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Abstract

This paper is concerned with identification of a competing risks model with unknown
transformations of latent failure times. The model in this paper includes, as special
cases, competing risks versions of proportional hazards, mixed proportional hazards,
and accelerated failure time models. It is shown that covariate effects on latent failure
times, cause-specific link functions, and the joint survivor function of the disturbance
terms can be identified without relying on modelling the dependence between latent
failure times parametrically nor using an exclusion restriction among covariates. As a
result, the paper provides an identification result on the joint survivor function of the
latent failure times conditional on covariates.
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1 Introduction

This paper is concerned with identification of a competing risks model with unknown trans-

formations of latent failure times. Suppose that there are J competing causes of failure

indexed by the integers 1 to J with corresponding latent failure times (T1, . . . TJ). One

observes the duration to the first failure and the corresponding cause of failure, denoted by

Y = minj Tj and ∆ = arg minjTj , along with explanatory variables. It is well known (see,

for example, Cox (1962) and Tsiatis (1975)) that the distribution of latent failure times

is nonparametrically unidentified. Heckman and Honoré (1989) and Abbring and Van den

Berg (2003), among others, demonstrate that one can break this nonidentification result by

considering a certain class of models for latent failure times and by exploiting sufficiently

independent variations of latent failure times with explanatory variables.

The main purpose of this paper is to provide weak restrictions that are sufficient to

identify important features of a competing risks model. The model and restrictions imposed

in this paper are quite different from those of Heckman and Honoré (1989) and Abbring and

Van den Berg (2003) and can be viewed as an alternative modelling framework. Specifically,

we consider a transformation model for each latent failure time and also get around a difficult

problem of identifying the scale factor of covariate effects (or equivalently, the scale factor

of a link function). Our identification result is sufficiently weak in a sense that it is not

needed to have a parametric form of dependence nor an exclusion restriction on covariates.

It is assumed in this paper that each latent failure time Tj is generated by a linear

transformation regression model:

Hj(Tj) = X ′βj + Uj , j = 1, . . . , J, (1)

where Hj(·) is an unknown, differentiable, strictly increasing function with a derivative hj(·),
X a d-dimensional vector of continuous explanatory variables (not including a constant

term), βj a d-dimensional vector of unknown parameters, and Uj is an unobserved random

variable that is independent of X. It is also assumed that the distribution of Uj is unknown

and Uj may depend on each other.

The model (1) includes, as special cases, competing risks versions of proportional haz-

ards, mixed proportional hazards, and accelerated failure time models and may be called

a competing risks transformation model. For example, a mixed proportional hazards com-

peting risks model can be expressed as a special case of (1) with Uj = αj + εj , where

αj is a cause-specific frailty term, εj is an unobserved random variable that has CDF
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Fj(ε) = 1 − exp(−eε) and exp[Hj(t)] is the integrated baseline hazard function (Clayton

and Cuzick (1985) and Abbring and Van den Berg (2003)). An accelerated failure time com-

peting risks model may be presented as (1) in which Hj(t) = log t (Heckman and Honoré

(1989)). In survival analysis, transformation models have been studied intensively for sin-

gle risks data (see, e.g., Cheng, Wei, and Ying (1995, 1997) and Horowitz (1996, 1999)).

Fine (1999) uses a transformation model to analyze the cumulative incidence function for

competing risks data.

This paper provides identification results on the three objects in (1): βj , Hj , and the

joint survivor function of Uj ’s. Given the knowledge of these objects, we can identify the

joint survivor function of (T1, . . . TJ) conditional on X = x. Therefore, we can carry out

a counterfactual analysis of latent failure times, which would be impossible using only

observed data.

The paper is organized as follows. Section 2 provides an identification result for βj .

Section 3 presents additional identification results on Hj , the joint survivor function of

Uj ’s, and the joint survivor function of (T1, . . . TJ) conditional on X = x. Concluding

remarks are given in Section 4.

2 Identification of βj

This section provides conditions under which βj in (1) is identified. βj is a vector of para-

meters that measure the effects of X on latent failure time Tj . Since Hj and the distribution

of Uj are unknown, βj is identified only up to some location and scale normalization. Also,

because Hj can be different from Hk, βj is not directly comparable to βk for j 6= k. There-

fore, only the direction of βj is identified and ratios between components of βj give relative

importance of components of X.

In this paper, we assume that d ≥ 2. Otherwise, there is nothing left to identify since the

scale factor has to be normalized. To identify βj , define S(t|x) = Prob(Y > t|X = x) and

Qj(t|x) = Prob(Tj > t,∆ = j|X = x) for j = 1, . . . , J . Also, let p(x) denote the probability

density function of X, SX the support of X, and xk and β
(k)
j the k-th components of x and

βj , respectively. For k = 1, . . . , d, and j = 1, . . . , J , define

Ak(t, x) =
∂S(t|x)

∂xk
p(x),

Bj(t, x) = −∂Qj(t|x)
∂t

p(x),
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B(t, x) = [B1(t, x), . . . , BJ(t, x)]′, and β(k) = (β(k)
1 , β

(k)
2 , . . . , β

(k)
J )′ for k = 1, . . . , d. Thus,

β(k) is a (J × 1) vector of unknown cause-specific coefficients of the k-th component of X.

Observe that Ak(t, x) and B(t, x) are identified directly from the data. In the following,

we will achieve identification of βj by showing that βj is a functional of Ak(t, x) and B(t, x).

To do so, we make the following assumptions:

Assumption 1 (Identification of βj). (a) (U1, . . . , UJ) are continuously distributed and

independent of X but may be arbitrarily correlated with one another.

(b) X is a d(≥ 2)-dimensional vector of continuous explanatory variables and has a joint

probability density function p(x) that is positive on SX except on the boundary.

(c) Hj(·) is an unknown, differentiable, strictly increasing function with a derivative hj(·).
(d) For each j = 1, . . . , J ,

∫
[wT (t)/hj(t)]dt = 1, (2)

where wT (t) is a weight function with compact support ST .

(e) Assume that as functions of x ∈ SX , components of B(t, x) are linearly independent for

every t ∈ ST .

Condition (a) allows for arbitrary correlations among Uj . Location normalization is

achieved by excluding an intercept term in X (see condition (b)). Condition (c) is convenient

in analyzing a transformation model. Scale normalization is accomplished by condition (d).

This assumption is useful to create averaging effects, so that a sample analog estimator

based on our identification result converges in probability at a rate of n−1/2, where n is the

sample size. The same type of scale normalization is used for similar reasons in Horowitz

(2001) and Horowitz and Lee (2004). Condition (e) amounts to assuming that cause-specific

sub-densities of latent failure times conditional on X = x ∈ SX are linearly independent for

every t ∈ ST . There are no possible values of t and x satisfying this condition if βj ,Hj , αj ,

and Fj are identical over j = 1, . . . , J ; however, this is not an interesting case to use a

competing risks model.

The following theorem gives a constructive identification result for βj .

Theorem 1. Let Assumption 1 hold. Then for each k = 1, . . . , d, β(k) can be expressed as

β(k) =
∫

wT (t)E[B(t,X)B(t, X)′]−1E[B(t,X)Ak(t,X)] dt. (3)
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Proof of Theorem 1. Let f(u1, . . . , uJ) denote the joint probability density function of (U1, . . . , UJ).

Notice that

S(t|x) = Pr(Hj(Tj) > Hj(t) for all j|X = x)

= Pr(Uj > Hj(t)− x′βj for all j)

=
∫ ∞

H1(t)−x′β1

· · ·
∫ ∞

HJ (t)−x′βJ

f(u1, . . . , uJ) du1 · · · duJ

and

Qj(t|x) = Pr(Hj(Tj) > Hj(t) and Hl(Tl) > Hl(Tj) for all l 6= j|X = x)

= Pr(Uj > Hj(t)− x′βj and Ul > Hl(Tj)− x′βl for all l 6= j)

=
∫ ∞

Hj(t)−x′βj

∫ ∞

H1[H−1
j (x′βj+uj)]−x′β1

· · ·
∫ ∞

HJ [H−1
j (x′βj+uj)]−x′βJ︸ ︷︷ ︸

J − 1 integrals excluding j

f(u1, . . . , uJ) du1 · · · duJ︸ ︷︷ ︸
duj is excluded

duj

for j = 1, . . . , J . By differentiation,

∂Qj(t|x)
∂t

= −hj(t)
∫ ∞

H1(t)−x′β1

· · ·
∫ ∞

HJ (t)−x′βJ︸ ︷︷ ︸
J − 1 integrals excluding j

f(u1, . . . , uj−1,Hj(t)− x′βj , uj+1, . . . , uJ) du1 · · · duJ︸ ︷︷ ︸
duj is excluded

and

∂S(t|x)
∂xk

=
J∑

j=1

β
(k)
j

∫ ∞

H1(t)−x′β1

· · ·
∫ ∞

HJ (t)−x′βJ︸ ︷︷ ︸
J − 1 integrals excluding j

f(u1, . . . , uj−1,Hj(t)− x′βj , uj+1, . . . , uJ) du1 · · · duJ︸ ︷︷ ︸
duj is excluded

,

where xk and β
(k)
j are the k-th components of x and βj , respectively. It follows that

∂S(t|x)
∂xk

=
J∑

j=1

−∂Qj(t|x)
∂t

β
(k)
j

hj(t)
. (4)

Multiplying by p(x) both right and left sides of (4) gives

∂S(t|x)
∂xk

p(x) =
J∑

j=1

−∂Qj(t|x)
∂t

p(x)
β

(k)
j

hj(t)
. (5)

To express identifying relationships compactly, define, for k = 1, . . . , d, let

bk(t) =

(
β

(k)
1

h1(t)
,

β
(k)
2

h2(t)
, . . . ,

β
(k)
J

hJ(t)

)′
.
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Then it follows from (5) that

Ak(t, x) = B(t, x)′bk(t).

To identify β(k), write

B(t, x)Ak(t, x) = B(t, x)B(t, x)′bk(t). (6)

To solve for bk(t), substitute the random vector X for x in (6) and take expectations to

obtain

E[B(t,X)Ak(t, X)] = E[B(t,X)B(t,X)′]bk(t). (7)

By the assumption that components of B(t, x) are linearly independent for every t ∈ ST ,

we have that E[B(t, X)B(t,X)′] is nonsingular for every t ∈ ST . Therefore, under the

scale normalization (2), β(k) can be expressed as in the equation (3), which proves the

theorem.

The equation (3) could be used as the basis for a sample analog estimator of β(k).

Semiparametric estimation of β(k) can be carried out by replacing unknown population

quantities in (3) with suitable nonparametric estimators.

It can be seen from the expression of S(t|x) in the proof of Theorem 1 that the ex-

pectation of Y conditional on X = x belongs to the class of multiple-index models (see,

for example, Ichimura and Lee (1991)). Typically, certain exclusion restrictions (for exam-

ple, certain components of parameters are zero) are needed for multiple-index models to

achieve identification of parameters. As shown by Heckman and Honoré (1989), Abbring

and Van den Berg (2003), and equation (3), exclusion restrictions are not required for the

identification of semiparametric competing risks models.

It is important to notice that there exists an important difference between identification

results of Heckman and Honoré (1989) and Abbring and Van den Berg (2003) and one ob-

tained in Theorem 1. Those of Heckman and Honoré (1989) and Abbring and Van den Berg

(2003) are based on the arguments of letting t → 0, thereby implying that corresponding

estimation methods would be based on only observations with failure times close to zero.

An estimator of Femanian (2003, Section 4) is such an example. This is mainly because the

scale factor has to be identified in the setup of Heckman and Honoré (1989) and Abbring

and Van den Berg (2003). The difficulty of identifying the scale factor is not specific to

competing risks models. A similar problem arises in a single-risk mixed proportional hazard

model (see, for example, Horowitz (1999)).
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It is also important to note that the continuity of the distribution of X is not needed

for identification of the covariate effects in the framework of Heckman and Honoré (1989)

and Abbring and Van den Berg (2003). This is due to the fact that in their framework,

the joint survivor function of latent failure times can be written as an exponential function,

which does not necessarily hold in our model (1). Finally, we note that (3) is expressed in

terms of a density-weighted form (see also (5)), which would be convenient to construct a

resulting sample analog estimator.

When all components of X are discrete, it is unclear whether one can point-identify

covariate effects. However, some recent studies show that it is possible to derive bounds

for covariate effects in some competing risks models with discrete covariates. For example,

Bond and Shaw (2003) obtain bounds for covariate effects under the assumption that the

copula associated with the joint distribution of latent failure times is invariant to the value

of covariates. Abbring and Van den Berg (2005) apply the result of Bond and Shaw (2003)

to bound the treatment effects on duration outcomes. Honoré and Lleras-Muney (2004)

derive bounds in an accelerated failure time competing risks model with discrete covariates.

3 Identification of Hj and the joint distribution of (U1, . . . , UJ)

This section presents conditions under which Hj and the joint distribution of Uj ’s are

identified. These results combined along with that for βj provide the identification of the

joint survivor function of (T1, . . . , TJ) conditional on X = x.

We first consider identification of Hj . Notice that Hj(t) can be unbounded as |t| → ∞,

so that we only focus on identification of Hj on a compact interval ST = [t, t ]. It is necessary

to impose location normalization on Hj . It is achieved here by assuming that there exists

t0 ∈ [t, t ] such that Hj(t0) = 0 for each j.

To present an identification result for Hj , we need some additional notation. Define

H(t) = (H1(t), . . . ,HJ(t))′ and for two J-dimensional vectors a = (a1, . . . , aJ) and b =

(b1, . . . , bJ), let a./b = (a1/b1, . . . , aJ/bJ) denote an element-by-element division operator.

The following theorem gives a constructive identification result for Hj .

Theorem 2. Let Assumption 1 hold with ST = [t, t ]. Suppose that all the components of

β(k) are non-zero. In addition, assume that Hj(t0) = 0 for some t0 ∈ [t, t ] for each j. Then

for any k, H(t) can be expressed as

H(t) =
∫ t

t0

β(k)./{E[B(s,X)B(s,X)′]−1E[B(s, X)Ak(s,X)]} ds. (8)
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for any t ∈ [t, t ].

Proof of Theorem 2. It follows from (7) and Assumption 1 (e) that

h(t) = β(k)./{E[B(t,X)B(t,X)′]−1E[B(t, X)Ak(t,X)]}, (9)

where h(t) = [h1(t), . . . , hJ(t)]′. Then the theorem follows by integrating both sides of

the equation above from t0 to t and invoking the location normalization Hj(t0) = 0. The

condition that all the components of β(k) are non-zero is necessary to determine H(t)

uniquely.

Notice that we achieve identification of Hj(t) only on a compact interval rather than R,

where R is the entire real line. This is because Hj(t) could be unbounded and E[B(t,X)B(t, X)′]

might be singular for a very small or very large t. Also notice that components of H(t)

are over-identified since (8) holds for any k = 1 provided that corresponding components of

β(k) are non-zero.

We now turn to identification of the joint distribution of (U1, . . . , UJ). Define

SU (u1, . . . , uJ) = Pr(U1 > u1, . . . , UJ > uJ)

to be the joint survivor function of U = (U1, . . . , UJ). In addition, define Z = (Z1, . . . , ZJ),

where Zj ≡ X ′βj for each j = 1, . . . , J . To identify SU (u1, . . . , uJ), we use Zj to create

exclusion-restriction-type variations. Specifically, if βj ’s are identified and there are no

functionally deterministic relationships among Zj ’s, we can exploit independent variations

of one of Zj ’s given other Zj ’s. Finally, let SY |Z(t|z1, . . . , zJ) = Pr(Y > t|Z1 = z1, . . . , ZJ =

zJ) denote the conditional survivor function of Y given (Z1, . . . , ZJ) = (z1, . . . , zJ). Note

that SY |Z(t|z1, . . . , zJ) is well-defined because Zj ’s are not functionally dependent. Also

note that once βj is identified for each j, SY |Z(t|z1, . . . , zJ) is identified directly from the

data.

Theorem 3. Let Assumption 1 hold. Suppose that βj and {H(t) : t ∈ [t, t ]} are identified.

Assume that there are no functionally deterministic relationships among components of Z

and the support of Z is RJ . Then for any values of (u1, . . . , uJ), SU (u1, . . . , uJ) can be

expressed as

SU (u1, . . . , uJ) =
∫

wU (t)SY |Z(t|H1(t)− u1, . . . ,HJ(t)− uJ) dt (10)

with a predetermined weight function wU (t) with support in an interior of [t, t ].
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Proof of Theorem 3. Recall that f(u1, . . . , uJ) denotes the joint probability density function

of (U1, . . . , UJ). On one hand, notice that

SU (u1, . . . , uJ) =
∫ ∞

u1

· · ·
∫ ∞

uJ

f(u1, . . . , uJ) du1 · · · duJ .

On the other hand, observe that

SY |Z(t|z1, . . . , zJ) = Pr(Hj(Tj) > Hj(t) for all j|Z1 = z1, . . . , ZJ = zJ)

= Pr(Uj > Hj(t)− zj for all j)

=
∫ ∞

H1(t)−z1

· · ·
∫ ∞

HJ (t)−zJ

f(u1, . . . , uJ) du1 · · · duJ .

In view of the expressions of SU (u1, . . . , uJ) and SY |Z(t|z1, . . . , zJ),

SU (u1, . . . , uJ) = SY |Z(t|H1(t)− u1, . . . , HJ(t)− uJ)

for any t ∈ [t, t ]. Therefore, the theorem follows immediately since given t, SU (u1, . . . , uJ)

is identified for any values of (u1, . . . , uJ) thanks to the support condition on Z.

The infinite support condition on Z is useful to identify SU (u1, . . . , uJ) for any values of

(u1, . . . , uJ). Without this condition, the identification result would be limited to a subset

of the support of (U1, . . . , UJ).

We are now ready to state the main result of this paper.

Theorem 4. Let Assumption 1 hold. Suppose that βj, {H(t) : t ∈ [t, t ]}, and {SU (u1, . . . , uJ) :

−∞ < uj < ∞, j = 1, . . . , J} are identified. Then for any (t1, . . . , tJ) ∈ [t, t ]J ,

Pr(T1 > t1, . . . , TJ > tJ |X = x) = SU (H1(t1)− x′β1, . . . , HJ(tJ)− x′βJ) (11)

Proof of Theorem 4. This is straightforward to prove since

Pr(T1 > t1, . . . , TJ > tJ |X = x) = Pr(Uj > Hj(tj)− x′βj for each j)

=
∫ ∞

H1(t1)−x′β1

· · ·
∫ ∞

HJ (tJ )−x′βJ

f(u1, . . . , uJ) du1 · · · duJ

= SU (H1(t1)− x′β1, . . . , HJ(tJ)− x′βJ).

This theorem shows that one can identify the underlying distribution of latent failure

times conditional on explanatory variables. One weakness of this result is that the joint

distribution is not identified for all the values of (t1, . . . , tJ). Thus, we fail to achieve

identification of the marginal distribution of Tj .
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4 Conclusions

This paper has shown that a transformation model can be used to identify important

features of a dependent competing risks model that includes, as special cases, competing

risks versions of proportional hazards, mixed proportional hazards, and accelerated failure

time models. In particular, all the identification results are constructive, thereby suggesting

semiparametric methods for estimating the competing risks transformation model in (1).

Sample analog estimation can be carried by replacing unknown population quantities in

identification results with some suitable nonparametric estimators, e.g. kernel estimators.

Implementation of this estimation is a topic for future research.
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