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Abstract

This paper considers the identification and estimation of hedonic models. We establish

that technology and preferences in a separable version of the hedonic model are generically

identified up to a±ne transformations from data on demand and supply in a single hedo-

nic market. For a very general parametric structure, preferences and technology are fully

identified from demand data. Much of the confusion in the empirical literature that claims

that hedonic models estimated on data from a single market are fundamentally underiden-

tified is based on linearizations that do not use all of the information in the model. The

exact economic model that justifies the linear approximations has strange properties so

the approximation is doubly poor. A semiparametric estimation method is proposed, and

alternative estimators are considered. Instrumental variables estimators can be applied to

identify technology and preference parameters from a single market even though there are

no exclusion restrictions.

JEL: C31
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1 Introduction

Sherwin Rosen pioneered the analysis of hedonic markets in a perfectly competitive set-

ting. He also proposed an econometric identification strategy for recovering preferences

and technology from hedonic markets. His hedonic model characterizes markets for het-

erogeneous goods (or factors or amenities) that implicitly price out the attributes that

characterize the goods (or factors or amenities).

Rosen’s fundamental paper has shaped the way economists think about the pricing of

heterogeneous characteristics. Yet for two reasons, the full potential of his method remains

to be exploited. First, except for special cases, high dimensional hedonic models with mul-

tiple characteristics require solutions of complicated partial di®erential equations to fully

characterize the market equilibrium. This renders di±cult theoretical analyses which re-

quire computation of nonlinear implicit equations. Second, the method of identification of

preferences and technology proposed by Rosen has been severely criticized in the literature.

It is widely held that the preferences and technology generating hedonic models are iden-

tified only through arbitrary functional form and exclusion assumptions, especially when

they are estimated from data on a single market.

This paper considers whether equilibrium in hedonic markets imposes any restrictions

on estimating equations and whether it is possible to identify technology and preferences

from data on a single hedonic market. We consider both parametric and nonparametric

versions of these questions.

We show that the hedonic model has empirical content. For very general parametric

families, the hypothesis of equilibrium imposes very tight restrictions on the data. Prefer-
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ernces and technology are generically identified from data on a single hedonic market. For

the nonparametric case, we establish generic identification of technology and preference

parameters up to a±ne transformations, the standard level of identification that can be

obtained from market choice equations.

We establish that commonly used linearization strategies made to simplify estimation

problems produce identification problems. The hedonic model is generically nonlinear. The

functional form assumptions made in the applied literature give rise to the identification

problems that are widely thought to be fatal to Rosen’s empirical methodology. We go

on to show that the economic model for which the widely used linearization methods are

exact is implausible, so the approximation is doubly poor.

Our identification analysis also applies to a broader class of empirical models of non-

linear pricing: models of the e®ects of taxes on behavior when taxes are set optimally

(Mirrlees, 1971), and a model of monopoly pricing (Mussa and Rosen, 1978, Wilson, 1993).

It also applies to the standard problem of taxes and labor supply (Heckman 1974; Haus-

man, 1980). For specificity, in this paper we focus on the hedonic model, briefly discussing

other applications in the conclusion.

This paper proceeds in the following way. In section two, we present the hedonic model

and review an important linear-quadratic special case due to Tinbergen (1956), and used

by Epple (1987), that gives rise to closed form solutions. This model justifies widely used

linearizations as exact solutions. In section three, we discuss the peculiar properties of

this model. The influential criticism of Rosen’s estimating strategy by James Brown and

Harvey Rosen (1982) is based on an linear-quadratic approximation to the true model

which is exact in the Tinbergen model. When the Tinbergen model is slightly perturbed,

the Brown-Rosen critique no longer applies. In section four, we prove a theorem (Thm 1)
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that establishes that for a general class of models, the Brown-Rosen critique only applies

to a special, nongeneric, case. In section three, we go on to discuss standard criticisms of

instrumental variables methods applied to estimate preferences and technology in hedonic

markets: (a) sorting implies that within a single market, there are no natural exclusion

restrictions (Epple, 1987; Kahn and Lang, 1988) and (b) use of multimarket data identifies

the hedonic model by making implicit, and implausible, assumptions about why hedonic

pricing functions di®er across markets.

In section four, we establish (a) the identifiability of the hedonic model within a sin-

gle market for a broad class of parametric models (polynomials of any finite order or any

model belonging to a finite dimensional vector space); (b) the identification of the hedonic

model up to levels for a broad class of nonparametric models; and (c) that using all of the

information from both sides of the hedonic market jointly adds nothing to what can be

identified analyzing the supply side and demand side separately in conjunction with the

hedonic pricing function. We show how extra information on levels of outcomes, rather

than just pricing and demand equations, aids in identifying the missing level set informa-

tion in the nonparametric case. In section five, we briefly discuss instrumental variable

estimation strategies. We prove a corollary of Theorem 1 that justifies the application of

IV in the general parametric case and discuss extensions of the existing literature to cover

the nonparametric case. Section six presents some conclusions and suggestions for future

research.
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2 The Hedonic Model: General Results and An Im-

portant Special Case With A Closed Form Solution

We first present a general statement of the hedonic model. For simplicity, consider a

labor market setting. The model is static. Consumers (workers) match to single worker

firms. Let z be an attribute vector characterizing jobs. P (z) is the earnings of workers

supplying attribute vector z, which is a disamenity. Let R be unearned income. We define

U(c, z, µ,A) as the preferences of workers where µ represents preference parameters that

vary across persons, A represents preference parameters common across persons and c is

consumption where c = P (z) + R. Given P (z), a twice continously di®erentiable price

function, and assuming the utility function is twice di®erentiable2, we obtain the following

conditions for a maximum

FOC:

Uc (c, z, µ,A)Pz (z) + Uz (c, z, µ, A) = 0 (1)

SOC :

µ
Uzz0 + UcPzz0 + PzUcc0 (Pz)

0
¶
is negative definite. (2)

2For expositional convenience, we restrict our analysis to economies in which the equilibrium price func-

tion is smooth. Similar analyses can be done for economies in which the equilibrium price function is not

smooth. For an example of an economy with smooth technologies and absolutely continuous distributions

of consumer heterogeneity in which the equilibrium price function is piecewise twice continuously di®eren-

tiable see Nesheim (2001). For other examples of sorting problems with non-smooth pricing functions see

(Wilson, 1993).

4



Firms demand attribute z and maximize profits which are a function of output F (z; º,B)

minus production costs P (z) where º is a vector of technology parameters firms that vary

across firms and B is a common technology parameter shared by all firms. We assume that

the production function is twice di®erentiable. Profits are

¦ (z, º,B, P (z)) = F (z; º,B)¡ P (z)

FOC: Fz (z, º, B)¡ Pz (z) = 0 (3)

SOC:(Fzz0 ¡ Pzz0) is negative definite. (4)

Throughout we assume the regular case where the second order conditions hold as strict

inequalities.

Workers di®er in their preference vector µ. Firms di®er in their productivity vector

º. Let the density of µ be fµ. The density of º is fº. We assume that both º and µ are

absolutely continuous random variables. Analytically, it is useful to distinguish the case

dim(µ) ¸ dim(z) and dim(º) ¸ dim(z), where “dim” is dimension, from other possible

cases. This is the case analyzed in Rosen (1974). There is no loss of generality for the

purposes of this paper in setting the inequalities to strict equalities.

Assuming a local implicit function theorem applies, we can invert FOC (1) and (3) to

obtain µ and º and hence obtain the classical hedonic case analyzed by Rosen (1974). From

the FOC for the firm we obtain

º = º (z, Pz, B) .
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From the FOC (2) for the consumer we obtain:

µ = µ (z, Pz, P (z) +R,A) .

Using these relationships, we substitute into fº and fµ to find the density of z demanded

given P (z) and the technology and density of heterogeneity º and the density of z sup-

plied given P (z) and the density of worker heterogeneity, µ and the preference system of

consumers.

The Demand Density is:

fº (º (z, Pz, B)) det

·
@º (z, Pz, B)

@z

¸
dº.

This tells us the density of demand for a given price function, technology parameter and

density of º.

The Supply Density is:

fµ (µ (z, Pz, P (z) +R,A)) det

·
@µ (z, Pz, P (z) +R,A)

@z

¸
.

This is the density of the amenity supplied as a function of the price function, preference

parameters A and density of µ. From the second order conditions (4) and (2), respectively,

the Jacobian terms are both positive.

Equilibrium in hedonic markets requires that demand and supply be equated at each

point of the support of z to solve for the market clearing surface P (z). Equilibrium prices

must satisfy the following second order di®erential equation in P (z)

fº (º (z, Pz, B)) det

·
@º (z, Pz, B)

@z

¸
(5)

= fµ(µ(z, Pz, P (z) +R,A)) det

·
@µ (z, Pz, P (z) +R,A)

@z

¸
.
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The solution depends on the technology of the firms F , the utility function U of the

workers, and the distributions fº and fµ respectively of firms and workers in the population.

We examine the empirical content of these restrictions in this paper. Economic theory im-

plies that marginal products and marginal utilities are nonnegative in most cases. In order

for agents to participate in the market, firms and workers must receive wages and profits

above reservation levels. These criteria generate the boundary conditions that determine

the solution of the di®erential equation for equilibrium prices. They also play a role in the

identification analysis.

We next present a linear-quadratic model with normal heterogeneity due to Tinbergen

(1956) that has a closed form expression. This is the model that justifies widely used

empirical approximations as exact descriptions, and provides an intuitive introduction to

the hedonic model.

2.1 A Linear-Quadratic Example

Assume preferences are quadratic in z and linear in c and that dim (z) = dim (µ) 3

U(c, z, µ,A) = R+ P (z) + µ0z ¡ 1
2
z0Az.

The conditions determining a consumer maximum are

FOC: µ ¡ Az + Pz = 0
SOC: (Pzz0 ¡ A) is negative definite.

On the firm side, assume the production function is quadratic in z and dim (z) = dim (º).

3The model in this example was first analyzed by Tinbergen (1956) and has been used by Epple (1987)

and Tauchen and Witte (2001) among others.
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Profits are

¦ (z, º, B, P (z)) = º 0z ¡ 1
2
z0Bz ¡ P (z)

and the conditions determining a firm’s optimum are

FOC: º ¡Bz ¡ Pz = 0
where

SOC: ¡(B + Pzz0) is negative definite.
The distributions of º, µ in the population are normal. The distribution of µ is µ s

N(µµ; §µ), and the distribution of º is º s N(µº; §º).

An arbitrary price function induces a density of demand and a density of supply at

every location z. The equilibrium price function can be found by equating these densities

at every point z and solving the di®erential equation (5) . However, in the normal-linear-

quadratic case one can guess - correctly - that the solution to the problem is quadratic in

z :

P (z) = ¼0 + ¼
0
1z +

1

2
z0¼2z (6)

and then check that this guess is accurate. Assuming the price function is quadratic, the

first order conditions for the firm are:

Firm: º ¡Bz ¡ ¼1 ¡ ¼2z = 0 (7)

and for the consumer they are:

Consumer: µ ¡ Az + ¼1 + ¼2z = 0. (8)
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From the second order conditions, B + ¼2 and A ¡ ¼2 are positive definite. Thus
we may solve for z from (7) to obtain z = (B + ¼2)

¡1(º ¡ ¼1) and from (8) z = (A ¡
¼2)

¡1(µ + ¼1). Note that once we have solved for ¼1 and ¼2, these latter two equations

define the equilibrium matching function linking the characteristics of demanders (7) to

those of suppliers (8). For each z, this function is

(B + ¼2)
¡1(º ¡ ¼1) = (A¡ ¼2)¡1(µ + ¼1).

Thus, the equilibrium relationship between º and µ is

º = ¼1 + (B + ¼2)(A¡ ¼2)¡1(µ + ¼1). (9)

Equilibrium is characterized by a vector ¼1, and a matrix ¼2, that equate demand and

supply at all z subject to all constraints.

In the normal-linear-quadratic case, we may solve for ¼1 and ¼2 that equate demand

and supply, both of which are normally distributed. Equating normal random variables

only requires equating the mean of demand with the mean of supply and the variance of

demand with the variance of supply. The mean demand is obtained from (7):

(B + ¼2)
¡1E(º ¡ ¼1) = ED(z) (Average Demand).

The mean supply is obtained from (8):

(A¡ ¼2)¡1E(µ + ¼1) = ES(z) (Average Supply).

Letting µµ = E(µ) and µº = E(º), E
D(z) = ES(z) implies that
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(B + ¼2)
¡1(µº ¡ ¼1) = (A¡ ¼2)¡1(µµ + ¼1) (Equality of means).

Rearranging terms, we obtain an explicit expression for ¼1 in terms of A,B,µº ,µµ and ¼2 :

[(A¡ ¼2)¡1 + (B + ¼2)¡1]¡1[(B + ¼2)¡1µº ¡ (A¡ ¼2)¡1µµ] = ¼1.

To determine ¼2, compute the variances of demand and supply from (7) and (8) respec-

tively to obtain:

P
º = (B + ¼2)

PD
z (B + ¼2)

0P
µ = (A¡ ¼2)

PS
z (A¡ ¼2)0

where
PD

z is the variance of demand given the price schedule and
PS

z is the variance

of z given the supply schedule. From equality of variances of the demand and supply

distributions we obtain an implicit equation for ¼2 :

(B + ¼2)
¡1X

º
(B + ¼2)

¡1 = (A¡ ¼2)¡1
X

µ
(A¡ ¼2)¡1.

We pin down initial conditions using the restrictions that U ¸ Ū , a reservation value,
and profits are positive (¦ ¸ 0). Equilibrium profits as a function of location are

1

2
z0(B +

¼2)z¡¼0. Hence nonnegativity of profits implies ¡¼0 ¸ 0 since (B+¼2) is positive definite
by the second order conditions. A similar argument on the worker side implies ¼0 ¸ 0.

Hence ¼0 = 0.

For a separable case with
P

µ and
P

º diagonal, ¼2 is diagonal. E®ectively, this is a

scalar case. Suppose that A and B are scalars so that z is scalar. Then
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¼1 =

µº
B + ¼2

¡ µµ
A¡ ¼2

1

A¡ ¼2 +
1

B + ¼2

=
µº(A¡ ¼2)¡ µµ(B + ¼2)
(B + ¼2) + (A¡ ¼2)

= µº

µ
A¡ ¼2
A+B

¶
¡ µµ

µ
B + ¼2
A+B

¶
.

Recall that from the second order conditions A¡ ¼2 > 0 and B + ¼2 > 0. Equality of
variances implies that (A¡¼2)2¾ºº = (B+¼2)2¾µµ. Define ¾º = (¾ºº)1/2 and ¾µ = (¾µµ)1/2

so

± (A¡ ¼2)¾º = (B + ¼2)¾µ
¼2 =

A¾º ¡B¾µ
¾º + ¾µ

.4

If ¾º = ¾µ and A = B, ¼2 = 0 is a solution. This is a knife-edge result. If

¾º = ¾µ, A 6= B
(A¡B)

2
= ¼2.

If the variance
P

µ = 0 or
P

º = 0, then there is e®ectively only one type of consumer

or one type of firm respectively. If
P

µ = 0, ¼2 = A and ¼1 = µ, a vector of constants.

If
P

º = 0, ¼2 = B and ¼1 = º, a vector of constants. In those cases, the hedonic price

line coincides with the marginal valuations of consumers or marginal productivity of firms

respectively.

4The other root violates second order conditions.
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3 Identifying and Estimating The Model

Sherwin Rosen stressed the importance of taking theory to data. He considered the

problem of recovering technology and preference parameters from data. He also framed the

empirical questions about hedonic models that have occupied the attention of economists

for the past 27 years.

He analyzed the problem of using data from a single market in which P (z) is available

and there are no missing attributes. Using the first order conditions (1) and (3) ((7) and (8)

in the linear-quadratic-normal example) he proposed a two step method for estimating both

preference and technology parameters. He did not consider direct estimation of production,

profit or preference functions, a source of information we consider in section four. We simply

note here that if there are no missing attributes, we can recover the production function

directly from data on inputs and outputs using standard methods. Even if production (or

profit) data are available, data on utility are not, so the problem considered by Rosen still

remains for recovering the parameters of at least one side of the market.

From our discussion of the linear - quadratic - normal case, the parameters ¼1 and ¼2

do not directly identify either preference or technology parameters except when
P

µ = 0

or
P

º = 0 respectively. The pricing function combines parameters in an economically

uninterpretable fashion.

The most direct approach to estimating the hedonic model would be to solve equation

(5) for P (z) in terms of the parameters of preferences, technology and the distributions of

tastes and productivity and to jointly estimate the demand functions and supply functions

and distributions of preference and technology parameters exploiting all of the information

in the equilibrium conditions including data on demand, supply and the pricing function.
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That approach is computationally complicated and does not transparently deliver identifi-

cation of the deep structural parameters.

Rosen suggested an intuitively plausible and computationally simpler two step estima-

tion procedure that has been widely criticized. In step 1 of his procedure, the analyst

estimates P (z) from market data. In step 2, the analyst uses first order conditions (1) and

(3) in conjunction with the marginal prices obtained from step 1 to recover preferences and

technology respectively.

In the context of the linear-quadratic example, the first stage would be to estimate

pricing function P (z), recover ¼1 and ¼2, and form the marginal prices and then estimate

the curvature parameters of technology, and preferences using (7) and (8) respectively.

Specifically, he proposed to estimate B and the mean of º (µº) from the least squares

regression

¼̂1 + ¼̂2z = µº +Bz + "º (10)

where "º = º¡µº , and “ˆ” denotes estimate. A parallel proposal for preferences estimates
A and the mean of µ(µµ) from the regression

¼̂1 + ¼̂2z = µµ +Az + "µ (11)

where "µ = µ ¡ µµ. We assume that µµ and µº are functions of regressors (x) and (y)
respectively, µµ(x) and µº(y).

In two influential papers, James Brown and Harvey Rosen (1982) and James Brown

(1983) analyze the regression method based on (10) and (11) . These papers contain most

of the main ideas in the empirical literature on hedonics that emerged from Rosen’s pa-

per. They interpret (10) and (11) as linearized approximations to (1) and (3) . The linear

quadratic model of Section 2 is the framework for which these approximations are exact.
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In this approximation interpretation, the distributions of º and µ are kept in the back-

ground. Standard linear econometric methods are applied to identify the parameters of

(10) and (11) and connections among the parameters of preferences, technology and the

distributions of tastes and productivity are not made explicit. Issues of identification are

confused with issues of estimation. Common to an entire genre of empirical economics, this

literature focuses on finding “good instruments” and misses basic sources of identification

in hedonic models.

Starting from (10) and (11), Brown (1983) and Brown and Rosen (1982) make three

points which have been reiterated in the subsequent empirical literature.

Point One: Identification Can Only Be Obtained Through Arbitrary Func-

tional Form Assumptions

Since z is on both sides of (10) and (11), by a property of least squares, a regression

using the constructed price P̂z(z) = ¼̂1+ ¼̂2z as the dependent variable in (10) or (11) only

identifies ¼2 even if µº or µµ are functions of regressors. In general, ¼2 does not identify

any technology or preference parameter. In the special cases where there is no variation in

preference parameters µ or where there is no dispersion in º, ¼2 identifies preference (A)

or production (B) parameters respectively.

However, if the constructed price is a nonlinear function of z, this argument no longer

holds. The nonlinear variation in bPz (z) gives an added piece of information which can help
to identify technology and preference parameters.5 This identification strategy rules out

collinearity between z and bPz (z) , but such nonlinearity is widely viewed as an artificial
source of identification that is thought to be “arbitrary.” In Theorem 1 in section 4, we

prove that this nonlinearity is generic in the hedonic model.

5See Fisher (1966) for an early discussion of the value of nonlinearities in identifying econometric models.
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Point Two: Absence of Instruments

Even if such “arbitrary” assumptions are made, so that we can use the nonlinearity inbPz (z) to help identify the parameters and circumvent Point One, we still face standard en-
dogeneity problems. z is correlated with "º and "µ in (10) and (11) respectively. Moreover,

exclusion restrictions from the other side of the market cannot be justified. In the notation

of this section, the equilibrium matching condition (9) of section 2 requires that

"º = "µ + (A¡B)z + µµ(x)¡ µº(y) (12)

so that conditional on z there is both functional and statistical dependence connecting "µ,

"º , z and the regressors.
6 Conditional on z, "º , "µ, x and y become stochastically dependent

even if in the underlying population initially they are mutually independent.

With data from a single market, one is forced to hunt for “clever” instruments with a

questionable economic basis. Thus, even if “arbitrary” nonlinearities are invoked, standard

instruments may be lacking. In sections 4 and 5 we show that the economics of the model

guarantees valid instruments even though there are no exclusion restrictions.

Point Three: Use of Multimarket Data

Brown (1983), Brown and Rosen (1982), Kahn and Lang (1988), and Tauchen andWitte

(2001) change Rosen’s problem and consider estimation of the first order conditions using

multimarket data either across regions, or across time in the same region. The motivation

for this approach is that if preferences, technology, and the distributions of tastes and

productivities are the same across markets but for some unspecified reason price functions

are not, variation in the Pz (z) across markets serves to identify preferences and technology.

This source of identification is viewed as being more robust.

6Epple (1987), Bartik (1987) and Kahn and Lang (1988) stress this point.
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The problem with this identification strategy is that it is logically inconsistent. If

preferences, technology, and the distributions of tastes and productivities are the same

across markets, equilibrium price functions must be as well. The strategy is apparently more

robust because it is vague about the source of variation that makes price functions di®er

when preferences, technology, and the distributions of tastes and technology are common

across markets. This approach can be used to identify the preferences or technology on

one side of the market. If preferences are stable and the distributions of preferences across

markets are stable, but technologies are di®erent for exogenous reasons, then multimarket

variation shifts the hedonic function against stable preferences and identifies preference

parameters. Switching the roles of technology and preferences, multimarket data identifies

technology and the distribution of technology parameters.

3.1 Using All Of The Economics of The Model

These criticisms are symptoms of a deeper problem: all of the economic content of

the hedonic model is not being exploited. We argue that when it is exploited, the model

is generically identified even within a single market without having to invoke arbitrary

functional forms. We develop this point formally in the next section. Here we develop the

intuition for it using the linear-quadratic model.

Consider all of the economic implications of the linear-quadratic model - not just the

first order conditions (7) and (8). Any reasonable specification of the model requires that

profits be non-negative, that utilities exceed threshold reservation values and that firm

marginal products be non-negative while marginal utilities of consumers for disamenities

be non-positive. Adopting all of these restrictions eliminates Point One within the linear-
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quadratic example of Section 2.

The linear-quadratic-normal model of Section 2 results in an equilibrium with a linear

marginal price function. This equilibrium produces an econometric system that is not

identified. (Brown-Rosen Point One). In this example, it would be arbitrary and incorrect

to impose that the marginal price function is nonlinear. However, the model in Section

2 is very special. It belongs to a very small class of models that produce an equilibrium

marginal price function that is linear. In the next section we prove as a special case of a

more general theorem that there is an open dense set of models surrounding the linear-

quadratic models of Section 2 that do not produce linear marginal price functions. In these

models, it is not arbitrary to impose nonlinear marginal price functions.

The normal-linear-quadratic example has a number of peculiarities. From (7) and (8),

it is evident that marginal products can become negative, and marginal disutilities of labor

(z) can become positive. Nothing restricts marginal prices to be non-negative or for the

demands or supplies of z to be non-negative.

To see how fragile Point One is, suppose that we perturb the scalar version of the model

to have non-normal µ and º. Profits are

¦(z) = º0 + º1z ¡ b

2
z2 ¡ P 0(z),

with first order condition

º1 ¡ bz ¡ P 0(z) = 0.

Worker preferences are

17



U(z) = µ0 + µ1z ¡ a
2
z2 + P (z)

with first order condition

µ1 ¡ az + P 0(z) = 0.

Figure 1 shows the price functions for two cases. A full specification of parameter values

generating figures 1-4 is given in Table 1. The first case is for º1 and µ1 normally dis-

tributed. (¸ = 1; see the notes) The second case is for º1 and µ1 distributed as a mixture of

normals with weights ¸ = .999 (for the original case which produced the straight line) and

1¡ ¸ = .001. With this minor perturbation, the price function becomes highly nonlinear.
The second derivative of the price function is far from zero. (Figure 2). Figure 3 and 4

show two other cases when ¸ = .99 and ¸ = .90. A small dose of nonnormality produces a

highly nonlinear price function, and undercuts Brown-Rosen Point One.

These figures also reveal unattractive properties of the linear-quadratic model. Negative

and positive quantities of z are demanded and supplied and marginal prices are negative

for a large portion of the population. Figures 4 and 5 present a case where marginal prices

are positive because we restrict º1 ¸ 0, b > 0, µ1 ¸ 0 and a > 0. A full specification

of parameter values is given in Table 2. We write `n º1 = º10 + º
0
11x + "º and `n µ1 =

µ10 + µ
0
11y + "µ where (x, y, "º and "µ) are mixtures of normals. Now marginal prices

are nonlinear and positive and only positive quantities of the amenity are demanded and

supplied. By imposing economically plausible restrictions, Brown-Rosen Point One is shown

to be less cogent. In Section 4 we show that these examples are generic.
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Even though Point One is non-generic, Point Two remains. There are apparently no

valid instruments for z on the right hand sides of (10) and (11). A strategy needs to be

found to deal with the endogeneity of z. In the next two sections, we discuss two such

strategies and present general results for a model with a single characteristic with no

arbitrary functional form restrictions or distributional assumptions and establish that the

hedonic model is generically identified from data from a single market. Even though there

are no exclusion restrictions, instrumental variables is a valid estimator.

4 Parametric and Nonparametric Analyses of A One

Dimensional Model with Additively Separable First

Order Conditions

This section analyzes a class of one dimensional models for z with additive separability

in the first order conditions but with no specific functional form or distributional assump-

tions imposed. The one dimensional case allows us to abstract from a variety of problems

that we address in our other work: (a) questions of existence of solutions to partial dif-

ferential equations and (b) questions about the proper treatment of missing attributes in

a multidimensional model.7 Both types of questions are important but they distract us

from the basic questions of identification and testability of the hedonic model posed in the

introduction to this paper.

We analyze a class of separable preferences and technologies on the firm side. We start

7Existence conditions for ordinary di®erential equations are much easier to satisfy. See Zachmanoglou

and Thoe, 1986.
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with production technology F (z, x, "1) where (x, "1) = º in the notation of Section 2. We

use a more symmetric notation to simplify the exposition. The first order condition is

Fz(z, x, "1) = P
0(z).

We consider a class of models with restrictions on Fz(z, x, ") such that we can separate z

from x and "1, and x from "1. For a known monotonic transformation Ã1, we assume that

Ã1(Fz(z, x, ")) = ¿(z) +M1(´1(x) + "1))

where M1 is monotonic in (´1(x) + "1) and Ã1 2 C2, M1 2 C2. With this restriction, we
can write FOC as

¿(z) +M1(´1(x) + "1) = Ã1(P
0(z))

so we can rewrite the model in the following way:

M¡1
1 [¿(z)¡ Ã1(P 0(z))] = ´1(x) + "1. (A-1a)

with

Support "1 = (0,1). (A-1b)

Leading cases include
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1. (a) Ã1 the identity function and Fz(z, x, ") = '1(z)+M1(´1(x)+"1) where
d'1
dz

< 0;

M1 can be the identity function, the exponential function or any other monotonic

transformation of ´1(x) + "1

or

(b) Ã1(q) = log(q)

Fz(z, x, ") = K1(z)M1(´1(x) + "1); M1 monotonic

´1(x) + "1 = (M1)
¡1
µ
P 0(z)
K1(z)

¶
.

For specificity, we consider one member of this class noting that we can generalize our

results to the broader class at the end of this section. We specify the firm production

function as

F (z, x, "1) = ©
1(z) + z´1(x) + z"1 (A-2)

where the cost of labor quality is P (z), as before, and there is a unit price of output.

Letting
@©1

@z
= '1(z), the conditions for profit maximization are

FOC: '1(z) + ´1 (x) + "1 = P
0(z) (13)

which is a special case of the transformations (A-1a) introduced above and

SOC: '01(z)¡ P 00(z) < 0.
On the worker side, we analyze preferences with a constant marginal utility of consump-

tion of goods. For specificity, we consider a particular model:

U (z, y, "2, c) = c¡ ©2 (z) + z´2 (y) + z"2.
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We define
@©2

@z
= '2(z) and write the maximization conditions as

FOC: P 0 (z)¡ '2(z) + ´2(y) + "2 = 0
and

SOC: P 00 (z)¡ '02(z) < 0.
Again, our analysis applies to a broader class of preferences with separable marginal utili-

ties. We develop this point below.

We assume an equilibrium determination of prices so that equilibrium condition (5)

applies. Let q1(x) be the density of x with support X and let q2 (y) be the density of y with

support Y . Define the density of "1 as g1("1) and the density of "2 as g2("2). Assume x is
independent of "1 and y is independent of "2. The first order conditions define mappings

from (x, "1) to (x, z) and from (y, "2) to (y, z) :

"1 = P 0(z)¡ '1(z)¡ ´1(x)

x = x

and

"2 = P 0(z)¡ '2(z)¡ ´2(y)

y = y.

These expressions relate equilibrium sortings of "1 and "2 to z given x and y respectively.

Such sorting is an essential feature of the hedonic equilibrium model. The associated

Jacobians are dxd"1 = [P
00(z)¡'01(z)]dxdz and dyd"2 = ['02(z)¡P 00(z)]dydz, respectively.

From the second order conditions, the terms in brackets are positive. Equilibrium condition
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(5) implies that Z
X

g1(P
0(z)-'1(z)-´1(u))(P

00(z)-'01(z))q1(u)du (14)

=

Z
Y
g2(P

0(z)-'2(z)-´2(u))(P
00(z)-'02(z))q2(u)du

where X and Y are supports of X and Y respectively. Initial conditions are provided by

the requirements that ¦ ¸ 0 and U ¸ u0.
We will now state a genericity result. Recall that a property P (µ), depending on a

parameter µ 2 £, is called generic if the set ­ ½ £ of values of the parameter for which

it holds true contains a countable intersection of open dense subsets. If £ is a complete

metric space, such a set ­ will be dense in £, by a celebrated theorem of Baire. Moreover,

the intersection of two such sets will still be dense in £. In other words, if a property

is generic, and does not hold for a certain value µ̄ of the parameter, there will be in any

neighbourhood of µ̄ some other value µ of the parameter where the property holds true. A

generic property is robust in the sense that if P1 (µ) and P2 (µ) are generic, then so is their

intersection P1 (µ) \ P2 (µ) .
The “parameters” of the model which are functions are ('1, '2) , (g1, g2) , (´1, ´2) , (q1, q2) .We

have the following:

Theorem 1 Generically with respect to any of the parameter pairs, the equilibrium equa-

tions have no solution of the form P 0 (z) = a1 + b1'1 (z), nor any solution of the form

P 0 (z) = a2 + b2'2 (z) .

The precise definitions of the parameter spaces and their respective topologies are given

in Appendix A, together with the proof of the theorem. This theorem can easily be
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modified to prove that generically, the equilibrium equations have no solution P 0 (z) which

can be expressed as a polynomial in ('1, '2).

As a consequence of this theorem, Brown-Rosen Point One that regressions of P 0(z) on

'1(z) or '2(z) simply recover the marginal price (â1 = 0, b̂1 = 1; â2 = 0, b̂2 = 1) is not

generically correct. The model is intrinsically nonlinear. The examples presented at the

end of the section 3 are prototypical, not special. There is no arbitrariness in assuming

that P 0(z) and '1(z) do not lie in the same linear space.

Even if Point One is not generic, Point Two remains. Within a single market, there is

no natural exclusion restriction. The larger question considered in this paper is whether we

can identify (g1, g2, '1, '2, ´1, ´2) from data on P (z), z, x, and y from a single market. We

focus on identifying (g1, '1, ´1) from data on P (z) , z, and x since the analysis is symmetric

for (g2, '2, ´2) using data on P (z) , z, and y. We later consider what information, if any, is

available from the joint density of (z, x, y, P (z)).

We present two methods for recovering these functions from data in a single market.

One is based on extensions of average derivative models (Powell, Stock and Stoker, 1989)

and closely related transformation models (see Horowitz (1998)). We develop these methods

in this section. The other is based on nonlinear instrumental variables. (Amemiya, 1975).

The second method is based on a corollary of Theorem 1 which we prove in section five.

The trick in applying average derivative and transformation models to the hedonic

problem is to exploit the separability of z, x and "1. Define

T1(z) = P
0(z)¡ '1(z).

This function combines price and preference data. This kind of function is called a transfor-

mation function and its nonparametric identification and estimation have received extensive
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theoretical attention. (See Horowitz (1998) for a survey and new results). These models

extend average derivative models (Powell, Stock and Stoker, 1989) by considering nonlinear

transformations of dependent variables. Observe that T1(z) = M¡1
1 (¿ (z) ¡ Ã1(P 0(z)) as

defined in (A-1a).

Let G1 be the cumulative distribution function corresponding to g1. Assuming X is

independent of "1 and taking account of the first order condition (13) , we may write

F 1(z |x) = G1(T1(z)¡ ´1(x))

where F 1 (z |x) is the empirical cumulative density function of z conditional on x. Assuming
that lim

q!1
T1(q) = 1, which follows from the assumption that the support of "1 = (0,1),

and further assuming that T1 and ´1 are twice continuously di®erentiable, we may write

F 1z (z |x) = g1(T1(z)¡ ´1(x)) · T 01(z) (15)

where T 01(z) > 0 from SOC.

Moreover

F 1xi(z |x) = ¡g1(T1(z)¡ ´1(x)) ·
@´1
@xi

. (16)

¿From (16)

F 1xi (z |x)
F 1xj (z |x)

=

@´1(x)

@xi
@´1(x)

@xj

for all i, j. (17)
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This ratio determines the level sets of ´1(x).More generally, taking the ratio of (15) to (16)

for an arbitrary argument i, we obtainµ¡F 1z (z |x)
F 1xi (z |x)

¶
=

T 01(z)
@´1(x)

@xi

(18)

¿From (17), sign (F 1xi) = ¡ sign
µ
@´i
@xi

¶
. Assume, without loss of generality, that

@´i
@xi

> 0.

Then the left hand side of (18) is positive. (Recall that T 01(z) > 0).

@

@z
log

·¡F 1z (z |x)
F 1xi(z |x)

¸
=
T 001 (z)
T 01(z)

. (19)

Define h (z, x) = log
h
¡F 1z (z|x )
F 1xi(z|x )

i
. Since h(z, x) satisfies equation (19), then h(z, x) must

be of the form

h(z, x) = h0 + h1(z) + h2(x)

where h1(0) = 0, h2(0) = 0, and h0 is a constant. h0, h1(z) and h2(x) are known empirically.

Further equation (19) can be written as

dh1(z)

dz
=
T 001 (z)
T 01(z)

.

This equation has the solution

T 01 (z) = K1 exp (h1 (z)) (20)

where K1 is a constant of integration. Further
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T1(z) = C1 +K1

zZ
0

exp(h1(s))ds

where C1 is another constant of integration.

This solution enables us to solve for ´1(x). Substituting (20) into (18),

@´1
@xi

exp(h0 + h1(z) + h2(x)) = K1 exp (h1(z))

@´1(x)

@xi
= K1 exp(¡ h0 ¡ h2(x)) (21)

hence

´1(x) = R1 +K1

xZ
0

exp(¡h0 ¡ h2(s))ds

where R1 is a constant of integration and the multiple integral is taken over all the dimen-

sions of x.

For a given K1, we can identify T1(z) and ´1(x) up to constants. From (15), we can

identify g1("1) using a normalization on "1 to tie down the undetermined combination of

constants C1 and R1 which we acquire when we integrate up to the levels of T1(z) and

´1(x)).

Thus we identify

˜́1(x) =
´1(x)¡R1

K1
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T̃1(z) =
T1(z)¡ C1

K1

.

In this notation

"1 = T1(z)¡ ´1(x) = (C1 ¡R1) +K1(T̃ (z)¡ ˜́1(x))

we can identify the combination of coe±cients (C1¡R1) by assuming E("1) = 0 or median
("1) = 0 or fixing some quantile of "1 to a known value. This leaves K1 undefined (and

the specific values of C1 and R1 that equal C1 ¡R1). From (15) and (16) we can identify

g1("1) up to scale. Specifically we define

"̃1 = ("1/K1)

g1("1)d"1 = K1g1("̃1K1)d"̃1 = g̃1("̃1).

Since we know P 0(z),we can identify '̃1(z) = P
0(z)¡K1T̃ (z)¡ C1.

Using the data on F 2(z | y), we can identify ˜́2(y) =
´2(y)¡R2

K2
and T̃2(z) =

T2(z)¡ C2
K2

and g̃2("̃2) = K2g2(K2"2)d"2 where "̃2 = ("2/K2), and '̃2(z) = P
0(z) +K2T̃2(z)+C2 where

the constants are defined in a fashion analogous to the case previously analyzed.

The lack of identification of the scale of the utility function is a classical result. We

do not observe utility so we can only identify level sets connected with utility. If we

observe output or utility, we can determine the missing parameters by using direct analysis

of the production or profit functions. Direct estimation of (A-2) entails identification
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of a correlated random coe±cient model in a semiparametric setting.8 Using (13) as a

replacement function in the sense of Heckman and Robb (1985) or as a control function

in the sense of Blundell and Powell (2001), we may solve for "1 and substitute in (A-2) to

obtain

F (z, x) = ©1(z) + z´1(x) + z(P
0(z)¡ ´1(x)¡ '1(z)) = ©1(z) + zP 0(z)¡ z'1(z)

so

Ã(z) = F (z, x)¡ zP 0(z) =
zZ
0

'1(t)dt¡ z'1(z)

and Ã(z) is observed. We may thus estimate the derivative on the right hand side

@Ã(z)

@z
= ¡z'01(z).

Integrating up we obtain

C0 +

Z ·
¡1
z

@Ã(z)

@z

¸
dz = '1(z)

so we determine '1(z) up to an additive constant and in the context of the example for

linear in parameters ´1(x) we determine K1.

With additional (weak) parametric structure, we can determine the scaling constants

without using the output data. Thus, we can stay within the Rosen program which does not

8See Heckman and Vytlacil (1998) for a discussion of correlated random coe±cient models.
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contemplate using output data. We now assume that there is a finite-dimensional vector

space E which contains both Á1 and Á2 and which is known ex ante. In other words, both

Á1 and Á2 can be described by a finite set of parameters (a1, ..., aK) and (b1, ..., bK) which

enter linearly: Á1 =
P
akÁ̄k where the Á̄k are known functions, and similarly for Á2. It

will be assumed that E consists of C1 functions, and contains the constants. For example,

E could be the set of polynomials of degree less than or equal to m where m is a known

integer.

Theorem 2 Generically with respect to any of the parameter pairs in Theorem 1, no so-

lution P of the equilibrium equation belongs to E, and '1, '2 are identified up to additive

constants

Proof. As shown above, we have:

T̃1 (z) =
P̃ 0 (z)
K1

¡ C1
K1

¡ '1 (z)
K1

T̃2 (z) =
P̃ 0 (z)
K2

¡ C2
K2

¡ '2 (z)
K2

Arguing as in Theorem 1, we can show that generically P /2 E. This being the case, there
must be some continuous function f such that

R
fh = 0 for all h 2 E, but R fP 0 6= 0.

Applying such a function to both sides of the preceding equalities, we get:Z
T̃i (z) f (z) dz =

1

Ki

Z
P̃ 0 (z) f (z) dz , i = 1, 2

which determines Ki, i = 1, 2. Plugging back into the equations, we find that 'i is deter-

mined up to an additive constant Ci
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4.1 Is There Information In The Joint Densities?

Thus for a very general class of polynominal models, we obtain identification of the
¡
'1, '2

¢
functions from single market data. So far we have only considered identification using data

from only one side of the market. We now consider whether additional information can

be extracted from the joint densities on both demand and supply sides.

Thus far we have used information on the joint densities of (x, z) and (y, z) and have

shown how to identify everything exceptK1, K2. In the parametric case covered by Theorem

2, we identify K1 and K2.

There is one potentially powerful piece of information that we have not yet used; the

joint distribution of (x, y, z) . This joint distribution may have identifying power because

the distribution of z conditional on x does not equal the distribution of z conditional on x

and y. Where there is sorting on both sides of the market, this full joint density contains

information that might be exploited.9 We show that there is no more information available

beyond what is in the marginal densities.

Recall the first-order conditions from the previous section. On the firm side we have

"1 = T1 (z)¡ ´1 (x)

and on the worker side we have

"2 = T2 (z)¡ ´2(y).

These technologies are the primitives of the model. The other primitive is the joint density

9Epple (1987) discusses the potential importance of using the full joint density but his discussion is not

complete.
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for (x, y, "1, "2):

q1 (x) q2 (y) g1 ("1) g2 ("2) .

By assumption x, y, "1, "2 are jointly independent. Note that this independence does not

hold conditional on location z, but only holds across all z locations. (One can think of the

hedonic equilibrium as a mapping from the joint distribution of (x, y, "1, "2) to the joint

distribution of (x, y, "1, "2, z)). This mapping does not change the marginal distribution of

(x, y, "1, "2) . This marginal distribution is exogenous and can only change over time due to

exogenous time trends, investments, exit or entry, or fundamental demographic change.10

Given the model primitives, we want to derive what restrictions the model places on the

observable data; i.e. the joint distribution of (x, y, z) . To derive these restrictions note the

following. The random vector underlying the economy is (x, y, "1, "2) . The dimension of

this random vector is nx+ny+2 where nx is the dimension of x, ny is the dimension of y,

and "1 and "2 are each of dimension 1. The equilibrium maps this underlying random vector

into the observable random vector (x, y, z) . This observable random vector is of dimension

nx + ny + 1; it is of dimension one less than fundamental random vector (x, y, "1, "2) .

In order to derive the observed data density we first fix the functions T 01(z1) and T
0
2(z2).

Imagine an economy where both firms and workers are choosing locations taking T 01 and

T 02 as given, but that firms choose z1 while workers choose z2. For the moment, we do not

impose equilibrium and allow z1 6= z2. The following mapping generates the data from this
10A more complete dynamic analysis would model how this marginal distribution changes over time.
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hypothetical economy:

x = x; y = y

"1 = T1 (z1)¡ ´1 (x)

"2 = T2 (z2)¡ ´2(y)

These functions map observable and unobservable characteristics of workers and firms into

the observables (x, y, z1, z2) . The Jacobian of the mapping is

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

1 0 0 0

0 1 0 0

¡´01 (x) 0 T
0
1 (z1) 0

0 ¡´02(y) 0 T 02 (z2)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
= T

0
1 (z1)T

0
2 (z2) .

This mapping defines a density on (x, y, z1, z2) :

q1 (x) q2 (y) g1 (T1 (z1)¡ ´1 (x)) g2 (T2 (z2)¡ ´2 (y))T 01 (z1)T 02 (z2) .

This is a well defined density for the disequilibrium economy. However, if we impose

equilibrium (z1 = z2 = z), we can determine the joint density of (x, y, z) . It is the density

of (x, y, z1, z2) conditional on z1 = z2 = z. That is, the density of (x, y, z) is

f(x, y, z)

=
q1 (x) q2 (y) g1 (T1 (z)¡ ´1 (x)) g2 (T2 (z)¡ ´2 (y))T 01 (z)T 02 (z)Z

x

Z
y

Z
z

q1 (t1) q2 (t2) g1 (T1 (t3)¡ ´1 (t1)) g2 (T2 (t3)¡ ´2 (t2))T 01 (t3)T 02 (t3) dt1dt2dt3

(22)
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In the appendix we prove that there is no more information in the joint densities than in

the marginal densities.

Theorem 3 Joint density (22) provides no more information than the marginal densities

f (z1, x) , f (z2, y) .

Proof : See Appendix A. ¥

4.2 The Role of Separability

The key role in identification played by separability assumption (A-1a) is demonstrated

in Figures 7 and 8 which plot marginal willinging to pay and marginal products against z.

The marginal pricing function is also plotted.

Separability of the first order conditions as used in this paper (see condition A-1a) gives

parallel willingness to pay and marginal productivity curves. (See the two parallel curves in

each figure for two values of x and y respectively). Equilibrium is at point A of each curve.

As x shifts we reach a new equilibrium B. But the slope of B is the same as the slope at

B0 on the initial benchmark curve. Thus, with su±cient support for Z (guaranteed by the

assumption (A-1) on the support of "1 and "2) we can trace out the benchmark willingness

to pay (Y = y0) and marginal productivity curves (X = x0) using data on all levels of Z

and X. In a nonseparable case, we cannot relate the slope at B to any particular point

on the benchmark curves. The entire analysis of this section can be reproduced for any

member of the class of transformations defined in (A-1).
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5 Instrumental Variables

Theorem 1 supplemented with some additional regularity conditions justifies the appli-

cation of instrumental variables for general parametric versions of model (13). Instrumental

variables are generically valid even though there are no exclusion restrictions.

We analyze the first order condition

P 0 (z) = '1 (z) + ´1 (x) + "1

with z 2 Z = (0,1) , x 2 X = (0,1) , and "1 2 E1 = (0,1) where (x, ") » q1 (x) g1 (")
and q1 and g1 are strictly positive densities, P

0 (z) > 0, '1 (z) > 0 and P
00 ¡ '01 > 0. We

assume EX (´
2
1 (x)) <1.

The literature reviewed in Section 3 establishes that in a single market setting there are

no exclusion restrictions for this equation. Variables from the other side of the market are

stochastically dependent on "1 given Z = z.

Although there are no natural exclusion restrictions, instruments for '1(z) are still

available. If EZ('1(Z) | x) is not collinear with ´1(x), then it is possible to use X as

instruments for '1(z) in (13). Kahn and Lang (1988) make this point by way of an ex-

ample for a particular functional form. In this section we establish that generically X is a

valid instrument for any arbitrary parametric functional form that satisfied the conditions

required to prove a corollary to Theorem 1. This result highlights the main themes of our

paper: that the hedonic model is intrinsically nonlinear, that nonlinearity is an important

source of identifying information and that intuitions developed in linear econometrics when

applied to a nonlinear model are misleading. We can use our result to justify the choice of

parametric nonlinear IV as in Amemiya, 1975.
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As a consequence of Theorem 1, instrumental variable estimation strategies for general

nonparametric models are valid. In the appendix, we prove that generically the expectation

of '1(z) given x is not collinear with ´1(x). This means that the X are valid instruments

for '1(z).

Corollary 1 of Theorem 1 Generically with respect to any pair of the parameters in

Theorem 1, EZ ('1 (z) |x) cannot be collinear with ´1.
Proof: See Appendix A. ¥

As a consequence of this corollary, we can use X as an instrument for '1(Z) using

parametric nonlinear IV (Amemiya, 1975). We conjecture that this condition also justifies

the application of nonparametric IV (Darolles et. al, 2001, Florens, Heckman, Meghir and

Vytlacil, 2000, or Newey and Powell, 2000). However, those papers require an exclusion

restruction which is not intrinsic to the model and it is necessary to extend their arguments

to impose Corollary 1 as an identifying condition in the estimation. This is a task we leave

for the future.

6 Summary, Conclusions and Proposed Extensions

This paper considers identification and estimation of technology and preference parame-

ters using data on choices made in a single hedonic market. The general hedonic problem is

formulated, a normal-linear-quadratic version of the model is developed and its advantages

and peculiarities are exposed.

Standard criticisms directed against Sherwin Rosen’s two stage estimation procedure for

hedonic models are shown to be misleading. Generically, a separable nonparametric version

of the model is identified up to levels. With mild functional form assumptions, the model
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is completely identified. Two estimation procedures are presented: (a) nonparametric

transformation methods, and (b) IV in a general nonlinear but parametric setting.

The analysis developed here applies to closely related problems of estimating preferences

and technology when taxes are set optimally (Mirrlees, 1971 and 1986), when monopolists

price discriminate (Mussa and Rosen, 1978; Wilson, 1993) and for the standard problem of

taxes and labor supply (Heckman, 1974; Hausman 1980) when tax schedules are nonlinear

and continuous.

Our presentation of the hedonic model is for the vector case. Yet our basic proofs are

only for the scalar case. An extension for the nonseparable vector case is underway in joint

work with Rosa Matzkin. That work considers the case of identification for a nonseparable

hedonic model with vector attributes when some of the attributes are missing. (Ekeland,

Heckman, Matzkin and Nesheim, 2001, in preparation)
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7 Appendix: Proofs

Recall that we have denoted by X and Y the supports of q1 and q2, so that we may assume
that x 2 X and y 2 Y . Denote by Z the domain of z, so that z 2 Z ; both '1 and '2

map Z into R. For the sake of simplicity, it will be assumed that Z is an interval, possibly
unbounded. We denote by C1 (Z), the space of continuously di®erentiable11 functions on
Z endowed with the following topology: fn ! f i® fn converges to f and the derivatives

f 0n converge to f
0, uniformly on compact subsets of Z. It is known that this topology turns

C1 into a complete metric space.12

Denote by C21 (R) the space of twice di®erentiable functions g on the real line, satisfyingR
g = 1 and g > 0 everywhere, with g, g0, g00 continuous and uniformly bounded. It is

endowed with the topology of uniform convergence of g, g0, g00 which turns it into a complete

metric space; this is the natural space for g1 and g2.

The natural spaces for ´1 and ´2 are C
1 (X ) and C1 (Y) respectively. The natural spaces

for q1 and q2 are C
0
1 (X ) and C01 (Y), where C01 denotes the space of continous functions q

such that
R
q = 1 and q > 0 everywhere, endowed with the uniform norm. We now restate

Theorem 1 more precisely:

Theorem 1 Restated Generically with respect to any of the parameters pairs ('1, '2) 2
C1 (Z)× C1 (Z) , (g1, g2) 2 C21 (R)×C21 (R) , (´1, ´2) 2 C1 (X )×C1 (Y) , (q1, q2) 2 C01 (X )×
C01 (Y) the equilibrium equations have no solution of the form P 0 (z) = a1 + b1'1 (z), nor

any solution of the form P 0 (z) = a2 + b2'2 (z) .

11If z0 2 Z is the left (or right) extremity of Z, a derivative at z0 will be understood to mean a right (or
left) derivative.
12And even a Banach space if Z is compact.
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Proof of Theorem 1:

Set ('1, '2, g1, g2, ´1, ´2, q1, q2) = µ and C
1 (Z)×C1 (Z)× C21 (R)× C21 (R)× C1 (X )×

C1 (Y)× C01 (X )× C01 (Y) = £.
Define a map © : £× R4 ! C0 (R) by:

© (µ, a1, b1) (z) = (b1 ¡ 1)'01 (z)
Z
X

g1(a1 + (b1 ¡ 1)'1 (z)¡ ´1 (x))q1 (x) dx

¡ (b1'01 (z)¡ '02 (z))
Z
Y

g2 (a1 + b1'1 (z)¡ '2 (z)¡ ´2 (y)) q2 (y) dy

©(µ, a1, b1) = 0, or © (µ, a1, b1) (z) = 0 for all z, means that the equilibrium equation

has a solution of the form

P (z) = a1 + b1'1 (z)

and we want to show that, generically in any of the parameter pairs, this cannot happen.

To do that, fix three points z1, z2, z3 in Z, all pairwise distinct, and define a map ª :

£×R2 ! R3 by:

ª (µ, a1, b1) = (© (µ, a1, b1) (zi))1·i·3

Lemma: The map ª is C1

Proof: The Gateaux derivative Dª of ª at (µ, a1, b1) is easily expressed. Set ±µ =

(±'1, ±'2, ±g1, ±g2, ±´1, ±´2, ±q1, ±q2), where the components of ±µ belong to the appropriate

vector spaces, ±g1, ±g2, ±q1, ±q2 being subject to the additional requirement of integrating

to zero. Similarly, set (±a1, ±b1) 2 R2, and compute the first variation of ª:
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Dª(±µ, ±a1, ±b1) = (A-1)

[±'01(zi)(b1 ¡ 1)
Z
X

g1(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx¡

(b1±'
0
1(zi)¡ ±'02(zi))

Z
Y

g2(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2(y)dy +

±'1(zi)(b1 ¡ 1)2'01(zi)
Z
X

g01(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx¡

(b1±'1(zi)¡ ±'2(zi)) (b1'01(zi)¡ '02(zi))
Z
Y

g02(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2 (y) dy +

(b1 ¡ 1)'01 (zi)
Z
X

±g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))q1 (x) dx¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

±g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) q2 (y) dy ¡

(b1 ¡ 1)'01 (zi)
Z
X

g01(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))±´1 (x) q1 (x) dx+

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

g02 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) ±´2 (y) q2 (y) dy +

(b1 ¡ 1)'01 (zi)
Z
X

g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))±q1 (x) dx¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) ±q2 (y) dy+

Since the functions g1 and g2 are uniformly bounded, and their first derivatives also, all

the integrals in these formulas are well-defined. Since the functions g1 and g2 are uniformly

continuous, as are their first derivatives, these integrals depend continuously on (a1, b1) and

on µ. So the function ª is C1.
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This ends the proof of the lemma. To prove the theorem, we have to vary each pair of

parameters singly. This amounts to considering, instead of ª, the partial maps obtained

by keeping all parameter values fixed except two, and showing that the corresponding

derivative is onto. This gives four di®erent cases.

Genericity with respect to ('1, '2) We consider the partial map ª ('1, '2, a1, b1)

and the derivative of the partial map Dª(±'1, ±'2, ±a1, ±b1), where it is understood that

all the other parameters g1, g2, ´1, ´2, q1, q2 are set to fixed values. Hence the derivative of

the partial map is given by (A¡ 1) with all variations other than (±'1, ±'2, ±a1, ±b1) set to
zero.

Since the point zi are pairwise distinct, we can choose the (±'1, ±'2) so that (±'1(zi), ±'2(zi)) =

(0, 0) for all i. Choosing in addition (±a1, ±b1) = (0, 0) cancels all the terms on the right-

hand side except the two first ones. Since the remaining integrals are non-zero (in fact,

positive), the coe±cients of ±'01(zi) and ±'
0
2(zi) cannot vanish together. So the image by

Dª of vectors such that (±'1(zi), ±'2(zi)) = (0, 0) and (±a1, ±b1) = (0, 0) must be all of R
3.

Saying that Dª is onto means that the partial map ª is transversal to every point in

R3, in particular to the origin. By Thom’s transversality theorem, generically in ('1, '2),

the partial map

(a1, b1)! ª('1, '2, a1, b1)

is transversal to the origin. This means that whenever ª ('1, '2, a1, b1) = 0, the partial

derivative Da1,b1ª must be onto; but the latter is impossible, since Da1,b1ª sends a two-

dimensional space into a three-dimensional one. So ª ('1, '2, a1, b1) 6= 0 for every (a1, b1) .
We have thus proved that, generically in ('1, '2) , we must have © ('1, '2, a1, b1) (zi) 6= 0

for one i at least. This implies of course that © ('1, '2, a1, b1) (z) cannot be identically
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zero, and hence that the equilibrium equation does not have a solution of the form P (z) =

a1 + b1'1 (z) . The same argument will show that, generically in ('1, '2), the equilibrium

equation does not have a solution of the form P (z) = a2 + b2'2 (z) . Since the intersection

of two generic properties is generic, the theorem follows for the pair ('1, '2).¥

Genericity with respect to (g1, g2) We consider the partial map ª (g1, g2, a1, b1),

where it is understood that all the other parameters are pegged to fixed values. The partial

derivative is given by

Dª(±g1, ±g2, ±a1, ±b1) =

[(b1 ¡ 1)'01 (zi)
Z
X

±g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))q1 (x) dx¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

±g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) q2 (y) dy +

(±a1)(b1 ¡ 1)'01(zi)
Z
X

g01(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx¡

(±a1)(b1'
0
1(zi)¡ '02(zi))

Z
Y

g02(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2(y)dy +

(±b1)(b1 ¡ 1)'01(zi)'1(zi)
Z
X

g01(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx¡

(±b1)(b1'
0
1(zi)¡ '02(zi))'1(zi)

Z
Y

g02(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2(y)]i=1,2,3

Introduce the distribution functions µ1 and µ2 of the random variables ´1 and ´2. They

are probability measures on the real line, and the first two lines of the above formula can

be rewritten as:
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Dª(±g1, ±g2) =

[(b1 ¡ 1)'01 (zi)
Z
±g1(a1 + (b1 ¡ 1)'1 (zi) + t)dµ1 ¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
±g2 (a1 + b1'1 (zi)¡ '2 (zi) + t) dµ2]i=1,2,3

Setting ci = a1 + (b1 ¡ 1)'1 (zi) and di = a1 + b1'1 (zi) ¡ '2 (zi), and denoting by µi1
and µi2 the translates of µ1 and µ2 by ¡ci and ¡di we rewrite the first two lines of the
partial derivative again as:

Dª(±g1, ±g2) = [(b1 ¡ 1)'01 (zi)
Z
±g1(t)dµ

i
1 ¡ (b1'01 (zi)¡ '02 (zi))

Z
±g2 (t) dµ

i
2]i=1,2,3

We pick the zi so that the probability measures µ
i
1 and µ

i
2, i = 1, 2, 3, are pairwise

di®erent, and '01 (zi) and '
0
2 (zi) do not vanish. Then the coe±cients of the integrals

cannot vanish simultaneously, and the right-hand side clearly spans R3. We conclude as in

the preceding case; by applying Thom’s transversality theorem.

Genericity with respect to (q1, q2) We consider the partial map ª (g1, g2, a1, b1),

where it is understood that all the other parameters are pegged to fixed values. The partial

derivative is given by:

Dª(±q1, ±q2, ±a1, ±b1) =

[(b1 ¡ 1)'01 (zi)
Z
X

g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))±q1 (x) dx¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) ±q2 (y) dy+
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(±a1)(b1 ¡ 1)'01(zi)
Z
X

g01(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx¡

(±a1)(b1'
0
1(zi)¡ '02(zi))

Z
Y

g02(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2(y)dy

+(±b1)(b1 ¡ 1)'01(zi)'1(zi)
Z
X

g01(a1 + (b1 ¡ 1)'1(zi)¡ ´1(x))q1(x)dx

¡(±b1)(b1'01(zi)¡ '02(zi))'1(zi)
Z
Y

g02(a1 + b1'1(zi)¡ '2(zi)¡ ´2(y))q2(y)]i=1,2,3

We claim that the partial map obtained by setting (±a1, ±b1) = 0 is onto. We get

Dª(±q1, ±q2) =

[ (b1 ¡ 1)'01 (zi)
Z
X

g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))±q1 (x) dx¡

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) ±q2 (y) dy]i=1,2,3

We choose the zi so that the '
0
1 (zi) and the '

0
2 (zi) do not vanish, and so that the func-

tions g1(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x)) and g2 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) are pairwise
di®erent on a set of positive measure. The claim then follows, and genericity obtains as in

the preceding cases.

Genericity with respect to (´1, ´2) We consider

Dª(±´1, ±´2) = (b1 ¡ 1)'01 (zi)
Z
X

g01(a1 + (b1 ¡ 1)'1 (zi)¡ ´1 (x))±´1 (x) q1 (x) dx+

(b1'
0
1 (zi)¡ '02 (zi))

Z
Y

g02 (a1 + b1'1 (zi)¡ '2 (zi)¡ ´2 (y)) ±´2 (y) q2 (y) dy
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and we argue as in the preceding case.

Proof of Theorem 3:

The strategy of the proof is to determine whether taking the objects determined from

the marginal densities as demonstrated in the previous subsection and plugging them into

(22) provides any more information about the parameters that are not identified.

Write the conditional distribution of z given x and y as

F (z|x, y) =

zZ
¡1

g1 (T1 (s)¡ ´1 (x)) g2 (T2 (s)¡ ´2 (x))T 01 (s)T 02 (s) ds

Q

where

Q =

Z
x

Z
y

Z
z

q1 (t1) q2 (t2) g1 (T1 (s)¡ ´1 (x)) g2 (T2 (s)¡ ´2 (x))T 01 (s)T 02 (s) dt1dt2ds.

Using the information secured from the marginals, we obtain

T1 (z) = K1T̃1 (z) + C1; T2 (z) = K2T̃2 (z) + C2

g̃1 ("̃1) = g1 (K1"̃1)K1; g̃2 ("̃2) = g2 (K2"̃2)K2

´1 (x) = K1˜́1 (x) +R1; ´2 (x) = K2˜́2 (x) +R2

where

"̃1 (z, x) = T̃1 (z)¡ ˜́1 (x) +
µ
C1 ¡R1.
K1

¶
"̃2 (z, x) = T̃2 (z)¡ ˜́2 (x) +

µ
C2 ¡R2
K2

¶
and “s ” denotes that this information is known from the marginals.
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Substituting into F (z|x, y), using the appropriate Jacobians of transformation, we ob-
tain

F (z|x, y) = 1

Q

Z z

¡1

T̃ 01 (s)K1g1 (K1"̃1 (s, x)) T̃
0
2(s)K2g2 (K2"̃2 (s, y)) ds.

where "̃1(s, x) and "̃2(s, y) are written as explicit functions of (s, x) and (s, y) respectively

where s is an argument of integration. From the analysis of the marginals, we do not know

g1, g2 but rather g̃1, g̃2 which are functions of "̃1 and "̃2 respectively. Thus the unidentified

constants K1, K2 drop out and equation (22) provides no additional information on them:

F (z|x, y) = 1

Q

Z z

¡1

T̃ 01 (s) ĝ1 ("̂1 (s, x)) T̃
0
2 (s) g̃2 ("̃2 (s, y)) ds.

Proof of Corollary 1 of Theorem 1:

By definition,

P 0 (z)¡ '1 (z) = ´1 (x) + "1.

Because of the second-order condition P 00 (z) ¡ '01 (z) > 0 so that the left side can be

inverted uniquely (globally) to obtain

z = ¤(´1 (x) + "1)

where by the implicit function theorem ¤0 (q) = [P 00 (¤ (q))¡ '01 (¤ (q))]¡1 . Define the
mapping

h = '1 (¤ (´1 (x) + "1))

x = x,
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where

Ez ('1 (z) |x) = Ez (h |x) =
Z
E

'1 (¤ (´1 (x) + "1)) g1 ("1) d"1.

This conditional expectation is a functional of ´1.Assume it is linear with respect to ´1.

Pick a direction ±´1, and define a function f(t) on the real line by:

f (t) =

Z
E

['1 (¤ (´1 (x) + t ±´1 (x) + "1))¡ '1 (¤ (´1 (x) + "1))]g1 ("1) d"1

Then f (t) is linear, so that f 00 (0) = 0. Performing the computations, we get the

equation:

[±´1 (x)]
2

Z
¸ (´1 (x) + "1) g1 ("1) d"1 = 0

where ¸ =
£
('001 (P

00 ¡ '01)¡ '01 (P 000 ¡ '001)) (P 00 ¡ '01)¡3
¤ ± ¤. This reduces to:

Z
¸ (´1 (x) + "1) g1 ("1) d"1 = 0 a.e.x

and the function ¸ has the property that every translate of ¸ by any amount ´1 (x) integrates

to 0 against g1, which is a fixed probability density. If the support of g1 is unbounded, it

follows that ¸ = 0 a.e. so
£
('001 ¡ '01 (P 000 ¡ '001)) (P 00 ¡ '01)¡2

¤ ± ¤ vanishes, meaning that
('001 ¡ '01 (P 000 ¡ '001)) (P 00 ¡ '01)¡2 vanishes on the range of ¤, which is precisely the domain
Z of z. This proves that

('001 (P
00 ¡ '01)¡ '01 (P 000 ¡ '001)) = 0 on Z

so that

'001
'01
=
P 000

P 00
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and P 00 = a'01, ending with P
0 = a'1+ b. From Theorem 1, genreically this cannot happen

and the proof is conluded.
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Table 2
Model 2

Linear Quadratic Technologies
Non-Negative z

Firms ¦ (z) = º0 + º1z ¡ 1
2
bz2 ¡ p (z)

º1, b ¸ 0
ln º1 = º10 + º

0
11x+ "1

x and "1 are both distributed as a mixture of normals
(the mixtures could have only one component).

FOC º1 ¡ bz ¡ p0 (z) = 0
SOC ¡b¡ p00 (z) < 0
Workers V (z) = µ0 + µ1z ¡ 1

2
az2 + p (z)

µ1, a ¸ 0
ln µ1 = µ10 + µ

0
11y + "2

y and "2 are both distributed as mixtures of normals

Equilibrium
Figures (5) and (6) display the equilibrium slope and curvature of the

price function in the linear-quadratic hedonic model with the following re-
strictions º1 ¸ 0, µ1 ¸ 0, and z ¸ 0.
The parameter values a = 2.0 and b = 1.0 were used. In addition, º1

and µ1 were assumed to be distributed as mixtures of two normals. The
parameters of the two normals are listed in the following table.

Components
1 2

µº 1.0 2.0
µµ -0.5 0.5
¾2º 0.21 0.21
¾2µ 0.61 0.61
¸º 0.5 0.5
¸µ 0.5 0.5
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