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Abstract. In additive error models with a discrete endogenous variable
identi�cation cannot be achieved under a marginal covariation condition when the
support of instruments is sparse relative to the support of the endogenous variable.
An iterated covariation condition with a weak montonicity restriction is shown to
have set identifying power.

1. Introduction

In an additive error model: Y1 = h(Y2) + "1 with a discrete endogenous variable Y2,
nonparametric identi�cation of h(�) requires a vector of instruments X to have at least
as many points of support as the endogenous variable under the conventional marginal
covariation condition: E["1jX = x] = c, a constant invariant with respect to x.
Das (2004) and Florens and Malavolti (2003) study identi�cation and estimation of

h(�) under this condition. In practice this support condition may not be satis�ed and
there are additional di¢ culties when the number of points of support of Y2 is unbounded.
This note explores the utility for identi�cation of values yielded by h(�) of an iterated

covariation condition, E["1j"2 = e2 \X = x] = c(e2) where c(�) is a function which does
not depend on x and "2 is a random variable which generates stochastic variation in Y2
given X.
It is shown that, when the cardinality of the support of X is at least equal to that

of Y2 the iterated condition has no additional power for identi�cation of h(�) relative to
the marginal covariation condition. However when the support of X is de�cient, if c(�)
is restricted to be monotonic, then the iterated covariation condition can yield closed set
identi�cation of h(�) at particular points of support of Y2 and, if instruments are not weak,
of di¤erences of h(�) across points of support.

2. Definitions

A discrete outcome Y2 hasM known points of support y12 < � � � < yM2 independent of a list
of covariates X. For m 2 f1; : : : ;Mg de�ne pm(x) � P [Y2 � ym2 jX = x], the associated
conditional quantile function:

QY2jX(pjx) = ym2 where m = inf
n2f1;:::;Mg

fn : pn(x) � pg

and the probability masses on the points of support of Y2: pm(x) � pm(x) � pm�1(x) =
P [Y2 = y

m
2 jX = x] each restricted to lie in (0; 1) for all x.

A continuous outcome Y1 and discrete outcome Y2 are determined by the structural
equations

Y1 = h1(Y2) + "1 (1)

Y2 = g(X; "2) (2)
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where "1 and "2 are continuously distributed latent variates.1 The variate "2 is normalised
Unif(0; 1) and g(x; e2) � QY2jX(e2jx) is the conditional e2-quantile function of Y2 given
X. Under this normalisation Y2 has the conditional distribution function pm(x) given
X = x.

3. Marginal covariation restrictions

Consider the following marginal covariation restriction as employed by Das (2004) and
Florens and Malavolti (2003).

MC: For all x, E["1jX = x] = c where c is invariant with respect to x.

Normalise c = 0. De�ne �(x) � E[Y1jX = x] and, for m 2 f1; : : : ;Mg, hm � h(ym2 ),
and Dm � 1[Y2 = ym2 ]. Since Y1 =

PM
m=1Dmh(y

m
2 )+"1 there is: �(x) =

PM
m=1 pm(x)hm.

Consider N values of X: fxngNn=1. With the de�nitions below: �N = PN�.

�N �

264 �(x1)
...

�(xN )

375 � �

264 h1
...
hM

375 PN �

264 p1(x1) � � � pM (x1)
...

. . .
...

p1(xN ) � � � pM (xN )

375
The value of � is identi�ed without further restriction if and only if rank(PN ) = M for
which a necessary condition is N� � M where N� is the number of distinct values in
fxngNn=1. When the rank condition is satis�ed there is for any N �N full rank matrix W ,

� =
�
P 0NW

�1PN
��1

P 0NW
�1�N

which suggests analog GLS-type estimators with the elements of PN replaced by estimated
conditional probabilities and the elements of �N replaced by values of Y1. If M is not
�nite there are clearly di¢ culties in implementing such procedures and even when M is
�nite, if it is large then there may be extreme collinearity amongst the columns of PN .
If the cardinality of the support of X is less than that of the support of the discrete

endogenous variable, then the value of � is not identi�ed. Further, since pm(x) 2 (0; 1)
for all x, no element of � is identi�ed unless additional restrictions are introduced. The
elements of � are restricted to lie on N� hyperplanes in RM so there is set identi�cation
of the value of �, but the set in which the value falls is not closed.2

1There are no covariates appearing in the structural function h in equation (1). Covariates other than
X could appear, in which case, in this analysis of nonparametric identi�cation, the arguments that follow
will apply at each value of those covariates at which identi�cation of a value of h is sought. The covariates
X appearing in equation (2) could also be arguments of the structural function h but its value must then
be insensitive to the identifying variations in X considered below.

2 If there are the restrictions R� = r where R is a known J�M matrix and r is a known J element vector
then � is identi�ed if and only if rank

��
R0 P 0N

��
=M for which a necessary condition is J+N� �M .

One might entertain the restriction that h is a Kth degree polynomial function of Y2. Then, because
suitably de�ned (K + 1)th di¤erences of the elements of � must be zero, there are (M � 1�K) linear
restrictions on �. It follows that, if the covariate vector X and the discrete endogenous variable have
respectively N� and M points of support with N� < M , � may be identi�ed if h is restricted to lie on a
polynomial of degree K where K < N�. If K � N� then the restrictions may be overidentifying.
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4. Iterated covariation condition

Now consider the following iterated covariation restriction.

IC: For all x, E["1j"2 = e2 \X = x] = c(e2). E["1jX = x] is �nite.

Since "2 is independent of X this implies the marginal covariation conditionMC with
c �

R 1
0
c(e2)de2. However the iterated condition IC is not implied by MC. For example,

for any function a(x), if E["1j"2 = e2 \X = x] = a(x) + 2(c� a(x))e2, which violates IC,
then E["1jX = x] = c and MC is satis�ed. So IC is more restrictive than MC. There is
thus the possibility that it has greater identifying power, an issue explored in this Section.
When the cardinality of the support of X is at least equal to the cardinality of the sup-

port of the discrete endogenous variable IC provides no additional identifying information
for the structural function h. This is shown in Section 4.1.
Otherwise IC can yield closed set identi�cation of values of the structural function if

an additional restriction is imposed. This is shown in Section 4.2.

4.1. Rich support. For z 2 [0; 1] de�ne C(z) =
R z
0
c(w)dw. Clearly C(0) = 0.

Normalise E["1jX = x] = C(1) = 0.
The conditional expectation of Y1 given Y2 = ym2 and X = x is

E(Y1jY2 = ym2 \X = x) = h(ym2 ) + E("1j"2 2 (pm�1(x); pm(x)]) (3)

and since

E("1j"2 2 (pm�1(x); pm(x)]) =
1

pm(x)

Z pm(x)

pm�1(x)

c(e2)de2 (4)

there is:

E(Y1jY2 = ym2 \X = x) = h(ym2 ) +
1

pm(x)

�
C(pm(x))� C(pm�1(x))

	
: (5)

Suppose M is �nite and for m 2 f1; : : : ;Mg and N values of X, fxngNn=1 de�ne the
following terms.

�mn � E(Y1jY2 = ym2 \X = xn)

pmn � pm(xn) � P [Y2 = ym2 jX = xn]

Cmn � C(pm(xn))

There is, for m 2 f1; : : : ;Mg and n 2 f1; : : : ; Ng

�mn = hm + p
�1
mn

�
Cmn � Cm�1n

�
(6)

with, for all n, C0n = 0 by de�nition, and C
M
n = 1 by normalisation.3

Data are informative about the 2 �M � N values of the terms �mn and pmn. The
M � N equations (6) involve M values of the terms hm and (M + 1) � N values of the
terms Cmn of which 2 � N are determined by de�nition or normalisation. Therefore a
necessary condition for the identi�cation of the M + (M � 1) � N undetermined values
of the terms hm and Cmn is M � N � M + (M � 1) � N , that is N � M , just as when
the marginal covariation condition MC is imposed.

3CMn = 1 because pM (x) = 1 for all x.



Identification in additive error models with discrete endogenous variables 4

Summing the terms �mn across m after multiplication by pmn there is, for each n 2
f1; : : : ; Ng, in view of equation (6)

MX
m=1

pmn�mn =
MX
m=1

pmnhm = �(xn)

where �(xn) = E[Y1jX = xn].4 These equations are identical to the equations �N = PN�
obtained under MC and when rank(PN ) = M they can be solved for the M unknown
hm�s. A necessary condition is that N� �M .
When the support of X is rich in the sense that the cardinality of the support of X

is at least equal to the cardinality of the support of the discrete endogenous variable the
conditions IC andMC lead to the same identifying correspondence for �. Under IC there
is the possibility of identifying values of the terms Cmn which is not possible under MC.
IC has no additional identifying power relative to MC for � when the support of X is
rich.
When the support ofX is sparse in the sense thatN� < M then IC can have additional

closed set identifying power if a monotonicity restriction is imposed on the function c(�),
as demonstrated in the next Section.

4.2. Sparse support. Impose the additional restriction that c(e2) is a monotonic
function of e2.5 When c is increasing there is then, in view of (4), the inequality

c(pm�1(x)) � E("1j"2 2 (pm�1(x); pm(x)]) � c(pm(x))

which on adding h(ym2 ) implies

h(ym2 ) + c(p
m�1(x)) � E(Y1jY2 = ym2 \X = x) � h(ym2 ) + c(pm(x))

with the inequalities reversed when c is decreasing.6

Suppose there exist values of X, fxm�1; xmg, such that for some �e2 2 (0; 1)

pm(xm) � �e2 � pm�1(xm�1) (7)

and consider the case in which c is an increasing function. Since:

c(pm(xm)) � c(�e2) � c(pm�1(xm�1))

there are the following inequalities.

E(Y1jY2 = ym2 \X = xm) � h(ym2 ) + c(p
m(xm))

� h(ym2 ) + c(�e2)

� h(ym2 ) + c(p
m�1(xm�1))

� E(Y1jY2 = ym2 \X = xm�1)

4This expression results because
PM
m=0

�
Cmn � Cm�1n

�
= C(1) = 0.

5This sort of montonicty restriction is imposed on conditional quantile functions in Chesher (2003)
which studies identi�cation in non-additive error models with discrete endogenous variables.

6 If c(e2) = c, constant for variations in e2, in which case "1 is mean independent of "2, then for any
m,

E(Y1jY2 = ym2 ; X = x) = h(ym2 ) + c = E(Y1jY2 = ym2 )
and there is point identi�cation of h(ym2 ) at all values of m.
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The inequalities are reversed if c is a decreasing function and the following inequality
results.

min (E(Y1jY2 = ym2 \X = xm); E(Y1jY2 = ym2 \X = xm�1))

� h(ym2 ) + c(�e2) �
max (E(Y1jY2 = ym2 \X = xm); E(Y1jY2 = ym2 \X = xm�1))

This inequality holds at any point of support m for which there exist xm�1 and xm
satisfying (7) any value of "2, �e2. When this condition holds at many points of support
for the same value �e2 the value of the structural function is identi�ed at those points
of support up to a common location shift c(�e2) and then di¤erences of the structural
function, h(ym2 )� h(yn2 ) are identi�ed.
The condition (7) cannot hold when ym2 is an extreme point of support carrying non-

zero probability mass. For example when ym2 is the largest value achieved by Y2, (7) can
only hold for fxm�1; xmg such that pm(xm) = pm�1(xm�1) = 1 but then there is no
probability mass on ym2 .
The bounds are easily estimated using sample averages of Y1 at ym2 and values of X

satisfying (7). In practice those values of X will be determined using an estimate of the
conditional distribution of Y2 given X which will have implications for the computation
of standard errors.

5. Strength of instruments and support

As noted in Section 3, under MC the identi�ability of the structural function depends
critically on the support of X. If X has fewer points of support than the discrete endoge-
nous variable then the value of the structural function is not identi�ed at any point of
support without further restriction.
Under IC and a monotonicity restriction on c(e2) the interval identi�ability of values

and di¤erences of a structural function is greatly a¤ected by the strength of the instruments
but, with strong instruments, the support of X does not play a critical role. With a strong
enough instruments there can be interval identi�cation of many values of a structural
function up to common location shift even when the instruments have only two points
of support. However when instruments are weak there may be no possibility of interval
identi�cation.
An example illustrating lack of identi�ability is shown in Table 1 which exhibits con-

ditional distribution functions for Y2 with four points of support when X has two points
of support. In this case, because for all m,

max
�
P [Y2 � ym�12 jX = 0]; P [Y2 � ym�12 jX = 1]

�
< min (P [Y2 � ym2 jX = 0]; P [Y2 � ym2 jX = 1])

there is no value of �e2 and m for which there are values of X, fxm�1; xmg such that the
condition (7) holds. Chesher (2003) shows that this situation prevails in the data used in
Angrist and Krueger (1991).
Contrast this case with the one shown in Table 2. Here the e¤ect of X on the condi-

tional distribution of Y2 is substantial and there is interval identi�cation of the value of
the structural function at Y2 = 2 and Y2 = 3 up to a common location shift, even though
X has just two points of support. This case is now worked through in detail to illustrate
the results of the Section 4.2.
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Table 1: Conditional distribution functions of Y2 given X = 0 and 1 - Example 1

ym2 P [Y2 � ym2 jX = 0] = pm(0) P [Y2 � ym2 jX = 1] = pm(1)

1 0:3 0:2
2 0:5 0:4
3 0:7 0:6
4 1:0 1:0

Table 2: Conditional distribution functions of Y2 given X = 0 and 1 - Example 2

ym2 P [Y2 � ym2 jX = 0] = pm(0) P [Y2 � ym2 jX = 1] = pm(1)

1 0:7 0:1
2 0:8 0:2
3 0:9 0:3
4 1:0 1:0

Since in Table 2:

8 �e2 2 (0:2; 0:7) : p2(1) � �e2 � p1(0)
8 �e2 2 (0:3; 0:8) : p3(1) � �e2 � p2(0)

there is, if c(�) is increasing,

8 �e2 2 (0:2; 0:7) : E[Y1jY2 = 2 \X = 1] � h(2) + c(�e2) � E[Y1jY2 = 2 \X = 0]

8 �e2 2 (0:3; 0:8) : E[Y1jY2 = 3 \X = 1] � h(3) + c(�e2) � E[Y1jY2 = 3 \X = 0]

with the inequalities reversed if c(�) is decreasing. The intervals over which these two
inequalities hold both include the interval (0:3; 0:7) and so h(2) and h(3) are interval
identi�ed up to the common location shift c(�e2) for all �e2 in this common interval. As a
result there is interval identi�cation of the partial di¤erence h(2)� h(3), as follows

E[Y1jY2 = 2 \X = 1]� E[Y1jY2 = 3 \X = 0]

� h(2)� h(3) � (8)

E[Y1jY2 = 2 \X = 0]� E[Y1jY2 = 3 \X = 1]

with the inequalities reversed if c(e2) is decreasing.
It is instructive to take this example a little further. Suppose that the data gen-

erating process has "1j("2; X) � N(c("2); �
2) and c("2) = �0 + �1�

�1("2) where ��1

is the standard normal quantile (inverse distribution) function. Since "2 � Unif(0; 1),
��1("2) � N(0; 1) and c("2) � N(�0; �21), so in this data generating process "1 and c("2)
are jointly normally distributed. There is, for m 2 f1; 2; 3; 4g and x 2 f0; 1g:

E[Y1jY2 = ym2 \X = x] = h(ym2 ) + �0 +
�1

pm(x)

Z pm(x)

pm�1(x)

��1(e2)de2

= h(ym2 ) + �0 +
�1

pm(x)

�
�
�
��1(pm�1(x))

�
� �

�
��1(pm(x))

��
where � denotes the standard normal density function.
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Using the values in Table 2 there is:

E[Y1jY2 = 2 \X = 1] = h(2) + �0 � 1:045�1
E[Y1jY2 = 2 \X = 0] = h(2) + �0 + 0:677�1

E[Y1jY2 = 3 \X = 1] = h(3) + �0 � 0:677�1
E[Y1jY2 = 3 \X = 0] = h(3) + �0 + 1:045�1

and the absolute value of the width of the bounds (8) is 3:444 � �1. As �1 ! 0, that is
as "1 and "2 approach independence and Y2 becomes exogenous, the width of the bounds
falls to zero and point identi�cation is secured.
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