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ABSTRACT. Conditions are derived under which there is local nonparametric
identification of derivatives of structural equations in nonlinear triangular simulta-
neous equations systems. The attack on this problem is via conditional quantile
functions and exploits local quantile independence conditions. The identification
conditions include local analogues of the order and rank conditions familiar in the
analysis of linear simultaneous equations models. The objects whose identification
is sought are derivatives of structural equations at a point defined by values of co-
variates and quantiles of the distributions of the stochastic drivers of the system.
These objects convey information about the distribution of the exogenous impact of
variables potentially endogenous in the data generating process. The identification
conditions point directly to analogue estimators of derivatives of structural functions
which are functionals of quantile regression function estimators.

1. IDENTIFICATION OF DERIVATIVES OF NONLINEAR EQUATION SYSTEMS

1.1. Introduction. This paper derives conditions under which there is local nonpara-
metric identification of partial derivatives of equations in triangular nonlinear structural
systems under weak local quantile independence conditions. Points at which identifi-
cation of derivatives is sought are defined by values of covariates upon which inference
is conditioned, and values of probabilities defining quantiles of the distributions of the
unobservable random variables that are the stochastic drivers of the system.

The identification conditions include local analogues of the order and rank conditions
(Koopmans, Rubin and Leipnik (1950)) that arise in the analysis of identification in
linear simultaneous equations models. These familiar conditions appear in this context
because the partial derivatives of the structural equations, whose identification at a point
of interest is sought, are, under the assumptions maintained, the coefficients of a linear
approximation to the structural equations at the point of interest.

The derivatives of the structural equations studied here are the Exogenous Impact
Functions (EIF) studied in Chesher (2001a). They convey information about the impact
of exogenous changes in variables that are endogenous in a data generating process. They
are of interest in the analysis of policy interventions because they convey distributional
information, in the sense that they measure exogenous impacts at chosen quantiles of the
distributions of the stochastic drivers of the model. They are also of interest when the

*I started working on this topic while preparing a paper for Tom Rothenberg’s Festschrift Conference
held in the summer of 2001 at the University of California Berkeley on the occasion of Tom’s retirement.
My interest in the problem of identification, a problem at the core of econometrics, was stimulated many
years ago by Tom'’s insightful approach to the problem, the deep results he obtained, and his elegant
expression of them. This paper is dedicated to him. I am grateful to Art Goldberger, Tony Lancaster,
Whitney Newey, Richard Smith, Richard Spady, Tieman Woutersen and participants at the Malinvaud
Seminar at CREST and at seminars at University College London and the European University Institute
for comments on earlier versions of this and related papers.
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structural equations emanate from economic theory and structural derivatives measure
the presence, direction and strength of behavioural responses.

As an example, consider a model explaining the joint determination of a person’s
wage and potentially endogenous schooling, in which schooling is determined by ability,
and the wage given schooling is determined by good fortune and other labour demand
side heterogeneity, and also by ability. The exogenous impact function for the wage
relative to schooling is the derivative of the wage with respect to schooling, at a fized
level of ability and demand side heterogeneity, these levels determined by probabilities
identifying quantiles of the distributions of ability and heterogeneity!.

The analysis of identification of nonlinear systems in this paper is, in essence, very
simple. The key to this simplicity is the focus on local identification via conditional
quantile functions.

Focusing on local identification of derivatives of structural functions reduces the prob-
lem to one of identification of coeflicients - the derivatives of interest - in a linear model
which is a local approximation to the structural system around the point of interest.

An exhaustive set of iterated conditional quantile functions? carries all information
contained in the joint distribution function of continuously distributed observable re-
sponses so it is a suitable basis from which to develop identification conditions. An
analysis via quantiles is well suited to the study of nonlinear systems because of the equiv-
ariance property of quantiles, namely that the 7-quantile of h(Y") for strictly monotonic
increasing (decreasing) h(-), is the result of applying the function h(-) to the T-quantile
((1 = 7)-quantile) of Y.

The identification conditions developed here point directly to analogue estimators®
of the derivatives of structural equations. The estimators are functionals of quantile
regression function estimators. In parametric linear location shift models they provide an
alternative to the family of Two Stage Least Absolute Deviations estimators introduced
by Amemiya (1982).

The next part of this Section sets out the structure of the models considered here,
the nature of the identification conditions and of the identification result. An example of
the sort of models treated in this paper, drwan from demand analysis, is provided. The
Section concludes with a brief review of related literature and a plan of the rest of the

paper.

1.2. Triangular structural models. The structural models considered in this paper
have the following, triangular, form.

Yl = ?ll(}/éa}/i’);-~-aYM7Za81a€27"'75M)
}/2 = hQ(Y3,...,YM,Z7€2,...,€M)
Yar = ha(Zewn)

These models recursively determine values of M scalar variables, Y = {Y;}M,  given
values of covariates, Z = {Z;}X ,, and of continuously distributed stochastic unobservable
variables, e = {&;},.

This paper is concerned with the identifiability of the values of the derivatives of the
structural equations at a point X defined by: a value of Z, z*, and M probabilities,
T ={r .

I This example is considered in more detail in Chesher (2001a).

2 An exhaustive set of iterated conditional quantile functions for M variates Y1,...,Yas give the rela-
tionships between the conditional quantiles of each variate Y;, ¢ € {1,..., M}, and the values of condi-
tioning variables, Y}, j > 4, and values of any other covariates. There are M! distinct exhaustive sets of
iterated conditional quantile functions.

3See Manski (1988).



QUANTILE DRIVEN IDENTIFICATION OF STRUCTURAL DERIVATIVES 3

At the point X' the value of ¢; is €7, its conditional 77-quantile conditional on €; = €7,
j > i and on Z = z*. The value of Y at X is the value implied by the system at
e=c¢" ={e}M, when Z = 2*.

Formally, at the point X', Z = z*, and

ev = €y = Qeypyz(Tar, 27)
€i = € =Qcileirenz(TiEl1s -0 2), i€{l,...,M—1}
Yy = yy=hu(z"ey)
Vi = i =hi(yiits- Vi 25 n b))y €41, M — 1},
Here QaB,..y(T,b1,...,bx) denotes the conditional 7-quantile of random variable A
given By = by, ..., Bx = bx. Henceforth special forms of expressions for the case i = M

will not usually be stated explicitly.
The derivatives whose identification is sought are as follows.

Vyj‘ilz(X) - aiyj];/i(yi+1a"'7yM7Za€17"'7eM) Py (1)
Vzkill(X> = a—zkili(yi+1,...,yM,Z,el,...,€M>

X

Here |, indicates evaluation of arguments at the values defined by the point X'.
The additional conditions under which identification is demonstrated are of four types?.

1. Local Smoothness: At X each structural function, l~1i, is differentiable® with respect
to its arguments.

2. Monotonicity: Each structural function, h; , is a strictly monotonic function of its
associated stochastic unobservable, ¢;, when variables other than ¢; are set equal to
their values at X'. Throughout the functions are normalised to be strictly increasing.

3. Local quantile independence: At X each ¢; is conditional T;-quantile independent of
Z given €, j > 1, that is

Qei‘5i+1---5N1Z(T?7E?+17 cee 75*Ma Z*) = Qsi\8¢+1...sM (T:’5?+1a s 757\/1)'

4. Local order and rank conditions: At X the first partial derivatives of the structural
equations with respect to elements of Z satisfy certain a priori restrictions. In a
leading case of interest there exist elements of Z (local instrumental variables) for
which, at X, certain first partial derivatives of the structural functions are zero and
certain others are nonzero.

The nature of the identification result provided in this paper is as follows. It is shown
that all structural systems satisfying conditions of these four types (conditions made
precise in Section 2) with a common set of values, Dy, of the structural derivatives (1) at X
generate distributions of Y given Z, and associated iterated conditional quantile functions
such that certain well-defined functionals of the derivatives of the iterated conditional
quantile functions take the values Dy at X.

4Precise conditions are given for the three equation model studied in Section 2.
5Differentiability with respect to an element, Z;, of Z is not required if (a) Z; is not a local instrumental
variable (to be defined) and (b) identification of structural derivatives with respect to Z; is not required.
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1.3. Example: Food Engel curves. Let Y7 be household expenditure on a good,
say food, in some period, let Y5 be the logarithm of total household expenditure in the
period, and let Z be a list of household characteristics and other covariates. The Working-
Leser form of the food Engel curve, which finds frequent application in the Almost Ideal
Demand System (Deaton and Muellbauer (1980)), is, for some function h(Z) as follows.

Yi
exp (Y2)
In the two stage budgeting model implicit in this representation, total expenditure
and food expenditure are jointly determined given household income and other house-

hold characteristics, Z, and then Y5 may be endogenous. The following, semiparametric
specification is one possible expression of this.

=0"Ys +hi(Z) +ef

Y1 = exp (YQ) (Qg(gz)YQ + hl(Z) +ée1+ I<&1€2)
Y2 = hQ(Z) +€2

Note that ] has been rewritten in terms of two unobserved continuously distributed
stochastic drivers, €; and €5 which it is convenient in this example to suppose are inde-
pendently distributed. Further, 8" has been allowed to be a nonparametric function of
€2. Endogeneity arises unless k1 = 0 and ¢ (¢2) is invariant with respect to e.

The results of this paper are relevant to, for example, the identification of the first
partial derivative of the first structural equation with respect to Y5 evaluated at a par-
ticular value, z*, of Z and at 77 and 75 quantiles of continuously distributed ; and es.
Let y7, y5 and e} be the values taken at this point by respectively Yi, Y2 and €2. Results
derived later in the paper imply that yi is the value of the conditional 7;-quantile of Y;
given Y» = y5 and Z = z* and that y3 is the conditional 75-quantile of Ys given Z = z*.
Both y; and y; are clearly identifiable.

In the context of this problem the value of the structural derivative whose identification
is studied is m12(77, 75, 2*) where

m2(77,75,2%) = —

= yi+ 09 exp (y3).

Suppose that 1 and 5 are quantile independent of Z at the probability levels con-
sidered. The results of this paper imply that 7w12(77, 75, 2*) is then identifiable as a well
defined functional of the conditional quantile functions for Y; given Y5 and Z and for
Y2 given Z if there exists an element of Z (7, say, perhaps household income) such
that V,, h1(2*) = 0 and V., ha(2*) # 0. It then follows that, for example, the “random
coeflicient”:

692 = exp (—y3) (m12(7, 75, 2) — y})

and the total expenditure elasticity of demand for food,
U(TT’ 7—;7 Z*) = 7T12(T>1kv 7—37 Z*)/yi

are identifiable under such local rank and order conditions.

If the identification conditions apply across a range of values 77 and 75 then it will
be possible to identify how elasticities and “random coefficients” such as 07 = 67 (e2) vary
across quantiles of the distributions of the unobservable €; and e5. Clearly, the attack
on identification via conditional quantile functions, which is extremely convenient in the
analysis of nonlinear equation systems, has the considerable added benefit of bringing
attention to bear on distributional aspects of the sensitivity of the relationships amongst
responses.
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1.4. Related literature. The study of parametric identification has a long history
in econometrics starting with Working (1925, 1927) and Frisch (1934) and with notable
contributions by, among others, Koopmans, Rubin and Leipnik (1950), Wald (1950),
Fisher (1959, 1961, 1966), and Rothenberg (1971). One product of this research was the
order and rank conditions in linear models, local versions of which feature in the results
of this paper.

There has been considerable attention paid to the problem of determining conditions
under which there is nonparametric identification of structural models. Roehrig (1988),
extending the work of Brown (1983), considered global nonparametric identification of
structural equations under the assumption that the stochastic drivers of the system (dis-
turbances) are distributed independently of covariates. Much of Roehrig’s development
is for the case in which the stochastic drivers appear additively in the equations of the
model. Newey and Powell (1988), Newey, Powell and Vella (1999), Pinkse (2000), Darolles,
Florens and Renault (2000) study models with additive disturbances which satisfy mean
independence conditions of various types. Blundell and Powell (2000) provide a survey of
mean independence based work in this area.

There is a large recent literature concerning identification and estimation in models
involving responses, treatments and instrumental variables, some or all of which are dis-
crete, usually binary®. The methods of this paper are not applicable in these problems
because they require endogenous variables and local instruments to exhibit continuous
variation near the points at which identification is sought.

Recently there has been interest in determining when global identification can be
achieved in models with nonseparable disturbances. Brown and Matzkin (1996) study the
identification of nonparametric primitive functions (e.g., production or utility functions)
associated with simultaneous equations systems under the assumption that disturbances
and covariates are independently distributed. Altonji and Matzkin, (2001) study panel
data models with endogeneity under conditional exchangeability assumptions. Their pro-
cedure for problems with continuously distributed responses exploits strict monotonicity
assumptions to secure global identification, slightly stronger than the monotonicity as-
sumptions needed to achieve local identification using the quantile based attack of this
paper.

The aim of this paper is in some respects less ambitious than those just cited. Firstly
the aim is to identify first partial derivatives of structural functions rather than the struc-
tural functions themselves. This is a worthwhile aim because if it can be achieved then it
is possible to take a view of the sensitivity of responses to exogenous changes in conditions.

Secondly, the focus is on local identification, rather than global identification of struc-
tural equations or “global functionals” of them, for example the average structural func-
tions treated in much of the literature. Local identification is relatively easy to demon-
strate as will be seen in Section 3. When conditions under which it is achievable have been
obtained, and one is dealing with a problem in which there is sufficient smoothness, one
can address global identification by asking whether the local conditions hold everywhere.
In parametric models the object that is identified locally may be a “global” parameter in
which case one automatically has global identification of that parameter. Chesher (2001b)
explores identification of average derivatives of structural equations using quantile based
methods.

Imbens and Newey (2001) study a triangular, two equation, structural model of the
sort addressed in this paper. Global identification is demonstrated without assuming
additive disturbances but under full independence of disturbances and covariances. The
approach taken by Imbens and Newey is different, but complementary, to that taken
here. They attack the identification problem from the standpoint of the distribution
functions of the observable variates whereas here inverse distribution functions, that is

6See for example Heckman (1990), Imbens and Angrist (1994), Das (2000) and Vytlacil (2001).
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quantile functions, are the starting point. The Imbens and Newey estimation procedure
entails nonparametric distribution and mean regression function estimation in contrast to
the estimation procedure suggested by the results of this paper, which entails (perhaps
non-parametric) conditional quantile function estimation.

The objects whose identification are considered in this paper, derivatives of structural
functions evaluated at quantiles of the distributions of stochastic drivers of the system,
are the Exogenous Impact Functions (EIF) introduced in Chesher (2001a). Estimates
of EIFs can give valuable information about the distribution of policy impacts across a
population. There is a recent literature aimed at developing estimators of such distri-
butions. For example Heckman, Smith and Clements (1997) explore non-quantile based
approaches in a programme evaluation setting. Abadie, Angrist and Imbens (2001) pro-
pose a Quantile Treatment Effect estimator in a study of the impact of subsidised training
on the distribution of earnings.

Identification is considered from a conditional quantile perspective in Matzkin (1999).
Matzkin considers a model Y = m(X,¢) in which ¢ is distributed independently of X
(so X is exogenous) and m(-,-) is strictly monotonic in ¢. Conditions under which the
function m(-,-) and the distribution function of ¢ are identifiable are obtained. The value
of m(-,-) at a point (z, e) is shown, under suitable conditions, to be identifiable as the value
of the conditional 7-quantile of Y given X = = where 7 is such that e is the 7-quantile of
the marginal distribution of €. An analogous result for derivatives of structural functions
with respect to exogenous covariates is obtained in this paper, but our main interest here
is in identification when there is endogeneity, that is, in Matzkin’s problem, when ¢ is not
independent of X.

The quantile based approach of this paper produces results relevant to the literature on
quantile regression function estimation in the presence of endogeneity. Amemiya (1982)
develops” Two Stage Least Absolute Deviations (2SLAD) estimators for parametric mod-
els in which a conditional median is linear in endogenous and exogenous variables and
independent of instrumental variables. The estimation procedure suggested in this paper
can be applied to the parametric problem studied by Amemiya and Powell, producing a
simple alternative to the family of 2SLAD estimators.

The identification conditions of this paper include local quantile independence condi-
tions. There are recent uses of quantile independence conditions as the basis for devel-
oping estimators in Newey and Powell (1990), Chaudurhi, Doksum and Samarov (1997)
and Kahn (2001).

1.5. Plan of the remainder of the paper. Section 2 provides a detailed analysis
of identification in a triangular three equation system. At the end of Section 2 the re-
sult is illustrated in the context of a linear simultaneous equations location shift model.
This analysis of the linear model suggests a general attack which is outlined in Section 3.
There, M equation triangular structural systems, as set out at the start of this Section,
are studied, and the case in which there are restrictions on derivatives of the structural
functions with respect to elements of Y, Z and ¢ is considered. Section 4 considers identi-
fication of average structural derivatives and more generally expected values of functions
of structural derivatives. Section 5 concludes.

"See also Powell (1983).
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2. IDENTIFICATION IN A THREE EQUATION MODEL

This Section is concerned with a three equation triangular structure, as follows.

}/1 - Bl(Y27Y37Za617€2a53) (2a>
Yo = ho(Ys, Z,e0,e3) (2b)
Y; = hs(Ze3) (2¢)

The random variables €1, €2 and €3 are continuously distributed and unobservable. The
symbol Z stands for a list of covariates.

An identification theorem for this three equation system is stated. The Theorem relates
to the case in which, there are local exclusion restrictions pertaining to the covariates
Z. Section 3 outlines the extension to the M equation case and considers more general
restrictions. After the statement of the Theorem there are brief remarks, followed by a
proof.

Theorem
Consider the three equation model (2a) - (2c), 77 € (0,1), i € {1,2,3}, and a value of
K-element Z, 2*. Let 7% = {77}?_,. Define
5§ = Q63|Z(T§72*) 5; = Q52|53Z(T§75§7Z*) 5>{ = QE1\62,€3Z(T>{75§75§72*)
and
Y3 = Qyy)2(73,2%) Y5 = Qva|vsz(75, Y3, 2%)

which, together with z*, define a point® referred to as X. Consider distinct elements of
Z which are denoted Z(3y and Z(3). Assume that the following conditions hold.

1. At Z = 2%, ¢ = {g;}}_, is an absolutely continuous random vector with positive
density everywhere over compact support.

2. For each i € {1,2,3}, the function h;, with arguments other than ¢; set equal to
their values at X, is an increasing function® of ¢; for all ; and a strictly increasing
function of ¢; at X.

3. For each i € {1,2,3}, at X, h; is a differentiable function of its arguments, its first
partial derivatives being finite at X'.

4. At X the following local quantile independence conditions hold!°.

—
W ow
o ®
S— ~—

Qal \5253Z(7—17 €2,£€3, Z) = Q51 lezes (7—1, €2, 53)
Qez\ng(TZagfiyZ) = Q52|53(T2753> (
Q53|Z(7-37 Z) = Qe (7—3)
8Note that under the monotonicity assumption 2 below, y5 and y3 can be written as follows.
s = ha(z",Qeyz(73,2%))
y; h2(y§,z*,Q52‘532(7—§7 Q63|Z(T§7Z*)7Z*)z QEng(T§7Z*))
= h2(h3(2*7ng\Z(Tgvz*))vz*7ng\egZ(Tzv Qeg\Z(T§7Z*)7Z*)7 QEng(T§7Z*))
They are the values taken by Y2 and Y3 when Z = z* and the stochastic drivers e2 and 3 are set equal
to the 73- and 73-quantiles of their conditional distributions.
9The functions are required to be strictly monotonic and normalised to be increasing. This mono-
tonicity assumption is slightly stronger that is required. The minimal condition is that at X’ the function
h; does give the relationship between (a) the conditional 7}-quantile of Y; given Y}, j > 4, and z* and y;,

—~
o
(¢]

~

J > i, and (b) the conditional 77-quantile of ;. For example, considering ng, all that is needed is that
the T3-quantiles of e3 and of Y3 given Z satisfy Qy,|z(73,2%) = ha(z*, Qe 2(T3,2%)).

10These conditions are stronger than is required. As shown in the Annex, it is only required that at
X the derivatives of these conditional quantiles functions with respect to z exist, and are zero. Only
derivatives with respect to local instrumental variables are relevant.



QUANTILE DRIVEN IDENTIFICATION OF STRUCTURAL DERIVATIVES

5. At X the following local order conditions hold.

VZ(Q)El(y27y37Z7€1752753) = 0
vz(g)ﬁl(y%y3)2751,52753) = 0
VZ(3)%'2(y37 Z7€27€3) =0
6. At X the following local rank conditions hold.

VZ(2);L2(:U37 Z,€2, 53) # 0
vz(s)ﬁg(z,é‘g) 7é 0

The Theorem is concerned with the identification of the following derivatives of the struc-
tural functions when 7 = 7* at the point X'. Here Zj, is an arbitrary element of Z (possibly

Z(9) or Zy) for which the differentiability condition of Assumption 3 holds!!

* %

T,z = Vy2h1 Ys, Y3, 25, €7,65,€3)

*
2
*

Vy3h1 y27y3’2 51752753)
*
2

(
(
Vo hi(ys, 45,2, 61,65, €5)
(
(
(

T 2"

* * *
mo3(T*, 2 = Vy3h2 Y3, 2%, e5,€%)

* *
22, \T y 2

*
= Vzkhz Y3, 2%, €5,€3)
*

1€3)

*

( )

( ) =
T (775, 27) =
(7%, 2%)

( )
)

T3z, (T5, 2 = Vzkhg z

These derivatives are identifiable as functionals of conditional quantile functions as shown
below. In these equations arguments of functions are suppressed. The 7;-quantiles for Y;
conditional on other variables are evaluated at 7, = 7] and other arguments are set equal

to their values at the point X.

Ve @vilvavsz

0 Ve @vivaysz — V) @ra 1z 22y Qys| 2
m12 = Vi, Qi vays 2z + V.. 0
Va3 Onivzz
Vi @va|vaz Ve Qralz 20 @32
Vi @vivaysz
T13 Vs Qvivevsz + ————=——
Z(g)QY;;‘Z
Vg Qv Y Y3z
. (3) ¥Y1lYaY3
r(r 2% X VZ(z)QY1|Y2Y3Z 7V2(3)QY3\Z z<2)QY3|Z
—T23
’ V.. 0 _ Vi) Qvalysz 0
2(2) W Y2|Y3Z Ve Qvglz 22 Ys|Z
Vz QY
(3) 11Y2Y3Z
Tize = VaQviyvevsz — Vo Qyyz X ———~——
Z(3)QY3‘Z
VZ(;:,)QY1|Y2Y3Z T2z
N\ Ve @vipvayvsz — ——=—F7—— Ve, @wlz | X
Z(g)QYg'Z 7(-22(2)

_ VZ(C;) QYQ‘YSZ
T3 =V Qyyvaz + =7 ——

VZ(g) QY3 ‘ Z

H'The notation for derivatives here is as follows.

2 f(a,b)

a=a*,b=b* ’

For a function f(a,b), Vaf(a*,b*) indicates
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Ve Qvalvaz

T2z = V. Qv vy z — Vi, Qyyz X V. Qa2
ORAL

T3z, = Vz,Qvy| 2

Remarks

Arguments of functions (7* and the values of Y7, Y3, Y3 and Z at the point X') are
suppressed in these comments.

1.

The Theorem locally identifies structural derivatives as functionals of iterated con-
ditional quantile functions in the following sense. All structural models (that is, all
systems of equations hq,..., hys) that satisfy the assumptions of the Theorem, with
derivatives taking values Dy at the point X , generate iterated conditional quantile
functions with the property that the functionals at the end of the statement of the
Theorem take the value Dy at X.

. In general the structural derivatives evaluated at X vary with 7%, that is the sensi-

tivity of responses Y to exogenous shifts in Y and Z varies across quantiles of the
distributions of the unobserved stochastic drivers. It is in this sense that the objects
identified bear on the distributional impacts of policy interventions.

. In the expression'? for 7y, the term ., is 7o, With z(9) replacing 2.

In the expression for 715 the denominator of the second right hand side term is
T2, Which is nonzero by virtue of the rank condition (5a).

. Setting Zy, = Z3) yields T2z = 0 and Tz =0 which are in accord with the order

conditions (4c) and (4b).

. Setting Z, = Z(2) yields Tz = 0 which is in accord with the order condition (4a).

The derivative 712 may be identified when mo3 is not, but unless o3 is identified
713 is not identified.

. If there is more than one element of Z that satisfies the assumptions of the Theorem

regarding Z(3y (Z(2)) then ma3 (712 and my3) is (are) overidentified.

. In order to identify the separate impact of elements of Z on the derivatives of the

structural equations, it must be possible to identify their separate impacts on the
conditional quantile functions that appear above. This rules out exact functional
dependencies amongst elements of Z.

12Note that T1z, can be expressed as follows

Va3 @y |vaYs 2

Tz, = Vz,Qvi|vaysz — V2, Qys|z X v
z(3)Qvs|Z
Vg Ryy Yo Y32
(3) 11Y2Y3
Vo) Qvy|vaYsz — WVZ(Q)QY3|Z

—T2z, X
e v 0 B vZ(S)QYQ\YBZV 0
Y22 T VL o Qyy 1z P YsIZ
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Proof

First the equation system is rewritten in terms of mutually independently distributed'?
v={v;}}_,. Define

vz = F_, 7 (e3]2) ve = F_, e z(c2]e3, 2) v1 = F, | |c,e,z(c1]E2, €3, 2)

which have independent uniform distributions, each on [0,1]. Each ¢; is then related to
the elements of v by the following equations

€3 = Qe z(v3l2)
g2 = QEQ‘EgZ(U2‘Q63|Z(V3|Z>7Z)
& = Qal\sgng(Vl‘Q52|53Z(V2|Q53\Z(V3|Z)3Z)7Q53\Z(V3|Z)az)

and at Z = z* and with ¥ = 7* in which case there is local quantile independence relative
to Z (Assumption 4),

€3 = Qc(v3)
g2 = Q62|E3(V2‘Q53(V3)>
Q51|5263 (Vl ‘QE2|63 (VQ‘Q&% (V3))7 QEB(V3))'

Note that each ¢; is a strictly increasing function of its associated v;. Let the equation
system with each ¢; replaced by its associated v; be written as follows'.

€1

Y1 = hl(YQ,Yg,Z, Vl,l/g,llg) (6&)
Yo = ho(Ys, Z,va,v3) (6b)
Y3 = h3(Z,vs) (6¢)

At X this substitution ensures that v = 7* and leaves the dependence of each Y;
on the Y}, j > ¢, and on Z unchanged. In particular the derivatives of the functions
h; with respect to the observable variables, evaluated at X are identically equal to the
corresponding derivatives of the functions h; evaluated at X. Note that without the local
quantile independence assumption this would not necessarily be true'®.

Assumptions 1 - 6 apply to the system (6a)-(6¢) involving independent v and the proof
proceeds employing this version of the system.

First substitute for Y3 in (6b) using (6¢) and then, using the result, substitute for Y5
in (6a). This gives the following.

Y1 = hi(ha(hs(z,vs), 2,v2,v3), ha(2,v3), 2, V1, V2, 3)

Monotonicity of hy with respect to v ensures that, (suppressing arguments 71, vo, vs, 2,
of the two conditional quantile functions):

QYl\l/gng = hl(hQ(hS(zv V3)7 Z,V2, V3)7 hg(Z, V3)7 Z, QV1|V21/3Z7 v, VS)

and at X the quantile independence condition (3a) and the mutual independence of the
elements of v simplifies this as follows.

Qvivavsz = h(ha(hs(z,v3), 2,v2,v3), hs(2,v3), 2, Qu,, V2, v3)

13 This step is not essential. It reduces the notational complexity later in the proof. The Annex indicates
the stages in a proof which does not take this step.
HMFor example .
h3(Z,vs) = h3(Z, Qe; (v3))-

15In the absence of local quantile independence the transformation from e to v would not be free of
z. As shown in the Annex, local identification could still be achieved if first derivatives of conditional
quantile functions with respect to local instrumental variables were zero at X.
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The monotonicity conditions of Assumption 2 and the continuity conditions of As-
sumption 3 ensure the existence of well behaved inverse functions as follows'S.

vy = g3(Z,Y3)
Vo = 92(Y3,Z,Y2793(Z,Y3))

Conditioning on v9, vs and Z is equivalent to conditioning on Y3, Y3 and Z and so

QY1|Y2Y3Z(Tlay27y3a Z) = hl(y27y3a 2 Ql/l (7'1)792(937 Za92793(zvy3))793(27y3>)~ (7>

Similarly, exploiting (3b) and (3c),

Qvlvsz(T2,3,2) = ha(ys, 2, Qu,(72), 93(2,¥3)) (8)
Qvy12(73,2) = hs(2,Quy(73)). 9)

The Theorem is proved as follows. The conditional quantile functions (7) - (9) are
differentiated, as appropriate, with respect to 2, y3 and elements of Z. The derivatives
are evaluated at the point X producing expressions involving the derivatives of the h;’s
at X and derivatives of their inverse functions at X'. The latter are expressed in terms of
derivatives of conditional quantile functions at X and the results combined to obtain the
required expressions for the structural function derivatives. Some of the manipulations
are lengthy and just three of the simpler cases are worked through in detail here.

(a) Identification of ms,, (7, 2%)

Note that Zj, is an arbitrary element of Z and could be Z(,) or Z(3). The conditional
T5-quantile of Y3 given Z = z* is!”

Qyy)z(T3,2%) = h3 (2", 73)
and on differentiating with respect to zg,
Vi Qv 2(73,27) = Vazhs(2"73)
= T3, (7%, 2%).
This is the analogue for structural derivatives of the result of Matzkin (1999).
(a) Identification of maz(T*, 2*)

Henceforth arguments of functions are suppressed, it being understood that all deriva-
tives of functions are evaluated at the point X defined in the assumptions, where existence
is assured, and derivatives appearing in denominators of expressions are guaranteed non-
Zero.

Differentiating (8) with respect to y3 and z() gives the following.

vySQY2|Y3Z = VyahQ + Vl’3h2vy393 (10)
VZ(g) QYQ|Y3Z = vug h2v2(3)93 (11)

There is only one term in (11) because of the local order condition (4c). Note that the
first term on the right hand side of (10) is ma3(7*, 2*) whose identification is sought.
Since

Qu; = 93(27QY3|Z) (12)

I6For example, g3(Z,Y3) satisfies
Y3 = h3(Z, g3(Z, Y3)).

17Note, we use Qu4(7%) = 7%, which follows because v3 ~ U[0, 1].
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there is, on differentiating with respect to z(s),

VZ(g)g?) + Vy3g3vZ(3) QYg‘Z = 0

and therefore
Ve @valvaz = =~V haVy, g3V o Qvy 2

and so,
VZ(g) QYg ‘YgZ

VZ(g) QYng ’
the denominator on the right hand side being nonzero at X by virtue of the local rank
condition (5b).

Substituting (13) in (10) gives

Vy3hzvy3g3 = — (13)

Ve @valvaz

ysQYQ‘Y3Z ys 2 vz(3) QYS‘Z

and finally
VZ(g) QYQ ‘YgZ

m3(7%,2%) = Vi, Qyylvsz + .
> Y3 Yo |Y3 VZ(g)QYng

(c) Identification of ma,, (T*,2%)
Differentiating (8) with respect to 23 and z(3) gives the following.
Vi QY2|Y32 = V., ha+V,, oV, g3 (14)
Ve @valvaz = VighaViy g3 (15)

Note that if Zx = Z3) then the first term on the right hand side of (14) is absent.
Differentiating (12),

V93 + V93V, Qyyiz = 0 (16)
Vw93 + V93V Qvziz = 0 (17)
and multiplying (17) by V,,hae,
VishaVig 95 = —ViushaViy,g3Ve, Qyyz
= Vi @vavaz
the second line following from (15). Therefore

Ve @valvaz

V. hoV,.93 = — .
272 a8 Ve Qvslz

(18)

The denominator on the right hand side of (18) is nonzero by virtue of the rank condition
(5b). From (16)

vug h2vzk93 = _vllg thyggiivz;C QY3|Z

VZ(g) QYg ‘YgZ v
v Q 2k QY3|Z
2(3) Y3|Z

the second line following from (18). Finally, substituting in (14)

VZ(C;) QYQ |Y3Z

V. 7z =V_,.h
kQYZ‘Ysz w2 ¥ Vz(s)QYs\Z

V. Qvy 1z
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and on rearranging

VZ(g) QYQ ‘YgZ

T (T, 27) = V2, Qvy sz — V2, Qyy |z X
Vi Qvs|z

The manipulations to obtain the remaining results of the Theorem are lengthy and
are not reported here. The general approach set out in Section 3 shows how such results
can be obtained in an elementary, rule driven fashion. l

This Section concludes with an illustration of the use of the Theorem in a parametric
linear simultaneous equations location shift model.

2.1. Example: A linear simultaneous equations location shift model. Con-
sider the following linear simultaneous equations location shift model.

Y1 = 012Y2 + 013Ys + 31721 + 11 + K1ava + Kisvs

Y, 0253 + B3 21 + Ba(a)Z(2) + v2 + Kasvs

Y3 8371 + B0y Z(2) + B3z Z3) + V3

Here Z; contains covariates which may appear in any of the equations, Z(y) is a covariate
which does not appear in the first equation and Z3) is a covariate which appears in
neither the first or the second equation. The covariates Z(3) and Z3) satisfy the local
order conditions'® (4a) - (4c) and do not appear in Z;.

Assume that the unobservable random variables v1, vo and v3 are continuously dis-
tributed and that the quantile independence assumptions of the Theorem hold at some
set of probabilities, 7*, for example 7* = {0.5,0.5,0.5}, requiring median independence.
The quantile independence assumptions need not apply at other values of 7%, allowing
the conditional distributions of the ’s to exhibit dispersion and shape dependence on 7,
Z(3) and Z(3). There is no requirement that the v’s have moments of any order. The
monotonicity, continuity and differentiability assumptions of the Theorem are obviously
satisfied.

There are the following derivatives of the structural functions.

m12(7%,2%) = 012 m3(7%,2%) = 013 T2 (77, 2%) = Big }

19
7T23(7—*7 Z*) =023 T221% (T*a Z*) = 521@ T3z1k (7*7 Z*) = 53]@ ( )

Here k may identify any of the Z variables. Note that in this linear location shift model
these derivatives are invariant with respect to 7* and z*.

Suppose that the elements of v are mutually independently distributed!?. Then the
conditional quantile derivatives (at 7*) appearing in the equations identifying the struc-
tural function derivatives are as follows.

Vi Qv vaysz = 012 + K12 Vs Qv vavsz = 013 — k12023 — (k1223 — K13)
Vo @viveyvsz = Bir — k1282, + (K12K23 — K13) B3y,
Vi @ilvavsz = —K128209) + (K12k23 — K13) B32) Vi, Qvi|vavsz = (K12k2s — Ki3) B33

Vs Qvalvaz =023 + K23 Vi, Qvilvaz = Bop — k23031 Vi @vavaz = Ba2) — k23032

180f course in this linear model when the local order conditions hold, they hold globally.

9This independence assumption is made for convenience, as in the proof in Section 2. If the v;’s
were dependent then they could be transformed to independence, as in the proof, but this would in
general introduce nonlinear functions of the transformed variables into the system. This would be of no
consequence for the identification result but would complicate this demonstration.
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VZ(g) QYQ‘Y3Z = 7’£2353(3) v21kQY3|Z = 53]@ VZ(z)QY3|Z = /63(2) VZ(g) QY;;‘Z = 53(3)

If the rank conditions (5a) and (5b) are satisfied, that is: 355y # 0 and B33y # 0, then
it is clear, on working in reverse order through the equations above, that all the derivatives
of the structural functions are just identified, and that the resulting expressions are those
given in the Theorem. Along the way the k;;’s are identified, for example

Ve Qvalvaz
VZ(g) QY3 |Z

If the quantile independence assumption were replaced by a mean independence as-
sumption then the structural equation derivatives (19) would be derivatives of mean re-
gressions, that is of Ey,|y,y,z[Y1|Y2 = 92,Y3 = y3,Z = 2], and so forth. This suggests
an estimation strategy in this case, namely: calculate OLS estimates of the coefficients in
these regression functions and combine the results as indicated in the Theorem. In fact
this is just a rather unorthodox rendition of the Indirect Least Squares estimator.

Under median independence the analogous procedure is to calculate estimates of coeffi-
cients of the median regression functions, for example using the Least Absolute Deviations
method, and combine the results as above. This provides an alternative to the Two Stage
Least Absolute Deviations procedures proposed by Amemiya (1982).

More complex versions of this parametric model are easily handled. For example the
first equation could be replaced by

K23 = —

Yy = 09319272, 1 00O Y 4 8120 +eq + Rasen + Rises

and the assumptions of the Theorem would remain satisfied. With this amendment some
of the structural derivatives depend upon the stochastic drivers of the system and the EIF's
(Chesher (2001a)) will vary with the chosen probability levels, 7*. Much more complex
structures also fall within the scope of the Theorem, there being essentially no limit on
the way in which €;, j > ¢, appear in the equation for Y; as long as the resulting equation
is differentiable (at the point X') with respect to the ;’s and strictly monotonic in &;.

3. IDENTIFICATION IN M EQUATION SYSTEMS

The manipulations in the Proof of the previous Section are quite tedious. One would not
wish to proceed in this fashion in a much larger problem.

In fact the analysis of the linear model in Section 2.1 gives the clue to obtaining an
easily applicable result in triangular systems of any size, because the linear model can
be regarded as an approximation at the point X to the nonlinear structure of interest,
the coefficients in the linear model being the derivatives of the structural equations at the
point X'. These derivatives are the functionals of the structural model whose identification
is sought.

Consider a triangular structural system determining M responses as set out in Section
1. It is convenient to work in terms of independently distributed stochastic drivers, v =
{vi}M, which, as shown in the proof of the Theorem of Section 2, constitutes an innocuous
normalisation®?. It is assumed that obvious M-variate extensions of the conditions of the
Theorem apply at X.

Variations in Y, Z and v at the point X', satisfy

dY = AdY + BdZ + Cdv (20)

20Under this normalisation the values of the v;’s are the probabilities definining iterated conditional
quantiles of the stochastic drivers.
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where A, B and C are matrices of structural derivatives evaluated at X and the vectors
of differentials are defined as follows.

le dZ1 dyl

dY2 dZ2 dV?
dY = . dzZ = . dv = .

dYyr dZk dvyg

The matrices of derivatives, A, B and C, are as shown below. Note that these derivatives
are evaluated at the point X and that the assumed triangular structure has been imposed
on A and C. The leading diagonal elements of C, V,, h;, have been set equal to 1. This
is an innocuous normalisation given the assumption that each function h; is, at the point
X, a differentiable and strictly monotonic function of v;.

0 Vyhi Vhi ... Vy,hi
0 0 Vyhy ... Vo h
0 0 0 Vo har—1
0 0 0 0
vzlhl vzzhl VZKhl
vzth vzth szhM
1 Vi,hi Vil V..,
0 1 VV3h2 Vz/Mh2
C=|: : : :
0 0 0 cor Vuharoa
0 0 0 1

The task now is to forge a link between the matrices of derivatives, A, B and C, above,
and the derivatives of the iterated conditional quantile functions at the point X'.

The iterated conditional quantile functions are determined by a transformed structural
system in which, in each equation ¢, the single unobservable, v;, appears, the remaining
v;’s (j > 1) having been substituted away, using the inverse functions associated with the
equations for Y}, j > i. Equations (7), (8) and (9) are the equations of this transformed
structural form in the three equation case.

The derivatives of the transformed structural equations, and hence of the iterated
conditional quantile functions, are obtained as follows.

First rewrite (20) as follows.

dY = AdY + BdZ +dv + (C — Ipr) dv (21)

The first appearance of dv in (21) isolates v; in the ith structural equation. Now note
that the matrix C' is upper triangular with nonzero leading diagonal elements and so is
nonsingular. It follows that, from (20),

dv=C"*(dY — AdY — BdZ) (22)
and on substituting (22) in (21) there is

dY = AdY + BdZ +dv + (C — Ip;) O~ (dY — AdY — BdZ)
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and, after rearrangement, the following.
dY = (Iny = C~ " (Ing — A)) dY + C™'BdZ + dv (23)

Equation (23) shows how each differential dY; is related to the differentials dZ, dv; and
dYj, j > 1, all the differentials dv;, j > 4, having been expressed in terms of differentials
dY;, j > i and dZ.

Define the vector of differentials of the iterated conditional quantile functions, d@, as
follows.
dQy,|vy..yn 7z
dQvy|vs.. Y07

dQ =

dQyy_ 1|y 2z
dQy, |z

At a point X’ at which there is monotonicity and quantile independence as assumed in the
Theorem, equation (23) with d@ replacing dY on its left hand side gives the relationship
between the differentials of the iterated conditional quantile functions and differentials,
dZ and dY, of the variates upon which conditioning is done, that is:

dQ = (Iny = C7' (Ing — A)) dY + C~'BdZ.

It follows that the derivatives with respect to Y and Z of the conditional quantile
functions at the point X are Dy and D defined below.

dQ

Dy = d—Y:IMfC’l(IMfA)
_dQ
D; = dZ—C B

Knowledge of the joint distribution of Y given X implies knowledge of the iterated
conditional quantile functions, and vice versa, and under differentiability assumptions of
the sort imposed in the Theorem it implies knowledge of the derivatives of the iterated
conditional quantile functions at X', and therefore of the following matrices.

Dy = Iy —C7'(Iy —A) (24)
D; = C'B (25)

Elements of A B and C' are therefore identifiable if a priori restrictions placed on A, B
and C are sufficient to allow those elements to be deduced uniquely from Dy and D.

3.1. Identification via restrictions on B. The upper triangular structures of A
(whose leading diagonal contains zeros) and of C' imply that Dy is upper triangular with
leading diagonal elements containing zeros. But this is an intrinsic property of the matrix
of derivatives of the iterated conditional quantile functions. Therefore the restrictions on A
and C' imposed by triangularity contain no additional information relevant to identification
of the superdiagonal elements of A and C.

The relationship between A, C' and Dy implied by (24) can be written as follows.

A:ijfc(I]w*Dy)

It is clear that if the superdiagonal elements of C' can be deduced from (25) then the
superdiagonal elements of A can be deduced from Dy . Now consider the identification of
C and B from (25) using just restrictions on the elements of B. Identification when there
are additionally restrictions on A and C is considered in Section 3.2.
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Rewrite the relationship (25) as
(D% @ In) vec C = vec B
and consider linear restrictions on B which are expressed as
WgvecB =w

where W is a N x (M K) matrix of known constants and w is a N x 1 vector of known
constants. If the restrictions are all exclusion restrictions then w = 0. Note that in this
local (at the point X) analysis, linear restrictions on B can be regarded as local approx-
imations at the point X to nonlinear restrictions subject to satisfaction of appropriate
assumptions concerning differentiability of the functions involved.

It is convenient now to proceed with C' completely unrestricted and, when considering
identification of C' and B from (25), to explicitly impose the constraints on C' implied by
its triangular structure with the leading diagonal elements of C' normalised to be one.

These restrictions on C' are written as

RvecC =r

where R is a M(M + 1)/2 x M? matrix and r is a M(M + 1)/2 x 1 vector, as shown
below. Here O; denotes a (M — j) x j matrix of zeros, O7 denotes a (M — j) x M matrix
of zeros and o; denotes a (M — j) x 1 vector of zeros.

[ [Ia] 00 00 o° 0° T
o! {OlflMl} o! . ot o!
0? 0? [ozisz} . 02 0?
R =
O]Wf2 01\472 O]Wf2 L |:O]y[2£]2:| OM72
O]Wfl O]\/Ifl O]Wfl L OMfl |:OA11511:|
=11 o 1 oy:1 oy:...01 o'M_lfl} (26)

There is then the following equation.

—Ixm (D%, @ In) vee B Oz 1
Wg Onx 2 veeC | = | Onxa (27)
On(M+1)/2x (K M) R r

where O(,xp) indicates an a X b matrix of zeros. This equation is written as follows.

r X U = f
(KM + N + M(M +1)/2) x (KM + M?) (KM + M?) x1 (KM + N + M(M +1)/2) x1

Clearly it is impossible to solve for W if the column order of F' is less then its row
order. There is therefore the following necessary order condition for identification.

MM -1
Order condition: N > M@ 1)
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The following rank condition ensures identifiability of B and C and therefore, by the
argument given above, of A.

Rank condition: rank(F) > M? + K M.

It is clear that R has full column rank. Suppose Dz also has full column rank,
which rules out exact functional relationships amongst the elements of Z. Then the rank
condition is satisfied if and only if rank(Wg) > M(M —1)/2.

3.2. Identification using restrictions on A, B and C. It is easy enough to consider
more general (possibly nonlinear) restrictions involving A, B, and C' which are written
(possibly linearised at the point X) as follows.

WavecA+WpgvecB+WevecC =w (28)

The restrictions on A imposed by the assumption of triangularity (with zero leading
diagonal elements) are expressed by the following equation

Rvec A = On(ar41)/2x1

in which R is as defined earlier. As before the triangularity of C together with the
normalisation restrictions on its leading diagonal elements are embodied in equation (26).

With the restrictions now all in place there is the following equation, from which the
order and rank conditions can be deduced.

R Onmryryzxxmy  Omarynyzxare On(ary1)/2x1
Iy Oz xr M Iy — (Dg/ ®I]yj) vec A vec Iny
Oxnrx e —Ixm (D% & In) vecB | = Ozt
WA WB WC vec C w
OM(JVI+1)/2><M2 OM(M+1)/2><(KM) R r

3.3. Estimation. Estimation of A, B and C, the derivatives of the structural equa-
tions at the point X', can proceed using the analogue principle?!. There are the following
steps.

1. Probability levels, 7%, are selected and the required iterated conditional quantile
functions are estimated using a parametric, semi- or non-parametric method, as
desired??.

2. A value of Z, z*, is selected and the values of Y7, ..., Y, at the point X are estimated
using the estimated iterated conditional quantile functions.

3. The estimated iterated conditional quantile functions are used to produce estimates
of derivatives of the iterated conditional quantile functions which are evaluated at
the point X, yielding estimates, Dy and Dz,of the matrices Dy and D.

4. The restrictions on A, B and C are assembled as in (28), the final equation in the
preceding sub-section is constructed using Dy and D ~, and subject to satisfaction
of the order condition, and subject to satisfaction of the rank condition at the
estimated values of Dy and D, the equation is solved for estimates of A, B and C.

21See Manski (1988).

22For parametric estimation, see Koenker and Bassett (1978), Koenker and d’Orey (1987); for semi-
parametric estimation see Chaudhuri, Doksum and Samarov (1997) and Kahn (2001); for nonparametric
estimation, see Chaudhuri (1991).
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At step 4, if there are abundant restrictions, for example when N > M(M — 1)/2,
then there is overidentification and there is unlikely to be a solution. Solutions can be
obtained by eliminating restrictions so that the order condition is exactly satisfied, but
there will be many ways of doing this, each leading in general to an inefficient estimate.
A solution is to retain all the restrictions and employ a minimum distance estimation
procedure in place of step 4. In some parametric models one could contemplate imposing
the identifying restrictions at step 1.

4. AVERAGE STRUCTURAL DERIVATIVES

The results so far have concerned local nonparametric identification of structural deriva-
tives evaluated at points defined by a value, z*, of a vector of covariates Z and by M
probabilities, 7*, defining iterated conditional quantiles of unobservable continuously dis-
tributed stochastic drivers, €. If such identification can be achieved at z* at all combi-
nations of the M probability levels each varying in [0, 1] then it is a simple matter to
identify conditional (on Z = z*) expected values of structural derivatives and of functions
of them.

Consider a function g(e,Z) and its conditional expectation (assumed to exist) given
Z =z

E.zl9(e, 2)|Z = 2] z/.../g(e,z)fs‘z(e\z)del...deM.

Let §(1,2) = g(e(7),Z) where 7 = {7;}M,, and &(7) = {&;(7)}, whose elements are
defined recursively in terms of conditional quantile functions as follows.

87;(7—) = Qsi\6i+1.‘.6MZ(Ti|gi+17'"751\/172:)7 1E {lavM_l}

em(t) = Qepz(Tuml2)

Since the elements of 7 are mutually independently uniformly distributed, each on [0, 1],
and distributed independently of Z, it follows directly that

E-lg(e(7), 2)]
/ / g(e(t),z)dt1...dtM.
0 0

The structural derivatives evaluated at the point X considered in the Theorem of
Section 2 are precisely structural derivatives expressed, not in terms of the unobservable
stochastic drivers, but instead in terms of probabilities (7*) defining iterated conditional
quantiles of the conditional distribution of ¢ given Z = z*. Therefore expected values
of functions of structural derivatives (for example average derivatives, variances) can be
identified, assuming the local identification conditions hold at Z = z* for all combina-
tions of quantile probability levels - the conditional expected value of a function r(-) of a

structural derivative (7, 2) is simply fol .. fol r(w(t,2))dty ... dtay.

EE\Z[Q(E7Z)|Z:Z] =

5. CONCLUDING REMARKS

This paper has shown that in nonlinear triangular structural systems, conditions under
which there is nonparametric identification of certain interesting features of structures are
quite easily obtained if the question of identifiability is couched in terms of the feasibility
of uniquely deducing structural features from knowledge of an exhaustive set of iterated
conditional quantile functions. An analysis via conditional quantile functions is well suited
to nonlinear structural systems because of the equivariance property of quantiles.
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Focusing on local identification of the derivatives of structural functions at a point of
interest reduces the problem to a search for identification conditions in a linear approxi-
mation to the nonlinear structure, as long as there is sufficient smoothness to allow linear
approximation at the point of interest. As a result the familiar order and rank conditions
for identification in the linear simultaneous equations system appear in an unfamiliar
setting.

A quantile based analysis naturally leads to identification of structural features which
convey information about the distribution of exogenous impacts of variables perhaps en-
dogenous in the data generating process. This will be of value in the analysis of policy
interventions.

The estimation procedures that flow from the identification conditions involve vari-
ous sorts of quantile regression function estimation. Quantile regression methods have
frequently been advocated because they may be less sensitive to data contamination and
because they can provide a wealth of distributional information. The results of this paper
suggest a further, and very important, virtue of quantile regression methods, namely that,
because of their equivariance property, exploited here, they are the natural tool to employ
in identification, estimation and inference in nonlinear structural models.

Annex: Weakening the local quantile independence conditions

This Annex examines a two equation version of the model studied in this paper and
examines the identification conditions when the stochastic drivers of the system are not
transformed to be independently distributed. This allows easy appreciation of one way
in which the identification conditions of the Theorem of Section 2 can be weakened while
retaining the identification result.

Consider the following two equation model for scalar Y; and Ys.

Yl = hl(}/g,Z,é‘hEz)
Yo = ho(Z,e2)

The conditions of the Theorem of Section 2 are assumed to apply.
Substituting for Y5 in h; and exploiting the monotonicity of h; with respect to &1
gives, at X,
le\yzz(ﬁ,y;a Z*) = hl(y;’ Z*a Q51|52Z(7—>1k7 92('2*7 y;)’ Z*)) 92(2*7 y;))
where gs is the inverse function associated with ho satisfying

YY2 - h2(Za 92(Zayv2>)

Differentiating with respect to ys and an element, z;, of z satisfying the local order and
rank conditions of the Theorem, and evaluating at X gives the following (arguments
suppressed).

Vi Qvivaz = Vi + (Ve Ve, Qey ez + Ve h1) Vi g2

V.Qviyaz = Ve hi + Ve, liV2, Qe ez + (Ve haVey Qe ez + Ve h) Vg2 (Al)

The ratio V., 92/V,, g2 is identifiable as the z; derivative of Qy,|z at X.

To achieve identifiability of V,,h: using the approach adopted in this paper the first
two terms on the right-hand side of (A1) must be zero*® at X'. The first term is zero by
virtue of the local order condition.

23 At least restricted to known values.
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Equation (A1) reveals that all that is required so far as “quantile independence” is
concerned is that the first partial derivative with respect to the local instrument, z;, of the
conditional 77-quantile of €1 given €2 and Z be zero at X. Full local quantile independence
is not required - for example higher order derivatives of the conditional 7;-quantile of ¢;
with respect to z; could be nonzero at X and local identification of the first?* derivative
of hi with respect to Y5 at X could be achieved. Nor is there any need to assume zero
values at X for derivatives of the conditional 77-quantile of €1 given €5 and Z with respect
to elements of z which are not candidate local instrumental variables.
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