3 - show error free (dotted), exact error contaminated (solid) and approx-
imate error contaminated (dashed) 7-QRFs when 8, =0, 8, =1, n=1, oxx = 3, and
0% = 1. At these settings R? in the error free mean regression is 0.75, the signal to noise
ratio for the error contaminated covariate is 0.75 and for mean regression the attenuation
of the error contaminated regression is 25%, that is E[Y|Z = z] = 0.75z compared with
EY|X =z]=x.

The graphs show 7-QRFs for 7 € {0.5,0.75,0.9}. Figures 1, 2 and 3 are distinguished
by the choice of shape parameter in the EP distribution for W, with vy equal to 0.5,
0 and —0.5 respectively. The variance of the error contaminated covariate is 4 and the
graphs show QRFs for z € [—4, 4], that is £2 standard deviations around the mean.

In each 3 x 3 array of graphs the shape parameter of the EP distribution of X varies
across rows with vy equal to —0.5 in the top row, then 0 and 0.5. The shape parameter
of the EP distribution of measurement error, V, varies across columns with vy equal to
—0.5 in the left column, then 0 and 0.5. Thus the centre pane on each page shows QRFs
when both X and V' are normally distributed.

First consider the exact error contaminated QRFs (solid lines). Attenuation (around
25%) is evident in every case. The exact error contaminated QRFs are nonlinear except

5 —H
A

fs(s) = Aexp (—B

14Box and Tiao (1973) give a discussion of the properties of EP distributions.

15 An easily computed expression for the EP 7-qauntiles is given in Appendix 3.

16 The Splus 2000 (1999) procedure integrate is used. This employs an adaptive 15-point Gauss-Kronrod
quadrature based on the Fortran function dgage and dgagie from QUADPACK (Piessens et al. (1983))
in NETLIB (Dongarra and Grosse (1987)).

17The Splus 2000 procedure uniroot is used. This implements Brent’s (1973) safeguarded polynomial
interpolation procedure for solving a univariate nonlinear equation, based on the Fortran function zeroin
from NETLIB (Dongarra and Grosse 1987).
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Figure 1: Exact and approximate T-QRFs: 7 € {0.5,0.75,0.9}, vy = +0.5
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Figure 3: Exact and approximate QRFs: 7 € {0.5,0.75,0.9}, v = —0.5
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when X and V' are both normally distributed although the nonlinearity is very weak when
the error free covariate is normal (centre rows).

Varying the shape of the distribution of W (compare graph arrays) and V' (compare
columns) has little effect on the error contaminated QRFs. Varying the shape of the
distribution of the error free covariate X (compare rows) has a substantial effect. When
this distribution is peaked (bottom rows) attenuation is most marked at values of Z near
the centre of the distribution of X. When it is platykurtic (top rows) attenuation is most
marked for values of z in the tail area of the distribution of X.

The shapes of the error contaminated QRF's vary little as 7 is altered. The additional
noise introduced by measurement error moves the QRFs away from the median QRF.

Now consider the approzimate error contaminated QRFs (dashed lines). These are
calculated using (5) with g7, (z) in place of g% (z) because it is in this form that the ap-
proximation is used in the sensitivity analysis described in Section 2.3. In every case the
approximation accurately captures the attenuation and nonlinearity in the error contam-
inated QRF. The location of the error contaminated QRF is very accurately captured
by the approximate median regressions (7 = 0.5) but the approximate QRFs tend to be
located a little above (below!®) the exact QRFs for 7 > 0.5 (< 0.5). The quality of the
approximations varies only a little as the three EP shape parameters are altered.

In summary, with linear error free QRFs, in the cases studied, error contaminated
QRF's are significantly nonlinear unless the error free covariate is normally distributed.
The main QRF deforming impact of measurement error is driven by the shape of the
distribution of the error free covariate. When the variance of measurement error is not
too large, this shape is reflected in the shape of the distribution of the error contaminated
covariate which is the driving force in the approximation (5). As a result the approxi-
mation captures the nonlinearity in the error contaminated QRF's well, although there is
some error in locating the vertical location of the extreme QRFs. In the “bias correction”
procedure and sensitivity analysis developed in Section 5 this location error has little
impact because data on Y is used to “calibrate” the locations of the QRFs.

5. BIAS CORRECTION AND SENSITIVITY ANALYSIS

Small variance approximations like that developed here can be used to gauge the sensi-
tivity of estimators to varying amounts of measurement error and to obtain estimators
with reduced inconsistency. Examples are provided in Chesher and Schluter (1999) and
Chesher and Santos Silva (1992). In this Section we examine the potential of small vari-
ance approximations in this regard in the context of QRF estimation.

Suppose a parametric form of a QRF is specified - here we just consider the simplest
case in which error free QRF's are linear and parallel so that Y is generated by the location
shift model (6). The 7-QRF of Y given X is

Qx(7,7) = By + B2+ owQw (T)

where Qw (7) is the T-quantile of W.
The results in Section 3.2 give the following expression for the approximate error
contaminated 7-QRF.

Qz(r,2) = Bi(r)+ By (2 +0%g5(2)) (9)

Bir) = Bo+owQu(r) — B2t (Qu(r))

20’W

The function g% (z) is the derivative of the log density of the error contaminated covariate,
a function that can be estimated (§% (z)) with the data available. It is used here following

18Not shown.
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the suggestion in Section 2.3 where it is noted that substituting this function for ¢%(z2)
(a) does not alter the order of the approximation error and (b) allows realisations of Z to
be used to estimate the approximate error contaminated QRF.

If we knew the variance of measurement error then we could estimate the error con-
taminated QRF using 2+ 029%(z) as the right hand side variable and regard its estimated
coeflicient as an estimator of the slope of the error free QRF, ;. If the approximation
is accurate then we expect the inconsistency of this estimator to be small. The argument
in Chesher and Santos Silva (2001) suggests that the difference between the pseudo-true
value of this estimate and the error free QRF coefficient, 3;, will be of order o(c?). We
cannot identify other parameters of the error free QRF. This presents an alternative to
the method of He and Liang (2000) who also impose a restriction on the variances in this
problem and study linear QRF's.

A similar procedure could be implemented if we had an estimate of the measurement
error variance, perhaps from an ancillary sample.

In the absence of knowledge of 02 a sensitivity analysis could be conducted, fixing 2
at a sequence of values in some plausible range, estimating the parameters of (9) at each
chosen value of o2

Finally, if g% (2) is sufficiently nonlinear we could estimate using z and an estimate of
9%(z) as separate explanatory variables producing approximately consistent estimators of
B, and o2.

Since the approximate error contaminated QRF is to some extent misspecified, infer-
ence should be conducted in the context of inference for misspecified M-estimators set out
in White (1994).

The method proposed involves two step estimation with a nonparametric plug-in esti-
mator used at the first stage but that plug-in estimate is determined entirely by realisations
of the error contaminated covariate and, note, it is the error contaminated QRF that we
are attempting to estimate. The principle of conditionality suggests that we should make
inference conditional on covariate’s realised values. If we follow that principle, the impact
of variation in the plug in estimate on the sampling variance of the QRF estimator will
be carried into the conditional (on the realised values of Z) standard errors through the
realised values of Z and §%(2).

In order to examine the performance of a procedure of this sort the results of a series
of Monte Carlo experiments are now reported. The error free QRF is linear with 8, = 0,
61 =1, ow = 1 and the distributions of W, X and V are exponential power distributions
with mean zero and shape parameters vy, vy,7vy € {—0.5,0,40.5}, a total of 27 cases
in all. The variances of W and V were set to one and the variance of X was set to 3. At
these settings the R? in an error free mean regression is 0.75 and the attenuation of the
error contaminated mean regression is 25%, that is the OLS estimator of 8; using error
contaminated Z has probability limit equal to 0.75. In each experiment a sample size of
400 was used and there were 2000 replications.

We show results of two types. In the first we use the exact function g%(z) in con-
structing the new right hand side variables. In the second we estimate the function using
an exponential series estimator.

5.1. Log density derivative g% (z) known. There are three tables of results, each
showing means and standard deviations of estimates across the 2000 Monte Carlo replica-
tions'?. The first, second and third sets of 9 rows show results for 7 equal to respectively
0.5 (median regression), 0.75 and 0.90.

Table 1 shows results for the QRF estimator ignoring measurement error. The attenu-
ation effect of measurement error is plain to see. In all cases the mean of the estimates of

19The sampling distributions seem close to symmetric, with means very close to medians, the latter
thus not reported.
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B, is very close to 0.75. The standard deviation of the estimates increases as 7 increases
as one would expect from the sampling theory of QRF estimators. There is little varia-
tion in the average value of the QRF estimator across values of the EP distribution shape
parameters and across T-QRFs.

Table 2 shows results for the QRF estimator with 02 “known”. The improvement is
substantial. The mean of the estimates of 3, is very close to 1 (the error free QRF value),
deviating at most by 3.6%. The accuracy of estimation is slightly impaired - the standard
deviations of the measurement error “corrected” estimates are around 25% higher than
the standard deviations of the naive estimator which ignores measurement error. There is
a small amount of variation as the EP distribution shape parameters are altered. In the
case in which the measurement error distribution is platykurtic the slope estimates are
slightly downward biased at 7 = 0.5 and slightly upward biased at 7 = 0.9. There is the
opposite effect when the measurement error distribution is leptokurtic with slight upward
bias at 7 = 0.5 and slight downward bias at 7 = 0.9. These biases are, in all cases, very
small.

Table 3 shows results when o2 is “estimated”. When X is normally distributed there
is extreme multicollinearity between z and g% (z) and results are not shown for this case.
Of course when measurement error is also normally distributed g% (z) o 2z and o2 cannot
be identified from the approximate QRF, or indeed at all, without further information.

Estimating o2 brings significant degradation in performance and now we find that one
of the EP distribution shape parameters has a substantial influence, the shape parameter
for the distribution of measurement error. The results vary only a little as the other shape
parameters and 7 are altered. With normal measurement error (v, = 0) the average of
the “corrected” slope estimates is still very close to 1, deviating at most by 2.9%. With
vy = —0.5, in which case the measurement error distribution is distinctly platykurtic,
the “corrected estimates” are around 15% downward biased (compared with 25% for the
naive estimator). With v, = +0.5 (leptokurtic) there is around 8% upward bias.

When o2 is estimated there is degradation in accuracy, standard deviations of the
slope estimates increasing roughly fourfold. This is an effect that can be driven down by
using larger samples. Of course in situations when ¢%(z) is highly nonlinear this problem
will be eased, but note that for real benefit to arise, this should be a nonlinearity arising
from the distribution of error free X - if it arises from the distribution of V' then the
residual bias is likely to be large.

5.2. Log density derivative g% (z) unknown. There are two sets of tables, laid out
as in the previous section. Table 4 gives results with ¢ known and Table 5 gives results
with o2 unknown.

The estimated log density derivative g% (z) is derived from the exponential series den-
sity estimator of Barron and Sheu (1993). The data are mapped by affine transformation
onto the unit interval?® and the unknown density of z is specified as

m

fz(2) o< fp(z)exp | Y0,k (2) (10)
j=1

where f2(z) = 1 is the uniform kernel density on [0,1] and the h;(-) is the jth order
Legendre polynomial. The required log density derivative is simply

OESSAAC) (11)
j=1

20The minimum and maximum of the realised values of Z are associated with respectively 0.1 and 0.9
to avoid end effects.
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where h’(-) is the first derivative of the jth order Legendre polynomial.

The parameters 6 are estimated by maximum likelihood regarding (10) as specify-
ing the form of the likelihood contributions, the constant of integration being found by
numerical methods?'. We choose m = 8 to produce the results given here. In a truly
nonparametric estimation one would regard m as a smoothing parameter and determine
a data driven appropriate value, for example by cross validation. In these Monte Carlo
experiments m was fixed at a value which allowed the essential features of the density of
Z to be captured while avoiding excessive roughness in the estimate.

First consider the case in which ¢? is known and compare Tables 2 and 4. It is clear
that estimating g% (-) has little effect on the bias of the measurement error corrected slope
estimator, but it does slightly reduce the accuracy of the estimator, standard deviations
across Monte Carlo replications rising by around 20%.

When o is estimated (compare Tables 3 and 5) the standard deviations of the slope
estimates rise by two to four fold compared with the case when o2 is known and g%(-) is
estimated, and by around 15% compared with the case in which o is estimated and g%(-)
is known.

There is a significant increase in bias which is downward in all the cases considered.
Since ¢%(2) is ¢g%(z) contaminated with measurement error, this could itself be a mea-
surement error effect. Much smaller bias is found using smaller values of the smoothing
parameter??, m, but then the variance of the measurement error corrected estimator is
much larger. If an attempt at estimating the measurement error variance is to be made,
then, to avoid attenuation it seems to be important not to undersmooth when estimating
9%(z), and to have a large sample to hand.

5.3. Discussion. In the simple cases considered, estimation of approximate measure-
ment error contaminated QRFs brings about a substantial reduction in bias but with
an increase in variance that is small if the variance of measurement error is known, but
sizeable otherwise. The proposed procedures are likely to work well in real problems only
in large samples. But in many cases in microeconometric work in which QRF estimation
would be contemplated large samples will be available??, so perhaps this is not a great
drawback.

Of more concern are the difficulties that would likely be encountered were more flexible
forms of the error free QRF to be entertained. Once the error free QRF is specified as
flexible and nonlinear there is the likelihood of collinearity between the derivatives of the
error free QRF that appear in (2) and ¢g%(z). Another difficulty in nonlinear models is
that if there are values of X at which the QRF is highly nonlinear then we can expect
the approximation to have a large remainder term because it depends on the magnitude
of the third derivatives of the error free QRF.

There is a further issue to consider. In practice QRF's are sometimes estimated in order
to investigate heteroskedasticity. Dependence on X in the error free QRF that depends
upon 7 is manifested in the error contaminated QRF differently from dependence that is
7 independent - see Section 3.2. To use the procedure developed here one must be specific
about the interaction between X and 7 in determining the error free QRF. In practice
arriving at such a specification might be difficult and the resulting additional functions
of z that arise may be highly collinear.

21Further details of the implementation of this procedure can be found in Chesher (1998b). The
Monte Carlo experiments were conducted using R (Ihaka and Gentleman (1996), Hornik (2001)). In the
density estimation, maximum likelihood estimation was done using the nlm procedure in R, a Newton
type procedure described in Dennis and Schnabel (1983) and Schnabel, Koontz and Weiss (1985). QRFs
were estimated using the procedure rq in the R contributed package quantreg which is an implementation
of the modified Barrodale Roberts algorithm described in Koenker and d’Orey (1987,1994).

22For example the bias is reduced by around 50% on choosing m = 4.

23Gee the applications cited in Section 1.
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We have only examined performance when there is a single covariate. Results in
Chesher (1998b) for mean regression suggest that we can expect similarly good perfor-
mance in multiple covariate problems as long as only one covariate is measured with
error and the conditional density of the error contaminated covariates given the error free
covariates depends on the latter through a single index.

6. CONCLUDING REMARKS

Covariate measurement error causes fundamental changes in conditional quantile regres-
sion functions, altering their shape, orientation and location. This paper has provided
information about the generic effects of measurement error by developing a small mea-
surement error variance approximation to measurement error contaminated 7-QRFs. The
approximation depends upon the error free QRF and its derivatives up to order two, the
variance of measurement error, and the density of the error contaminated covariates. It
does not depend upon, and to use it one needs no knowledge of, the specific form of the
density of measurement error.

Exact calculations suggest that the approximation can be accurate when the amount
of measurement error is small to moderate, as long as the error free QRF is not too
nonlinear and the measurement error distribution is not too far from normal.

A number of uses of the approximation have been proposed.

1. It allows one to gauge the likely effects of measurement error on a particular form
for an error free QRF that is proposed for use in analysis of data. With realisations
of the error contaminated covariate one can estimate the terms in the approximation
that depend on the density of this variate and, with a particular form for the error
free QRF to hand, one can derive the remaining terms.

2. With knowledge of, or an estimate of, the variance of measurement error, it can
be used to produce a measurement error corrected estimate of the parameters of
the error free QRF. This works well for linear QRFs when the error contaminated
covariate is distinctly non-normal. But away from this class of cases there are likely
to be difficulties because of high collinearity between the variables that appear in
the error free QRF and the additional terms that appear in the approximation.

3. It can be used to examine the sensitivity of QRF estimates to alternative assumed
amounts of measurement error by estimating the approximate error contaminated
QRF for a range of values of the measurement error variance.

Obtaining consistent estimates of error free QRFs when only error contaminated co-
variate data are available is a challenging problem. This paper has made progress in one
direction, namely (a) improving understanding of the impact of covariate measurement
error on QRFs and (b) providing a tool for sensitivity analysis, but it does not offer a
widely applicable solution to the consistent estimation problem. It does not seem pos-
sible to develop an instrumental variable based solution to this problem. An approach
exploiting replicate measurements or validation samples offers more prospect of success,
an approach under investigation for mean regression when the form of the error free

regression is unknown?4.

24See Li and Vuong (1998) and Schennach (2000).
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APPENDIX 1: EXPRESSING APPROXIMATE QRFS AS FUNCTIONALS OF ERROR FREE
QRFs

We use an abbreviated notation and consider conditional quantiles defined by the
following equation.

FQlr) =7 (A1.1)

Of course Q = Q(7,x) a dependence we make explicit where otherwise there might be
confusion.
Considering variations in x, 7 and @ subject to (A1.1) there is

FY(Qla)dQ + > F'(Qlx)dx; = dr (A1.2)
where
FY Q) = —F"(yf)
0y y=Q
, o
F'(Qlz) = FY (yla)
O y=Q

Shortly second partial derivatives appear, F¥Y, FY? and F"/, defined similarly. Equation
(A1.2) leads directly to the following expressions for the first partial derivatives of the
conditional quantile function.

Q" (r2) = m (A13)
i _ @Rk
Q' (r,z) = Q) (A1.4)

The second order partial derivatives of the quantile function follow on differentiating
(A1.3) and (A1.4).

_ PV (Qlr)
FY(Qlx)?

Q)

QT (r,x) = T F Q)

Q7 (r,x) = (A1.5)

Qi(r,x) = —W (F*(Qlz) + F¥Y (Qo)Q (7, x))

Q) | P QEFQL)
= PR T QR (A1.6)

QU(r,2) =~ (FVH(QI2)Q (,2) + FY(Qlx))

)
AP (Y QU ) + FVI(Q)
)

Q) (Qlz) | FYI(Qla)Fi(Qx)
FY(Q|x) FY (Qlz)2 ¥ Q)
FY(Qlx)®

(AL.7)
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In the main text we noted that

aQZ _ _Fé\x(QZ‘Z)gg{( ) F |X(QZ|Z) (Al 8)
904j |5—o F)}//|X(QZ|Z) 2F)}//|X(QZ|Z) .

which we now wish to express in terms of the conditional QRF and its derivatives. The
leading term is given directly by (Al.4) with suitable expansion of notation. Now note
that, from (A1.6),

FQRI)FI(Qlr)  QM(r,2)@(r,2) QT (7,2)Q(r,2)Q’(7,7)
FY(Q|z)? Q7(r,x) Q7(7,x)? '

and from (A1.7), exploiting (A1.3) and (A1.4)

FI(Qlx) _ QTi(T,x)Qj(T7$)+QTj(T, 2)Q(r,7) QT (r,2)Q(r, 2)Q (7, 7)
FY(Qlx) Q7(7, ) Q7(7,x) Q7(r,z)?

Substituting this final expression in (A1.8) gives equation (2) in the main text.

_QU (Tv $)+

APPENDIX 2: THE EFFECT ON THE APPROXIMATION OF USING THE LOG DENSITY OF
/ RATHER THEN X.

Chesher (1991) shows that the densities of Z and X satisfy

f2(2) = fx(2) + Y ouf{(2) +o().

The log densities therefore satisfy

02() = 0x(2) + o B o)

and their derivatives satisfy

97(2) = gk (2) + ) ow ( st;:((;) ! XJEX)(J; g(Q( )> +o(3).

~—

It follows immediately that
ZUUQX 7,2 gX ZUUQX T Z)gz( ) = o(X)
ij ij

and then directly that the order of the approximation error in (2) is not increased on
substituting g7, (z) for g% (2).
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APPENDIX 3: EXPONENTIAL POWER DISTRIBUTIONS: QUANTILES AND RANDOM
NUMBER GENERATION

Let S have an exponential power distribution with mean p and variance A\? and shape
parameter v € (—1,1). The probability density function of S is

2
T+~ )
where A and B are defined as follows.

1
a1 (rGue) NP o (rGee) ™
A ar(3 )™ r(3(1+)
Let G have a Gamma distribution with mean and variance 6. The density function of
G € ]0,00] is

s—pu
A

fs(s) = Aexp (-B

falg) =T(6) g’ " exp(—g).

Quantiles. Many statistical packages have fast routines for calculating Gamma quan-
tiles. These can be used to calculate EP quantiles, as follows.

Let Q¢ (7;6) be the T-quantile of G. Let Qs (7; p, A, y) be the T-quantile of S. Quantiles
of S are related to quantiles of G as follows.

14+~
2

min(7, 1 — 7)AY?
)
1+ (31 +7)*

Pseudo-random number generation. The EP quantile formula leads directly to
fast pseudo-random number generation because, if K has a uniform distribution on [0, 1],
then Qs (K; , A, y) has an EP distribution with mean p, variance A2 and shape parameter

Y-

Qs (7511, A,7) = p+ Asign(r —0.5) | B~'Qc(1 —
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Table 1: Means and standard deviations of QRF slope estimates ignoring measurement
error

o= =05 1 v =00 | 7y =405
| 7 | 7w | 7x | mean sd. [ mean s.d. [ mean s.d.
-0.5 | .738 .029 | .755 031 | .772 .033
-0.5 0.0 | .734 .031 | .750 .033 | .769 .034
+0.5 | .728 034 | .744 .035 | .761 .038
-0.5 | .736 .030 | .755 031 | .774 .032
0.50 0.0 0.0 | .732 031 | 0.750 .033 | .771 .034
+0.5 | .725 .034 | .743 .035 | .763 .035
-0.5 | .736 .028 | .756 .029 | .778 .032
+0.5 0.0 | .730 .030 | .750 032 | .772 .033
+0.5 | .723 .033 | .743 034 | .764 .037

-0.5 | .746 .034 | .753 .034 | .764 .036
-0.5 0.0 | .742 .034 | .750 .036 | .761 .037
+0.5 | .739 .038 | .747 .038 | .757  .040
-0.5 | 746 .033 | .752 .034 | .763  .036
0.75 0.0 0.0 | .743 .034 | .750 .036 | .761 .037
+0.5 | .740 .036 | .745 .038 | .756  .039
-0.5 | 747 .032 | 753 .034 | .763 .036
+0.5 0.0 | .743 .034 | .750 .035 | .760 .037
+05 | .739 .036 | .746 .038 | .756  .039

-0.5 | 765 .042 | .748 .044 | 736 .044
-0.5 0.0 | .766 .043 | .750 .044 | .740 .046
+0.5 | .769 .045 | .754 .047 | .743  .048
-0.5 | 766  .043 | .747 .043 | 735 .047
0.90 0.0 0.0 | .768 .044 | .750 .044 | .738  .047
+0.5 | .770 .045 | .752 .045 | .744  .048
-0.5 | 770  .045 | 746  .044 | .733  .046
+0.5 0.0 | .771 .044 | 750 .045 | 737 .047
+0.5 | 773 .046 | .754 .046 | .742  .048
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Table 2: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 known and g%(-) known

vy = —0.5 vy = 0.0 Yy = +0.5
| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.989 .040 | 1.011 .040 | 1.028 .042
-0.5 0.0 | 0.978 .042 | 1.000 .044 | 1.026 .046
+0.5 | 0.972 .043 | 0.996 .046 | 1.021 .050
-0.5 | 0.986 .041 | 1.010 .040 | 1.031 .041
0.50 0.0 0.0 | 0.976 .041 | 1.000 .043 | 1.028 .045
+0.5 | 0.970 .044 | 0.995 .046 | 1.024 .047
-0.5 | 0.987 .039 | 1.013 .038 | 1.036 .041
+0.5 0.0 | 0.974 .040 | 1.000 .043 | 1.030 .044
+0.5 | 0966 .042 | 0.995 .044 | 1.025 .048

-0.5 | 0.994 .045 | 1.007 .044 | 1.018 .046
-0.5 0.0 | 0.989 .046 | 1.000 .047 | 1.015 .050
+0.5 | 0.988 .049 | 0.998 .050 | 1.011 .053

-0.5 | 0.992 .044 | 1.005 .044 | 1.018 .046
0.75 0.0 0.0 | 0.990 .046 | 1.000 .048 | 1.014 .049
+0.5 | 0.988 .047 | 0.996 .049 | 1.013 .052

-0.5 | 0.993 .044 | 1.005 .044 | 1.018 .046
+0.5 0.0 | 0.991 .046 | 1.000 .047 | 1.014 .049
+0.5 | 0.989 .047 | 0.997 .049 | 1.012 .052

-0.5 | 1.004 .056 | 0.994 .058 | 0.984 .058
-0.5 0.0 | 1.020 .058 | 1.000 .059 | 0.986 .062
+0.5 | 1.029 .058 | 1.005 .062 | 0.984 .064
-0.5 | 1.005 .056 | 0.990 .057 | 0.982 .059
0.90 0.0 0.0 | 1.023 .059 | 1.000 .059 | 0.984 .062
+0.5 | 1.032 .059 | 1.003 .059 | 0.986 .063
-0.5 | 1.007 .059 | 0.988 .059 | 0.978 .059
+0.5 0.0 | 1.026 .059 | 1.001 .059 | 0.981 .062
+0.5 | 1.036 .059 | 1.004 .059 | 0.984 .065
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Table 3: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 unknown and ¢g%(-) known

vy = —0.5 vy = 0.0 vy = +0.5

| 7 | 7w | 7x | mean sd. | mean s.d. | mean s.d.
-0.5 | 0.870 0.107 | 1.024 .127 | 1.087 .130
-0.5 0.0

+0.5 | 1.117 .168 | 1.017 .161 | 0.910 .149
-0.5 [ 0.867 .106 | 1.023 .122 | 1.095 .129
0.50 0.0 0.0 - - - - - -
+0.5 | 1.123 .160 | 1.018 .161 | 0.909 .152
-0.5 [ 0.874 .105 | 1.029 .120 | 1.101 .128
+0.5 0.0 | - - -
+0.5 | 1.122 164 | 1.020 .158 | 0.908 .152

-0.5 (0,892 121 | 1.013 .137 | 1.074 .142
-0.5 0.0 - - - - -
+0.5 | 1.106  .180 | 1.008 .180 | 0.899 .161
-0.5 [ 0.888 .119 | 1.017 .133 | 1.078 .146
0.75 0.0 0.0 - - - - - -
+0.5 | 1.098 .170 | 1.004 .175 | 0.903 .161
-0.510.890 .116 | 1.013 .136 | 1.073 .144
+0.5 0.0 - - -
+0.5 | 1.102 .178 | 1.011 .170 | 0.903 .162

-0.5 1 0933 .152 | 0.988 .181 | 1.015 .188
-0.5 0.0 - - - - - -
+0.5 | 1.077 218 | 0.988 .216 | 0.880 .194
-0.5 0931 .158 | 0993 .169 | 1.020 .192
0.90 0.0 0.0 - - - - - -
+0.5 | 1.066  .227 | 0.980 .221 | 0.886 .194
-0.5 10934 158 | 0981 .182 | 1.013 .196
+0.5 0.0 - - -
+0.5 | 1.064 .227 | 0.987 .217 | 0.887 .201




PARAMETER APPROXIMATIONS FOR QUANTILE REGRESSIONS WITH MEASUREMENT ERROR 28

Table 4: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 known and g%(-) estimated

vy = —0.5 vy = 0.0 Yy = +0.5
| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.979 .048 | 1.002 .049 | 1.024 .052
-0.5 0.0 | 0972 .047 | 0.994 .050 | 1.021 .052
+0.5 | 0.968 .047 | 0.991 .051 | 1.017 .056
-0.5 | 0.977 .049 | 1.003 .049 | 1.027 .051
0.50 0.0 0.0 | 0.969 .046 | 0.994 .049 | 1.024 .052
+0.5 | 0.965 .048 | 0.991 .051 | 1.020 .052
-0.5 | 0.978 .048 | 1.005 .047 | 1.032 .051
+0.5 0.0 | 0.968 .047 | 0.993 .049 | 1.024 .052
+0.5 | 0.963 .046 | 0.992 .049 | 1.021 .055

-0.5 | 0.986 .053 | 0.999 .053 | 1.015 .055
-0.5 0.0 | 0.984 .051 | 0.993 .053 | 1.012 .056
+0.5 | 0.986 .052 | 0.994 .054 | 1.008 .060

-0.5 | 0.984 .052 | 0.999 .052 | 1.016 .055
0.75 0.0 0.0 | 0985 .051 | 0.993 .053 | 1.011 .057
+0.5 | 0.986 .051 | 0.994 .053 | 1.009 .057

-0.5 | 0.986 .052 | 0.997 .052 | 1.015 .054
+0.5 0.0 | 0.986 .051 | 0.994 .054 | 1.010 .057
+0.5 | 0.985 .051 | 0.994 .053 | 1.008 .057

-0.5 1 0.999 .063 | 0.987 .064 | 0.979 .067
-0.5 0.0 | 1.015 .064 | 0.994 .064 | 0.983 .067
+0.5 | 1.027 .063 | 1.003 .065 | 0.983 .068
-0.5 | 0.999 .064 | 0.985 .064 | 0.977 .068
0.90 0.0 0.0 | 1.019 .063 | 0.992 .064 | 0.980 .068
+0.5 | 1.029 .061 | 1.002 .064 | 0.984 .067
-0.5 | 1.003 .064 | 0.983 .063 | 0.975 .067
+0.5 0.0 | 1.021 .064 | 0.997 .066 | 0.977 .069
+0.5 | 1.032 .063 | 1.002 .063 | 0.982 .069
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Table 5: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 unknown and g%(-) estimated

vy = —0.5 vy = 0.0 vy = +0.5

| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.820 .102 | 0.903 .136 | 0.972 .169
-0.5 0.0

+0.5 | 0.944 .182 | 0.907 .170 | 0.863 .148
-0.5 | 0.818 .101 | 0.906 .137 | 0.974 .173
0.50 0.0 0.0 - - - - - -
+0.5 | 0.947 181 | 0.904 .153 | 0.865 .156
-0.5 | 0.817 .097 | 0.908 .128 | 0.976 .188
+0.5 0.0 | - - -
+0.5 | 0.950 .172 | 0.906 .150 | 0.862 .147

-0.5 | 0.835 .118 | 0.900 .152 | 0.958 .183
-0.5 0.0 - - - - - -
+0.5 | 0.940 .187 | 0.902 .180 | 0.845 .162
-0.5 | 0.830 .116 | 0.903 .151 | 0.955 .187
0.75 0.0 0.0 - - - - - -
+0.5 | 0.939 .187 | 0.888 .175 | 0.853 .180
-0.5 | 0.830 .117 | 0.896 .136 | 0.949 .196
+0.5 0.0 - - -
+0.5 | 0.941 .178 | 0.896 .165 | 0.845 .168

-0.5 | 0.856 .163 | 0.884 .173 | 0.906 .220
-0.5 0.0 - - - - - -
+0.5 | 0939 .214 | 0.888 .212 | 0.824 .199
-0.5 | 0.859 .158 | 0.883 .193 | 0.902 .222
0.90 0.0 0.0 - - - - - -
+0.5 | 0.933 .218 | 0.878 .219 | 0.829 .214
-0.5 | 0.857 .155 | 0.878 .173 | 0.898 .235
+0.5 0.0 - - -
+0.5 | 0933 .214 | 0.883 .203 | 0.823 .206




