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ABSTRACT. This paper explores the identifiability of ratios of derivatives of the
index function in a model of a duration process in which the impact of covariates on
the hazard function passes through a single index. The model allows duration and the
index to appear in a nonseparable form in the hazard function and includes a latent
heterogeneity term which acts multiplicatively on the hazard function. The model
allows covariates to be endogenous, that is to be correlated with the heterogeneity
term. Quantile invariance, local order and local rank conditions are shown to be
sufficient to permit identification of ratios of derivatives of the index function. The
framework constructed in this paper is suitable for the analysis of identification in
panel duration models with heterogeneity.

1. INTRODUCTION

This paper considers the identification of features of processes generating duration data.
A model is proposed in which the hazard function at duration ¢ conditional on the value,
x, of observed time constant covariates and the value, u, of an unobserved latent variable,
Arixu(tlr,u), is a nonseparable function of ¢ and a scalar index 0(x) with u having a
proportionate effect, as follows.

>\T|XU(t|x7 u) = j(tv G(x))/u

The model does not embody the familiar “proportionate hazard restriction” on the
impact of covariates on the hazard function but it does impose this restriction on the
impact of the term representing uncontrolled heterogeneity. The aim of this paper is
to determine weak conditions under which interesting features of the conditional hazard
function can be identified. In practice one may impose additional restrictions in order to
facilitate estimation. The results of this paper allow one to see which restrictions imposed
have fundamental identifying power, and which do not. This is important knowledge as
Roehrig (1988) persuasively argues.

The paper focusses on the identification of the value of a ratio of derivatives of the
index function with respect to variables z; (numerator) and z; (denominator) when these
variables are exogenous (but others may not be) and, more interestingly, when a variable
x; is endogenous and z; is exogenous'. For the purpose of this paper a variable x, is
exogenous if the conditional distribution of the latent heterogeneity variable, U, given
z is invariant with respect to changes in z,. When this condition does not hold z, is
endogenous.

The endogenous covariate could be a duration in a previous spell. So, the analysis can
be interpreted as providing conditions under which features of panel duration structures

*I am grateful to Simon Sokbae Lee for helpful comments.
I Extension to the case with more than one endogenous variable in x is straightforward using the
methods of this paper and is not considered here.
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are identified. But this is not the only application because the endogenous variable could
be an associated outcome of the duration process, for example, in a labour supply setting,
the wage paid in a job held prior to an unemployment spell, or the reservation wage?.

This is an analysis of semiparametric identification because the model proposed is,
apart from the index restriction on the impact of covariates and the proportionality restric-
tion on the heterogeneity term, nonparametrically specified. The analysis is conducted
in the context of a system of simultaneous structural equations with values of outcomes
(the duration of interest and the other endogenous variable) arising as the solution to
the structural equations at observed values of covariates and unobserved values of latent
random variables. This is the construction proposed by Hurwicz (1950).

This leads to a triangular nonseparable (in the latent variables) simultaneous equation
system of the sort studied in Chesher (2001a, 2001b, 2002a, 2002b). A distinctive feature
of duration models with heterogeneity is that there are more sources of stochastic variation
than observed outcomes which was disallowed in these papers.

A crucial implication of the proportionate heterogeneity restriction is that two of the
sources of stochastic variation combine, free of the covariates to produce a system with
the same number of observable outcomes as there are sources of stochastic variation, a
system to which the methods of those papers do apply.

As noted in Chesher (2001a) analysis of identification in nonseparable models is natu-
rally approached by considering the relationship between the structural features of interest
(in this case ratios of derivatives of index functions) and functionals of conditional quantile
functions derived from the joint distribution of observable outcomes given covariates.

Under certain monotonicity restrictions on the structural functions, restrictions on the
conditional quantiles of the distributions of latent variates given covariates imply restric-
tions on conditional quantile functions involving observable outcomes. These conditional
quantile restrictions on the latent random variables, together with order and rank type
conditions on the impact of covariates on the structural functions are embodied in the
identifying model proposed in this paper. Manski (1988), in the context of binary response
models, argues elegantly and persuasively for consideration of conditional quantile restric-
tions as identifying restrictions, and conditional quantile identifying restrictions are used
in problems close to that considered here by Chaudhuri, Doksum and Samarov (1997),
Matzkin (1999) and Kahn (2001).

The model considered here requires the impact of X to pass through a single?® index,
0(X), a restriction imposed in many other papers including, Han (1987), Powell, Stock
and Stoker (1989), Newey and Stoker (1993), Sherman (1993) and Chaudhuri, Doksum
and Samarov (1997) and Kahn (2001). This restriction is imposed in this paper because it
implies that interesting structural features (ratios of index derivatives) are free of stochas-
tic variation. In the model studied here, in which there are two, potentially confounded,
sources of variation (duration and heterogeneity related) there can be ambiguity in the
interpretation of structural features which do not have this property.

Chesher and Lancaster (1984) considered parametric duration models in which hazard
functions depend upon endogenous variables and Lancaster (1985) examined identifica-
tion in such a model using an approximate linearisation which cast the problem into the
classical linear simultaneous equations form in which the role of order (exclusion) and
rank conditions in achieving identification is clear. Local versions of these conditions fea-
ture in the identifying restrictions set out in this paper. The attack on the identification
problem taken in this paper, via conditional quantile functions, removes the need for the
linear approximation and the restriction to specific functional forms (e.g. for hazard func-

2See Chesher and Lancaster (1983) and Lancaster (1985) for examples of analysis of data of this sort.

3In fact the analysis could proceed using multiple indexes, 1(X1), 82(X2), etc., as long as attention
is restricted to identification of index derivative ratios involving pairs of covariates that appear in just
one of the indexes.
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tions) employed in Lancaster (1985). It suggests an alternative attack on the estimation
problem considered by Lancaster (1985) based on conditional quantile regression function
estimation in place of the two stage least squares procedure he employed which was based
on an approximate linearisation of the structural equations.

Koenker and Geling (2001) appraise the utility of a conditional quantile regression
attack on the analysis of durations and their dependence on conditioning variables. Re-
garded in the context of this paper, Koenker and Geling’s analysis is a “reduced form”
analysis in the sense that heterogeneity is not modelled explicitly, the focus being directly
on the conditional distribution of a duration given covariates and the information about
this that is imparted by estimated quantile regression functions. In that context there is no
role for an “endogenous” variable affecting duration because there is no structural model
involving heterogeneity with which such an “endogenous variable” could be correlated.

The main result of the paper is contained in Section 4. A ratio of derivatives of the
index function at some point of interest is shown to be identified by the proposed model
and its value is delivered by a functional of conditional quantile functions involving only
observable random variables. This suggests that conditional quantile estimation methods
(Koenker and Bassett (1978)) could have more potential in the analysis of duration data
than is perhaps generally appreciated.

The plan of the paper is as follows. Section 2 introduces the essential duration related
elements of the model, specifying the admissible form of the hazard function in Section 2.1.
Section 2.2 recalls the definition of identifiability of a structural feature due to Hurwicz
(1950), and then in Section 2.3 the problem is set in Hurwicz structural equation form.
Section 3 introduces additional restrictions producing a model which identifies a ratio of
index function derivatives when covariates are exogenous. Section 4 introduces a final set
of restrictions producing a model that identifies ratios of index function derivatives when
a covariate is endogenous. Estimation issues and the impact of censoring are discussed at
the end of Section 4 and Section 5 concludes.

Restrictions are introduced as they are needed in the exposition. The complete set of
restrictions is set out for reference in Annexes 1 and 2, respectively covering the exogenous
and the endogenous case.

2. HAZARD MODELS WITH PROPORTIONATE HETEROGENEITY

2.1. Hazard function. Let the hazard function for absolutely continuous scalar ran-
dom variable T' € (0, 00) given k-element X = z and scalar U = u > 0 be

Arixu (tlz, u) = Apjoxu (t0(2), u) = j(t, 0(x)) /u (1)

where (z) is a scalar function of . The integrated hazard function is J(¢,0(x))/u where

J(t,e(x)):/o’j(s,a(x))ds, i(5,0()) = Vi (¢, 0(z)).

This paper develops conditions additional to (1) under which the relative sensitivity
of the index 0(x) to variations in two elements of x is identifiable. This relative sensitivity
is the ratio of derivatives

Rij(x) = Vxb(z)
Vv X; 0 (iL‘ )
and throughout consideration is given only to cases in which, at the value x considered,
the denominator derivative is nonzero. The model embodies the restriction that the index
function is differentiable with respect to X; and X; at X = x.

With the dependence of the hazard function on ¢ and 6(x) nonparametrically specified

as in (1) one of the derivatives Vx,0(x) # 0 can always be normalised to equal 1 with
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suitable modification of the function j(t,60(z)), and with that done, R;;(z) measures the
sensitivity of the normalised index to variations in X; at X = x.

2.2. Identification. The ratio of derivatives R;; is identified by a model (dependence
on z is suppressed in the notation for the present) when it takes the value Ry; if, for
any structure, S, admitted by the model in which R;; = R};, the value of R;; is R
in all admissible structures observationally equivalent to S (Hurwicz (1950). Structures
observationally equivalent to S generate the same conditional distribution of T given X,
Fr x, as is generated by S.

The Lemma in Chesher (2002b) states that R;; is identified when its value is R; if
there exists a functional G(F|x) with the property that all admissible structures with
Ri; = R;; generate conditional distributions for 7" given X such that G(Fr|x) = R};.

The strategy adopted in this paper is to determine weak restrictions on structures, that
is a model, sufficient for the existence of a functional G(-) with this property. Estimation
of the value of an identifiable R;; follows directly using the analogue estimator G (FT| X)-

2.3. Hurwicz structural form. It is convenient to cast the duration problem studied
in this paper in the structural equation - latent disturbance form set out in Hurwicz
(1950) and employed in Lancaster (1985). In this construction M observable outcomes
(e.g. T and when they may arise, other endogenous variables) are regarded as being
determined by M equations delivering values of observable outcomes given values of N
latent unobservable random variables and values of covariates. A structure comprises
a particular system of equations and a particular conditional distribution for the latent
variables given the covariates.

To cast the problem of this paper in this form, first note that the conditional distrib-
ution function of T' given X = x and U = u is

Frixu(tle,u) =1 —exp (=J(t,0(x)) /u)

and the associated conditional p-quantile function is

QT|XU(p|x7 u) = J_l(w(p7 u)7 0(3?))
where
w(p,u) = —ulog(l — p)
and J~1(a,b) is the unique solution to

a=J(J (a,b),b). (2)

Note that w(p, u) is a strictly increasing function of u and p and that since T is continu-
ously distributed J(a,b) is strictly increasing in a for any value of b and so there is, for
any b, always a unique solution to (2).

Let V' be uniformly distributed on (0,1). Then the random variable T' can be written
in Hurwicz structural form as

T=J7(W(V,U),0(X)) (3)
where the random variable W(V, U) is defined as
W(WV,U)=-Ulog(l-V).

Given any particular value z of X, and u of U, and with V uniformly distributed
on (0,1), the equation (3) delivers a random variable, T, whose conditional distribution
function given U = v and X = x is

Prixu(tle,u) = 1 = exp (= J(£,0(2)) /u)
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Further, given any particular distribution of U given X, Fy x, and a value x of X the
equation (3) delivers a random variable, T', with conditional distribution function given
X =z, marginal with respect to U, as follows.

FT‘X(t|x) =1- /exp(fJ(t,H(x))/u) dFU‘X(u\x).

The random variable V' is, by construction, independent of (U, X).

The structural equation (3) generates M = 1 outcome (T') given N = 2 sources of
stochastic variation (V and U). The force of the proportionate heterogeneity restriction
is that these two sources of stochastic variation combine, free of X, to a single source,
W(V,U). Lancaster (1985) noted this phenomenon in the parametric model he studied.
The result is a consequence of the proportionate heterogeneity restriction and holds in
wide class of duration models. That these two sources of stochastic variation do coalesce
into a single source of variation via a functional relationship free of X is crucial in the
argument of Section 4.

3. IDENTIFICATION UNDER LOCAL EXOGENEITY RESTRICTIONS

For any p € (0,1) and some value = at which identification of R;;(x) is sought, define

’LU(p, ZL’) = QW|X(p7 ‘T)
tp,x) = JH(w(p,x),0(x))

where Qw | x (p, z) is the p-quantile of W (V,U) given X = x.
Since J~! is strictly increasing in its first argument the equivariance property of quan-
tiles ensures that the conditional p-quantile of T' given X = x is

QT|X(p7 1‘) = t(p, {L‘)

Thus the value of ¢(p, x) is identified in the sense that for admissible structures?

the functional referred to in Section 2.2 being G(Fr|x) = Q7| x (p, ).
Consider an element, X;, of X which has continuous variation and let the first partial
derivative of t(p, z) with respect to X; be denoted by ¢;(p,z). Then

t?(pa ZE) = ijil(w(pa ‘T)a e(x))vlw(pa 33) + vﬁjil(w(pa 33), e(x))vle(x)

where the operators V,,, Vy and V; indicate partial differentiation with respect to re-
spectively w(p, ), 8(x) and z;.°
Consider two elements of X, X; and X; and the quantile invariance restrictions

ViQwx(p,2) =0 V;Qwx(p,x) =0 (4)

(which may only hold for the specified value p and in a neighbourhood of the value of x
of interest), equivalently
Viw(p,a) =0 Vjw(p,z)= 0.

4The restrictions embodied in the identifying model under exogeneity are set out in Annex 1. Identifi-
cation of the value of ¢(p, z) requires only Condition 1 to hold. This result is essentially an application of a
result in Matzkin (1999) which studies identification of nonparametrically specified functions of exogenous
variables using conditional quantile restrictions.

5The requirement that T has a continuous distribution ensures that V., J~! exists. The existence of
other derivatives is embodied in the restrictions of the model set out in Annex 1.
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Under these restrictions, which can be thought of as local exogeneity restrictions,

tilp,x) = VoJ Yw(p,x),0(x))V0(x)
ti(p,x) = VoJ Nw(p,z),0(x))V;0(x)

from which, if VoJ = (w(p,z),0(x)) # 0, a further restriction now imposed,

ti(p,x)  V;0(x)

If X; and X; show continuous variation in a neighbourhood of the point X = x and if
the relevant quantile invariance conditions hold in a neighbourhood of the point x, then
the value of t(p, z) in a neighbourhood of z is identified. From this it follows that at x
the derivatives V;t(p, ) and V;t(p, x) are identified, that is, in admissible structures:

= R;j(x).

Vz‘t(p, LU) = t*vi = viQT|X(p7 LU) = t*Vi
Vt(p,z) = t*vj = V,;Qrx(p,x) = ty;

It follows that the ratio of derivatives, R;;(z), of the index 6(z) is, under the restrictions
imposed, and set out in Annex 1, identifiable, because in admissible structures,

Vi T
Rij(z) = R* = ViQrix(p.2) _ R*.
V;iQrx(p;T)
Note that there is no requirement that elements of X other than X; and X; be locally
exogenous, that is this identification result does not require restrictions of the sort

Viw(p,z)=0 1¢{i,j}.

An obvious estimator of the value of R;;(z) is the analogue estimator

i) = ViQ:T|X(p7 x)
N VjQT\X(P, )

where QT| x(p,x) is an estimator of the p-quantile regression of T given x.

Estimation could be done in the context of a semi-parametric single index model as
currently stated, or, if that is too demanding of data then further, parametric restrictions
could be imposed (and tested since they will be overidentifying restrictions). Estimations
is discussed further in Section 4.4.

If the local exogeneity restrictions hold at more than one value of p at the value of x
considered then R;;(x) is over identified and there is (a) scope for testing a subset of the
identifying restrictions and (b) scope for improved efficiency in the estimation of the value
of R;j(x), for example employing a minimum distance method to resolve non-concordant
estimates got using different sets of just identifying restrictions. However, in practice it
may be difficult to maintain the quantile invariance restrictions for one value of p, while
allowing the restrictions to fail at other values - an issue taken up in Section 4.5.

4. IDENTIFICATION WITH LOCAL ENDOGENEITY

This Section considers the case in which one element of X is endogenous in the sense that
the conditional distribution of U given X = x depends on this element of X. This element
of X could be the duration of a previous spell, or some associated outcome. For example,
if T is the length of a spell of unemployment the endogenous element in X could be the
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length of a previous spell of employment or unemployment, or the wage received in the
job held prior to the unemployment spell.

Denote the endogenous element of X by Y and denote the remaining elements of X
by Z. The vector X is now written as (Y, Z), the index 6(X) is now written as (Y, Z)
and the identifiability of the ratio of derivatives

_ VyO(Y,Z)|y—=y,z=-
Vz,00Y, Z2)ly=y,z=-

RYj (ya Z)

is considered where y and z are specified values of Y and Z. These derivatives and others
arising below are assumed to exist and to be finite and only cases in which

ijg(Y’ Z)|Y:y,Z:z 7£ 0 (5)

are considered.f
The endogenous Y is generated by the

“reduced form” equation

Y =h(Z,5)

where S is a latent unobservable random variable, not restricted to be distributed in-
dependently of W(V,U), and h(Z,S) is restricted to be strictly monotonic (normalised
increasing) with respect to variations in S in a neighbourhood of the value, z, of Z at
which identification of the ratio of derivatives Ry ;(y, ) is sought.

The structural equations determining 7" and Y are therefore:

T = JH(W,0(Y,2)) (6)
Y = WZ)S) (7)

where W = W(V,U).

This is a triangular nonseparable pair of simultaneous equations determining values
of T and Y given values of W, S and Z, a special case’ of the model studied in Chesher
(2001a, 2001b, 2002a, 2002Db).

Consider py € (0,1) and the py-quantile of S given Z = 2, Qg|z(py, 2). Denote this
value of S by s(py, z). Let

y(pY7 Z) = h(Z, 5(]9Y7 Z))
This is the value of Y at which identification of Ry;(y, z) is sought. The remainder of this
Section develops conditions under which the ratio of derivatives of the index function:

_ VY O(Y, Z)ly=ypy =), 2==
V2,00, 2)ly=y(py 2).2=2

(8)

Ry (Y, 2)ly=y(py =)

is identified.
The first step is to show that under the conditions already stated the value of y(py, 2)
is identified.

4.1. Identification of y(py,z). The equivariance property of quantiles ensures that

y(pY7 Z) = QY|Z(pY7 Z)

and so, in admissible structures

y(py,2) =y" = Qyiz(py,2) =y 9)

6The complete set of restrictions defining the identifying model under endogeneity are set out in Annex

2.
TA special case because S does not appear in its own right in the structural equation for T
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and therefore the value of y(py, 2z) is identifiable under the restrictions so far imposed.
Consider pr € (0,1), the value of W

w(pTapYa Z) = QW|SZ(PT7 5(pY7 Z)) Z)
and the value of T

t(pT,py, Z) = J_l(w(pT,py,Z), H(y(py, Z)’ Z))

It is now shown that, under conditions to be stated, the ratio of derivatives of the index
function (8) can be expressed as the following functional of derivatives of ¢(pr, py, z) and

y(py, Z)

_ Vit(pr,py, 2)
Vt(pr,py, 2)Viy(py, z) — Vit(pr, py, 2)V;y(py, 2)

Ry i (Y, 2)ly=y(py ,2) (10)

Here the operators V; and V; indicate partial differentiation with respect to elements z;
and z; of z.

The final step, taken in Section 4.3, is to show that under the stated conditions values
of these derivatives are identified at the point of interest.

4.2. Re-expressing the ratio of index derivatives. The first partial derivative of
t(pr, py, z) with respect to an element of z, z, is as follows.

Vo tr,vy,2) = t,(pr,py,2)

Vod Hw(pr,py, 2), 0(y(py, 2), 2))V,w(pr, py ;s 2)
+VoJ Hw(pr,py, 2),0(y(py, 2), 2)) V0 (y(py, 2), )V, (py , 2)
+VoJ Hw(pr, py, 2), 0(y(py, 2), 2)V, 0y Py, 2), 2) (11)
Here

vzpw(pTa Py, Z)
Vy0(y, z) ‘y:y(pY,Z)
Vzpe(y7 Z) ‘y:y(PY-,Z) :

va(pTapY7 Z
VUe(y(pY, Z)a z
Vpe(y(pYa Z)a z

Consider two elements of Z, Z; an
restrictions.

)
)
)
d Z; and impose the following quantile invariance

ViQsiz(py,2) = 0 V;Qsz(p,2) =0
ViQw|sz(01,8,2)s=s(oy,2) = 0 V;Qwsz(Pr,5,2)|s=s(py,z) =0
The first pair of restrictions implies that
Vis(py,z) =0 V,s(py,z)=0

and the restrictions together imply that

Viw(pr,py,2) =0 V,w(pr,py,z) =0.
Now impose the “local order condition”:
Vib(y, 2)ly=y(py ) = 0

which requires the index to be insensitive to variations in z; when Y is held constant at
Y = y(py,2) and Z = z. The variable Z; is essentially an instrumental variable. The
implication of the quantile invariance condition with respect to Z;

Viaw(pr, py,2) =0
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and the order condition, imply that, on setting p = ¢ in (11), there is simplification of the
expression for the z; derivative of t(pr, py, 2), as follows,

Vit(pr,py,z) = Vo H(w(pr,py, 2),0(y(py, 2), 2)) V4 0(y(py, 2), 2)Viy(py, 2)

from which, as long as the “local rank condition”

Viy(pY’ Z) #0

holds:
Vit(pr, Dy, 2) 1
_—_—m . 12
Viu(py.2) VoJ (w(pr,py, 2),0(y(py, 2), 2))V,0(y(py, 2), 2) (12)

Setting p = j in (11) and using the following implication of the quantile invariance
restrictions
vjw(pT7pY7 Z) =0

results in:

Vjt(PTavaz) = vﬁjil(w(pTapYa2)7g(y(pYaZ))Z))vye(y(pYaZ)az)vjy(pY)Z)
+VoJ " (w(pr, py. 2), 0(y(py. 2), 2))V;0(y(py, 2), 2)

and so, on using (12),

Vit(pr,py, 2)

Vq:y(py, Z) vjy(pY7 Z) = VHJ_l(w(pTapYa Z)7 g(y(pYV Z)? Z))vja(y(pY7 2)7 Z)

(13)

vjt(pTva7 Z)_

and, on combining (12) and (13),

Vit(pTaprz) _ vye(yyz”y:y(py,z)
Vjt(pTapYa Z)Vﬂ/(py, Z) - Vit(pT7pYa Z)ij(pYa Z) vje(ya Z)‘y:y(py,z)

which is the ratio of derivatives of the index whose identification is sought, as set out in
equation (8).

The value of y(py, z) has already been shown to be identifiable - see equation (9).
If Z; and Z; show continuous variation at the point Z = z and if the relevant quantile
invariance conditions hold in a neighbourhood of a point z, then the value of y(py, z) in a
neighbourhood of z is identified. From this it follows that at z the derivatives V;y(py, 2)
and V;y(py, z) are identified, that is, in admissible structures:

Viay(lpy,z) = yv, = ViQyz(py,2) = yy, (14)
Viylpy,2) = yv, = ViQvz(py, 2) = yy; (15)

The ratio of derivatives in (10) is therefore identified if the z; and z; derivatives of the
function t(pr, py, z) are identified. It is now shown that this is the case.

4.3. Identification of t(pr,py,2) and its derivatives. It is first shown that under
the conditions stated the value of t(pr, py, #) is identified, in particular, that in admissible
structures:

t(pr,py,2) =t = Qryyz(pr, Qv|z(py, 2),2) = t". (16)
First note that

t(pTapYa Z) = Jﬁl(w(pT)pYa Z)) e(h(za S(PY, Z))a Z))
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where, recall,
w(pTapYa Z) = QW|SZ(pTa 8(pYa Z>7 Z)

The equivariance property of quantiles implies that
t(pT7pY7 Z) = QT\SZ(pT7 5(pYa Z)a Z)

Since h(z, s) is strictly increasing in s at z, the two events
{S=spy,z2)NZ =2} {Y=ylpy,z2)NZ=2z2}

are identical, and therefore,

t(pr,py,2) = Qriyz(pr, y(pY, 2), 2)-

It has already been shown that the value of y(py, 2) is identifiable - see equation (9)
- and it therefore follows that, in admissible structures,

t(pr,py,2) =" = Qriyz(pr, Qv |z (PY, 2),2) = t*

and so the value of ¢(pr, py, 2) is identified.

If Z; and Z; show continuous variation at the point Z = z and if the relevant quantile
invariance conditions hold in a neighbourhood of a point z, then the value of t(pr, py, 2)
in a neighbourhood of z is identified. From this it follows that at z the derivatives
Vit(pr,py,2) and Vt(pr,py, 2) are identified, that is, in admissible structures:

Vit(pr,py,2) = 15, = ViQryz(pr,Qv|z(py,2),2) = 13,
Vitlpr.py,2) = ty, = ViQryyz(pr, Qv z(py,2),2) =13,

This, together with the results (14) and (15), implies that in admissible structures:

Ry j(y, 2)ly=y(py ,») = R

=
ViQryz(r, Qyiz(py, 2), 2) 7

V;iQnyz(pr, Qviz(py, 2), 2)ViQy|z(py, 2) — ViQr)y z(p1, Qv |2 (DY, 2), Z)VjQY|Z(Z()Y7)Z) -
17

which demonstrates the identification of the value of Ry ;(y, 2)|y=y(py,2)-

4.4. Implications for estimation. There are two potential sources of Z-driven vari-
ation in the iterated conditional quantile functions that appear in the identifying equation
above, and so, for example,

ViQryyz(pr, Qv iz(py,2),2) = VyQryyz(p1: Y, 2)ly=0y 2oy 2) ViQy 2 (DY 2)
+ViQT|YZ(pT7yaZ)'y:sz(py,z)' (18)

Estimation of the value of the ratio of index function derivatives is straightforwardly
achieved by first estimating the iterated conditional quantile functions Qr|yz and Qy |z
and their derivatives, then plugging these estimates into (17) using equation (18). Quantile
regression estimation technology is in a quite advanced state so it would be superfluous
to go into the fine detail of the estimation procedure to which the identification result of
this paper points. However, there are three issues worth considering.

First, if the quantile invariance, local order and local rank conditions hold for more
than one covariate Z; then (17) is true for more than one choice of Z; and the value of
Ry (Y, 2)ly=y(py =) is over identified. Efficiency considerations may lead one to combine
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alternative estimates got using just identifying subsets of restrictions, for example using a
minimum distance procedure. Alternatively this opens up the possibility of testing a just
identifying subset of the restrictions of the model.

Second, if the quantile invariance, local order and local rank conditions hold for two
or more values of (z,py,pr) which yield the same value of Ry ;(y, 2)|y—y(py,-) then the
value of Ry j(y, 2)|y—y(py,») is overidentified and again there are possibilities for improved
efficiency in estimation and for testing the specification of the model. This can happen if
elements of z to which the index is insensitive can be adjusted to compensate for variations
in py, leaving y(py, z) unchanged.

Third, even though an index function derivative ratio is identified by the model con-
sidered in this paper, this ratio may not be easy to estimate accurately in even moderate
sized samples if the semi-parametric specification of this paper is maintained. Typically,
rates of convergence of estimated derivatives of quantile regression functions are slow in
the absence of parametric restrictions. This might lead one to consider estimating an av-
erage index function derivative ratio with averaging taking place over some set of values
of the covariates, that is estimating structural features of the sort

/RYj(yaz)‘y:y(pYaZ)dW(z)

for some function W(z). Of course the quantile invariance, order (exclusion) and rank
(inclusion) restrictions would have to be maintained across all values of z given non-
zero weight by W(z). Whether such averages are of interest in practice is a matter for
case-by-case consideration. An alternative is to maintain fairly strong, but somewhat
flexible additional parametric restrictions and to regard the results as contingent on the
correctness of these restrictions, which, note, since they are overidentifying, are in principle
testable.

So far identification has been considered when restrictions may be local to a particular
value of py. However, on further examination, just local to pr restrictions on the con-
ditional quantiles of W given X appear rather difficult to maintain in practice, an issue
explored in the next Section.

4.5. Local to pr restrictions on conditional quantiles. In the development of the
identifying model® in Section 3 conditional p-quantiles of 7' were considered. Under the
monotonicity restrictions embodied in the model these were equal to the value delivered
by the structural function for T evaluated at W (V,U) = w(p, x) where

is the conditional p-quantile of W(V,U) given X = z and
WV, U)=-Ulog(l-V)

The identifying restrictions of the model include quantile invariance restrictions of the
sort

ViQwx(p,z) =0 (19)

where V; indicates partial differentiation with respect to x;.

There would be considerable flexibility if such restrictions could be maintained at one
value of p but not at others. Unfortunately such a local restriction at one value of p
on V;Qw|x(p,r) implies a “global” restriction on the distribution function Fyx. It is
difficult to imagine situations in which this global restriction could be maintained at one
value of p and not at all other values of p.

8The discussion of this Section also applies to the development of Section 4 with appropriate changes
in notation.
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It is shown in Annex 3 that the conditional quantile function of W given X is

QW|X(p7 33) = L71(1 - D 33)

where L~! is the inverse function of the function L(w,z) with respect to w, and L(w,z)
is the Laplace transform of the distribution of U~! given X, that is

L(w,z) = /000 exp(—w/u)dFy x (u|x).

It is further shown in Annex 3 that

V;L(w, CU) |U):QW|X(P737)
fW|X(QW|X(p7 r)|x)

ViQw|x(p,x) =

where fyy|x is the probability density function of W given X, and

va(wv x)‘w:QW‘X(p,m) = /OOO exp(fQW\X(pa $)/u)d (vlFU|X(u|m)) .

The quantile invariance condition V;Qw|x(p,z) = 0 clearly holds at z for all p if
ViFyx(ulz) = 0 for all u, which is in the nature of a local independence condition. It
is difficult to imagine cases in which, for some u, V;Fy x (u|x) # 0 and yet, for some p,

ViL(w, x)|w:Qw\x(P:l‘) =0.

In summary: local to p quantile invariance restrictions on Qw|x (p, z) are difficult to
maintain, and a quantile invariance restriction on Qw|x (p, z) for variations in X; can only
reasonably be maintained if the restriction that U is independent of X; is maintained,, at
least for variations in X in a neighbourhood of the value, x, of interest.

4.6. Censoring. So far no mention has been made of censoring which is a common
feature of data generated by duration processes. In the context of the Hurwicz structural
form representation, censoring is captured by writing the structural equation system as
T = O (WY, 2))
Y = h(Z,S)
where C(-) is a weakly increasing function capturing the type of censoring to be considered.
For example if there is right censoring at some value ¢ then
Cct) = t, t<c
cit) = ¢ t>c

Consider the analysis of identification under exogeneity. In that analysis, with censor-
ing, the function ¢(p, z) will be defined as

t(p,x) = C(J ™ (w(p, ),0(x)))

and the result
t(pa x) = QT\X(pa x)

still holds as long as we use the following definition of a conditional p-quantile for a random
variable, A say, given X with possibly non-differentiable distribution function Fy,x.

Qax(p,x) =inf{a: Fax(a,z) > p}
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The derivatives of ¢(p, z) with respect to z; and z; under the local exogeneity restrictions
will be as follows.

tilp,x) = ViC(J (w(p,x),0(2)) Ve " (w(p, ), 0(z))Vib(x)
tip,z) = ViOC(J ™ (w(p,2),0(x)))Ve " (w(p, 2),0(x))V;0()

In the analysis of identification under exogeneity the ratio of index function derivatives
is obtained as
Vib(z) t;(p,x)

Vib(x)  t;(p, )
a result which applies as long as the derivative of the censoring function is non-zero at
the point at which identification is sought. So, for the identification result to hold, p
and z must be chosen so that J~!(w(p,x),0(z)) falls on a differentiable segment of the
censoring function, that is at point at which censoring does not induce discreteness in the
distribution of the observed duration.

Similar considerations apply in the analysis of identification under endogeneity, and
there is an additional consideration. The analysis of identification under endogeneity rests
on the restriction requiring the function h(Z, S) to be strictly increasing in S at the value
of Z considered. In practice” this requires Y to be continuously distributed at the value
of (p, z) considered, and censoring of Y, if it occurs, must not remove this property.

In summary, the identification result under endogeneity may apply when T and (or)
Y are censored, but censoring must not result in either 7" or Y being non-continuously
distributed at the value of (pr, py, z) considered.

5. CONCLUDING REMARKS

The relative sensitivity of a single index in a duration model to variations in its possibly
endogenous determinants has been shown to be identifiable under weak semi-parametric
conditions. The identification result is constructive in the sense that it points to an
analogue estimator of ratios of derivatives of an index function an estimator which is a
functional of estimated iterated conditional quantile regression functions.

If the endogenous variable appearing in the hazard function is interpreted as the
duration spent in a state at some earlier time then the results of the paper are relevant
when considering identification in semi-parametrically specified panel duration models.

To see this, consider a panel of length two and suppose 1} and T are two durations
modelled as in this paper with integrated hazard functions respectively Ji(t1,61(2))/u1
and Jy(ta,02(t1,2))/us where u; and uy are values of latent unobservable random vari-
ables. Then in Hurwicz structural form we have

T, = Jyt(We,0(Th, Z))

Ty = JyH(W,60.(2))
where

Wy, = =Uslog(l—13)

W2 = *Ul log(lfvl).

YWith h(Z,S9) strictly increasing in S, the distribution of Y is continuous unless S has a discrete
distribution. But when h(Z, S) is strictly increasing in S and S has a discrete distribution, varaiations in
Z have no impact on the probability masses on the points of support of the distribution of Y, their only
effect being to change the location of the points of support. For practical purposes the analysis of this
paper requires the endogenous Y to be continuously distributed.
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Here V4 and V5 are independently uniformly distributed each on (0, 1), by construction
distributed independently of (Uy,Us, Z), and Uy and U, are jointly distributed random
variables. This is in the class of triangular nonseparable simultaneous equations structures
studied in this paper and so the identification conditions developed in this paper apply.
Extension to longer panels is straightforward.
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ANNEX 1

A. The restrictions of the model for identification of R;;(x) with local
exogeneity.

1. Hazard function. The hazard function for scalar, absolutely continuously distrib-
uted positive valued T given k element X = z and scalar positive valued U = u
is

)\T|XU(t|xv u) = j(tv 9(1‘))/’(1,

where 6(z) is a scalar function of x, and j(t,0(x)) > 0 for all ¢ and x.

2. Continuous variation. Consider two variables x; and x;. These variables admit
continuous variation in a neighbourhood of the value = of interest.

3. Differentiability. At a value x of interest the hazard function is a differentiable
function of t and of §(z). At a value z of interest, the index function, 0(x) is a
differentiable function of x; and x;. Define the random variable:

W =-Ulog(l-V)

where V' is uniformly distributed on (0, 1) independently of (U, X). Let Qw x(p, )
be the conditional p-quantile of W given X = x. At a value of p and z of interest,
Qwx (p,z) is a differentiable function of z; and x;.

4. Nonzero derivatives. At a value z of interest the derivative V;0(z) # 0 and
Voj(t,0(x)) # 0.

5. Local quantile invariance. For z* in a neighbourhood of the value = of interest
and for some value of p

ViQwx(p,2*) =0 V;Qwx(p,z*) =0

where W = —Ulog(1 — V) and V is uniformly distributed on (0,1) and U given
X =z is, by construction, distributed independently of V.

ANNEX 2

B. The restrictions of the model for identification of Ry ;(y, z) with local
endogeneity

1. Hazard function. The hazard function for scalar, absolutely continuously distrib-
uted positive valued T given k element Z = z, scalar Y = y, and scalar positive
valued U = u is

)‘T|YZU(t|y7 2, ’U,) = j(t7 9(y7 Z))/’LL
where 0(y, z) is a scalar function of y and z, and j(¢,6(y, z)) > 0 for all ¢, y and .

2. Endogenous variate. The endogenous variate Y is generated by the equation
Y =h(Z,5S)

where h(Z,5) is strictly monotonic (normalised increasing) in S and S is a random
variable.
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3. Continuous variation. Restrictions are placed on the behaviour of functions as
values of Y and of two elements of Z, Z; and Z; alter. The variates Y, Z; and Z;
admit continuous variation in a neighbourhood of a value (y, z) of interest.

4. Differentiability. The hazard function is a differentiable function of ¢ and of
0(y,z). At a value (y,z) of interest, the index function, 6(y, z) is a differentiable
function of y, z; and z;. Let Qg|z(py,2) be the conditional py-quantile of S given
Z = z. At values py and z of interest Qg)z(py,2) is a differentiable function of z;
and z;. For a chosen value of py and z define s(py,z) = Qg|z(py,2). Define the
random variable:

W =-Ulog(l-V)
where V' is uniformly distributed on (0, 1) independently of (U, X).Let Qw sz (pr, 5, 2)
be the conditional pp-quantile of W given S = s and Z = x. At values of pr and z
of interest and at s = s(py, 2), Qw|sz(pr, s, 2) is a differentiable function of s, z;
and z;.

5. Nonzero derivatives. At the value (y, z) of interest V;0(y, z) # 0 and Vyj(t, 0(x)) #
0.

6. Local quantile invariance. For z* in a neighbourhood of the value z of interest
and for a value pr of interest,

ViQsiz(py,2") = 0 V;Qgz(py,z") =0
ViQWlSZ(pT?S?’Z*)‘S:S(py,z) = 0 VjQW|SZ(pTaSaZ*)‘s:s(py,z) =0.

7. Local order condition. Define y(py, 2) = h(z, s(py, 2)). At y = y(py, 2) and the
chosen value of z

Vie(yv Z)|y:y(py,z) =0.

8. Local rank condition. At the value of z of interest

Viy(py,z) # 0.

ANNEX 3

The relationship between the distributions of W and V.

The random variable W, which is the sole (combined) source of stochastic variation in
the structural equation for the duration 7" under the proportionate heterogeneity restric-
tion, is defined as

WV, U)=-Ulog(l-V)

where V' is uniformly distributed on (0, 1) and U is the source of heterogeneity which has
distribution function Fy;x and is by construction distributed independently of V. This
Annex develops the relationship between the distributions of W and U.

The distribution function of W given X
First note that
PW <w|X=z] = P[-Ulog(l1-V)<w|X =z
= P[V<1- exp(—%ﬂX = 1]
= Eyix—s [P[V <1- exp(—%ﬂU,X = 2
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and since V' is uniformly distributed on (0, 1),
w
PIW <w|X = x| = Eyjx—,[1 — exp(—ﬁ)]
that is, the conditional distribution function of W given X is
Fyx(w|r) =1 - L(w, z)

where L(w, z) is the Laplace transform of the distribution of Ugiven X =z and U = UL,
that is:

L(w,x) = /000 exp(—w/u)dFy x (u|x). (A3.1)

The conditional quantile function of W given X

The conditional quantile function of W given X is therefore
Qwix(p.x) =L (1-p,x)
where L1 is the inverse function of the function L, that is L=!(z, z) is the solution to
z=L(L7Y(z,2),x). (A3.2)

Derivatives of the conditional quantile function

The derivative of Q| x (p,z) with respect to x; is therefore
ViQw x(p,x) = ViL™' (1 —p,z).
We have, setting z =1 — p in (A3.2),
0=V L(W, 2)|w=quw x (p.2) ViQw|x (P, Z) + ViL(W, Z) lw=Q | x (p.2)
and so, on noting that, from (A3.1)
Vo L(w, ©)[w=quw x (p.2) = —fw|x (Qwx (p, z)|z)

where fy|x is the conditional probability density function of W given X. Finally, there is
the following expression for the derivative with respect to x; of the conditional p-quantile
function of W given X:

V;L(w, C6)|w:QW|X(Pﬂ?)
fW|X(QW|X(pv x)|z)

ViQw|x(p,x) =
where
VAL, 2o () = /0 exp(—Qwix (1, @) /u)d (Vi Fupx (ulz))

Clearly, if, for some x, V;Fyx(ulz) = 0 for all u, which is in the nature of a local
independence condition, then V;Q | x (p,x) = 0 for all p.



